[go: up one dir, main page]

JP5578608B2 - Carbon monoxide gas purification method - Google Patents

Carbon monoxide gas purification method Download PDF

Info

Publication number
JP5578608B2
JP5578608B2 JP2010060478A JP2010060478A JP5578608B2 JP 5578608 B2 JP5578608 B2 JP 5578608B2 JP 2010060478 A JP2010060478 A JP 2010060478A JP 2010060478 A JP2010060478 A JP 2010060478A JP 5578608 B2 JP5578608 B2 JP 5578608B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorbent
adsorption
activated carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010060478A
Other languages
Japanese (ja)
Other versions
JP2011195340A (en
Inventor
純一 坂本
信之 北岸
俊彦 住田
充 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2010060478A priority Critical patent/JP5578608B2/en
Publication of JP2011195340A publication Critical patent/JP2011195340A/en
Application granted granted Critical
Publication of JP5578608B2 publication Critical patent/JP5578608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、原料ガスに含まれる一酸化炭素を圧力スイング吸着法(PSA法)により精製する方法に関する。   The present invention relates to a method for purifying carbon monoxide contained in a raw material gas by a pressure swing adsorption method (PSA method).

例えば天然ガス等の炭化水素ガスやメタノール等を改質して得られる改質ガスは、一酸化炭素、二酸化炭素、水素等の成分を含有し、一酸化炭素を精製により得るための原料ガスとして用いられる。そのような原料ガスに含まれる成分から吸着剤を用いて分離精製した一酸化炭素は、例えばポリカーボネート、ポリウレタン、ポリケトン等の樹脂原料や、酢酸、アルデヒド類等の化成品原料として使用できる。   For example, a reformed gas obtained by reforming a hydrocarbon gas such as natural gas or methanol, etc., contains components such as carbon monoxide, carbon dioxide, hydrogen, etc., as a raw material gas for obtaining carbon monoxide by purification Used. Carbon monoxide separated and purified from the components contained in such a raw material gas using an adsorbent can be used, for example, as a resin raw material such as polycarbonate, polyurethane, or polyketone, or as a chemical raw material such as acetic acid or aldehydes.

一酸化炭素の吸着に用いる吸着剤として、塩化第一銅を担持させた活性炭が用いられている。このような吸着剤の製法として、塩化第一銅の塩酸溶液中に活性炭を浸漬させることで塩化第一銅を活性炭に担持させ、その塩化第一銅を担持した活性炭を乾燥させることで吸着剤を得る方法が知られている(特許文献1)。また、塩化第一銅、塩化第二銅等の銅塩を担持させた活性炭を一酸化炭素の吸着剤として用いる場合に、吸着剤の吸着能力を回復させるため、250℃を超える温度に加熱することで賦活処理する方法が知られている(特許文献2)。原料ガスに含まれる一酸化炭素の精製方法として、塩化第一銅、塩化第二銅等を担持させた活性アルミナを吸着剤として用いる圧力スイング吸着法を採用することが知られている(特許文献3)。また、ハロゲン化銅を担持した活性炭を吸着剤として用いる圧力スイング吸着法を採用して一酸化炭素を精製する際に、吸着床温度を40〜60℃の範囲に制御することで一酸化炭素の回収率向上を図る方法が知られている(特許文献4)。   As an adsorbent used for adsorption of carbon monoxide, activated carbon supporting cuprous chloride is used. As a method for producing such an adsorbent, the activated carbon is immersed in a hydrochloric acid solution of cuprous chloride to support the cuprous chloride on the activated carbon, and the activated carbon supporting the cuprous chloride is dried to adsorb the adsorbent. Is known (Patent Document 1). In addition, when activated carbon carrying a copper salt such as cuprous chloride or cupric chloride is used as an adsorbent for carbon monoxide, it is heated to a temperature exceeding 250 ° C. in order to recover the adsorption capacity of the adsorbent. Thus, a method for activation treatment is known (Patent Document 2). As a method for purifying carbon monoxide contained in a raw material gas, it is known to employ a pressure swing adsorption method using activated alumina supporting cuprous chloride, cupric chloride or the like as an adsorbent (Patent Document). 3). Moreover, when purifying carbon monoxide by adopting a pressure swing adsorption method using activated carbon supporting copper halide as an adsorbent, the adsorption bed temperature is controlled in the range of 40 to 60 ° C. A method for improving the recovery rate is known (Patent Document 4).

特開昭62−114646号公報Japanese Patent Laid-Open No. 62-114646 特開昭62−176540号公報Japanese Patent Laid-Open No. 62-176540 特開平5−23523号公報Japanese Patent Laid-Open No. 5-23523 特開平11−104431号公報JP-A-11-104431

特許文献1に記載の方法においては、酸化されやすい塩化第一銅を原料として吸着剤を得るため、その取り扱いへの配慮が必要である。特許文献2に記載の方法においては、吸着剤を賦活処理するために250℃以上で加熱するため、長期間の経過後に設備に腐食を生じるおそれがある。特許文献3に記載の方法においては、一酸化炭素の吸着能が低いため、所望の精製能力を得るために精製設備を大型化しなくてはならず、工業的に有利な方法ではない。特許文献4に記載の方法においては、精製後の一酸化炭素の最高純度は99.5%とされており、十分に高い純度の一酸化炭素を得ることができない。本発明は、このような従来技術の課題を解決できる一酸化炭素の精製方法を提供することを目的とする。   In the method described in Patent Document 1, since the adsorbent is obtained using cuprous chloride which is easily oxidized, it is necessary to consider the handling. In the method described in Patent Document 2, the adsorbent is heated at 250 ° C. or higher in order to activate the adsorbent. In the method described in Patent Document 3, since the adsorption ability of carbon monoxide is low, the purification equipment must be enlarged in order to obtain a desired purification capacity, and this is not an industrially advantageous method. In the method described in Patent Document 4, the highest purity of carbon monoxide after purification is 99.5%, and carbon monoxide having sufficiently high purity cannot be obtained. An object of this invention is to provide the purification method of carbon monoxide which can solve the subject of such a prior art.

本発明は、原料ガスに含まれる一酸化炭素を、吸着剤を用いた圧力スイング吸着法により精製する一酸化炭素の精製方法において、塩酸溶液に塩化第二銅を溶解させると共に活性炭を浸漬させ、しかる後に、その溶液に金属銅を添加することで、塩化第二銅と金属銅とを反応させて塩化第一銅を生成し、その生成された塩化第一銅を活性炭に担持させ、前記吸着剤として、塩化第一銅を担持した前記活性炭を用いることを特徴とする。
本発明によれば、一酸化炭素の吸着剤の原料として酸化されやすい塩化第一銅を用いることなく、塩化第一銅を担持させた活性炭を吸着剤として得ることができる。これにより、吸着剤を製造する際の取り扱いが容易になる。また、塩化第一銅の塩酸溶液中に活性炭を浸漬することで活性炭に塩化第一銅を担持する場合に比べ、一酸化炭素の吸着能を向上できる。
The present invention is a carbon monoxide purification method for purifying carbon monoxide contained in a raw material gas by a pressure swing adsorption method using an adsorbent, in which cupric chloride is dissolved in a hydrochloric acid solution and activated carbon is immersed, Thereafter, by adding metallic copper to the solution, cupric chloride and metallic copper are reacted to produce cuprous chloride, and the produced cuprous chloride is supported on activated carbon, and the adsorption is performed. as agents, characterized by using the activated carbon carrying a cuprous salt of.
According to the present invention, activated carbon supporting cuprous chloride can be obtained as an adsorbent without using cuprous chloride which is easily oxidized as a raw material for the adsorbent of carbon monoxide. Thereby, the handling at the time of manufacturing an adsorbent becomes easy. Moreover, the adsorption ability of carbon monoxide can be improved by immersing activated carbon in the hydrochloric acid solution of cuprous chloride compared with the case where cuprous chloride is supported on activated carbon.

本発明において、塩化第一銅を担持した活性炭を前記溶液から分離する際に洗浄するのが、塩酸および微粉状活性炭を除去する上で好ましい。 In the present invention, it is to wash the active carbon carrying the cuprous salt of the time of separation from the solution, preferably in removing hydrochloric acid and pulverulent activated carbon.

本発明により得られる吸着剤は、賦活処理を10〜180℃の間の温度で行うのが好ましい。180℃以下の温度での賦活処理により一酸化炭素の吸着性能を向上でき、十分に吸着性能を向上させるために賦活処理温度は10℃以上にするのが好ましい。賦活処理のための温度を180℃以下にすることで設備の腐食を抑制し、エネルギー消費を低減できる。その賦活処理は不活性ガス気流下で行うのが好ましい。 The adsorbent obtained according to the present invention is preferably subjected to an activation treatment at a temperature between 15 ° C. and 180 ° C. The activation treatment at 180 ° C. below the temperature can be improved adsorption performance of carbon monoxide, the activation treatment temperature in order to sufficiently improve the adsorption performance is preferably more than 1 5 0 ° C.. By setting the temperature for the activation treatment to 180 ° C. or lower, corrosion of the equipment can be suppressed and energy consumption can be reduced. The activation treatment is preferably performed under an inert gas stream.

本発明によれば、精製設備を大型化することなく高純度の一酸化炭素を低コストで精製できる一酸化炭素の精製方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the purification method of carbon monoxide which can refine | purify high purity carbon monoxide at low cost can be provided, without enlarging refinement | purification equipment.

本発明の実施形態に係る一酸化炭素の精製用圧力スイング吸着装置の構成説明図Configuration explanatory diagram of a pressure swing adsorption device for purifying carbon monoxide according to an embodiment of the present invention

本発明による一酸化炭素の精製方法において、一酸化炭素を含有する原料ガスの種類は特に限定されず、例えば天然ガス等の炭化水素ガスやメタノール等を改質して得られる改質ガスが原料ガスとされる。   In the method for purifying carbon monoxide according to the present invention, the type of raw material gas containing carbon monoxide is not particularly limited. For example, a reformed gas obtained by reforming a hydrocarbon gas such as natural gas or methanol is used as a raw material. Gas.

原料ガスに含まれる一酸化炭素を吸着するための吸着剤は、塩化第二銅と金属銅とを塩酸の存在下で反応させることで得られる塩化第一銅を担持させた活性炭であればよい。例えば、塩酸溶液に塩化第二銅を溶解させると共に活性炭を浸漬させ、しかる後に、その溶液に金属銅を添加して攪拌することで、塩化第二銅と金属銅とを反応させて塩化第一銅を生成し、その生成された塩化第一銅を活性炭に担持させる。これにより得られた塩化第一銅を担持した活性炭を、ろ過処理により上記反応後の残存溶液から分離し、また、塩酸および微粉状活性炭を除去するために洗浄し、しかる後に乾燥させることで吸着剤を製造する。   The adsorbent for adsorbing carbon monoxide contained in the raw material gas may be activated carbon supporting cuprous chloride obtained by reacting cupric chloride and metallic copper in the presence of hydrochloric acid. . For example, by dissolving cupric chloride in a hydrochloric acid solution and immersing activated carbon, and then adding metallic copper to the solution and stirring, the cupric chloride reacts with metallic copper to produce first chloride. Copper is produced and the produced cuprous chloride is supported on activated carbon. The obtained activated carbon carrying cuprous chloride is separated from the remaining solution after the reaction by filtration, washed to remove hydrochloric acid and pulverized activated carbon, and then dried to adsorb. The agent is manufactured.

吸着剤の製造に際しての塩化第二銅の使用量は、得られる吸着剤の吸着性能向上の観点から、活性炭100重量部に対して10〜80重量部であるのが好ましく、40〜70重量部であるのがより好ましい。塩化第二銅は、無水物であってもよいし、水和物であってもよい。   The amount of cupric chloride used in the production of the adsorbent is preferably 10 to 80 parts by weight, preferably 40 to 70 parts by weight with respect to 100 parts by weight of activated carbon, from the viewpoint of improving the adsorption performance of the adsorbent obtained. It is more preferable that Cupric chloride may be an anhydride or a hydrate.

吸着剤の製造に際しての金属銅の使用量は、得られる吸着剤の吸着性能向上の観点から、塩化第二銅1モルに対して0.8〜1.2モルであるのが好ましく、0.9〜1.1モルであるのがより好ましい。その金属銅の形態は特に限定されないが、反応速度向上の観点から粉体状であるのが好ましい。   The amount of metallic copper used in the production of the adsorbent is preferably 0.8 to 1.2 mol per mol of cupric chloride from the viewpoint of improving the adsorption performance of the adsorbent obtained. It is more preferably 9 to 1.1 mol. The form of the metallic copper is not particularly limited, but is preferably in the form of powder from the viewpoint of improving the reaction rate.

吸着剤の製造に際しての塩酸の使用量は、反応効率向上の観点から、金属銅1モルに対して0.1〜100モルであるのが好ましく、0.1〜20モルであるのがより好ましい。   The amount of hydrochloric acid used in the production of the adsorbent is preferably from 0.1 to 100 mol, more preferably from 0.1 to 20 mol, based on 1 mol of metallic copper, from the viewpoint of improving reaction efficiency. .

塩化第一銅を担持する活性炭の種類は特に限定されないが、PSA法にて使用することを考慮して、例えば、8〜14メッシュの破砕炭(日本エンバイロ株式会社製G2c)や、直径4mmのペレット状成型炭(三菱化学カルゴン株式会社製ZGN4)等を挙げることができる。   The type of activated carbon supporting cuprous chloride is not particularly limited, but considering that it is used in the PSA method, for example, 8-14 mesh crushed charcoal (G2c manufactured by Nippon Environment Co., Ltd.), 4 mm in diameter Pellet-shaped coal (Mitsubishi Chemical Calgon Co., Ltd. ZGN4) etc. can be mentioned.

塩化第二銅と金属銅とを塩酸と活性炭の存在下で反応させる際に用いる溶媒としては、塩酸水溶液を溶媒としても用いてもよいが、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール等のアルコール、ジメチルエーテル、チエチルエーテル、ジ−n−プロピルエーテル、ジ−iso−プロピルエーテル、オキサン等のエーテル、および水等を組み合わせて用いてもよい。   As a solvent used when reacting cupric chloride and metallic copper in the presence of hydrochloric acid and activated carbon, an aqueous hydrochloric acid solution may be used as a solvent. For example, methanol, ethanol, n-propanol, iso-propanol Alcohols such as dimethyl ether, thiethyl ether, di-n-propyl ether, di-iso-propyl ether, ethers such as oxane, water and the like may be used in combination.

塩化第二銅と金属銅とを塩酸と活性炭の存在下で反応させる際の雰囲気は、不活性ガスまたは還元性ガスであるのが好ましい。その不活性ガスとしては、例えば、窒素、アルゴンおよびヘリウム等が挙げられ、還元性ガスとしては、水素、一酸化炭素、硫化水素およびホルムアルデヒド等を挙げることができ、これらの中でも窒素が好ましい。   The atmosphere when the cupric chloride and metallic copper are reacted in the presence of hydrochloric acid and activated carbon is preferably an inert gas or a reducing gas. Examples of the inert gas include nitrogen, argon, and helium, and examples of the reducing gas include hydrogen, carbon monoxide, hydrogen sulfide, and formaldehyde. Among these, nitrogen is preferable.

塩化第二銅と金属銅とを塩酸と活性炭の存在下で反応させる際の反応温度は特に限定されず、例えば25℃〜50℃とすればよく、また反応時間も特に限定されないが、通常1時間〜5時間程度にする。   The reaction temperature when reacting cupric chloride and metallic copper in the presence of hydrochloric acid and activated carbon is not particularly limited. For example, the reaction temperature may be 25 ° C. to 50 ° C., and the reaction time is not particularly limited. Time to about 5 hours.

上記ろ過処理の方式は、例えば、遠心分離、加圧ろ過、吸引ろ過等を採用できる。ろ過温度は20〜30℃が好ましい。ろ過温度が20℃未満では生成した塩化第一銅が析出するおそれがあり、30℃を超えると生成した塩化第一銅がろ液へ溶解して吸着性能が低下するおそれがある。   For example, centrifugation, pressure filtration, suction filtration, or the like can be adopted as the filtration method. The filtration temperature is preferably 20-30 ° C. If the filtration temperature is less than 20 ° C, the produced cuprous chloride may be precipitated, and if it exceeds 30 ° C, the produced cuprous chloride may be dissolved in the filtrate and the adsorption performance may be reduced.

塩化第一銅を担持した活性炭を溶液から分離する際に洗浄する方法は特に限定されない。例えば、上記ろ過処理の前に、反応容器内の液体層をデカンテーションすることで液体中に浮遊している活性炭の微粉を除去し、しかる後に、ろ過処理により固液分離することで、活性炭の微粉を低減してもよい。そのデカンテーションの後に、反応容器に純水または脱気水を追加して再度デカンテーションを繰り返して洗浄を行ってもよく、これにより、活性炭の微粉をより低減できると共に、残存塩酸が減少するため設備の腐食防止効果を奏することができる。そのデカンテーションの繰り返しによる洗浄のために用いる純水または脱気水の量は、活性炭100重量部に対して100〜1000重量部であるのが好ましい。また、例えば網状のろ板を用いた加圧ろ過機を用いてろ過処理を行う際に、デカンテーションに代えて純水または脱気水により塩化第一銅を担持させた活性炭を洗浄することで、活性炭の微粉や残存塩酸を低減してもよい。   The method for washing when separating the activated carbon supporting cuprous chloride from the solution is not particularly limited. For example, before the filtration process, the liquid layer in the reaction vessel is decanted to remove fine particles of activated carbon floating in the liquid. Fine powder may be reduced. After the decantation, pure water or degassed water may be added to the reaction vessel and the decantation may be repeated to perform washing again. This can reduce activated carbon fine powder and reduce residual hydrochloric acid. The effect of preventing the corrosion of equipment can be achieved. The amount of pure water or degassed water used for cleaning by repeated decantation is preferably 100 to 1000 parts by weight with respect to 100 parts by weight of activated carbon. For example, when performing filtration using a pressure filter using a mesh-like filter plate, the activated carbon supporting cuprous chloride is washed with pure water or deaerated water instead of decantation. The fine powder of activated carbon and residual hydrochloric acid may be reduced.

塩化第一銅を担持させた活性炭の乾燥に用いる乾燥機としては、例えば、コニカルドライヤーや棚段乾燥機等用いることができる。乾燥温度は、80〜150℃であるのが好ましく、90〜120℃であるのがより好ましい。乾燥圧力としては、常圧でも乾燥できるが、減圧下50mmHg以下で乾燥するのがより好ましい。   As a dryer used for drying activated carbon carrying cuprous chloride, for example, a conical dryer or a shelf dryer can be used. The drying temperature is preferably 80 to 150 ° C, more preferably 90 to 120 ° C. The drying pressure can be dried at normal pressure, but it is more preferable to dry at 50 mmHg or less under reduced pressure.

上記のようにして得られた吸着剤を用いた圧力スイング吸着法により、原料ガスに含まれる一酸化炭素が精製される。その吸着剤を充填するための吸着塔を備える圧力スイング吸着装置として、図1に示されるような公知のものを用い、常温において圧力スイング吸着法を行うことができる。圧力スイング吸着装置の吸着塔の数は特に限定されず、例えば2〜4塔とされる。吸着剤の吸着塔への充填時や、その後の使用による吸着剤の性能低下時に、120〜180℃の間の温度で賦活処理を行うことで吸着剤の活性を高めるのが好ましい。賦活処理の時間は特に限定されず、例えば2〜15時間とされ、不活性ガス気流下で行うのが好ましい。   Carbon monoxide contained in the raw material gas is purified by the pressure swing adsorption method using the adsorbent obtained as described above. As a pressure swing adsorption apparatus including an adsorption tower for filling the adsorbent, a known apparatus as shown in FIG. 1 can be used, and the pressure swing adsorption method can be performed at room temperature. The number of adsorption towers of the pressure swing adsorption apparatus is not particularly limited, and is, for example, 2 to 4 towers. It is preferable to increase the activity of the adsorbent by performing an activation treatment at a temperature of 120 to 180 ° C. when the adsorbent is packed in the adsorption tower or when the performance of the adsorbent is lowered due to subsequent use. The time for the activation treatment is not particularly limited, and is preferably 2 to 15 hours, for example, and is preferably performed under an inert gas stream.

図1に示す圧力スイング吸着装置1は3塔式であり、第1〜第3吸着塔2、真空ポンプ3、製品ガスホルダー4を有し、各吸着塔2に吸着剤が充填される。各吸着塔2の入口2aは、切替バルブ5aを介してメタノール改質装置等の原料ガス供給源6に接続され、切替バルブ5b、配管切替バルブ7を介して製品ガスホルダー4に接続され、切替バルブ5cを介して真空ポンプ3の吸引口に接続される。真空ポンプ3の吐出口は製品ガスホルダー4に接続される。各吸着塔2の出口2bは、切替バルブ5dを介して流出配管8に接続され、切替バルブ5eを介して連通配管9に接続される。   The pressure swing adsorption apparatus 1 shown in FIG. 1 is a three-column type, has first to third adsorption towers 2, a vacuum pump 3, and a product gas holder 4, and each adsorption tower 2 is filled with an adsorbent. The inlet 2a of each adsorption tower 2 is connected to a raw material gas supply source 6 such as a methanol reformer via a switching valve 5a, and connected to a product gas holder 4 via a switching valve 5b and a piping switching valve 7. It is connected to the suction port of the vacuum pump 3 through the valve 5c. The discharge port of the vacuum pump 3 is connected to the product gas holder 4. The outlet 2b of each adsorption tower 2 is connected to the outflow pipe 8 through the switching valve 5d, and is connected to the communication pipe 9 through the switching valve 5e.

各切替バルブ5a〜5eは自動弁により構成され、制御装置(図示省略)に記憶されたプログラムに従い操作される。各切替バルブ5a〜5eの操作により、各吸着塔2において第1吸着工程、第2吸着工程、洗浄工程、第1脱着工程、第2脱着工程、昇圧工程の6段階のステップが、この順序で行われる。また、以下の表1に示すように、その6段階のステップは3つの吸着塔2において時間をずらして実行され、これにより連続的に一酸化炭素の精製が行われる。   Each switching valve 5a-5e is comprised by the automatic valve, and is operated according to the program memorize | stored in the control apparatus (illustration omitted). By operating each switching valve 5a to 5e, the six adsorption steps of the first adsorption process, the second adsorption process, the cleaning process, the first desorption process, the second desorption process, and the pressure raising process are performed in this order in each adsorption tower 2. Done. Further, as shown in Table 1 below, the six steps are executed at different times in the three adsorption towers 2, thereby continuously purifying carbon monoxide.

Figure 0005578608
Figure 0005578608

第1吸着工程は、吸着塔2における吸着剤に原料ガスに含まれる一酸化炭素を吸着させる工程である。第1吸着塔2が第1吸着工程にある場合、第1吸着塔2の切替バルブ5a、5dが開かれ、5b、5c、5eが閉じられることで、原料ガスが第1吸着塔2に導入され、原料ガスに含まれる一酸化炭素が吸着剤に吸着され、残りのガスは不純物として流出配管8を介して系外に廃棄される。   The first adsorption step is a step of adsorbing carbon monoxide contained in the raw material gas to the adsorbent in the adsorption tower 2. When the first adsorption tower 2 is in the first adsorption step, the switching gas 5a, 5d of the first adsorption tower 2 is opened and 5b, 5c, 5e are closed, so that the source gas is introduced into the first adsorption tower 2. Then, carbon monoxide contained in the raw material gas is adsorbed by the adsorbent, and the remaining gas is discarded out of the system via the outflow pipe 8 as impurities.

第2吸着工程は、第1吸着工程において廃棄ガスの一酸化炭素濃度が時間経過に伴い徐々に高くなった後に、別の吸着塔2において昇圧工程を行うための工程である。第1吸着塔2が第2吸着工程にある場合、第1吸着工程と同様に第1吸着塔2において一酸化炭素の吸着を行うと共に、廃棄ガスを第2吸着塔2における昇圧工程のための昇圧用ガスとして用いるため、第1吸着塔2では切替バルブ5dを閉じ、5eが開かれ、第2吸着塔2では切替バルブ5a〜5dが閉じ、切替バルブ5eが開かれる。   The second adsorption step is a step for performing a pressure increasing step in another adsorption tower 2 after the carbon monoxide concentration of the waste gas gradually increases with time in the first adsorption step. When the first adsorption tower 2 is in the second adsorption process, carbon monoxide is adsorbed in the first adsorption tower 2 in the same manner as in the first adsorption process, and the waste gas is used for the pressure raising process in the second adsorption tower 2. In order to use it as a pressure increasing gas, the switching valve 5d is closed and 5e is opened in the first adsorption tower 2, and the switching valves 5a to 5d are closed and the switching valve 5e is opened in the second adsorption tower 2.

洗浄工程は、第2吸着工程における吸着終了後に吸着塔2の内部空間の不純物を排出するための工程である。第1吸着塔2が洗浄工程にある場合、第1吸着塔2の切替バルブ5a、5c、5eが閉じられ、切替バルブ5b、5dが開かれ、また、配管切替バルブ7が開かれる。これにより、第2脱着工程にある第3吸着塔2から、高純度の一酸化炭素が第1吸着塔2に洗浄用ガスとして導入され、第1吸着塔2の内部の不純物を含むガスは高純度の一酸化炭素ガスに置換され、置換されたガスは流出配管8を介して系外に廃棄される。この際、製品ガスホルダー4内における高純度の一酸化炭素ガスの一部が、洗浄用ガスとして第1吸着塔2に導入されてもよい。   The cleaning step is a step for discharging impurities in the internal space of the adsorption tower 2 after the adsorption in the second adsorption step. When the first adsorption tower 2 is in the cleaning process, the switching valves 5a, 5c, and 5e of the first adsorption tower 2 are closed, the switching valves 5b and 5d are opened, and the pipe switching valve 7 is opened. Thereby, high-purity carbon monoxide is introduced into the first adsorption tower 2 as a cleaning gas from the third adsorption tower 2 in the second desorption step, and the gas containing impurities inside the first adsorption tower 2 is high. The carbon monoxide gas is replaced with pure carbon monoxide gas, and the substituted gas is discarded outside the system via the outflow pipe 8. At this time, a part of the high-purity carbon monoxide gas in the product gas holder 4 may be introduced into the first adsorption tower 2 as a cleaning gas.

第1脱着工程は、洗浄工程後に吸着塔2の吸着剤から一酸化炭素を脱着させる工程である。第1吸着塔2が第1脱着工程にある場合、第1吸着塔2の切替バルブ5a、5b、5d、5eが閉じられ、切替バルブ5cが開かれ、真空ポンプ3により第1吸着塔2の内部が減圧される。これにより、第1吸着塔2の吸着剤から一酸化炭素が脱着され、脱着された一酸化炭素は製品ガスホルダー4に貯蔵される。製品ガスホルダー4に貯蔵された一酸化炭素は配管10を介して取り出される。   The first desorption step is a step of desorbing carbon monoxide from the adsorbent of the adsorption tower 2 after the cleaning step. When the first adsorption tower 2 is in the first desorption step, the switching valves 5a, 5b, 5d, and 5e of the first adsorption tower 2 are closed, the switching valve 5c is opened, and the vacuum pump 3 The inside is depressurized. Thereby, carbon monoxide is desorbed from the adsorbent of the first adsorption tower 2, and the desorbed carbon monoxide is stored in the product gas holder 4. Carbon monoxide stored in the product gas holder 4 is taken out via the pipe 10.

第2脱着工程は、第1脱着工程に引き続いて吸着塔2において吸着剤から一酸化炭素を脱着させると共に、別の吸着塔2おいて洗浄工程を行うための工程である。第1吸着塔2が第2脱着工程にある場合、洗浄工程を行う第2吸着塔2では切替バルブ5a、5c、5eが閉じられ、切替バルブ5b、5dが開かれ、また、配管切替バルブ7が開かれる。これにより、第1吸着塔2の吸着剤から脱着された高純度の一酸化炭素が、第2吸着塔2に洗浄用ガスとして導入される。この際、製品ガスホルダー4に貯蔵された一酸化炭素の一部が、洗浄ガス用ガスとして第2吸着塔2に導入されてもよい。   The second desorption process is a process for desorbing carbon monoxide from the adsorbent in the adsorption tower 2 following the first desorption process and performing a washing process in another adsorption tower 2. When the first adsorption tower 2 is in the second desorption process, the switching valves 5a, 5c, and 5e are closed, the switching valves 5b and 5d are opened, and the pipe switching valve 7 is opened in the second adsorption tower 2 that performs the cleaning process. Is opened. Thereby, high-purity carbon monoxide desorbed from the adsorbent of the first adsorption tower 2 is introduced into the second adsorption tower 2 as a cleaning gas. At this time, a part of the carbon monoxide stored in the product gas holder 4 may be introduced into the second adsorption tower 2 as a cleaning gas.

昇圧工程は、第2脱着工程の後に減圧状態にある吸着塔2の内部を常圧状態まで昇圧する工程である。第1吸着塔2が昇圧工程にある場合、第1吸着塔2の切替バルブ5a〜5dが閉じられ、切替バルブ5eが開かれ、また、第3吸着塔2の切替バルブ5b〜5dが閉じられ、切替バルブ5a、5eが開かれる。これにより、第2吸着工程にある第3吸着塔2から排出される廃棄ガスが第1吸着塔2に導入され、第1吸着塔2の内部が昇圧される。なお、昇圧工程にある吸着塔2の切替バルブ5aを開くことで、別の吸着塔2からの廃棄ガスと共に、又は別の吸着塔2からの廃棄ガスに代えて、原料ガスを用いて昇圧工程を行ってもよい。   The pressure increasing step is a step of increasing the pressure inside the adsorption tower 2 in a reduced pressure state after the second desorption step to a normal pressure state. When the first adsorption tower 2 is in the pressure increasing process, the switching valves 5a to 5d of the first adsorption tower 2 are closed, the switching valve 5e is opened, and the switching valves 5b to 5d of the third adsorption tower 2 are closed. The switching valves 5a and 5e are opened. Thereby, the waste gas discharged | emitted from the 3rd adsorption tower 2 in a 2nd adsorption process is introduce | transduced into the 1st adsorption tower 2, and the inside of the 1st adsorption tower 2 is pressurized. It should be noted that by opening the switching valve 5a of the adsorption tower 2 in the pressure increasing step, the pressure increasing step using the raw material gas together with the waste gas from another adsorption tower 2 or in place of the waste gas from the other adsorption tower 2 May be performed.

上記実施形態によれば、一酸化炭素の吸着剤の原料として酸化されやすい塩化第一銅を用いることなく、塩化第一銅を担持させた活性炭を吸着剤として得ることができる。これにより、吸着剤を製造する際の取り扱いが容易になる。さらに、上記実施形態により活性炭に塩化第一銅を担持させることで、塩化第一銅の塩酸溶液中に活性炭を浸漬することで活性炭に塩化第一銅を担持する場合に比べ、一酸化炭素の吸着能を向上できる。上記実施形態により得られた吸着剤を充填した吸着塔2を備えた圧力スイング吸着装置1により、メタノール分解ガス中の粗一酸化炭素を圧力スイング吸着法により精製したところ、99.9vol%以上の純度の一酸化炭素ガスを得ることができた。また、その吸着剤の製造時に塩化第一銅を担持した活性炭を溶液から分離する際に洗浄し、吸着剤における微粉や塩酸分を減少させることにより、圧力スイング吸着装置1の切替バルブ5a〜5eに固着する微粉が減少し、従前は約30時間の操作で微粉除去作業が必要であったのが、1ヶ月の連続操作後でも微粉除去作業が不要になった。また、吸着剤の賦活処理のための温度を180℃以下にすることで設備の腐食を抑制し、エネルギー消費を低減できる。   According to the above embodiment, activated carbon supporting cuprous chloride can be obtained as the adsorbent without using cuprous chloride which is easily oxidized as a raw material for the carbon monoxide adsorbent. Thereby, the handling at the time of manufacturing an adsorbent becomes easy. Furthermore, by supporting the cuprous chloride on the activated carbon according to the above-described embodiment, the carbon monoxide is compared with the case of supporting the cuprous chloride on the activated carbon by immersing the activated carbon in a hydrochloric acid solution of cuprous chloride. Adsorption ability can be improved. When the crude carbon monoxide in the methanol cracked gas was purified by the pressure swing adsorption method using the pressure swing adsorption apparatus 1 equipped with the adsorption tower 2 filled with the adsorbent obtained by the above embodiment, it was 99.9 vol% or more. Purified carbon monoxide gas could be obtained. In addition, when the adsorbent is produced, the activated carbon supporting cuprous chloride is washed when it is separated from the solution, and the fine particles and hydrochloric acid content in the adsorbent are reduced, so that the switching valves 5a to 5e of the pressure swing adsorption device 1 are reduced. The amount of fine powder adhering to the surface was reduced, and it was necessary to remove the fine powder by an operation of about 30 hours before, but the fine powder removal work became unnecessary even after one month of continuous operation. Moreover, corrosion of an installation can be suppressed and the energy consumption can be reduced by setting the temperature for the activation treatment of the adsorbent to 180 ° C. or lower.

5Lの攪拌装置付きフラスコ内で、塩化第2銅の水和物(CuCl2 ・2H2 O)852gを35wt%の塩酸2Lに溶解させた。次に、この溶液に8〜14メッシュの破砕炭(日本エンバイロ株式会社製G2c)を1000g投入し、1時間攪拌して混合させ、次に、280meshの銅粉318gを投入し、3時間攪拌して混合させた。これにより、塩化第二銅と金属銅とを塩酸の存在下で反応させることで塩化第一銅を生成し、その生成された塩化第一銅を活性炭に担持させた。銅粉の投入以降は、フラスコ内を窒素雰囲気として無酸素状態を維持した。なお、窒素雰囲気として窒素ガスに代表される不活性ガスを使用する場合、不活性ガスにおける不純物としての酸素含有量は、吸着剤の吸着能低下を防止するため可及的に少ない方がよい。その塩化第一銅を担持した活性炭を反応後の残存溶液から25℃でのろ過処理により分離し、しかる後に1000gの脱気水を用いて洗浄した。その洗浄後に塩化第一銅を担持した活性炭を、6000Pa(45torr)以下の真空圧を維持した減圧下で110℃以上の温度で乾燥させることにより、余分な水分と塩化水素を除去して1408gの吸着剤を得た。
このようにして得た吸着剤を、上記実施形態で示した3塔式圧力スイング吸着装置1の各吸着塔2に400gずつ充填した。各吸着塔2は呼び径40Aの円筒形とした。その充填後に各吸着塔2に窒素ガスを通気し、この窒素ガス気流下で150℃にて吸着剤の賦活処理を5時間行った。
しかる後に、圧力スイング吸着装置1を用いた圧力スイング吸着法により原料ガスに含まれる一酸化炭素を精製した。原料ガスとして、メタノール改質装置により生成される改質ガスを用い、その組成は水素(H2 )67.0vol%、一酸化炭素(CO)33.0vol%、二酸化炭素(CO2 )0.25vol%、メタン(CH4 )0.15vol%とした。圧力スイング吸着装置1の操作条件として、各吸着塔2それぞれでの吸着時間が300秒、脱着工程での圧力が2266Pa(17torr)、洗浄時間が60秒になるように運転した。これにより、99.9vol%以上の高純度の一酸化炭素ガスを得ることができた。ちなみに、圧力スイング吸着装置1の運転状態が定常状態になると、得られた一酸化炭素ガスの純度は99.97vol%に達し、その不純物は水素120volppm、二酸化炭素190volppm、メタン1volppm以下であり、一酸化炭素の回収率は96.8%であった。
In a 5 L flask equipped with a stirrer, 852 g of cupric chloride hydrate (CuCl 2 .2H 2 O) was dissolved in 2 L of 35 wt% hydrochloric acid. Next, 1000 g of 8-14 mesh crushed charcoal (G2c manufactured by Nippon Enviro Co., Ltd.) was added to this solution, and the mixture was stirred for 1 hour, then mixed with 318 g of 280 mesh copper powder, and stirred for 3 hours. And mixed. Thus, cupric chloride was produced by reacting cupric chloride with metallic copper in the presence of hydrochloric acid, and the produced cuprous chloride was supported on activated carbon. After the addition of the copper powder, the flask was maintained in an oxygen-free state with a nitrogen atmosphere. When an inert gas typified by nitrogen gas is used as the nitrogen atmosphere, the oxygen content as an impurity in the inert gas is preferably as small as possible in order to prevent a decrease in the adsorption capacity of the adsorbent. The activated carbon supporting the cuprous chloride was separated from the remaining solution after the reaction by filtration at 25 ° C., and then washed with 1000 g of degassed water. After the washing, the activated carbon supporting cuprous chloride is dried at a temperature of 110 ° C. or higher under a reduced pressure maintaining a vacuum pressure of 6000 Pa (45 torr) or less, thereby removing excess water and hydrogen chloride. An adsorbent was obtained.
400 g of the adsorbent thus obtained was packed in each adsorption tower 2 of the three-column pressure swing adsorption apparatus 1 shown in the above embodiment. Each adsorption tower 2 has a cylindrical shape with a nominal diameter of 40A. After the filling, nitrogen gas was passed through each adsorption tower 2 and the adsorbent activation treatment was performed at 150 ° C. for 5 hours under this nitrogen gas flow.
Thereafter, carbon monoxide contained in the raw material gas was purified by a pressure swing adsorption method using the pressure swing adsorption apparatus 1. A reformed gas generated by a methanol reformer is used as a raw material gas, and the composition thereof is hydrogen (H 2 ) 67.0 vol%, carbon monoxide (CO) 33.0 vol%, carbon dioxide (CO 2 ) 0. 25 vol% and methane (CH 4 ) 0.15 vol%. The operating conditions of the pressure swing adsorption apparatus 1 were such that the adsorption time in each adsorption tower 2 was 300 seconds, the pressure in the desorption process was 2266 Pa (17 torr), and the washing time was 60 seconds. As a result, a carbon monoxide gas having a high purity of 99.9 vol% or more could be obtained. Incidentally, when the operation state of the pressure swing adsorption device 1 becomes a steady state, the purity of the obtained carbon monoxide gas reaches 99.97 vol%, and its impurities are 120 volppm of hydrogen, 190 volppm of carbon dioxide, 1 volppm of methane, The recovery rate of carbon oxide was 96.8%.

比較例Comparative example

塩化第一銅719g を35wt%の塩酸2Lに100℃で溶解させ、この溶液に8〜14メッシュの破砕炭(日本エンバイロ株式会社製G2c)を1000g投入し、100℃で2時間攪拌して混合させた。なお、その破砕炭は溶液への投入前に、100℃〜150℃の温度、667Pa(5torr)以下の減圧度で3時間前処理した。これにより、その溶液中で塩化第一銅を活性炭に担持させた後に、その溶液を窒素ガス気流下25℃でろ過することで、塩化第一銅を担持した活性炭を溶液から分離し、しかる後に667Pa(5torr)の減圧下、120℃の温度で乾燥させることにより、1405gの吸着剤を得た。
このようにして得た吸着剤を用いた以外は、実施例と同様にして、圧力スイング吸着装置1による圧力スイング吸着法により一酸化炭素の精製を行った。その結果得られた一酸化炭素ガスの純度は、圧力スイング吸着装置1の運転状態が定常状態になった後でも99.2vol%であり、一酸化炭素の回収率は92.8%であった。
719 g of cuprous chloride was dissolved in 2 L of 35 wt% hydrochloric acid at 100 ° C., 1000 g of 8-14 mesh crushed charcoal (G2c manufactured by Nippon Enviro Co., Ltd.) was added to this solution, and the mixture was stirred at 100 ° C. for 2 hours and mixed. I let you. The crushed charcoal was pretreated for 3 hours at a temperature of 100 ° C. to 150 ° C. and a reduced pressure of 667 Pa (5 torr) or less before being put into the solution. Thus, after supporting cuprous chloride on the activated carbon in the solution, the solution is filtered at 25 ° C. under a nitrogen gas stream to separate the activated carbon supporting cuprous chloride from the solution. By drying at a temperature of 120 ° C. under a reduced pressure of 667 Pa (5 torr), 1405 g of an adsorbent was obtained.
Carbon monoxide was purified by the pressure swing adsorption method using the pressure swing adsorption apparatus 1 in the same manner as in the Examples except that the adsorbent thus obtained was used. As a result, the purity of the carbon monoxide gas obtained was 99.2 vol% even after the operating state of the pressure swing adsorption device 1 became a steady state, and the recovery rate of carbon monoxide was 92.8%. .

上記実施例によれば、比較例のように吸着剤の原料として酸化されやすい塩化第一銅を用いることなく、塩化第一銅を担持させた活性炭を吸着剤として得ることができ、吸着剤を製造する際の取り扱いが容易になった。しかも、実施例によれば比較例よりも一酸化炭素の精製能力を向上できるのを確認できた。塩化第二銅は塩化第一銅よりも溶媒に溶解して活性炭に含浸し易いことから、活性炭に塩化第一銅を直接に担持させるよりも、活性炭に含浸させた塩化第二銅を金属銅と反応させて塩化第一銅とすることで、活性炭に塩化第一銅を効果的に担持させることができると考えられる。   According to the above examples, the activated carbon supporting cuprous chloride can be obtained as the adsorbent without using cuprous chloride which is easily oxidized as a raw material of the adsorbent as in the comparative example. Handling during manufacturing has become easier. And according to the Example, it has confirmed that the refinement | purification ability of carbon monoxide could be improved rather than a comparative example. Since cupric chloride is easier to impregnate activated carbon by dissolving in a solvent than cuprous chloride, rather than directly supporting cuprous chloride on activated carbon, cupric chloride impregnated on activated carbon is metallic copper. It is considered that cuprous chloride can be effectively supported on the activated carbon by reacting with copper to make cuprous chloride.

本発明は上記実施形態や実施例に限定されない。例えば、圧力スイング吸着装置の構成は圧力スイング吸着法を実施できれば特に限定されない。   The present invention is not limited to the above embodiments and examples. For example, the configuration of the pressure swing adsorption device is not particularly limited as long as the pressure swing adsorption method can be performed.

1…圧力スイング吸着装置、2…吸着塔、3…真空ポンプ、4…製品ガスホルダー、6…原料ガス供給源   DESCRIPTION OF SYMBOLS 1 ... Pressure swing adsorption apparatus, 2 ... Adsorption tower, 3 ... Vacuum pump, 4 ... Product gas holder, 6 ... Raw material gas supply source

Claims (3)

原料ガスに含まれる一酸化炭素を、吸着剤を用いた圧力スイング吸着法により精製する一酸化炭素の精製方法において、
塩酸溶液に塩化第二銅を溶解させると共に活性炭を浸漬させ、しかる後に、その溶液に金属銅を添加することで、塩化第二銅と金属銅とを反応させて塩化第一銅を生成し、その生成された塩化第一銅を活性炭に担持させ、
前記吸着剤として、塩化第一銅を担持した前記活性炭を用いることを特徴とする一酸化炭素の精製方法。
In a carbon monoxide purification method for purifying carbon monoxide contained in a raw material gas by a pressure swing adsorption method using an adsorbent,
Dissolving cupric chloride in hydrochloric acid solution and immersing activated carbon, and then adding metallic copper to the solution to react cupric chloride and metallic copper to produce cuprous chloride, The produced cuprous chloride is supported on activated carbon,
As the adsorbent, the purification method of carbon monoxide, which comprises using the active carbon carrying the cuprous salt of.
塩化第一銅を担持した活性炭を前記溶液から分離する際に洗浄する請求項に記載の一酸化炭素の精製方法。 The method for purifying carbon monoxide according to claim 1 , wherein the activated carbon supporting cuprous chloride is washed when separated from the solution. 前記吸着剤の賦活処理を10〜180℃の間の温度で行う請求項1または2に記載の一酸化炭素の精製方法。 Purification method of carbon monoxide according to claim 1 or 2 performs activation processing of the adsorbent at a temperature between 1 5 0 to 180 ° C..
JP2010060478A 2010-03-17 2010-03-17 Carbon monoxide gas purification method Active JP5578608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060478A JP5578608B2 (en) 2010-03-17 2010-03-17 Carbon monoxide gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060478A JP5578608B2 (en) 2010-03-17 2010-03-17 Carbon monoxide gas purification method

Publications (2)

Publication Number Publication Date
JP2011195340A JP2011195340A (en) 2011-10-06
JP5578608B2 true JP5578608B2 (en) 2014-08-27

Family

ID=44874017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060478A Active JP5578608B2 (en) 2010-03-17 2010-03-17 Carbon monoxide gas purification method

Country Status (1)

Country Link
JP (1) JP5578608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230057464A (en) 2020-10-08 2023-04-28 가부시끼가이샤 레조낙 Oxygen molecule removal method and carbon monoxide purification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875111B2 (en) * 2012-02-21 2016-03-02 住友精化株式会社 Method and apparatus for separating and recovering carbon monoxide
CN104492375B (en) * 2014-12-15 2017-03-15 西南化工研究设计院有限公司 A kind of adsorbent for reclaiming CO from industrial tail gas and its preparation method and application
CN115999503A (en) * 2021-10-22 2023-04-25 中国科学院大连化学物理研究所 A kind of carbon monoxide adsorbent and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170825A (en) * 1981-04-09 1982-10-21 Nippon Chem Ind Co Ltd:The Manufacture of aqueous solution of cuprous chloride- salt complex
JPS59105841A (en) * 1982-12-07 1984-06-19 Hidefumi Hirai Preparation of carbon monoxide adsorbent
JPS6041988B2 (en) * 1982-03-13 1985-09-19 英史 平井 Carbon monoxide adsorption separation method
JP3740242B2 (en) * 1996-02-29 2006-02-01 英史 平井 NOVEL COMPOSITE, PROCESS FOR PRODUCING THE SAME, AND CARBON MONOXIDE ADSORBENT COMPRISING THE COMPOSITION
JP3432687B2 (en) * 1996-12-20 2003-08-04 株式会社コスモ総合研究所 Carbon monoxide adsorbent and method for producing the same
JPH10323526A (en) * 1997-05-28 1998-12-08 Mitsubishi Kakoki Kaisha Ltd High purity carbon monoxide separation and recovery method
JP3432731B2 (en) * 1997-12-24 2003-08-04 株式会社コスモ総合研究所 Carbon monoxide adsorbent and method for producing the same
JP2007182350A (en) * 2006-01-06 2007-07-19 Japan Pionics Co Ltd System for purifying carbon monoxide
JP5319140B2 (en) * 2008-03-19 2013-10-16 住友精化株式会社 Blast furnace gas separation method and blast furnace gas separation system
JP5134473B2 (en) * 2008-09-04 2013-01-30 住友精化株式会社 Production method of adsorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230057464A (en) 2020-10-08 2023-04-28 가부시끼가이샤 레조낙 Oxygen molecule removal method and carbon monoxide purification method

Also Published As

Publication number Publication date
JP2011195340A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
TWI460003B (en) Gas purifying method and gas purifying device
JP5578608B2 (en) Carbon monoxide gas purification method
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JP5280824B2 (en) High purity hydrogen production equipment
JPH01155945A (en) Production of adsorbent for separating and recovering co
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP4612323B2 (en) Carbon monoxide gas adsorbent, adsorption method, and recovery method
JP2764178B2 (en) Method for producing high-purity hydrogen by catalytic reforming of methanol
CN110559800A (en) Intermediate-temperature hydrogen storage alloy preparation and pressure swing adsorption purification method
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP5690165B2 (en) PSA high purity hydrogen production method
TW200523211A (en) Processes and systems for making phosgene
JP4740564B2 (en) Hydrogen purification method
CN106946254A (en) A kind of improved method of ethylene glycol production process CO gas catalytic dehydrogenation
CN115970433B (en) Purification method and system for two-stage fuel cell grade hydrogen
JP5134473B2 (en) Production method of adsorbent
JP4521373B2 (en) Method for producing high purity nitrogen gas
CN104192844B (en) Adopt the starting method of feed gas containing carbon monoxide reducing catalyst and purifying treatment CO
JP6058472B2 (en) Method of using hydrogen production apparatus and hydrogen production apparatus
CN113577991B (en) Method for reducing content of methylene diurea in urea product
CN111770892A (en) Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
JP7117962B2 (en) Carbon monoxide gas production apparatus and carbon monoxide gas production method
JPH0724762B2 (en) Method for producing adsorbent for CO separation and recovery
JP2023170448A (en) Manufacturing method of refined gas and manufacturing device of refined gas
JP2004300035A (en) Method for separating methane gas and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5578608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250