[go: up one dir, main page]

JP5581884B2 - Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell - Google Patents

Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell Download PDF

Info

Publication number
JP5581884B2
JP5581884B2 JP2010177444A JP2010177444A JP5581884B2 JP 5581884 B2 JP5581884 B2 JP 5581884B2 JP 2010177444 A JP2010177444 A JP 2010177444A JP 2010177444 A JP2010177444 A JP 2010177444A JP 5581884 B2 JP5581884 B2 JP 5581884B2
Authority
JP
Japan
Prior art keywords
supported
carbon
catalyst metal
powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010177444A
Other languages
Japanese (ja)
Other versions
JP2012038565A (en
Inventor
人見  周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2010177444A priority Critical patent/JP5581884B2/en
Publication of JP2012038565A publication Critical patent/JP2012038565A/en
Application granted granted Critical
Publication of JP5581884B2 publication Critical patent/JP5581884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池用触媒担持粉末の製造方法、燃料電池用電極の製造方法および燃料電池用電極に関する。   The present invention relates to a method for producing a fuel cell catalyst-supporting powder, a method for producing a fuel cell electrode, and a fuel cell electrode.

燃料電池は、環境への悪影響がほとんどない発電システムとして注目されている。とくに、イオン交換膜を電解質として使用する固体高分子形燃料電池は、作動温度が低いこと、および小形化が可能であることから、車載用の電源などとして有望視されている。   Fuel cells are attracting attention as power generation systems that have little negative impact on the environment. In particular, a polymer electrolyte fuel cell using an ion exchange membrane as an electrolyte is considered promising as an in-vehicle power source because it has a low operating temperature and can be miniaturized.

このような、燃料電池に用いる電極は、イオン交換樹脂と、触媒金属と、前記触媒金属の担体を含む。この電極を高分子電解質膜の両方の面に備えた燃料電池のアノードおよびカソードに、水素を含むガスおよび酸素を含むガスをそれぞれ供給すると、アノードおよびカソードでは、以下の反応が進行して電力が得られる。
アノード:2H→4H+4e
カソード:O+4H+4e→2H
全体:2H+O→2H
Such an electrode used for a fuel cell includes an ion exchange resin, a catalyst metal, and a support of the catalyst metal. When a gas containing hydrogen and a gas containing oxygen are respectively supplied to the anode and cathode of a fuel cell equipped with this electrode on both sides of the polymer electrolyte membrane, the following reaction proceeds at the anode and cathode to generate power. can get.
Anode: 2H 2 → 4H + + 4e
Cathode: O 2 + 4H + + 4e → 2H 2 O
Overall: 2H 2 + O 2 → 2H 2 O

上記の反応は、主に、イオン交換樹脂のクラスター部と呼ばれるプロトン伝導経路と導電性材料からなる担体との接面に形成されたサイトで主におこる。上記の反応を促進させるためには、前記サイトに触媒活性の高い触媒金属を効率よく担持させることが必要である。   The above reaction mainly occurs at a site formed on a contact surface between a proton conduction path called a cluster part of an ion exchange resin and a carrier made of a conductive material. In order to promote the above reaction, it is necessary to efficiently support a catalytic metal having a high catalytic activity at the site.

そこで、特許文献1においては、カーボン粒子表面に陽イオン交換樹脂を備えた混合物を得た後に、陽イオン交換樹脂の対イオンと触媒金属元素を含む陽イオン(以下「触媒金属イオン」ともいう)とをイオン交換反応させて、触媒金属イオンを陽イオン交換樹脂に吸着させて(吸着工程)洗浄した後に、触媒金属イオンを水素ガスにより化学的に還元する(還元工程)ことで、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に担持される触媒金属の、触媒金属の利用率を高めることが提案されている。   Therefore, in Patent Document 1, after obtaining a mixture having a cation exchange resin on the surface of carbon particles, a cation containing a counter ion of the cation exchange resin and a catalytic metal element (hereinafter also referred to as “catalytic metal ion”). Cation exchange by adsorbing catalytic metal ions to the cation exchange resin (adsorption process) and then chemically reducing the catalytic metal ions with hydrogen gas (reduction process). It has been proposed to increase the utilization rate of the catalyst metal supported on the surface of the carbon particles in contact with the proton conduction path of the resin.

燃料電池における上述の反応を促進させるためには、触媒活性を向上させることも重要である。その活性(触媒活性)を向上させる方法としては、触媒金属の粒子径を小さくすることにより触媒金属単位質量当たりの触媒活性を高めることが考えられる。
特許文献1に提案されている方法においては、吸着工程と還元工程を経た後、さらに吸着工程と還元工程を繰り返すことにより、カーボン粒子に担持される触媒金属の量を多くすることが可能であるが、吸着工程と還元工程の繰り返しにより触媒金属の粒子径が大きくなってしまうという問題があった。
In order to promote the above-described reaction in the fuel cell, it is also important to improve the catalytic activity. As a method for improving the activity (catalytic activity), it is conceivable to increase the catalytic activity per unit mass of the catalytic metal by reducing the particle diameter of the catalytic metal.
In the method proposed in Patent Document 1, it is possible to increase the amount of catalytic metal supported on the carbon particles by repeating the adsorption step and the reduction step after the adsorption step and the reduction step. However, there is a problem that the particle diameter of the catalyst metal becomes large due to repetition of the adsorption step and the reduction step.

導電性材料である担体に粒子径の小さい金属を担持させる方法としては、例えば、触媒金属イオンと、触媒金属イオンの還元により生成する金属微粒子が担持される担体とを分散させた溶液中に、一酸化炭素を共存させて、水素化ホウ素ナトリウムなどの還元剤で前記触媒金属イオンの還元をおこなった後、ろ過し乾燥する方法が、特許文献2に提案されている。   As a method of supporting a metal having a small particle diameter on a carrier that is a conductive material, for example, in a solution in which a catalyst metal ion and a carrier on which metal fine particles generated by reduction of the catalyst metal ion are supported are dispersed. Patent Document 2 proposes a method in which carbon monoxide coexists and the catalytic metal ions are reduced with a reducing agent such as sodium borohydride, followed by filtration and drying.

特許第3649085号公報Japanese Patent No. 3649085 特開平6−106076号公報JP-A-6-106076

そこで、特許文献2に提案されている方法に準じて触媒金属をカーボン担体に担持させることを検討した。具体的には、触媒金属イオン、カーボン、および陽イオン交換樹脂を分散させた溶液(分散液)中に、一酸化炭素を共存させ、水素化ホウ素ナトリウムで還元する方法について検討した。この方法によると、カーボンに担持される触媒金属の粒子径を特許文献1に記載の方法で作製する場合よりも小さくすることはできたが、充分に小さくすることはできなかった。
本発明は上記のような事情に基づいて完成されたものであって、担持される触媒金属の粒子径を小さくした燃料電池用触媒担持粉末の製造方法、燃料電池用電極の製造方法、および燃料電池用電極を提供することを目的とする。
Therefore, it was examined that the catalyst metal is supported on the carbon support according to the method proposed in Patent Document 2. Specifically, a method was investigated in which carbon monoxide coexists in a solution (dispersion) in which catalytic metal ions, carbon, and a cation exchange resin are dispersed, and reduction is performed with sodium borohydride. According to this method, the particle size of the catalyst metal supported on carbon could be made smaller than that produced by the method described in Patent Document 1, but could not be made sufficiently small.
The present invention has been completed based on the above circumstances, and a method for producing a catalyst-supporting powder for a fuel cell in which the particle diameter of the catalyst metal to be supported is reduced, a method for producing an electrode for a fuel cell, and a fuel It aims at providing the electrode for batteries.

上述の触媒金属イオン、カーボン、および陽イオン交換樹脂を分散させた分散液中に、一酸化炭素を共存させ、水素化ホウ素ナトリウムで還元する方法によっても、カーボンに担持される触媒金属の粒子径を十分に小さくすることができなかったのは、分散液中に触媒金属が析出した後、ろ過乾燥させる際に触媒金属が凝集することに起因すると考えられる。   The particle size of the catalyst metal supported on the carbon can also be obtained by the method in which carbon monoxide coexists in the dispersion in which the catalyst metal ion, carbon, and cation exchange resin are dispersed and reduced with sodium borohydride. It was thought that the reason why the catalyst metal could not be made sufficiently small was that the catalyst metal aggregated during the filtration and drying after the catalyst metal was precipitated in the dispersion.

上記課題を解決すべく、鋭意検討を行った結果、本願発明を見出した。すなわち、本発明は、イオン交換基を有するカーボン、または、カーボンと陽イオン交換樹脂とを含む固体の混合物に、白金族の触媒金属元素を含む陽イオンをイオン交換反応により、カーボンが有するイオン交換基または陽イオン交換樹脂が有するイオン交換基に吸着させる第1の工程と、前記第1の工程を実行することにより吸着された前記陽イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種の被毒ガス1ppm〜100ppmと水素とからなる還元剤を用いて、100℃以上150℃以下の還元温度で還元する第2の工程と、を経ることを特徴とし、前記白金族の触媒金属元素を含む陽イオンが白金のアンミン錯イオン、[Ru(NH 2+ 、または[Ru(NH 4+ であり、前記被毒ガスが触媒金属粒子に対するものである燃料電池用触媒担持粉末の製造方法である。
らに、本発明は、イオン交換基を有するカーボン、または、カーボンと陽イオン交換樹脂とを含む固体の混合物に、白金族の触媒金属元素を含む陽イオンをイオン交換反応により、カーボンが有するイオン交換基または陽イオン交換樹脂が有するイオン交換基に吸着させる第1の工程と、前記第1の工程を実行することにより吸着された前記陽イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種の被毒ガス1ppm〜100ppmと水素とからなる還元剤を用いて、100℃以上150℃以下の還元温度で還元する第2の工程と、を経ることを特徴とし、前記白金族の触媒金属元素を含む陽イオンが白金のアンミン錯イオン、[Ru(NH 2+ 、または[Ru(NH 4+ であり、前記被毒ガスが触媒金属粒子に対するものである燃料電池用電極の製造方法である。
As a result of intensive studies to solve the above problems, the present invention has been found. That is, the present invention provides an ion-exchange reaction of carbon having an ion-exchange group or a solid mixture containing carbon and a cation-exchange resin with a cation containing a platinum group catalytic metal element by an ion-exchange reaction. A first step of adsorbing to an ion exchange group of a group or a cation exchange resin, and the cation adsorbed by executing the first step to carbon monoxide, sulfur oxide, and nitrogen oxide at least one with a reducing agent consisting of the poison gas 1ppm~100ppm and hydrogen, and a second step of reduction by the following reduction temperature 100 ° C. or higher 0.99 ° C., characterized in that through the said platinum of family of catalysts cation containing a metal element is a platinum ammine complex ions are [Ru (NH 3) 4] 2+, or [Ru (NH 3) 6] 4+, before The poison gas is method for producing a catalyst-supporting powder for a fuel cell is for the catalytic metal particles.
Is found, the present invention includes carbon having an ion-exchange group, or a mixture of solid containing carbon and a cation exchange resin, the ion exchange reaction a cation containing a catalytic metal element of the platinum group, with carbon A first step of adsorbing an ion exchange group or an ion exchange group of a cation exchange resin, and the cation adsorbed by executing the first step, carbon monoxide, sulfur oxide, and nitrogen And a second step of reducing at a reduction temperature of 100 ° C. or more and 150 ° C. or less using a reducing agent composed of 1 ppm to 100 ppm of at least one poison gas of oxide and hydrogen , the platinum group cation containing a catalytic metal element is platinum ammine complex ions are [Ru (NH 3) 4] 2+, or [Ru (NH 3) 6] 4+, wherein Poison gas is the fuel cell electrode manufacturing method is directed against the catalytic metal particles.

本発明の製造方法(燃料電池用触媒担持粉末の製造方法、および燃料電池用電極の製造方法)では、触媒金属イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種を含む還元剤で還元するので、還元剤に含まれる一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種が還元剤によって還元され生成した触媒金属粒子に吸着して、触媒金属粒子の活性を低下させて触媒金属粒子の成長(大粒子化)を抑制する。
また、本発明の製造方法では、触媒金属粒子の担持量を増やすために、触媒金属イオンの吸着と還元を繰り返し行ったとしても、還元剤に含まれる一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種が触媒金属粒子の成長を抑制するので、カーボンに小さい触媒金属粒子を多く担持させることが可能である。
また、本発明の製造方法においては、イオン交換基を有するカーボン、またはカーボンと陽イオン交換樹脂とを含む固体の混合物に、触媒金属イオンをイオン交換反応により吸着させたのちに、触媒金属イオンを還元剤により還元して触媒金属を析出させる。つまり、本発明においては、イオン交換基を有するカーボンや、カーボンと陽イオン交換樹脂とを含む固体の混合物を予め固体状態としてから、触媒金属イオンを吸着させ、その後、触媒金属粒子を析出させるので、陽イオン交換樹脂、カーボン、触媒金属イオンを分散させた溶液中で触媒金属粒子を析出させる場合と相違して、触媒金属粒子の凝集は生じない。
その結果、本発明によれば、担体に担持される触媒金属の粒子径を顕著に小さくすることができ、これにより触媒活性を向上させることができるのである。
In the production method of the present invention (a method for producing a fuel cell catalyst-supported powder and a method for producing a fuel cell electrode), the catalytic metal ion is at least one of carbon monoxide, sulfur oxide, and nitrogen oxide. Since the reducing agent includes the reducing agent, at least one of carbon monoxide, sulfur oxide, and nitrogen oxide contained in the reducing agent is adsorbed on the generated catalytic metal particles by the reducing agent, The activity is reduced to suppress the growth (large particle size) of the catalyst metal particles.
Further, in the production method of the present invention, in order to increase the supported amount of catalyst metal particles, even if adsorption and reduction of catalyst metal ions are repeated, carbon monoxide, sulfur oxide, and nitrogen oxidation contained in the reducing agent are performed. Since at least one of the materials suppresses the growth of the catalytic metal particles, it is possible to carry a large amount of small catalytic metal particles on the carbon.
In the production method of the present invention, after catalytic metal ions are adsorbed by an ion exchange reaction to carbon having ion exchange groups or a solid mixture containing carbon and a cation exchange resin, Reduction with a reducing agent causes catalyst metal to precipitate. That is, in the present invention, since a solid mixture containing carbon having an ion exchange group or carbon and a cation exchange resin is previously in a solid state, catalyst metal ions are adsorbed, and then catalyst metal particles are deposited. Unlike the case where the catalyst metal particles are precipitated in a solution in which cation exchange resin, carbon, and catalyst metal ions are dispersed, the aggregation of the catalyst metal particles does not occur.
As a result, according to the present invention, the particle diameter of the catalytic metal supported on the carrier can be remarkably reduced, and thereby the catalytic activity can be improved.

本発明によれば、担持される触媒金属の粒子径を小さくした燃料電池用触媒担持粉末の製造方法、燃料電池用電極の製造方法、および燃料電池用電極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the catalyst support powder for fuel cells which made the particle diameter of the catalyst metal supported small, the manufacturing method of the electrode for fuel cells, and the electrode for fuel cells can be provided.

白金(触媒金属)の担持回数と触媒担持粉末に担持された白金の粒子径との関係を示すグラフGraph showing the relationship between the number of times platinum (catalyst metal) is supported and the particle size of platinum supported on the catalyst-supported powder 実施例3で用いる還元剤(水素)中の一酸化炭素の量と還元時間との関係を示すグラフGraph showing the relationship between the amount of carbon monoxide in the reducing agent (hydrogen) used in Example 3 and the reduction time 還元剤中に含まれる一酸化炭素(CO)濃度と触媒担持粉末に担持された白金の粒子径との関係を示すグラフGraph showing the relationship between the concentration of carbon monoxide (CO) contained in the reducing agent and the particle size of platinum supported on the catalyst-supported powder 還元温度と触媒担持粉末に担持された白金の粒子径との関係を示すグラフGraph showing the relationship between the reduction temperature and the particle size of platinum supported on catalyst-supported powder

本発明の燃料電池用触媒担持粉末の製造方法および本発明の燃料電池用電極の製造方法は、イオン交換基を有するカーボン、またはカーボンと陽イオン交換樹脂とを含む固体の混合物に、触媒金属元素を含む陽イオンをイオン交換反応により吸着させる工程(第1の工程)、第1の工程を実行することにより吸着されたイオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種を含む還元剤を用いて還元する工程(第2の工程)と、を経ることを特徴とする。以下、第1の工程および第2の工程について順に説明する。   The method for producing a catalyst-supporting powder for a fuel cell according to the present invention and the method for producing an electrode for a fuel cell according to the present invention comprise a catalyst metal element in a solid mixture containing carbon having an ion exchange group or carbon and a cation exchange resin. A step of adsorbing a cation containing oxygen by an ion exchange reaction (first step), an ion adsorbed by executing the first step is at least one of carbon monoxide, sulfur oxide, and nitrogen oxide And a step of reducing using a reducing agent containing one kind (second step). Hereinafter, the first step and the second step will be described in order.

(第1の工程:吸着工程)
第1の工程では、イオン交換基を有するカーボン、またはカーボンとイオン交換樹脂とを含む固体の混合物(以下、単に「固体の混合物」ともいう)に、触媒金属イオンをイオン交換反応させることにより、前記触媒金属を含むイオンを、イオン交換樹脂に吸着させる。
イオン交換基を有するカーボンは、カーボンをKMnOやHNOで酸化処理する等、公知の方法により作製することができる。固体の混合物は、カーボン、イオン交換樹脂、溶媒(エタノールや2-プロパノールや水など)に溶解したイオン交換樹脂溶液を公知の方法により混合した後に、溶媒を除去することにより作製することができる。
(First step: adsorption step)
In the first step, catalytic metal ions are subjected to an ion exchange reaction with carbon having an ion exchange group or a solid mixture containing carbon and an ion exchange resin (hereinafter also simply referred to as “solid mixture”). Ions containing the catalytic metal are adsorbed on an ion exchange resin.
Carbon having an ion exchange group can be produced by a known method such as oxidation treatment of carbon with KMnO 4 or HNO 3 . A solid mixture can be prepared by mixing an ion exchange resin solution dissolved in carbon, an ion exchange resin, and a solvent (such as ethanol, 2-propanol, and water) by a known method, and then removing the solvent.

溶媒を除去する方法としては、たとえば溶媒を乾燥する方法があげられる。溶媒を乾燥する方法としては、たとえば放置乾燥、送風乾燥、温風乾燥、赤外線加熱乾燥、遠赤外線加熱乾燥、減圧乾燥、噴霧乾燥などがあげられる。
固体の混合物として粉末状のものを作製したい場合には、上述の方法のうち、噴霧乾燥を行うのが、簡便であるので好ましい。なお、固体の混合物やイオン交換基を有するカーボンの形状は粉末状であってもよいしシート状であってもよい。
なお、固体の混合物やイオン交換基を有するカーボンの形状をシート状とすると、第1の工程および第2の工程を実行することにより触媒金属粒子を担持させることで、そのまま燃料電池用電極として用いることが可能となり、製造工程を簡易なものとすることができ、好ましい。
Examples of the method for removing the solvent include a method for drying the solvent. Examples of the method for drying the solvent include standing drying, air drying, warm air drying, infrared heat drying, far infrared heat drying, reduced pressure drying, and spray drying.
When it is desired to prepare a powdery solid mixture, it is preferable to perform spray drying among the methods described above because it is simple. The solid mixture or the carbon having an ion exchange group may be in the form of a powder or a sheet.
In addition, when the shape of carbon having a solid mixture or an ion exchange group is a sheet shape, the catalyst metal particles are supported by executing the first step and the second step, and used directly as a fuel cell electrode. This is preferable because the manufacturing process can be simplified.

カーボンとしては、電子伝導性が高く、耐食性が高い材料を用いることができる。このような、カーボンとしては、たとえば、アセチレンブラックやファーネスブラックなどのカーボンブラックおよび活性炭などが使用できる。好ましくは、Denka Black[電気化学工業(株)製]、Vulcan XC−72(Cabot Corp.製)、Black Peal 2000(Cabot Corp.製)あるいはKetjenblack EC[ケッチェンブラック・インターナショナル(株)製]等のカーボンブラックを使用する。このほかにも、黒鉛化度の高いカーボンを使用することができる。黒鉛化度の高いカーボンとしては、Tokablack#3855[東海カーボン(株)製]、Denkablack FX−35[電気化学工業(株)]あるいは、カーボンブラックを高温で焼成することなどにより黒鉛化度を高めたものなどを使用することができる。黒鉛化度の高いカーボンを用いることにより、高い電極電位においても耐久性の高い燃料電池用触媒を得ることができる。   As carbon, a material having high electron conductivity and high corrosion resistance can be used. As such carbon, for example, carbon black such as acetylene black and furnace black, activated carbon, and the like can be used. Preferably, Denka Black [manufactured by Denki Kagaku Kogyo Co., Ltd.], Vulcan XC-72 (manufactured by Cabot Corp.), Black Peal 2000 (manufactured by Cabot Corp.) or Ketjenblack EC [manufactured by Ketjenblack International Co., Ltd.] Use carbon black. In addition to this, carbon having a high graphitization degree can be used. As carbon having a high degree of graphitization, Tokablack # 3855 [manufactured by Tokai Carbon Co., Ltd.], Denkaback FX-35 [Electrochemical Industry Co., Ltd.], or by baking carbon black at a high temperature, the degree of graphitization is increased. Can be used. By using carbon with a high degree of graphitization, a highly durable fuel cell catalyst can be obtained even at a high electrode potential.

陽イオン交換樹脂としては、プロトン伝導性を有するものであればよく、たとえばパーフルオロカーボンスルホン酸形あるいはスチレン−ジビニルベンゼンスルホン酸形陽イオン交換樹脂、あるいはそれらの樹脂のカルボン酸形であるものを用いることが好ましい。
本発明では、陽イオン交換樹脂の原料として、溶媒中に陽イオン交換樹脂が溶解している陽イオン交換樹脂溶液を用いることができる。前記溶媒としては、水とアルコール(エタノールなど)とを任意の割合で含む液体を用いることが好ましいが、水のみを溶媒として用いてもよい。
Any cation exchange resin may be used as long as it has proton conductivity, for example, a perfluorocarbon sulfonic acid type, a styrene-divinylbenzene sulfonic acid type cation exchange resin, or a carboxylic acid form of those resins is used. It is preferable.
In the present invention, a cation exchange resin solution in which a cation exchange resin is dissolved in a solvent can be used as a raw material for the cation exchange resin. As the solvent, it is preferable to use a liquid containing water and alcohol (such as ethanol) in an arbitrary ratio, but only water may be used as a solvent.

カーボンと陽イオン交換樹脂とを含む固体の混合物と、触媒金属イオンとのイオン交換反応により、その金属イオンを吸着させる方法(吸着工程)について説明する。
吸着工程においては、まず、触媒金属元素が含まれる化合物(例えば[Pt(NH]Clなど)を、水を含む液体に溶解して触媒金属イオンを含む溶液を調製する。つづいて、固体の混合物を、触媒金属イオンを含む溶液に浸漬することによって、カーボンと陽イオン交換樹脂とを含む固体の混合物に含まれる陽イオン交換樹脂に、触媒金属イオンを吸着させる。触媒金属イオンの吸着は、陽イオン交換樹脂の対イオンと、触媒金属イオンとのイオン交換反応によるものである。
A method of adsorbing metal ions by an ion exchange reaction between a solid mixture containing carbon and a cation exchange resin and catalytic metal ions (adsorption process) will be described.
In the adsorption step, first, a compound containing a catalytic metal element (for example, [Pt (NH 3 ) 4 ] Cl 2 ) is dissolved in a liquid containing water to prepare a solution containing catalytic metal ions. Subsequently, by immersing the solid mixture in a solution containing catalytic metal ions, the catalytic metal ions are adsorbed on the cation exchange resin contained in the solid mixture containing carbon and cation exchange resin. The adsorption of the catalytic metal ion is based on an ion exchange reaction between the counter ion of the cation exchange resin and the catalytic metal ion.

本発明においては、触媒金属イオンとして、陽イオン交換樹脂が被覆されずに露出しているカーボン(導電性材料)の表面に対しては吸着し難く、陽イオン交換樹脂のイオンとのイオン交換反応により陽イオン交換樹脂のクラスター部(プロトン伝導経路)に優先的に吸着するものが好ましい。
このような吸着特性を持つ触媒金属イオンとしては、例えば、白金族金属を含む陽イオン、あるいは白金族金属の錯イオンを用いることができる。具体的には、白金族金属の錯イオンとして、[Pt(NH2+や[Pt(NH4+などとあらわすことができる白金のアンミン錯イオン、または、[Ru(NH2+や[Ru(NH4+を好適に用いることができる。本発明では、前記アンミン錯イオンのほかにも、硝酸基あるいはニトロソ基が配位した白金族金属の錯イオンを用いることもできる。
イオン交換基を有するカーボンを上述の固体の混合物の代わりに用いても、そのイオン交換基と触媒金属イオンとのイオン交換反応により、カーボン表面に触媒金属イオンを吸着させることができる。
In the present invention, as a catalyst metal ion, it is difficult to adsorb on the surface of carbon (conductive material) exposed without being coated with the cation exchange resin, and ion exchange reaction with ions of the cation exchange resin. Thus, those that adsorb preferentially to the cluster part (proton conduction path) of the cation exchange resin are preferred.
As the catalytic metal ion having such adsorption characteristics, for example, a cation containing a platinum group metal or a complex ion of a platinum group metal can be used. Specifically, platinum complex metal ions such as [Pt (NH 3 ) 4 ] 2+ , [Pt (NH 3 ) 6 ] 4+ , or [Ru (NH 3 ) 4 ] 2+ and [Ru (NH 3 ) 6 ] 4+ can be suitably used. In the present invention, in addition to the ammine complex ion, a platinum group metal complex ion coordinated with a nitrate group or a nitroso group can also be used.
Even when carbon having an ion exchange group is used in place of the above-mentioned solid mixture, the catalyst metal ion can be adsorbed on the carbon surface by an ion exchange reaction between the ion exchange group and the catalyst metal ion.

(第2の工程:還元工程)
第2の工程では、第1の工程を実行することにより吸着された触媒金属イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種の被毒ガスと水素とからなる還元剤を用いて還元することにより、陽イオン交換樹脂のプロトン伝導経路に接するカーボン粒子表面に触媒金属粒子を担持させる。
還元剤に含まれる一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種(被毒ガス)が、触媒金属粒子に吸着して触媒金属粒子の成長を抑制する。
(Second step: reduction step)
In the second step, the catalytic metal ions adsorbed by executing the first step are converted into a reducing agent comprising at least one poison gas and hydrogen among carbon monoxide, sulfur oxide, and nitrogen oxide. The catalyst metal particles are supported on the surface of the carbon particles in contact with the proton conduction path of the cation exchange resin.
At least one of carbon monoxide, sulfur oxide, and nitrogen oxide (poison gas) contained in the reducing agent is adsorbed on the catalyst metal particles to suppress the growth of the catalyst metal particles.

硫黄酸化物としては、一酸化硫黄(SO)、二酸化硫黄(SO)などを用いることができ、窒素酸化物としては、一酸化窒素(NO)、二酸化窒素(NO)などを用いることができる。これらの還元剤は水素とともに用いることができる。 As the sulfur oxide, sulfur monoxide (SO), sulfur dioxide (SO 2 ), or the like can be used, and as the nitrogen oxide, nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), or the like can be used. it can. These reducing agents can be used with hydrogen.

還元剤に含まれる被毒ガスの量は1〜100ppmであると、金属粒子の成長を抑制する効果が十分に発揮されるので好ましい。被毒ガスの量が1ppm未満であると、触媒金属粒子に吸着して成長を抑制する効果が十分に発揮されない場合がある。また、被毒ガスの量が100ppmよりも高くなると人体に及ぼす危険性が懸念される。   The amount of poisoning gas contained in the reducing agent is preferably 1 to 100 ppm because the effect of suppressing the growth of metal particles is sufficiently exhibited. If the amount of poisoning gas is less than 1 ppm, the effect of adsorbing to the catalyst metal particles and suppressing growth may not be sufficiently exhibited. Moreover, when the amount of poisoning gas is higher than 100 ppm, there is a concern about the danger to the human body.

還元工程は100℃以上200℃以下で行うのが好ましく、特に100℃以上150℃以下であると触媒金属粒子をより小さくすることができるので、好ましい。還元温度が200℃を超えると被毒ガスが分解することがあるので、本発明の効果が小さくなる可能性がある。   The reduction step is preferably performed at 100 ° C. or more and 200 ° C. or less, and particularly preferably 100 ° C. or more and 150 ° C. or less because the catalyst metal particles can be further reduced. When the reduction temperature exceeds 200 ° C., the poisoning gas may be decomposed, so that the effect of the present invention may be reduced.

本発明の製造方法では、第2の工程を経て得られた触媒金属粒子を担持させた粉末(触媒担持粉末)を、再度、触媒金属イオンを含む溶液に浸漬することによって触媒金属イオンを吸着させた後、吸着させた触媒金属イオンを還元してもよい。触媒金属イオンを吸着し還元する吸着・還元工程を繰り返すことにより、触媒金属の担持量を増加させることができる。   In the production method of the present invention, the catalyst metal ions are adsorbed by immersing the powder carrying the catalyst metal particles obtained through the second step (catalyst support powder) again in a solution containing the catalyst metal ions. Thereafter, the adsorbed catalytic metal ions may be reduced. By repeating the adsorption / reduction process of adsorbing and reducing catalyst metal ions, the amount of catalyst metal supported can be increased.

なお、本発明の製造方法によっても、吸着・還元工程の繰り返しにより触媒金属の粒子径は吸着・還元工程を行う前よりもわずかに大きくなるが、従来の方法と比較すると吸着・還元工程を繰り返すことによる触媒金属の粒子径の増大はきわめて緩やかである。触媒金属の粒子径は、触媒金属イオンを吸着し還元する吸着・還元工程の回数を加減することにより制御可能である。   Even with the production method of the present invention, the particle size of the catalyst metal is slightly larger than before the adsorption / reduction step by repeating the adsorption / reduction step, but the adsorption / reduction step is repeated as compared with the conventional method. The increase in the particle size of the catalyst metal due to this is very gradual. The particle diameter of the catalyst metal can be controlled by adjusting the number of adsorption / reduction processes for adsorbing and reducing the catalyst metal ions.

本発明においては、第1の工程と第2の工程を経てえられた触媒担持粉末を、被毒ガスを含む水素ガス雰囲気下に1〜6時間程度放置した後(放置工程)、2回目の吸着・還元工程を実行してもよい。前記放置工程を実行した場合、放置工程後の吸着・還元工程の際に、被毒ガスを含まない還元剤を用いたとしても触媒金属粒子の成長を十分に抑制することができる。
また、第1の工程と第2の工程を経た後の還元工程(2回目以降の還元工程)においては、還元剤として、被毒ガスを含まない水素ガスを用いてもよいし、還元剤中の被毒ガスの量を前回の還元工程よりも少なくしてもよい。また、被毒ガスの量を還元工程の時間の経過とともに少なくしていってもよい。
このように被毒ガスの使用量を少なくすることにより、被毒ガスを含む還元剤を扱う者(人)に及ぼす影響を低減することができる。
In the present invention, the catalyst-supported powder obtained through the first step and the second step is allowed to stand for about 1 to 6 hours in a hydrogen gas atmosphere containing a poisoning gas (leaving step). -You may perform a reduction | restoration process. When the leaving step is executed, the growth of the catalytic metal particles can be sufficiently suppressed even when a reducing agent that does not contain poisonous gas is used in the adsorption / reduction step after the leaving step.
Further, in the reduction step (second reduction step after the first step) after the first step and the second step, hydrogen gas that does not contain poisonous gas may be used as the reducing agent. The amount of poisoning gas may be less than the previous reduction process. Further, the amount of poisoning gas may be reduced with the passage of time of the reduction process.
By reducing the amount of poisoning gas used in this way, it is possible to reduce the effect on the person (person) who handles the reducing agent containing the poisoning gas.

本発明の製造方法により得られた触媒担持粉末を含む電極の製造方法の一例を説明する。本発明の製造方法により得られた触媒担持粉末を、例えば、N−メチル−2−ピロリドンなどに分散させてスラリーとして基材(例えばチタン箔)に塗布し、乾燥してシート状の触媒層とする。このようにして作製した触媒層を、陽イオン交換膜の両面に転写して、基材を取り除くことにより、両面に触媒層を備える陽イオン交換膜(膜/触媒層接合体)を得る。この両面に触媒層を備える陽イオン交換膜の両面にカーボンペーパー(ガス拡散層)を重ねて加熱圧着することによって、燃料電池用電極を陽イオン交換膜の両面に形成することができる。   An example of the manufacturing method of the electrode containing the catalyst carrying | support powder obtained by the manufacturing method of this invention is demonstrated. The catalyst-supported powder obtained by the production method of the present invention is dispersed in, for example, N-methyl-2-pyrrolidone and applied as a slurry to a base material (for example, titanium foil) and dried to form a sheet-like catalyst layer. To do. The catalyst layer thus produced is transferred to both surfaces of the cation exchange membrane, and the substrate is removed to obtain a cation exchange membrane (membrane / catalyst layer assembly) having catalyst layers on both surfaces. The fuel cell electrode can be formed on both sides of the cation exchange membrane by stacking carbon paper (gas diffusion layer) on both sides of the cation exchange membrane having the catalyst layers on both sides and applying heat pressure bonding.

<実施例および比較例>
本発明を具体化した実施例により、本発明をさらに説明する。
1.触媒金属の担持回数と担持される触媒金属粒子の粒子径との関係についての検討
<Examples and Comparative Examples>
The invention is further illustrated by examples embodying the invention.
1. Examination of the relationship between the number of catalyst metal loadings and the particle size of the supported catalyst metal particles

(実施例1)
(1)触媒金属担持粉末の作製
カーボン粉末(Cabot社製、VulcanXC−72)を1g、陽イオン交換樹脂溶液(アルドリッチ社製、Nafion 5質量%溶液)を8.6g、水1g、およびエタノール1gを混合して混合溶液を調製し、この混合溶液を噴霧乾燥により造粒する(120℃)ことで、陽イオン交換樹脂とカーボン粉末とを含む粉末(固体の混合物、陽イオン交換樹脂配合比30質量%)を作製した。
陽イオン交換樹脂とカーボン粉末とを含む粉末を、50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを陽イオン交換樹脂のクラスター部分にイオン交換反応により吸着させたのち、精製水で洗浄し、乾燥した(第1の工程)。
乾燥後に得られた粉末を反応容器に設置し、その反応容器に10ppmの一酸化炭素を含む水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元する(第2の工程、還元条件:110℃、4時間)ことで触媒金属担持粉末を得た。この触媒金属担持粉末のPt担持回数は1回である。
次にX線回折装置[リガク(株)製、RINT TTR−III)を用いて触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出した。
Example 1
(1) Production of catalyst metal-supported powder 1 g of carbon powder (manufactured by Cabot, Vulcan XC-72), 8.6 g of cation exchange resin solution (manufactured by Aldrich, 5% by mass Nafion solution), 1 g of water, and 1 g of ethanol Are mixed to prepare a mixed solution, and the mixed solution is granulated by spray drying (120 ° C.), whereby a powder containing a cation exchange resin and a carbon powder (solid mixture, cation exchange resin compounding ratio 30) Mass%).
A powder containing a cation exchange resin and a carbon powder is impregnated in a 50 mmol / liter [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours, and [Pt (NH 3 ) 4 ] 2+ ions are impregnated with the cation exchange resin. After being adsorbed by the ion exchange reaction, it was washed with purified water and dried (first step).
The powder obtained after drying is placed in a reaction vessel, and adsorbed [Pt (NH 3 ) 4 ] 2+ ions are reduced to Pt while introducing hydrogen containing 10 ppm of carbon monoxide into the reaction vessel. Step 2, reduction conditions: 110 ° C., 4 hours), a catalyst metal-supported powder was obtained. The catalyst metal-supported powder is supported once with Pt.
Next, XRD analysis of the catalyst metal-supported powder was performed using an X-ray diffractometer [RINT TTR-III, manufactured by Rigaku Corporation], and the particle diameter (nm) of Pt particles supported on carbon was calculated.

(2)吸着・還元工程
(1)で得られた触媒金属担持粉末を、50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを吸着させたのち、精製水で洗浄し、乾燥した(吸着工程)。乾燥後に得られた粉末を反応容器に設置し、その反応容器に10ppmの一酸化炭素を含む水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元して[還元工程、還元条件(110℃、4時間)]、触媒金属担持粉末を作製した。この触媒金属担持粉末について、(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出した。
(2) Adsorption / Reduction Step The catalyst metal-supported powder obtained in (1) is impregnated with 50 mmol / liter of [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours, and [Pt (NH 3 ) 4 ]. After adsorbing 2+ ions, it was washed with purified water and dried (adsorption process). The powder obtained after drying was placed in a reaction vessel, and while adsorbing hydrogen containing 10 ppm of carbon monoxide into the reaction vessel, adsorbed [Pt (NH 3 ) 4 ] 2+ ions were reduced to Pt [ Reduction step, reduction conditions (110 ° C., 4 hours)], catalyst metal-supported powder was prepared. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in (1), and the particle diameter (nm) of Pt particles supported on carbon was calculated.

(3)担持回数3〜10回の触媒金属担持粉末の作製およびXRD分析
(2)の吸着・還元工程を経て得られた触媒金属担持粉末について、(2)と同様の吸着・還元工程を実行し、吸着・還元工程を経るごとに得られる触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
カーボンに担持されているPt粒子の粒子径(nm)をPtの担持回数ごとに表1に示すとともに、Ptの担持回数とPt粒子の粒子径(nm)との関係を図1のグラフに示した。図1の縦軸はPtの粒子径(nm)を示し、横軸はPtの担持回数を示す。図1中、実施例1のデータは○で示した。
(3) Preparation and XRD analysis of catalyst metal-supported powder with 3-10 support times The catalyst-supported powder obtained through the adsorption / reduction process of (2) is subjected to the same adsorption / reduction process as (2). Then, XRD analysis of the catalyst metal-supported powder obtained each time the adsorption / reduction process was performed was performed, and the particle diameter of Pt particles supported on carbon was calculated.
The particle diameter (nm) of Pt particles supported on carbon is shown in Table 1 for each number of supported Pt, and the relationship between the number of supported Pt particles and the particle diameter (nm) of Pt particles is shown in the graph of FIG. It was. The vertical axis in FIG. 1 indicates the particle diameter (nm) of Pt, and the horizontal axis indicates the number of times Pt is supported. In FIG. 1, the data of Example 1 is indicated by ◯.

(実施例2)
(1)触媒金属担持粉末の作製
実施例1の(1)と同様の方法により触媒金属担持粉末を作製し、この触媒金属担持粉末のXRD分析を実施例1と同様に行い、カーボンに担持されているPt粒子の粒子径を算出した。
(Example 2)
(1) Preparation of catalyst metal-supported powder A catalyst metal-supported powder was prepared by the same method as in (1) of Example 1, and XRD analysis of this catalyst metal-supported powder was performed in the same manner as in Example 1 and supported on carbon. The particle size of the Pt particles was calculated.

(2)吸着・還元工程(2回目以降の還元工程で、還元剤として水素を使用)
(1)で得られた触媒金属担持粉末を、50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを吸着させたのち、精製水で洗浄し、乾燥した(吸着工程)。乾燥後に得られた粉末を反応容器に設置し、その反応容器に水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元して[還元工程、還元条件(110℃、4時間)]、触媒金属担持粉末を作製した。この触媒金属担持粉末について、(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出した。
(2) Adsorption / reduction process (hydrogen is used as the reducing agent in the second and subsequent reduction processes)
After impregnating [Pt (NH 3 ) 4 ] 2+ ions by impregnating the catalyst metal-supported powder obtained in (1) with 50 mmol / liter of [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours. Washed with purified water and dried (adsorption process). The powder obtained after drying is placed in a reaction vessel, and while adsorbing hydrogen into the reaction vessel, adsorbed [Pt (NH 3 ) 4 ] 2+ ions are reduced to Pt [reduction step, reduction condition (110 C., 4 hours)], a catalyst metal-supported powder was produced. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in (1), and the particle diameter (nm) of Pt particles supported on carbon was calculated.

(3)担持回数3〜10回の触媒金属担持粉末の作製およびXRD分析
(2)の吸着・還元工程を経て得られた触媒金属担持粉末について、(2)と同様の吸着・還元工程を実行し、吸着・還元工程を経るごとに得られる触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
カーボンに担持されているPt粒子の粒子径(nm)をPtの担持回数ごとに表1に示すとともに、図1のグラフに示した。図1中、実施例2のデータは●で示した。
(3) Preparation and XRD analysis of catalyst metal-supported powder with 3-10 support times The catalyst-supported powder obtained through the adsorption / reduction process of (2) is subjected to the same adsorption / reduction process as (2). Then, XRD analysis of the catalyst metal-supported powder obtained each time the adsorption / reduction process was performed was performed, and the particle diameter of Pt particles supported on carbon was calculated.
The particle diameter (nm) of the Pt particles supported on the carbon is shown in Table 1 for each number of supported Pt and is shown in the graph of FIG. In FIG. 1, the data of Example 2 are indicated by ●.

(実施例3)
(1)触媒金属担持粉末の作製
カーボン粉末(Cabot社製、VulcanXC−72)を1g、陽イオン交換樹脂溶液(アルドリッチ社製、Nafion 5質量%溶液)を8.6g、水1g、およびエタノール1gを混合して混合溶液を調製し、この混合溶液を噴霧乾燥により造粒する(120℃)ことで、陽イオン交換樹脂とカーボン粉末とを含む粉末(固体の混合物、陽イオン交換樹脂配合比30質量%)を作製した。
陽イオン交換樹脂とカーボン粉末とを含む粉末を50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを陽イオン交換樹脂のクラスター部分にイオン交換反応により吸着させたのち、精製水で洗浄し、乾燥した(第1の工程)。
乾燥後に得られた粉末を反応容器に設置し、その反応容器に所定量の一酸化炭素(詳しくは後述する)を含む水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元する(第2の工程、還元条件:110℃、4時間)ことで触媒金属担持粉末を得た。この触媒金属担持粉末のPt担持回数は1回である。得られた触媒金属担持粉末のXRD分析を実施例1と同様に行い、カーボンに担持されているPt粒子の粒子径を算出した。
第2の工程で用いる還元剤(水素)中の一酸化炭素の量(ppm)については、図2に示すように制御した。具体的には、水素中の一酸化炭素の量を、還元工程開始時(0hr)には10ppmに設定し還元時間を経過するに従い減らしていき、還元工程終了時(還元開始から4時間経過後:4hrs)には0ppmとなるように設定した。
(Example 3)
(1) Production of catalyst metal-supported powder 1 g of carbon powder (manufactured by Cabot, Vulcan XC-72), 8.6 g of cation exchange resin solution (manufactured by Aldrich, 5% by mass Nafion solution), 1 g of water, and 1 g of ethanol Are mixed to prepare a mixed solution, and the mixed solution is granulated by spray drying (120 ° C.), whereby a powder containing a cation exchange resin and a carbon powder (solid mixture, cation exchange resin compounding ratio 30) Mass%).
A powder containing a cation exchange resin and carbon powder is impregnated in 50 mmol / liter of an aqueous solution [Pt (NH 3 ) 4 ] Cl 2 for 6 hours, and [Pt (NH 3 ) 4 ] 2+ ions are added to the cation exchange resin. After adsorbing to the cluster part by ion exchange reaction, it was washed with purified water and dried (first step).
The powder obtained after drying was placed in a reaction vessel, and adsorbed [Pt (NH 3 ) 4 ] 2+ ions were introduced into the reaction vessel while introducing hydrogen containing a predetermined amount of carbon monoxide (described in detail later). The catalyst metal-supported powder was obtained by reducing to Pt (second step, reducing condition: 110 ° C., 4 hours). The catalyst metal-supported powder is supported once with Pt. XRD analysis of the obtained catalyst metal-supported powder was performed in the same manner as in Example 1, and the particle diameter of Pt particles supported on carbon was calculated.
The amount (ppm) of carbon monoxide in the reducing agent (hydrogen) used in the second step was controlled as shown in FIG. Specifically, the amount of carbon monoxide in hydrogen is set to 10 ppm at the start of the reduction process (0 hr) and is reduced as the reduction time elapses. At the end of the reduction process (after 4 hours from the start of reduction) : 4hrs) was set to 0 ppm.

(2)吸着・還元工程
(1)で得られた触媒金属担持粉末を、50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを吸着させたのち、精製水で洗浄し、乾燥した(吸着工程)。乾燥後に得られた粉末を反応容器に設置し、その反応容器に所定量の一酸化炭素を含む水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元して[還元工程、還元条件(110℃、4時間)]、触媒金属担持粉末を作製した。この触媒金属担持粉末について、(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
還元工程で用いる還元剤(水素)中の一酸化炭素の量については(1)の第2の工程と同様の制御を行った。
(2) Adsorption / Reduction Step The catalyst metal-supported powder obtained in (1) is impregnated with 50 mmol / liter of [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours, and [Pt (NH 3 ) 4 ]. After adsorbing 2+ ions, it was washed with purified water and dried (adsorption process). The powder obtained after drying is placed in a reaction vessel, and adsorbed [Pt (NH 3 ) 4 ] 2+ ions are reduced to Pt while introducing hydrogen containing a predetermined amount of carbon monoxide into the reaction vessel. [Reduction step, reduction conditions (110 ° C., 4 hours)], a catalyst metal-supported powder was produced. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in (1), and the particle diameter of Pt particles supported on carbon was calculated.
The amount of carbon monoxide in the reducing agent (hydrogen) used in the reduction step was controlled in the same manner as in the second step (1).

(3)担持回数3〜10回の触媒金属担持粉末の作製およびXRD分析
(2)の吸着・還元工程を経て得られた触媒金属担持粉末について、(2)と同様の吸着・還元工程を実行し、吸着・還元工程を経るごとに得られる触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
カーボンに担持されているPt粒子の粒子径(nm)をPtの担持回数ごとに表1に示すとともに、図1のグラフに示した。図1中、実施例3のデータは◆で示した。
(3) Preparation and XRD analysis of catalyst metal-supported powder with 3-10 support times The catalyst-supported powder obtained through the adsorption / reduction process of (2) is subjected to the same adsorption / reduction process as (2). Then, XRD analysis of the catalyst metal-supported powder obtained each time the adsorption / reduction process was performed was performed, and the particle diameter of Pt particles supported on carbon was calculated.
The particle diameter (nm) of the Pt particles supported on the carbon is shown in Table 1 for each number of supported Pt and is shown in the graph of FIG. In FIG. 1, the data of Example 3 is indicated by ♦.

(比較例1)
(1)触媒金属担持粉末の作製
第2の工程で用いる10ppmの一酸化炭素を含む水素に代えて水素を用いたこと以外は、実施例1の(1)と同様にして触媒金属担持粉末を得た。この触媒金属担持粉末のPt担持回数は1回である。実施例1と同様に、触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
(Comparative Example 1)
(1) Preparation of catalyst metal-supported powder A catalyst metal-supported powder was prepared in the same manner as in (1) of Example 1 except that hydrogen was used instead of hydrogen containing 10 ppm of carbon monoxide used in the second step. Obtained. The catalyst metal-supported powder is supported once with Pt. Similarly to Example 1, XRD analysis of the catalyst metal-supported powder was performed, and the particle diameter of the Pt particles supported on carbon was calculated.

(2)吸着・還元工程
(1)で得られた触媒金属担持粉末を、50mmol/リットルの[Pt(NH]Cl水溶液に6時間含浸して、[Pt(NH2+イオンを吸着させたのち、精製水で洗浄し、乾燥した(吸着工程)。乾燥後に得られた粉末を反応容器に設置し、その反応容器に水素を導入しながら、吸着した[Pt(NH2+イオンを、Ptに還元して(還元工程)、触媒金属担持粉末を作製した。この触媒金属担持粉末について、(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
(2) Adsorption / Reduction Step The catalyst metal-supported powder obtained in (1) is impregnated with 50 mmol / liter of [Pt (NH 3 ) 4 ] Cl 2 aqueous solution for 6 hours, and [Pt (NH 3 ) 4 ]. After adsorbing 2+ ions, it was washed with purified water and dried (adsorption process). The powder obtained after drying is placed in a reaction vessel, and while introducing hydrogen into the reaction vessel, the adsorbed [Pt (NH 3 ) 4 ] 2+ ions are reduced to Pt (reduction step), and the catalyst metal is supported. A powder was prepared. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in (1), and the particle diameter of Pt particles supported on carbon was calculated.

(3)担持回数3〜10回の触媒金属担持粉末の作製およびXRD分析
(2)の吸着・還元工程を経て得られた触媒金属担持粉末について、(2)と同様の吸着・還元工程を実行し、吸着・還元工程を経るごとに得られる触媒金属担持粉末のXRD分析を行い、カーボンに担持されているPt粒子の粒子径を算出した。
カーボンに担持されているPt粒子の粒子径(nm)をPtの担持回数ごとに表1に示すとともに、図1のグラフに示した。図1中、比較例1のデータは△で示した。
(3) Preparation and XRD analysis of catalyst metal-supported powder with 3-10 support times The catalyst-supported powder obtained through the adsorption / reduction process of (2) is subjected to the same adsorption / reduction process as (2). Then, XRD analysis of the catalyst metal-supported powder obtained each time the adsorption / reduction process was performed was performed, and the particle diameter of Pt particles supported on carbon was calculated.
The particle diameter (nm) of the Pt particles supported on the carbon is shown in Table 1 for each number of supported Pt and is shown in the graph of FIG. In FIG. 1, the data of Comparative Example 1 is indicated by Δ.

Figure 0005581884
Figure 0005581884

(結果と考察)
本発明の製造方法により作製した実施例1〜3の触媒金属担持粉末と、還元剤として水素を用いて作製した比較例1の触媒金属担持粉末とを、担持回数が同じもの同士で比較すると、実施例1〜3では比較例1よりも担持されるPt粒子の粒子径が小さいという結果が得られた。また、担持回数が増えるに従い、比較例1ではPt粒子の粒子径が顕著に大きくなるのに対し、実施例1〜3では担持回数が増えてもPtの粒子の粒子径が大きくなりにくいという結果が得られた。
これらの結果から、本発明の製造方法によれば、担持される触媒金属の粒子(白金粒子)を小型化することができ、触媒金属粒子の担持量を増やすために、触媒金属イオンの吸着と還元を繰り返し行った場合には、顕著に触媒金属粒子の成長を抑制することができるということがわかった。
なお、還元剤として水素を使用した比較例1において、担持回数が増えるに従いPtの粒子の粒子径がどんどん大きく成長するのは、先に担持されたPt粒子を核として、Pt粒子が成長すると考えられる。
実施例1〜3のうち、2回目以降の還元工程においても還元剤として一酸化炭素を含む水素を用いた実施例1では、白金粒子の粒子径が特に小さく、担持回数が増えても、ほとんど粒子径が大きくならなかった。この結果から、2回目以降の還元工程においても、一酸化炭素を含む水素を還元剤と用いると、触媒金属粒子の成長を顕著に抑制することができるということがわかった。
(Results and discussion)
When the catalyst metal-supported powders of Examples 1 to 3 produced by the production method of the present invention and the catalyst metal-supported powder of Comparative Example 1 produced using hydrogen as a reducing agent were compared between those having the same number of times supported, In Examples 1-3, the result that the particle diameter of Pt particle | grains carry | supported was smaller than the comparative example 1 was obtained. Further, as the number of loadings increases, the particle diameter of the Pt particles is significantly increased in Comparative Example 1, whereas in Examples 1 to 3, the particle diameter of the Pt particles is not easily increased even when the number of loadings is increased. was gotten.
From these results, according to the production method of the present invention, the supported catalyst metal particles (platinum particles) can be reduced in size, and in order to increase the amount of supported catalyst metal particles, It has been found that when the reduction is repeated, the growth of catalytic metal particles can be remarkably suppressed.
In Comparative Example 1 in which hydrogen is used as the reducing agent, the particle diameter of the Pt particles grows larger as the number of supported particles increases. It is done.
Among Examples 1 to 3, even in the second and subsequent reduction steps, in Example 1 using hydrogen containing carbon monoxide as a reducing agent, the particle diameter of the platinum particles is particularly small, and even if the number of loadings increases, almost no matter The particle size did not increase. From this result, it was found that the growth of catalytic metal particles can be remarkably suppressed when hydrogen containing carbon monoxide is used as a reducing agent in the second and subsequent reduction steps.

2.還元剤中の被毒ガス濃度と触媒金属粒子の粒子径との関係についての検討
(実施例1−1)
第2の工程において用いる、10ppmの一酸化炭素を含む水素に代えて、1ppmの一酸化炭素を含む水素を用いたこと以外は実施例1の(1)と同様にして実施例1−1の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
図3において、縦軸はPtの粒子径(nm)を示し、横軸は還元剤中のCO濃度(ppm)を示す。なお、図3中、実施例1−1、実施例1−2および実施例1−2のデータは○で示した。実施例1−2および実施例1−3については以下に説明する。
2. Study on relationship between poison gas concentration in reducing agent and particle diameter of catalytic metal particles (Example 1-1)
Example 1-1 is the same as Example 1-1 except that hydrogen containing 1 ppm of carbon monoxide was used instead of hydrogen containing 10 ppm of carbon monoxide used in the second step. A catalytic metal-supported powder was obtained. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.
In FIG. 3, the vertical axis represents the particle diameter (nm) of Pt, and the horizontal axis represents the CO concentration (ppm) in the reducing agent. In FIG. 3, the data of Example 1-1, Example 1-2, and Example 1-2 are indicated by ◯. Examples 1-2 and 1-3 will be described below.

(実施例1−2)
実施例1の(1)で得られた触媒金属担持粉末を実施例1−2とした。実施例1−2の触媒金属担持粉末においてカーボンに担持されているPt粒子の粒子径を表2と図3に示した(実施例1の担持回数1回の触媒金属担持粉末のデータを使用)。
(Example 1-2)
The catalytic metal-supported powder obtained in (1) of Example 1 was referred to as Example 1-2. The particle diameters of Pt particles supported on carbon in the catalyst metal-supported powder of Example 1-2 are shown in Table 2 and FIG. 3 (using data of the catalyst metal-supported powder with the number of times of support of Example 1). .

(実施例1−3)
第2の工程において用いる、10ppmの一酸化炭素を含む水素に代えて、100ppmの一酸化炭素を含む水素を用いたこと以外は実施例1の(1)と同様にして実施例1−3の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
(Example 1-3)
Example 1-3 is the same as Example (1) except that hydrogen containing 100 ppm of carbon monoxide is used instead of hydrogen containing 10 ppm of carbon monoxide used in the second step. A catalytic metal-supported powder was obtained. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.

(比較例2−0)
50mmol/リットルの[Pt(NH]Cl水溶液を5ml、カーボン粉末(Cabot社製、VulcanXC−72)を1g、陽イオン交換樹脂溶液(アルドリッチ社製、Nafion 5質量%溶液)を8.6g、エタノール1gに混合して得られる溶液に、不活性ガスである窒素を吹きこみながら、5質量%の水素化ホウ素ナトリウムを32ml添加(8mlを1分ごとに4回添加)した後、ろ過し乾燥して触媒金属担持粉末を得た。触媒金属を除く陽イオン交換樹脂の固形分の配合比は30質量%となるようにした。得られた触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2に示した。
(Comparative Example 2-0)
5 ml of a 50 mmol / liter [Pt (NH 3 ) 4 ] Cl 2 aqueous solution, 1 g of carbon powder (Cabot, Vulcan XC-72), 8 cation exchange resin solution (Aldrich, 5% Nafion solution) After adding 32 ml of 5% by mass of sodium borohydride to the solution obtained by mixing 1.6 g of ethanol and 1 g of ethanol while blowing nitrogen as an inert gas (adding 8 ml four times per minute) Filtration and drying gave catalyst metal-supported powder. The mixing ratio of the solid content of the cation exchange resin excluding the catalyst metal was set to 30% by mass. The obtained catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated and shown in Table 2.

(比較例2−1)
窒素に代えて一酸化炭素を1ppm含む窒素ガスを用いたこと以外は比較例2−0と同様にして、比較例2−1の触媒金属担持粉末を得た。得られた触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
図3中、比較例2−1、比較例2−2および比較例2−2のデータは△で示した。比較例2−2および比較例2−3については以下に説明する。
(Comparative Example 2-1)
A catalyst metal-supported powder of Comparative Example 2-1 was obtained in the same manner as Comparative Example 2-0 except that nitrogen gas containing 1 ppm of carbon monoxide was used instead of nitrogen. The obtained catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.
In FIG. 3, the data of Comparative Example 2-1, Comparative Example 2-2, and Comparative Example 2-2 are indicated by Δ. Comparative Example 2-2 and Comparative Example 2-3 will be described below.

(比較例2−2)
窒素に代えて、一酸化炭素を10ppm含む窒素ガスを用いたこと以外は比較例2−0と同様にして比較例2−2の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
(Comparative Example 2-2)
A catalyst metal-supported powder of Comparative Example 2-2 was obtained in the same manner as Comparative Example 2-0 except that nitrogen gas containing 10 ppm of carbon monoxide was used instead of nitrogen. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.

(比較例2−3)
窒素に代えて、一酸化炭素を100ppm含む窒素ガスを用いたこと以外は比較例2−0と同様にして比較例2−3の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
(Comparative Example 2-3)
A catalyst metal-supported powder of Comparative Example 2-3 was obtained in the same manner as Comparative Example 2-0 except that nitrogen gas containing 100 ppm of carbon monoxide was used instead of nitrogen. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.

(比較例3−1)
カーボン粉末(Cabot社製、VulcanXC−72)を1g、50mmol/リットルのHPtClのエタノール水溶液に浸漬したのちに乾燥し、一酸化炭素を1ppm含む水素を還元剤として用いて物理吸着したHPtClをPtに還元して触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
図3中、比較例3−1、比較例3−2および比較例3−2のデータは□で示した。比較例3−2および比較例3−3については以下に説明する。
(Comparative Example 3-1)
1 g of carbon powder (Cabot Co., Vulcan XC-72) was immersed in an ethanol aqueous solution of 50 mmol / liter of H 2 PtCl 6 , dried, and physically adsorbed using hydrogen containing 1 ppm of carbon monoxide as a reducing agent. 2 PtCl 6 was reduced to Pt to obtain catalyst metal-supported powder. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.
In FIG. 3, the data of Comparative Example 3-1, Comparative Example 3-2 and Comparative Example 3-2 are indicated by □. Comparative Example 3-2 and Comparative Example 3-3 will be described below.

(比較例3−2)
一酸化炭素を1ppm含む水素に代えて、一酸化炭素を10ppm含む水素を用いたこと以外は比較例3−1と同様にして比較例3−2の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
(Comparative Example 3-2)
A catalytic metal-supported powder of Comparative Example 3-2 was obtained in the same manner as Comparative Example 3-1, except that hydrogen containing 10 ppm of carbon monoxide was used instead of hydrogen containing 1 ppm of carbon monoxide. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.

(比較例3−3)
一酸化炭素を1ppm含む水素に代えて、一酸化炭素を100ppm含む水素を用いたこと以外は比較例3−1と同様にして比較例3−3の触媒金属担持粉末を得た。この触媒金属担持粉末について実施例1と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し、表2と図3に示した。
(Comparative Example 3-3)
A catalytic metal-supported powder of Comparative Example 3-3 was obtained in the same manner as Comparative Example 3-1, except that hydrogen containing 100 ppm of carbon monoxide was used instead of hydrogen containing 1 ppm of carbon monoxide. This catalyst metal-supported powder was subjected to XRD analysis in the same manner as in Example 1, and the particle diameter (nm) of Pt particles supported on carbon was calculated. The results are shown in Table 2 and FIG.

Figure 0005581884
Figure 0005581884

(結果と考察)
本発明の方法で得られた触媒金属担持粉末(実施例1−1、1−2、1−3)では、比較の方法で得られた触媒金属担持粉末(比較例2−1、2−2、2−3、3−1、3−2、3−3)よりも、カーボンに担持される白金粒子(触媒金属粒子)の粒子径が顕著に小さかった。
また、比較例2−1〜2−3において還元剤中のCO濃度を増加させてもPt粒子の粒子径を小さくする効果はわずかであり、比較例3−1〜3−3では、還元剤中のCO濃度を増加させてもPt粒子の粒子径はほぼ同じであった。これに対して、本発明の方法(実施例1−1〜1−3)では、還元剤中のCO濃度を高くすることによりPt粒子の粒子径が小さくなった。
これらの結果から、本発明の方法によれば、カーボンに担持される触媒金属粒子を小型化することができ、かつ、還元剤中のCO濃度を増やすことにより触媒金属粒子を小型化することができるということがわかった。
比較例2−1〜2−3の方法で、比較例3−1〜3−3の方法よりもカーボンに担持される白金粒子の粒子径を小さくすることはできたが、十分ではなかったのは、比較例2−1〜2−3における方法では、分散液中に白金粒子が析出した後、ろ過乾燥させる際に白金粒子が凝集することに起因すると考えられる。
比較例3−1〜3−3の方法で、CO濃度を増やしてもPt粒子の粒子径を小さくする効果がほとんどなかったのは、比較例3−1〜3−3の方法では、Pt粒子をカーボンに吸着させるための化合物(HPtCl)が凝集した状態で、カーボン表面に吸着するため、COを含む水素ガスで還元しても、成長の核となるPt粒子が大きな凝集体であるため、COの濃度を増やしても、Pt粒子の粒子径を小さくする効果がほとんど発現しないのではないかと推測される。
(Results and discussion)
In the catalyst metal-supported powders (Examples 1-1, 1-2, and 1-3) obtained by the method of the present invention, the catalyst metal-supported powders (Comparative Examples 2-1 and 2-2) obtained by the comparative method. The particle diameter of platinum particles (catalyst metal particles) supported on carbon was significantly smaller than that of 2-3, 3-1, 3-2, 3-3).
Further, even if the CO concentration in the reducing agent is increased in Comparative Examples 2-1 to 2-3, the effect of reducing the particle diameter of the Pt particles is slight. In Comparative Examples 3-1 to 3-3, the reducing agent is Even when the CO concentration in the medium was increased, the particle diameter of the Pt particles was almost the same. On the other hand, in the method of the present invention (Examples 1-1 to 1-3), the particle diameter of the Pt particles was reduced by increasing the CO concentration in the reducing agent.
From these results, according to the method of the present invention, the catalytic metal particles supported on carbon can be reduced in size, and the catalytic metal particles can be reduced in size by increasing the CO concentration in the reducing agent. I understood that I could do it.
Although the method of Comparative Examples 2-1 to 2-3 was able to reduce the particle diameter of platinum particles supported on carbon as compared with the methods of Comparative Examples 3-1 to 3-3, it was not sufficient. In the methods in Comparative Examples 2-1 to 2-3, it is considered that platinum particles aggregate when the platinum particles are precipitated in the dispersion and then filtered and dried.
In the methods of Comparative Examples 3-1 to 3-3, there was almost no effect of reducing the particle size of the Pt particles even when the CO concentration was increased. Since the compound (H 2 PtCl 6 ) for adsorbing carbon on the carbon is adsorbed on the carbon surface, the Pt particles that form the core of growth are large aggregates even if they are reduced with hydrogen gas containing CO. For this reason, it is presumed that even if the concentration of CO is increased, the effect of reducing the particle size of the Pt particles hardly appears.

3.還元温度と担持される触媒金属粒子の粒子径との関係についての検討
(実施例1−4)
実施例1の(3)で得られたPt担持回数が10回の触媒金属担持粉末を実施例1−4の触媒金属担持粉末とした。実施例1−4の触媒金属担持粉末においてカーボンに担持されているPt粒子の粒子径を表3と図4に示した(実施例1の担持回数10回の触媒金属担持粉末のデータを使用)。
図4において、縦軸はPtの粒子径(nm)を示し、横軸は還元温度(℃)を示す。図4中、実施例1−4、実施例1−5および参考例1のデータは○で示した。実施例1−5および参考例1については以下に説明する。
3. Examination about relationship between reduction temperature and particle diameter of supported catalyst metal particles (Example 1-4)
The catalyst metal-supported powder obtained in Example 1 (3) and having a Pt support count of 10 was used as the catalyst metal-supported powder of Example 1-4. The particle diameter of Pt particles supported on carbon in the catalyst metal-supported powder of Example 1-4 is shown in Table 3 and FIG. 4 (using data of catalyst metal-supported powder of 10 support times in Example 1). .
In FIG. 4, the vertical axis indicates the particle diameter (nm) of Pt, and the horizontal axis indicates the reduction temperature (° C.). In FIG. 4, the data of Example 1-4, Example 1-5, and Reference Example 1 are indicated by ◯. Examples 1-5 and Reference Example 1 will be described below.

(実施例1−5)
第2の工程において還元条件を150℃としたこと以外は実施例1の(1)と同様にして触媒金属担持粉末を得た(Pt担持回数は1回)。
このPt担持回数が1回の触媒金属担持粉末について、還元条件を150℃したこと以外は、実施例1の(2)と同様にして吸着・還元工程を9回繰返し実行して、触媒金属担持粉末を作製した(Pt担持回数は10回)。
作製したPt担持回数が10回の触媒金属担持粉末について、実施例1の(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し表3および図4に示した。
(Example 1-5)
A catalyst metal-supported powder was obtained in the same manner as (1) of Example 1 except that the reduction condition was 150 ° C. in the second step (the number of times of Pt support was one).
For the catalyst metal-supported powder with one Pt support, the adsorption / reduction process was repeated nine times in the same manner as in (2) of Example 1 except that the reduction condition was 150 ° C. A powder was prepared (Pt was loaded 10 times).
For the produced catalyst metal-supported powder with 10 Pt-supported times, XRD analysis was performed in the same manner as in (1) of Example 1 to calculate the particle size (nm) of Pt particles supported on carbon, and Table 3 and This is shown in FIG.

参考例1
第2の工程において還元条件を200℃としたこと以外は実施例1の(1)と同様にして触媒金属担持粉末を得た(Pt担持回数は1回)。
このPt担持回数が1回の触媒金属担持粉末について、還元条件を200℃したこと以外は、実施例1の(2)と同様にして吸着・還元工程を9回繰返し実行して、触媒金属担持粉末を作製した(Pt担持回数は10回)。
作製したPt担持回数が10回の触媒金属担持粉末について、実施例1の(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し表3および図4に示した。
( Reference Example 1 )
A catalytic metal-supported powder was obtained in the same manner as (1) of Example 1 except that the reducing condition was 200 ° C. in the second step (the number of times Pt was supported).
For the catalyst metal-supported powder with one Pt support, the adsorption / reduction process was repeated nine times in the same manner as in (2) of Example 1 except that the reduction condition was 200 ° C. A powder was prepared (Pt was loaded 10 times).
For the produced catalyst metal-supported powder with 10 Pt-supported times, XRD analysis was performed in the same manner as in (1) of Example 1 to calculate the particle size (nm) of Pt particles supported on carbon, and Table 3 and This is shown in FIG.

(比較例1−1)
比較例1の(3)で得られたPt担持回数が10回の触媒金属担持粉末を比較例1−1の触媒金属担持粉末とした。比較例1−1の触媒金属担持粉末においてカーボンに担持されているPt粒子の粒子径を表3と図4に示した(比較例1の担持回数10回の触媒金属担持粉末のデータを使用)。
図4中、比較例1−1、比較例1−2および比較例1−3のデータは△で示した。比較例1−2および比較例1−3については以下に説明する。
(Comparative Example 1-1)
The catalyst metal-supported powder having a Pt support count of 10 obtained in (3) of Comparative Example 1 was used as the catalyst metal-supported powder of Comparative Example 1-1. The particle diameters of the Pt particles supported on carbon in the catalyst metal-supported powder of Comparative Example 1-1 are shown in Table 3 and FIG. 4 (using data of the catalyst metal-supported powder of Comparative Example 1 with 10 support times). .
In FIG. 4, the data of Comparative Example 1-1, Comparative Example 1-2, and Comparative Example 1-3 are indicated by Δ. Comparative Example 1-2 and Comparative Example 1-3 will be described below.

(比較例1−2)
第2の工程において還元条件を150℃としたこと以外は比較例1の(1)と同様にして触媒金属担持粉末を得た(Pt担持回数は1回)。
このPt担持回数が1回の触媒金属担持粉末について、還元条件を150℃したこと以外は、比較例1の(2)と同様にして吸着・還元工程を9回繰返し実行して、触媒金属担持粉末を作製した(Pt担持回数は10回)。
作製したPt担持回数が10回の触媒金属担持粉末について、実施例1の(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し表3および図4に示した。
(Comparative Example 1-2)
A catalytic metal-supported powder was obtained in the same manner as in (1) of Comparative Example 1 except that the reduction condition was 150 ° C. in the second step (the number of times Pt was supported).
For the catalyst metal-supported powder with one Pt support, the adsorption / reduction process was repeated nine times in the same manner as (2) of Comparative Example 1 except that the reduction condition was 150 ° C. A powder was prepared (Pt was loaded 10 times).
For the produced catalyst metal-supported powder with 10 Pt-supported times, XRD analysis was performed in the same manner as in (1) of Example 1 to calculate the particle size (nm) of Pt particles supported on carbon, and Table 3 and This is shown in FIG.

(比較例1−3)
第2の工程において還元条件を200℃としたこと以外は比較例1の(1)と同様にして触媒金属担持粉末を得た(Pt担持回数は1回)。
このPt担持回数が1回の触媒金属担持粉末について、還元条件を200℃したこと以外は、比較例1の(2)と同様にして吸着・還元工程を9回繰返し実行して、触媒金属担持粉末を作製した(Pt担持回数は10回)。
作製したPt担持回数が10回の触媒金属担持粉末について、実施例1の(1)と同様にXRD分析を行い、カーボンに担持されているPt粒子の粒子径(nm)を算出し表3および図4に示した。
(Comparative Example 1-3)
A catalytic metal-supported powder was obtained in the same manner as (1) of Comparative Example 1 except that the reduction condition was 200 ° C. in the second step (the number of times Pt was supported).
For the catalyst metal-supported powder with one Pt support, the adsorption / reduction process was repeated nine times in the same manner as (2) of Comparative Example 1 except that the reduction condition was 200 ° C. A powder was prepared (Pt was loaded 10 times).
For the produced catalyst metal-supported powder with 10 Pt-supported times, XRD analysis was performed in the same manner as in (1) of Example 1 to calculate the particle size (nm) of Pt particles supported on carbon, and Table 3 and This is shown in FIG.

Figure 0005581884
Figure 0005581884

(結果と考察)
本発明の方法で得られた触媒金属担持粉末(実施例1−4、1−5、参考例1)では、比較の方法で得られた触媒金属担持粉末(比較例1−1、1−2、1−3)よりも、カーボンに担持される白金粒子(触媒金属粒子)の粒子径が顕著に小さかった。
実施例の方法により作製したもののうち、還元温度が低い実施例1−4では、特にカーボンに担持される白金粒子の粒子径が小さかった。これは、還元温度が低いほうが、COが白金粒子に吸着しやすいことに起因すると考えられる。還元温度が200℃になると、COがCOに変化するなどにより、白金粒子に吸着するCOが減り、白金粒子の粒子径を小さくする効果が低下すると考えられる。
(Results and discussion)
In the catalyst metal-supported powder obtained by the method of the present invention (Examples 1-4 and 1-5, Reference Example 1 ), the catalyst metal-supported powder obtained by the comparative method (Comparative Examples 1-1 and 1-2). The particle diameter of platinum particles (catalyst metal particles) supported on carbon was significantly smaller than that of 1-3).
Among those produced by the method of Example, in Example 1-4 where the reduction temperature was low, the particle diameter of platinum particles supported on carbon was particularly small. This is probably because CO is more easily adsorbed to the platinum particles when the reduction temperature is lower. When the reduction temperature reaches 200 ° C., CO adsorbed on the platinum particles decreases due to CO changing to CO 2 and the like, and the effect of reducing the particle diameter of the platinum particles is considered to decrease.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施例では、被毒ガスとしてCOを例示したが、一酸化硫黄(SO)、二酸化硫黄(SO)、一酸化窒素(NO)、二酸化窒素(NO)などを用いてもよい。これらの被毒ガスを含む水素を還元剤として用いた場合にも、、COを含む水素を用いたときと同等の効果がある。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiment, CO is exemplified as the poison gas, but sulfur monoxide (SO), sulfur dioxide (SO 2 ), nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), etc. may be used. . Even when hydrogen containing these poisoning gases is used as a reducing agent, the same effect as when using hydrogen containing CO is obtained.

Claims (2)

イオン交換基を有するカーボン、または、カーボンと陽イオン交換樹脂とを含む固体の混合物に、白金族の触媒金属元素を含む陽イオンをイオン交換反応により、カーボンが有するイオン交換基または陽イオン交換樹脂が有するイオン交換基に吸着させる第1の工程と、
前記第1の工程を実行することにより吸着された前記陽イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種の被毒ガス1ppm〜100ppmと水素とからなる還元剤を用いて、100℃以上150℃以下の還元温度で還元する第2の工程と、を経ることを特徴とし、
前記白金族の触媒金属元素を含む陽イオンが白金のアンミン錯イオン、[Ru(NH 2+ 、または[Ru(NH 4+ であり、
前記被毒ガスが触媒金属の粒子に対するものである燃料電池用触媒担持粉末の製造方法。
Ion exchange group or cation exchange resin possessed by carbon by ion exchange reaction of cation containing catalytic metal element of platinum group to carbon having ion exchange group or solid mixture containing carbon and cation exchange resin A first step of adsorbing to an ion exchange group possessed by:
The cation adsorbed by executing the first step is used using a reducing agent comprising at least one poison gas of 1 ppm to 100 ppm of carbon monoxide, sulfur oxide, and nitrogen oxide and hydrogen. And a second step of reducing at a reduction temperature of 100 ° C. or higher and 150 ° C. or lower ,
The platinum group cation containing a catalytic metal element is platinum ammine complex ions are [Ru (NH 3) 4] 2+, or [Ru (NH 3) 6] 4+,
A method for producing a catalyst-supporting powder for a fuel cell , wherein the poisoning gas is for catalyst metal particles .
イオン交換基を有するカーボン、または、カーボンと陽イオン交換樹脂とを含む固体の混合物に、白金族の触媒金属元素を含む陽イオンをイオン交換反応により、カーボンが有するイオン交換基または陽イオン交換樹脂が有するイオン交換基に吸着させる第1の工程と、
前記第1の工程を実行することにより吸着された前記陽イオンを、一酸化炭素、硫黄酸化物、および窒素酸化物のうちの少なくとも一種の被毒ガス1ppm〜100ppmと水素とからなる還元剤を用いて、100℃以上150℃以下の還元温度で還元する第2の工程と、を経ることを特徴とし、
前記白金族の触媒金属元素を含む陽イオンが白金のアンミン錯イオン、[Ru(NH 2+ 、または[Ru(NH 4+ であり、
前記被毒ガスが触媒金属粒子に対するものである燃料電池用電極の製造方法。
Ion exchange group or cation exchange resin possessed by carbon by ion exchange reaction of cation containing catalytic metal element of platinum group to carbon having ion exchange group or solid mixture containing carbon and cation exchange resin A first step of adsorbing to an ion exchange group possessed by:
The cation adsorbed by executing the first step is used using a reducing agent comprising at least one poison gas of 1 ppm to 100 ppm of carbon monoxide, sulfur oxide, and nitrogen oxide and hydrogen. And a second step of reducing at a reduction temperature of 100 ° C. or higher and 150 ° C. or lower ,
The platinum group cation containing a catalytic metal element is platinum ammine complex ions are [Ru (NH 3) 4] 2+, or [Ru (NH 3) 6] 4+,
A method for producing an electrode for a fuel cell , wherein the poisoning gas is for catalytic metal particles .
JP2010177444A 2010-08-06 2010-08-06 Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell Expired - Fee Related JP5581884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177444A JP5581884B2 (en) 2010-08-06 2010-08-06 Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177444A JP5581884B2 (en) 2010-08-06 2010-08-06 Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell

Publications (2)

Publication Number Publication Date
JP2012038565A JP2012038565A (en) 2012-02-23
JP5581884B2 true JP5581884B2 (en) 2014-09-03

Family

ID=45850358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177444A Expired - Fee Related JP5581884B2 (en) 2010-08-06 2010-08-06 Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP5581884B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106076A (en) * 1991-12-04 1994-04-19 Stonehard Assoc Inc Preparation of high-dispersion metal particle carrying catalyst
JP2879649B2 (en) * 1994-12-05 1999-04-05 工業技術院長 Method for producing platinum-based catalyst
JP3791968B2 (en) * 1996-06-06 2006-06-28 財団法人石油産業活性化センター Method for catalytic reduction of nitrogen oxides
JP3684570B2 (en) * 1999-09-27 2005-08-17 日本電池株式会社 Fuel cell electrode and method of manufacturing the same
JP5055788B2 (en) * 2006-02-22 2012-10-24 日産自動車株式会社 Electrocatalyst
JP2008218131A (en) * 2007-03-02 2008-09-18 Gs Yuasa Corporation:Kk Membrane-electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using it

Also Published As

Publication number Publication date
JP2012038565A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
CN105431230B (en) Method for forming noble metal nanoparticles on a support
CN111725524B (en) Fuel cell cathode catalyst, preparation method thereof, membrane electrode and fuel cell
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
WO2019179530A1 (en) Platinum-based alloy catalyst and preparation method therefor, membrane electrode, and fuel cell
US9666877B2 (en) Metal-oxide catalysts for fuel cells
WO2021114056A1 (en) Fuel cell cathode catalyst and preparation method therefor, membrane electrode and fuel cell
CN110743571A (en) A method for preparing carbon-supported Pt shell-core catalyst by H2 liquid-phase reduction
KR20200053431A (en) Au doped Pt alloy catalysts for fuel cell and method thereof
CN102784641A (en) Preparation method of catalyst with high-activity palladium platinum core-shell structure
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP5531313B2 (en) Composite electrode catalyst and method for producing the same
US20230420694A1 (en) Composite particles of core-shell structure including metal oxide particle core and platinum-group transition metal shell, and electrochemical reaction electrode material including same
JP5581884B2 (en) Method for producing catalyst-supported powder for fuel cell, method for producing electrode for fuel cell
CN108855223B (en) Nanocomposite catalyst with high metal loading and dispersion and its preparation and application
JP2022138872A (en) Electrode catalyst for fuel cell, method for selecting the same, and fuel cell provided with the same
JP5540892B2 (en) Method for producing fuel cell catalyst
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
CN110931808A (en) A kind of Pd-WO3/C proton exchange membrane fuel cell anode electrocatalyst and its preparation method and application
JP7093860B1 (en) Fuel cell electrode catalyst
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof
CN117174927B (en) Fuel cell catalyst wrapped by microporous carbon layer and preparation method and application thereof
JP7468379B2 (en) Manufacturing method of alloy fine particle supported catalyst, electrode, fuel cell, manufacturing method of alloy fine particle, manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell
JP2006210314A (en) Electrode catalyst for fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees