JP5582628B2 - Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof - Google Patents
Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof Download PDFInfo
- Publication number
- JP5582628B2 JP5582628B2 JP2008249405A JP2008249405A JP5582628B2 JP 5582628 B2 JP5582628 B2 JP 5582628B2 JP 2008249405 A JP2008249405 A JP 2008249405A JP 2008249405 A JP2008249405 A JP 2008249405A JP 5582628 B2 JP5582628 B2 JP 5582628B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- crec
- strain
- koji
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Alcoholic Beverages (AREA)
- Soy Sauces And Products Related Thereto (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は、麹菌のカーボンカタボライト・リプレッションを正に制御する制御するタンパク質creCをコードする遺伝子の機能を欠損させた麹菌、及びその利用に係わるものである。 The present invention relates to a gonococcus deficient in the function of a gene encoding a protein creC that controls and positively controls gonococcal carbon catabolite repression, and uses thereof.
焼酎、清酒、みりん、味噌、醤油等の調味料の製造では、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アワモリ(A.awamori)、アスペルギルス・ニガー(A.niger)、アスペルギルス・オリーゼ(A.oryzae)、アスペルギルス・ソーヤ(A.sojae)といった麹菌が用いられている。麹菌は各種酵素の生産に適しており、その用途に応じ、その各種酵素系の発現に適した製麹方法が採られている。例えば醤油の製造においては、蒸煮した穀類等の固体原料に麹菌の胞子を散布し、その表面で麹菌を増殖させることによって製麹を行っている。麹の原料となる大豆、小麦、米の種類により、また、それらのα化度、水分量により、製麹中の温度、湿度、培養時間、手入れ条件、通風・換気条件等のさまざまな製麹条件を調整して、各種酵素を効率よく産生させるように管理するのが一般的である。 In the production of seasonings such as shochu, sake, mirin, miso, soy sauce, Aspergillus kawachii, Aspergillus awamori, A. niger, Aspergillus oryzae ory z ) And Aspergillus sojae (A. sojae) are used. Aspergillus is suitable for the production of various enzymes, and depending on its use, a method of making a koji suitable for the expression of the various enzyme systems is employed. For example, in the production of soy sauce, koji molds are produced by spraying koji mold spores on a solid raw material such as cooked cereal and allowing the koji mold to grow on the surface. Various types of koji making, such as temperature, humidity, incubation time, maintenance conditions, ventilation / ventilation conditions, etc., depending on the type of soybean, wheat, and rice used for koji, as well as their pregelatinization and moisture content In general, the conditions are adjusted so that various enzymes are efficiently produced.
特に、プロテアーゼやアミラーゼ、キシラナーゼなどの各種酵素の活性は、原料利用率ときわめてよく相関している。したがって従来、調味料を歩留まりよく製造するために、紫外線照射や薬剤による変異誘発によって各種酵素活性の高い麹菌を得るための育種が繰り返されてきた。 In particular, the activity of various enzymes such as protease, amylase, and xylanase correlates very well with the raw material utilization rate. Therefore, conventionally, in order to produce seasonings with high yield, breeding for obtaining koji molds having high various enzyme activities has been repeated by ultraviolet irradiation or mutagenesis with drugs.
一方、調味料の製造に利用可能な麹菌とは近縁のアスペルギルス・ニドランス(A.nidulans)において、カーボンカタボライト・リプレッションを正に制御するタンパク質creCをコードする遺伝子の機能が欠損した変異株では、プロテアーゼ生産が向上することが知られている(非特許文献1)。 On the other hand, in Aspergillus nidulans (A. nidulans), which is closely related to Aspergillus oryzae that can be used for the production of seasonings, the mutant strain lacking the function of the gene encoding the protein creC that positively controls carbon catabolite repression It is known that protease production is improved (Non-patent Document 1).
しかしながら、creC遺伝子欠損株において、プロテアーゼ以外の遺伝子の発現に変化が生じているかどうかについては、βガラクトシダーゼ及びキナ酸脱水素酵素を除いて報告されていない。また、アスペルギルス・ニドランスは醸造等に使用される麹菌ではないため、調味料製造に使用可能な安全性の高い麹菌において同遺伝子が存在するか否かも全く知られていない。このため、調味料製造に使用される麹菌において、同様の遺伝子の機能欠損によってプロテアーゼ等の酵素活性の高い菌株が得られるかどうかは、その遺伝子の存在が不明である状況においては、当業者であっても予想できるものではなく、まったく未知の事項であった。 However, it has not been reported whether the expression of genes other than protease is altered in creC gene-deficient strains except for β-galactosidase and quinate dehydrogenase. In addition, since Aspergillus nidulans is not a koji mold used for brewing or the like, it is not known at all whether or not the same gene exists in a highly safe koji mold that can be used for seasoning production. Therefore, in koji molds used for seasoning production, whether or not a strain having a high enzymatic activity such as a protease can be obtained by a similar gene deficiency in a situation where the presence of the gene is unknown by those skilled in the art. Even if it was, it was not something that could be expected, and it was a completely unknown matter.
したがって本発明の目的は、調味料製造に使用可能な麹菌においても同様の遺伝子が存在するか否かを最初に精査し、もし存在する場合には、同遺伝子の機能を欠損させることによって麹菌におけるプロテアーゼの各種酵素の活性が変化するかどうかを調査し、そのような変化が調味料の製造に有用かどうかを判定することにある。 Therefore, the object of the present invention is to first examine whether or not a similar gene exists in koji molds that can be used for seasoning production, and if present, the function of the same gene is lost by deleting the function of the same gene. The purpose is to investigate whether the activity of various enzymes of the protease changes and to determine whether such changes are useful in the production of seasonings.
本発明者は、上記目的を達成すべく、調味料製造に使用可能な麹菌において、同様の遺伝子をクローニングすることを試みた。まず、上記のアスペルギルス・ニドランスのcreC遺伝子配列を用いて、麹菌ゲノムデータベースDOGAN(http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao)において相同性検索を実施したところ、アスペルギルス・オリーゼのゲノムにおいて、相同性が高い遺伝子としてID:AO090003000149とされる遺伝子が見出された。しかしながら、同遺伝子についての機能は未知であったことから、データベース上の配列を基にプライマーを設計し、PCRによって該遺伝子の全長をクローニングした。 In order to achieve the above object, the present inventor attempted to clone a similar gene in koji mold that can be used for seasoning production. First, a homology search was performed in the Aspergillus nidulans creC gene sequence using the Aspergillus nidulans gonococcal genome database DOGAN (http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao) In the genome of Aspergillus oryzae, a gene having ID: AO090003000149 was found as a highly homologous gene. However, since the function of the gene was unknown, a primer was designed based on the sequence on the database, and the full length of the gene was cloned by PCR.
該遺伝子をコードする正確な領域はゲノムデータベース上では不明であったため、5’−RACE法により遺伝子領域決定したところ、該遺伝子は、2371bp(開始コドンATG:終止コドンTAA)からなり、595アミノ酸残基、約65.4kDaのタンパク質をコードしていることが判明し、アスペルギルス・オリーゼにおいてもcreC遺伝子と同様の遺伝子(以下、「creC遺伝子」という)が存在することが明らかになった(別紙に「配列1」としてcreC遺伝子の塩基配列、「配列2」としてアミノ酸配列を示す)。そこで、調味料製造に用いられる麹菌であるアスペルギルス・オリーゼを用いて、相同組換え法によりcreC遺伝子欠損株を作成し、調味料製造に関わる各種酵素の活性を測定した。 Since the exact region encoding the gene was unknown on the genome database, the gene region was determined by the 5′-RACE method. As a result, the gene consists of 2371 bp (start codon ATG: stop codon TAA) and 595 amino acid residues. It was found that it encodes a protein of about 65.4 kDa, and the same gene as the creC gene (hereinafter referred to as “creC gene”) was also found in Aspergillus oryzae (see the attached sheet). The base sequence of the creC gene is shown as “sequence 1”, and the amino acid sequence is shown as “sequence 2”). Therefore, a creC gene-deficient strain was prepared by homologous recombination method using Aspergillus oryzae, which is a koji mold used in seasoning production, and the activities of various enzymes involved in seasoning production were measured.
その結果、驚くべきことに、本発明者は、アスペルギルス・オリーゼのcreC遺伝子の機能を欠損させることによって、プロテアーゼ活性のみならず、調味料製造時に重要な役割を担うアミラーゼ活性及びキシラナーゼ活性も向上させることができ、調味料製造にきわめて適した麹菌株を作製できることを見出し、本発明を完成させた。 As a result, surprisingly, the present inventor improves not only protease activity but also amylase activity and xylanase activity, which play an important role in the production of seasonings, by deleting the function of the creC gene of Aspergillus oryzae. And the present invention was completed by finding that a koji strain suitable for seasoning production can be produced.
したがって、本発明は以下の通りである。
(1)配列番号1に示される塩基配列からなるcreCをコードする遺伝子の機能のみを欠損させることにより、プロテアーゼ、アミラーゼ及びキシラナーゼの各酵素活性が当該遺伝子の機能が欠損していない親株に比べて向上したアスペルギルス・オリーゼ(Aspergillus oryzae)。
(2)creCをコードする遺伝子機能の欠損が、配列番号1に示される塩基配列における1若しくは数個の塩基の欠失、置換若しくは付加によりもたらされる、上記(1)記載のアスペルギルス・オリーゼ(Aspergilluls oryzae)。
(3)上記(1)に記載のアスペルギルス・オリーゼを用いて製麹することを特徴とする麹の製造法。
(4)上記(1)に記載のアスペルギルス・オリーゼを用いて麹を調製し、その麹を用いて常法により仕込みし、発酵、熟成せしめることを特徴とする調味料の製造法。
Therefore, the present invention is as follows.
(1) By deleting only the function of the gene encoding creC consisting of the base sequence shown in SEQ ID NO: 1, each enzyme activity of protease, amylase and xylanase is less than that of the parent strain in which the function of the gene is not deleted. Improved Aspergillus oryzae.
(2) Crec are deficient in the gene encoding function, deletion of one or several nucleotides in the nucleotide sequence shown in SEQ ID NO: 1, resulting from substitution, or addition, the (1), wherein the Aspergillus oryzae (Aspergilluls oryzae).
(3) A method for producing koji, characterized in that the koji is made using the Aspergillus oryzae described in (1) above.
(4) A method for producing a seasoning, comprising preparing a koji using the Aspergillus oryzae as described in (1) above, charging the koji using a koji method in a conventional manner, fermenting and aging.
本発明の麹菌は、高プロテアーゼ活性、高アミラーゼ活性および高キシラナーゼ活性を有していること、また調味料製造に通常用いられる麹菌を親株としているために、調味料の効率的な製造に直接的に寄与することから、産業上の利用可能性が非常に高いものである。さらに、creC遺伝子の欠損はカーボンカタボライト・リプレッションの脱抑制に係ると考えられることから、カーボンカタボライト・リプレッションの影響を受けやすい、液体麹の製造や、バイオエタノール生産の糖化段階に用いる加水分解酵素生産等にも応用可能である。 Since the koji mold of the present invention has high protease activity, high amylase activity and high xylanase activity, and the koji mold usually used for seasoning production is used as a parent strain, it is directly applicable to the efficient production of seasonings. Therefore, the industrial applicability is very high. Furthermore, since the creC gene deficiency is thought to be related to the derepression of carbon catabolite repression, it is susceptible to carbon catabolite repression and is used for the production of liquid koji and hydrolysis used in the saccharification stage of bioethanol production. It can be applied to enzyme production.
本発明において、調味料製造に使用できる麹菌とは、焼酎、清酒、みりん、醤油、味噌等の調味料の製造に使用可能で、安全性の確立されているアスペルギルス属に属する麹菌であれば特に限定はされない。具体的には、アスペルギルス・カワチ、アスペルギルス・アワモリ、アスペルギルス・ニガー、アスペルギルス・オリーゼ、アスペルギルス・ソーヤ等が好ましい。中でも特に好ましいのはアスペルギルス・オリーゼ、アスペルギルス・ソーヤである。 In the present invention, the koji mold that can be used for the seasoning production is particularly a koji mold belonging to the genus Aspergillus that can be used for the production of seasonings such as shochu, sake, mirin, soy sauce, miso, etc. and has established safety. There is no limitation. Specifically, Aspergillus kawachi, Aspergillus awamori, Aspergillus niger, Aspergillus oryzae, Aspergillus soya and the like are preferable. Of these, Aspergillus oryzae and Aspergillus soya are particularly preferred.
本発明においてcreC遺伝子とは、ゲノムデータベースDOGAN(http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao)においてIDがAO090003000149である遺伝子を指す。 In the present invention, the creC gene refers to a gene whose ID is AO090003000149 in the genome database DOGAN (http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao).
creC遺伝子の機能欠損株は、相同組換えによる遺伝子破壊や、変異導入による機能欠損の誘導により取得することができる。 A function-deficient strain of the creC gene can be obtained by gene disruption by homologous recombination or induction of function deficiency by mutagenesis.
相同組換えによる遺伝子の破壊方法としては、公知の方法を用いることができる。たとえば、creC遺伝子の断片もしくはその上流・下流の領域とマーカー遺伝子とを組み合わせたDNA断片をベクターに組み込み、プロトプラスト−PEG法やエレクトロポレーション法などによってベクターを糸状菌に取り込ませ、相同組換えによって当該DNA断片を糸状菌のゲノム中に導入する方法などを挙げられる。DNA断片を麹菌細胞中に取り込ませる他の方法としては、パーティクルガン法、アグロバクテリウム法、マイクロインジェクション法などが挙げられる。 As a method for disrupting a gene by homologous recombination, a known method can be used. For example, a creC gene fragment or a DNA fragment that combines the upstream / downstream region and a marker gene is incorporated into a vector, the vector is incorporated into a filamentous fungus by the protoplast-PEG method or electroporation method, and homologous recombination is performed. Examples thereof include a method for introducing the DNA fragment into the genome of a filamentous fungus. Other methods for incorporating the DNA fragment into the gonococcal cell include the particle gun method, the Agrobacterium method, and the microinjection method.
相同組換え法によって所期の遺伝子が麹菌に導入されたことを確認する方法としては、公知の方法を用いることができる。たとえば、遺伝子を導入する際に、親株として栄養要求性の突然変異株を、マーカー遺伝子として当該栄養要求性を補償するような機能を持つ遺伝子を用い、形質転換後に栄養要求性培地上で正常に生育した株を選抜する方法などが挙げられる。ただし、このような栄養要求性だけでは、目的とする遺伝子座が導入したマーカー遺伝子と置換されたかどうか確認できない。従って、栄養要求性に合わせて適宜PCR法、サザンハイブリダイゼーション法等を用いて、目的とする遺伝子座がマーカーによって置換されていることを確認する必要がある。 As a method for confirming that a desired gene has been introduced into koji mold by homologous recombination, a known method can be used. For example, when a gene is introduced, an auxotrophic mutant is used as a parent strain, and a gene having a function that compensates for the auxotrophy is used as a marker gene. For example, a method of selecting a grown strain can be mentioned. However, such auxotrophy alone cannot confirm whether the target gene locus has been replaced with the introduced marker gene. Therefore, it is necessary to confirm that the target gene locus has been replaced with a marker by using a PCR method, Southern hybridization method or the like as appropriate in accordance with auxotrophy.
また、変異導入法としては、公知の処理方法を用いることができ、紫外線、イオンビーム、放射線等を照射させる物理的方法、エチルメタンスルホネート、N−メチル−N’−ニトロ−N−ニトロソグアニジン、亜硝酸、アクリジン色素等の変異剤を用いる化学的方法がある。特に好ましくは、イオンビーム、紫外線を照射させる方法を挙げることができる。 In addition, as a method for introducing mutation, a known treatment method can be used, such as a physical method of irradiating with ultraviolet rays, ion beams, radiation, etc., ethylmethanesulfonate, N-methyl-N′-nitro-N-nitrosoguanidine, There are chemical methods that use mutagens such as nitrous acid and acridine dyes. Particularly preferred is a method of irradiating with an ion beam or ultraviolet rays.
上記のような遺伝子破壊法、または変異導入法によってcreCの機能が欠損し、プロテアーゼ活性が向上した株をスクリーニングする方法としては、ミルクカゼインを含有するプレートでハローアッセイを行うことで、親株に比べハローが大きくなった株を候補株とし、選抜した候補株からゲノムDNAを抽出し、シークエンス解析で確認する方法などを挙げることができる。他の方法としては、コロニーハイブリダイゼーション法等を利用することができる。 As a method of screening for a strain in which the function of creC is lost and the protease activity is improved by the gene disruption method or the mutation introduction method as described above, a halo assay is performed on a plate containing milk casein, so that Examples include a method in which a strain having an increased halo is used as a candidate strain, genomic DNA is extracted from the selected candidate strain, and confirmed by sequence analysis. As another method, a colony hybridization method or the like can be used.
また、本発明における各種酵素活性が上昇した株とは、醤油原料培地などにおいて親株に比べて酵素活性が1.1倍以上上昇した株を差す。 Moreover, the strain in which various enzyme activities have increased in the present invention refers to a strain in which enzyme activity has increased 1.1 times or more compared to the parent strain in a soy sauce raw material medium or the like.
なお、各種酵素活性の測定方法としては、通常用いられている方法を利用することができ、たとえばプロテアーゼ活性の測定法としては「しょう油試験法」(財団法人日本醤油研究所・編集発行)に記載の方法を用いることができる。 In addition, as a method for measuring various enzyme activities, a commonly used method can be used. For example, a method for measuring protease activity is described in “Shoyu Test Method” (published by Japan Soy Sauce Research Institute). This method can be used.
本発明の麹菌を用いた麹の製法およびその麹を用いた調味料を製造する方法としては、公知の方法を用いることができる。たとえば、醤油の製造においては、通常の麹原料、たとえば撒水して蒸煮した大豆原料と炒熬割砕した小麦原料の混合物に、上記のcreC遺伝子の機能欠損した麹菌を接種混合して麹を調製し、得られた麹を通常の仕込みタンクに適当な濃度の食塩水で仕込み、適宜撹拌しつつ3〜6ヶ月間程度発酵熟成させて醤油諸味を得、常法により圧搾、精製、必要により火入れを行い、製品醤油(生醤油あるいは火入醤油)とする。 As a method for producing a koji using the koji mold of the present invention and a method for producing a seasoning using the koji, known methods can be used. For example, in the production of soy sauce, a koji mold prepared by inoculating a koji mold lacking the function of the above creC gene into a mixture of a koji raw material, for example, a soy material that has been boiled and steamed, and a wheat koji material that has been cracked with fried rice. Then, the obtained koji is charged into a normal charging tank with an appropriate concentration of saline solution, and fermented and aged for about 3 to 6 months with proper stirring to obtain soy sauce moromi. To make product soy sauce (raw soy sauce or fire soy sauce).
以下、実施例において本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。なお、実施例中の%は、全てw/v%を意味する。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples. In addition,% in an Example means all w / v%.
実施例1 相同組換え法によるcreC遺伝子欠損株の作成
(1)相同組換えによるcreC遺伝子欠損株の作成
creC遺伝子欠損株を作成するための親株として、硫酸(硫黄源)を資化することのできない栄養要求性株である麹菌アスペルギルス・オリーゼΔligD株を用いた。なお、ΔligD株は、公知文献(Fungal Genet Biol.45(2008)、878−889)に従い、アスペルギルス・オリーゼRIB40株(寄託番号:ATCC42149)を元に作成された株である。また、マーカー遺伝子としては、硫酸(硫黄源)を資化する機能をもつアスペルギルス・ニドランスsC遺伝子(Mol Gen Genet.1995 May 20;247(4):423−429.)を用いた。
Example 1 Preparation of creC gene-deficient strain by homologous recombination method (1) Preparation of creC gene-deficient strain by homologous recombination Utilizing sulfuric acid (sulfur source) as a parent strain for preparing a creC gene-deficient strain Aspergillus aspergillus oryzae ΔligD strain, which is an auxotrophic strain that cannot be used, was used. The ΔligD strain is a strain prepared based on the Aspergillus oryzae RIB40 strain (deposit number: ATCC 42149) according to known literature (Fungal Genet Biol. 45 (2008), 878-889). As a marker gene, Aspergillus nidulans sC gene (Mol Gen Genet. 1995 May 20; 247 (4): 423-429.) Having a function to assimilate sulfuric acid (sulfur source) was used.
このため、所期のマーカー遺伝子が正常に導入された株は、sC遺伝子が導入されることによってΔligD株の栄養要求性が回復するため、硫黄源として硫酸塩だけが含まれる培地においても生育することが可能になる。このことから、creC遺伝子欠損株を容易に単離することができる。 For this reason, the strain into which the intended marker gene has been successfully introduced is restored to the auxotrophy of the ΔligD strain by introduction of the sC gene, and therefore grows in a medium containing only sulfate as a sulfur source. It becomes possible. From this, a creC gene-deficient strain can be easily isolated.
すなわち、アスペルギルス・オリーゼΔligD株のゲノムDNAを鋳型とし、creC遺伝子コード領域の上流領域約1.5kbp(creC ORF上流領域)から下流領域約1.5kbp(creC ORF下流領域)までをプライマー1、2を用いてPCR法により増幅した。PCR法による増幅は定法により行い、得られた増幅産物をベクターpENTR D/TOPO(インビトロジェン)に導入し、完成したベクターを制限酵素AatIIサイト、XbaIサイトを付加したプライマー3、4を用いて再度PCR法により増幅した。得られた増幅産物を制限酵素AatII、XbaIで処理し、creCのORF部分を欠損した直鎖状の配列(甲)を得た。 That is, using the genomic DNA of the Aspergillus oryzae ΔligD strain as a template, primers 1 and 2 from an upstream region of about 1.5 kbp (upstream region of the creC ORF) to a downstream region of about 1.5 kbp (downstream region of the creC ORF) of the creC gene coding region. Was amplified by the PCR method. Amplification by the PCR method is performed by a conventional method, the obtained amplification product is introduced into the vector pENTR D / TOPO (Invitrogen), and the completed vector is PCR again using the primers 3 and 4 to which the restriction enzyme AatII site and XbaI site are added. Amplified by the method. The obtained amplification product was treated with restriction enzymes AatII and XbaI to obtain a linear sequence (A) lacking the ORF portion of creC.
次に、アスペルギルス・ニドランスのゲノムDNAを鋳型とし、AatIIサイト、XbaIサイトを付加したプライマー5、6を用いて、PCR法によってsC遺伝子領域を増幅した後、pCRBluntベクター(インビトロジェン)に導入した。得られたベクターをAatII、XbaIで処理し、sC領域の配列(乙)を得た。 Next, sC gene region was amplified by PCR method using Aspergillus nidulans genomic DNA as a template and primers 5 and 6 to which AatII site and XbaI site were added, and then introduced into pCRBlunt vector (Invitrogen). The obtained vector was treated with AatII and XbaI to obtain the sequence (B) of the sC region.
このようにして得られた配列甲及び乙を、DNAリガーゼを用いて融合することで、creC遺伝子破壊用コンストラクトを作成した(図1)。このベクターをNotIで処理し、得られた直鎖状のベクターをプロトプラスト−PEG法を用いて麹菌ΔligD株に導入した。硫酸を含む選択培地(グルコース1%、亜硝酸ナトリウム0.2%、リン酸2カリウム0.1%、硫酸マグネシウム0.05%、塩化カリウム0.05%、硫酸鉄0.001%、トレースエレメント0.1%、食塩4.68%)で生育した株を同培地に3回植え継ぎ、creC遺伝子欠損候補株を得た。 The sequence A and B thus obtained were fused using DNA ligase to create a creC gene disruption construct (FIG. 1). This vector was treated with NotI, and the resulting linear vector was introduced into Neisseria gonorrhoeae ΔligD using the protoplast-PEG method. Selection medium containing sulfuric acid (glucose 1%, sodium nitrite 0.2%, dipotassium phosphate 0.1%, magnesium sulfate 0.05%, potassium chloride 0.05%, iron sulfate 0.001%, trace element 0.1%, 4.68% salt) was transferred to the same medium three times to obtain a creC gene-deficient candidate strain.
これらの候補株から定法に従いゲノムDNAを抽出し、これを鋳型としてcreC遺伝子の増幅をPCR法で確認した。creC遺伝子が破壊されていた場合、遺伝子の増幅は認められないため、増幅を認めない株をしてcreC遺伝子欠損株とした。 Genomic DNA was extracted from these candidate strains according to a conventional method, and amplification of the creC gene was confirmed by PCR using this as a template. When the creC gene was disrupted, gene amplification was not observed. Therefore, a strain that did not recognize amplification was designated as a creC gene-deficient strain.
使用したプライマーを表1に示す。 The primers used are shown in Table 1.
(2)生育の確認
直径8cmのプラスチックシャーレに麹汁培地を作成し、creC遺伝子欠損株、および対照株として親株ΔligDとをそれぞれプレートの中央に播種した。30℃で24時間おきにコロニーの直径を測定した。その結果、親株であるΔligD株、creC遺伝子欠損株間で生育に差がないことが明らかとなった(図2)。
(2) Growth confirmation A broth culture medium was prepared in a plastic petri dish having a diameter of 8 cm, and a creC gene-deficient strain and a parent strain ΔligD as a control strain were seeded at the center of the plate. Colony diameters were measured every 30 hours at 30 ° C. As a result, it became clear that there was no difference in growth between the parent strain ΔligD strain and the creC gene-deficient strain (FIG. 2).
(3)ハローアッセイ
直径8cmのプラスチックシャーレにハローアッセイ用の培地(ミルクプレート、デンプンプレート)を作成し、creC遺伝子欠損株、および対照株として親株ΔligDをプレートの中央に播種し、形成されるハローの大きさを測定した。その結果、creC遺伝子欠損株は親株に比べ大きなハローを形成したことから、プロテアーゼ活性、アミラーゼ活性が向上していることが示唆された(図3)。
(3) Halo assay A halo assay medium (milk plate, starch plate) is prepared in a plastic petri dish having a diameter of 8 cm, and a creC gene-deficient strain and a parent strain ΔligD as a control strain are seeded at the center of the plate to form a halo. The size of was measured. As a result, the creC gene-deficient strain formed a larger halo than the parent strain, suggesting that protease activity and amylase activity were improved (FIG. 3).
なお、使用したミルクプレートの組成は以下の通りである。
グルコース2%、亜硝酸ナトリウム0.3%、リン酸2カリウム0.1%、硫酸マグネシウム0.5%、塩化カリウム0.5%、硫酸鉄0.001%、ミルクカゼイン0.1%、トレースエレメント0.1%、寒天1.5%
In addition, the composition of the used milk plate is as follows.
2% glucose, 0.3% sodium nitrite, 0.1% dipotassium phosphate, 0.5% magnesium sulfate, 0.5% potassium chloride, 0.001% iron sulfate, 0.1% milk casein, trace Element 0.1%, Agar 1.5%
また、使用したデンプンプレートの組成は以下の通りである。
グルコース2%、亜硝酸ナトリウム0.3%、リン酸2カリウム0.1%、硫酸マグネシウム0.5%、塩化カリウム0.5%、硫酸鉄0.001%、デンプン0.1%、トレースエレメント0.1%、寒天1.5%
Moreover, the composition of the used starch plate is as follows.
2% glucose, 0.3% sodium nitrite, 0.1% dipotassium phosphate, 0.5% magnesium sulfate, 0.5% potassium chloride, 0.001% iron sulfate, 0.1% starch, trace element 0.1%, agar 1.5%
(3)プロテアーゼ活性の測定
脱脂大豆5gに8mlの滅菌蒸留水を散水し、5gの割砕小麦を加えてよく攪拌し、40分オートクレーブ処理を行った原料を醤油原料培地とした。該醤油原料培地1g当たり、胞子数が106個となるように、creC遺伝子欠損株、および対照株として親株ΔligDの胞子をそれぞれ散布し、よく攪拌して、28℃で48時間程度培養した。培養の結果、creC遺伝子欠損株と親株との間に生育の差は認められなかった。
(3) Measurement of protease activity To 5 g of defatted soybeans, 8 ml of sterilized distilled water was sprinkled, 5 g of ground wheat was added, and the mixture was stirred well and subjected to an autoclave treatment for 40 minutes to obtain a soy sauce raw material medium. The creC gene-deficient strain and the spore of the parent strain ΔligD as a control strain were sprayed so that the number of spores was 10 6 per gram of the soy sauce raw material medium, stirred well, and cultured at 28 ° C. for about 48 hours. As a result of the culture, no difference in growth was observed between the creC gene-deficient strain and the parent strain.
培養した麹に140mlの冷水を添加しよく攪拌した後4時間放置し、これをろ紙でろ過することで酵素液を調整した。調整した酵素液を用いてプロテアーゼ活性を測定した。測定は以下の手順で行った。 To the cultured koji, 140 ml of cold water was added and stirred well, then allowed to stand for 4 hours, and filtered with a filter paper to prepare an enzyme solution. Protease activity was measured using the prepared enzyme solution. The measurement was performed according to the following procedure.
1.5%ミルクカゼイン溶液1mlと蒸留水1mlを試験管にとり、30℃の恒温槽で5分間予熱した。5分後1mlの酵素液を加え、10分間反応を行った後、0.4Mトリクロロ酢酸溶液3mlを加え反応を停止した。さらに30℃で30分放置して、沈殿をろ紙で除いた後、ろ液2mlを取り、0.55M炭酸ナトリウム溶液5ml、Folin試薬1mlを加え30℃で30分反応させ、分光光度計で660nmの吸光度を測定した。同様の方法で、チロシン標準液を用いて検量線を作成し、1分間にチロシン1μgを遊離させる酵素量を1unitとして酵素活性を計算した。その結果、creC遺伝子欠損株は親株ΔligDに比べてプロテアーゼ活性が有意に高かった(図4)。 1 ml of 1.5% milk casein solution and 1 ml of distilled water were placed in a test tube and preheated in a thermostatic bath at 30 ° C. for 5 minutes. After 5 minutes, 1 ml of enzyme solution was added and reacted for 10 minutes, and then 3 ml of 0.4 M trichloroacetic acid solution was added to stop the reaction. Further, the mixture was allowed to stand at 30 ° C. for 30 minutes, and the precipitate was removed with a filter paper. Then, 2 ml of the filtrate was taken, 0.55M sodium carbonate solution 5 ml and 1 ml of Folin reagent were added and reacted at 30 ° C. for 30 minutes, and 660 nm with a spectrophotometer. The absorbance was measured. In the same manner, a calibration curve was prepared using a tyrosine standard solution, and the enzyme activity was calculated with 1 unit being the amount of enzyme that liberates 1 μg of tyrosine per minute. As a result, the creC gene-deficient strain had significantly higher protease activity than the parent strain ΔligD (FIG. 4).
(4)アミラーゼ活性の測定
アミラーゼ活性測定は以下の手順で行った。
酵素液1mlに50mM MaclLvaine緩衝液(pH5.0)を1ml加え、1%デンプン水溶液を2ml加え、30℃で30分反応を行った。その後、0.5規定酢酸10ml、0.0003規定ヨウ素溶液10mlを加え、分光光度計で700nmの吸光度を測定した。ヨウ素青色呈色を10%低下せしめる酵素量を1unitとして酵素活性を計算した。その結果、creC遺伝子欠損株は親株ΔligDに比べてアミラーゼ活性が有意に高かった(図5)。
(4) Measurement of amylase activity The amylase activity was measured according to the following procedure.
1 ml of 50 mM MacL Lvine buffer (pH 5.0) was added to 1 ml of enzyme solution, 2 ml of 1% starch aqueous solution was added, and the reaction was performed at 30 ° C. for 30 minutes. Thereafter, 10 ml of 0.5 N acetic acid and 10 ml of 0.0003 normal iodine solution were added, and the absorbance at 700 nm was measured with a spectrophotometer. The enzyme activity was calculated by setting the amount of enzyme that reduces iodine blue coloration by 10% as 1 unit. As a result, the creC gene-deficient strain had significantly higher amylase activity than the parent strain ΔligD (FIG. 5).
(5)キシラナーゼ活性の測定
キシラナーゼ活性測定は以下の手順で行った。
0.5%キシラン水溶液160μlに40μlの酵素液を加え、40℃で60分程度反応を行った後、DNS試薬400μlを加え、5分間沸騰させた後に、2.4mlの純水を加え、よく混合した後、分光光度計で500nmの吸光度を測定した。同様の方法でキシロース標準液を用いて検量線を作成し、1分間に1μgのキシロースを遊離させる酵素量を1unitとして酵素活性を計算した。その結果、creC遺伝子欠損株は親株ΔligDに比べてプロテアーゼ活性が有意に高かった(図6)。
(5) Measurement of xylanase activity The xylanase activity was measured according to the following procedure.
Add 40 μl of enzyme solution to 160 μl of 0.5% xylan aqueous solution, react for about 60 minutes at 40 ° C., add 400 μl of DNS reagent, boil for 5 minutes, then add 2.4 ml of pure water. After mixing, the absorbance at 500 nm was measured with a spectrophotometer. A calibration curve was prepared using a xylose standard solution in the same manner, and the enzyme activity was calculated with 1 unit being the amount of enzyme that liberates 1 μg of xylose per minute. As a result, the creC gene-deficient strain had significantly higher protease activity than the parent strain ΔligD (FIG. 6).
なお、ここで使用したDNS試薬は下記の手順で調製した。
4.5%水酸化ナトリウム水溶液300mlに、1%3,5−ジニトロサリチル酸水溶液880mlと、ロッシェル塩255gを添加した。この溶液に、10%水酸化ナトリウム水溶液22mlにフェノール10gを混合し、100mlにフィルアップした溶液69mlに炭酸水素ナトリウム6.9gを溶解せしめたものを加え、2日以上室温に遮光保存したものを使用した。
The DNS reagent used here was prepared by the following procedure.
To 300 ml of 4.5% aqueous sodium hydroxide solution, 880 ml of 1% 3,5-dinitrosalicylic acid aqueous solution and 255 g of Rochelle salt were added. To this solution, 10 g of phenol was mixed with 22 ml of 10% aqueous sodium hydroxide solution, 6.9 g of sodium bicarbonate was dissolved in 69 ml of a solution that had been filled up to 100 ml, and stored in a dark place at room temperature for 2 days or more. used.
上記(3)〜(5)における、親株ΔligDとcreC遺伝子欠損株の各種酵素活性の数値、および対照株すなわちΔligDに対するcreC遺伝子欠損株の酵素活性の比を比べた結果をまとめると、以下表2のようになった。なお、表中、ΔcreCはcreC遺伝子欠損株のことを示す。 The results of comparing the numerical values of various enzyme activities of the parent strain ΔligD and the creC gene-deficient strain and the ratio of the enzyme activity of the creC gene-deficient strain to the control strain, ie ΔligD, in the above (3) to (5) are summarized in Table 2 below. It became like this. In the table, ΔcreC indicates a creC gene-deficient strain.
以上の結果より、プロテアーゼ活性、アミラーゼ活性、キシラナーゼ活性が親株に比べて高くなっている調味料製造に好適な麹菌を得ることができた。 From the above results, it was possible to obtain koji mold suitable for seasoning production in which protease activity, amylase activity, and xylanase activity were higher than those of the parent strain.
実施例2 creC遺伝子欠損株を用いた醤油の製造
脱脂大豆5kgに7Lの水を加え1時間混合後、高圧蒸煮缶にて蒸煮圧力4kg/cm2で10分蒸煮を行った。この蒸煮脱脂大豆に、加熱変性後割砕した小麦5.2kgを加え、種麹と共に混合し、製麹を行った。なお、種麹としては実施例1で得られたcreC遺伝子欠損株を用い、対照としてその親株を使用した。
Example 2 Production of soy sauce using creC gene-deficient strain 7 L of water was added to 5 kg of defatted soybean and mixed for 1 hour, and then steamed in a high pressure steaming can at a steaming pressure of 4 kg / cm 2 for 10 minutes. To this steamed defatted soybean, 5.2 kg of wheat that had been cracked after heat denaturation was added and mixed with the seed meal to make a koji. Note that the creC gene-deficient strain obtained in Example 1 was used as the seed pod, and the parent strain was used as a control.
得られた麹を冷塩水と共に仕込み、仕込み直後10〜15℃、1ヶ月後に25℃〜30℃まで温度を上げ、トータル5ヶ月間醸造し、標準的な濃口醤油を得た。なお、これ
らの試験は全てP1レベル閉鎖系で行った。得られた諸味等を分析した結果、creC遺伝子欠損株を用いた場合には、親株と比較して窒素利用率が高く、かつ醤油粕が少ないことが明らかとなった。
The obtained koji was charged with cold salt water, immediately after charging, the temperature was raised to 10-15 ° C., and one month later, from 25 ° C. to 30 ° C., and brewed for a total of 5 months to obtain a standard thick soy sauce. In addition, this
All these studies were conducted in a P1 level closed system. As a result of analyzing the obtained moromi, etc., it was found that when the creC gene-deficient strain was used, the nitrogen utilization rate was higher and the soy sauce cake was less than the parent strain.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249405A JP5582628B2 (en) | 2008-09-29 | 2008-09-29 | Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249405A JP5582628B2 (en) | 2008-09-29 | 2008-09-29 | Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010075131A JP2010075131A (en) | 2010-04-08 |
JP5582628B2 true JP5582628B2 (en) | 2014-09-03 |
Family
ID=42206366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008249405A Expired - Fee Related JP5582628B2 (en) | 2008-09-29 | 2008-09-29 | Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5582628B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4469014B1 (en) | 2009-04-17 | 2010-05-26 | キッコーマン株式会社 | Neisseria gonorrhoeae with large genome duplication |
CN108342331A (en) * | 2018-05-18 | 2018-07-31 | 南京林业大学 | A method of the high enzyme activity amylase of expression |
CN109988717B (en) * | 2019-05-05 | 2021-09-21 | 广西壮族自治区畜牧研究所 | Aspergillus oryzae strain and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005295871A (en) * | 2004-04-09 | 2005-10-27 | Asahi Breweries Ltd | Enzyme productivity adjustment method |
JP4906648B2 (en) * | 2005-10-05 | 2012-03-28 | アサヒビール株式会社 | Method for producing filamentous fungus culture |
-
2008
- 2008-09-29 JP JP2008249405A patent/JP5582628B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010075131A (en) | 2010-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2408910T3 (en) | CHRYSOSPORIUM LUCKNOWENSE PROTEIN MANUFACTURING SYSTEM | |
US9512409B2 (en) | Thermostable catalase | |
CN106676086B (en) | A thermostability-improved xylanase xyn-LVK and its gene | |
CN113862233B (en) | Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application | |
CN110183521B (en) | Application of the rice blast gene MoRMD1 in regulating the pathogenicity of rice blast fungus | |
TWI503412B (en) | Aspergillus having large-scale genomic duplication and its use | |
CN108250278B (en) | L-glutamic acid-producing strain and method for producing L-glutamic acid | |
JP2022110110A (en) | Recombinant oxalate decarboxylase expressed in filamentous fungal host cell | |
JP5582628B2 (en) | Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof | |
CN114107146B (en) | Construction method and application of resistance-marker-free auxotroph bacillus subtilis | |
WO1997000944A1 (en) | Transformant producing substance pf1022 and method for transforming microorganism belonging to the class hyphomycetes | |
JP6599583B1 (en) | Multigene disrupted Aspergillus microorganism and method for producing the same | |
JP5305353B2 (en) | Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof | |
JP2009118783A (en) | Improvement of secretion production of protein by filamentous fungus | |
JP6892141B2 (en) | Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB. | |
JP5507062B2 (en) | High expression promoter | |
JP6529769B2 (en) | A filamentous fungus mutant having improved hydrolytic enzyme activity | |
CN113493747A (en) | Mutant strain of high-yield cyclodextrin glucosyltransferase and application thereof | |
RU2423526C2 (en) | Method of producing recombinant protein | |
JP7352929B2 (en) | Method for creating Aspergillus strains with high glycolytic enzyme production ability during solid culture | |
JP4942030B2 (en) | Genes, proteins, and recombinant vectors that increase gonococcal conidia formation | |
KR20180043219A (en) | Method of manufacturing a corynebacterium having enhanced gaba productivity and method of manufacturing gaba using thereof | |
CN107400665A (en) | A kind of mannase of rite-directed mutagenesis and its application | |
CN119491008A (en) | FgGCV1 gene and application of knockout mutant thereof in prevention and control of fusarium graminearum | |
WO2025045171A1 (en) | Glucose oxidase mutant and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5582628 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |