[go: up one dir, main page]

JP5572579B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP5572579B2
JP5572579B2 JP2011089713A JP2011089713A JP5572579B2 JP 5572579 B2 JP5572579 B2 JP 5572579B2 JP 2011089713 A JP2011089713 A JP 2011089713A JP 2011089713 A JP2011089713 A JP 2011089713A JP 5572579 B2 JP5572579 B2 JP 5572579B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
refrigerant
heat exchanger
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011089713A
Other languages
Japanese (ja)
Other versions
JP2012220169A (en
Inventor
禎夫 関谷
康孝 吉田
純一郎 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011089713A priority Critical patent/JP5572579B2/en
Publication of JP2012220169A publication Critical patent/JP2012220169A/en
Application granted granted Critical
Publication of JP5572579B2 publication Critical patent/JP5572579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数台の熱源ユニットを備えた蓄熱式空気調和装置に関する。   The present invention relates to a heat storage type air conditioner including a plurality of heat source units.

従来、夜間に氷を生成する(すなわち、冷熱を蓄える)蓄熱運転を行い、昼間に氷を利用した(すなわち、蓄熱を利用した)蓄熱利用冷房運転を行う蓄熱式空気調和装置が知られている(例えば、特許文献1参照)。特許文献1に記載の蓄熱式空気調和装置は、複数台の室内ユニットと、これら室内ユニットと共に1つの冷凍サイクルを構成するように並列接続された例えば2台の熱源ユニット(室外ユニット)と、それら室内ユニットと熱源ユニットの間に接続された1台の氷蓄熱ユニットとを備えている。なお、熱源ユニットの台数は、空調負荷に応じて3台、又は4台以上に変更可能としている。   2. Description of the Related Art Conventionally, a regenerative air conditioner that performs heat storage operation that generates ice at night (that is, stores cold energy) and performs heat storage cooling operation that uses ice during the day (that is, using heat storage) is known. (For example, refer to Patent Document 1). A heat storage air conditioner described in Patent Literature 1 includes a plurality of indoor units, and, for example, two heat source units (outdoor units) connected in parallel so as to form one refrigeration cycle together with these indoor units, And an ice storage unit connected between the indoor unit and the heat source unit. The number of heat source units can be changed to 3 or 4 or more according to the air conditioning load.

特許文献1に記載の蓄熱式空気調和装置では、蓄熱運転(製氷運転)の場合、2台の熱源ユニットにおける圧縮機にてガス冷媒を圧縮させ、室外熱交換器にて凝縮させて液冷媒とし、この液冷媒を1台の蓄熱ユニットに供給する。そして、蓄熱ユニットの蓄熱熱交換器(蓄熱槽内の熱交換器)にて液冷媒と蓄熱槽内の水との熱交換により、液冷媒を蒸発させてガス冷媒としつつ、蓄熱槽内の水を凝縮させて氷を生成する。そして、ガス冷媒を2台の熱源ユニットに戻すようになっている。   In the heat storage type air conditioner described in Patent Document 1, in the case of the heat storage operation (ice making operation), the gas refrigerant is compressed by the compressors in the two heat source units, and is condensed by the outdoor heat exchanger to be the liquid refrigerant. The liquid refrigerant is supplied to one heat storage unit. Then, the heat in the heat storage tank (the heat exchanger in the heat storage tank) heats the liquid refrigerant and the water in the heat storage tank, thereby evaporating the liquid refrigerant into a gas refrigerant, and the water in the heat storage tank. To produce ice. The gas refrigerant is returned to the two heat source units.

蓄熱利用冷房運転の場合、蓄熱運転(製氷運転)の場合と同様、2台の熱源ユニットにおける圧縮機にてガス冷媒を圧縮させ、室外熱交換器にて凝縮させて液冷媒とし、この液冷媒を1台の蓄熱ユニットに供給する。そして、蓄熱ユニットの蓄熱熱交換器にて液冷媒と蓄熱槽内の氷との熱交換により液冷媒を過冷却し、この液冷媒を複数台の室内ユニットに供給する。そして、室内ユニットの室内熱交換器にて液冷媒を蒸発させてガス冷媒とし、このガス冷媒を2台の熱源ユニットに戻すようになっている。   In the case of cooling operation using heat storage, as in the case of heat storage operation (ice making operation), the gas refrigerant is compressed by the compressors in the two heat source units and condensed in the outdoor heat exchanger to form liquid refrigerant. Is supplied to one heat storage unit. Then, the liquid refrigerant is supercooled by heat exchange between the liquid refrigerant and the ice in the heat storage tank in the heat storage heat exchanger of the heat storage unit, and the liquid refrigerant is supplied to a plurality of indoor units. The liquid refrigerant is evaporated into a gas refrigerant in the indoor heat exchanger of the indoor unit, and the gas refrigerant is returned to the two heat source units.

特開平10−292937号公報(図1及び図2参照)Japanese Patent Laid-Open No. 10-292937 (see FIGS. 1 and 2)

しかしながら、上記従来技術には以下のような課題が存在する。   However, there are the following problems in the above-described prior art.

すなわち、上記特許文献1に記載の蓄熱式空気調和装置では、図示から明らかなように、蓄熱運転時に1台の蓄熱ユニットから2台の熱源ユニットにガス冷媒を戻すように構成されている。詳細には、蓄熱運転時に蓄熱ユニットの蓄熱熱交換器の出口側となる配管は、2台の熱源ユニットへガス冷媒を分流する配管の分岐部より上流側に接続されている。また、蓄熱運転時に2台の熱源ユニットが両方とも稼働されている。   That is, as is apparent from the drawing, the heat storage air conditioner described in Patent Document 1 is configured to return the gas refrigerant from one heat storage unit to two heat source units during the heat storage operation. Specifically, the piping that becomes the outlet side of the heat storage heat exchanger of the heat storage unit during the heat storage operation is connected to the upstream side from the branch portion of the piping that divides the gas refrigerant to the two heat source units. Further, both of the two heat source units are operated during the heat storage operation.

ここで、蓄熱運転時における蓄熱熱交換器の出口側では、ガス冷媒に液冷媒が混ざった気液二相状態とする必要がある。その理由は、例えば蓄熱運転時における蓄熱熱交換器の出口側で冷媒を過熱ガス化させると、蓄熱熱交換器の出口側の着氷量が減少し、蓄熱槽内での着氷量が不均一となる不具合が生じるからである。そして、蓄熱槽内での着氷量が不均一になると、水が氷となって体積膨張する際に大きな応力が発生し、伝熱管が破損する恐れがある。そのため、蓄熱槽内での着氷量を均一にすることが望ましく、蓄熱運転時における蓄熱熱交換器の出口側では冷媒を気液二相状態とする。   Here, on the outlet side of the heat storage heat exchanger during the heat storage operation, it is necessary to make a gas-liquid two-phase state in which the liquid refrigerant is mixed with the gas refrigerant. The reason is that, for example, if the refrigerant is superheated and gasified on the outlet side of the heat storage heat exchanger during the heat storage operation, the amount of icing on the outlet side of the heat storage heat exchanger decreases, and the amount of icing in the heat storage tank does not increase. This is because a uniform defect occurs. And if the amount of icing in the heat storage tank becomes non-uniform, a large stress is generated when the water expands to become ice and the heat transfer tube may be damaged. Therefore, it is desirable to make the amount of icing in the heat storage tank uniform, and the refrigerant is in a gas-liquid two-phase state on the outlet side of the heat storage heat exchanger during the heat storage operation.

そして、上述した2台の熱源ユニットへ冷媒を分流する配管の分岐部では、その分岐部の形状や取付姿勢に応じて冷媒、特に液冷媒の分流比が変化する。そのため、条件によっては、2台の熱源ユニットの間で冷媒、特に液冷媒の戻り量に差異が生じる。そして、液冷媒に溶け込んだ油の戻り量にも差異を生じさせる。したがって、2台の熱源ユニットの間で保有する油量に差異が生じ、油量の減少によって圧縮機内の潤滑不良等の不具合を引き起こす可能性がある。そのため、信頼性の点で好ましくなかった。   And in the branch part of piping which distributes a refrigerant | coolant to the two heat-source units mentioned above, according to the shape and attachment attitude | position of the branch part, a diversion ratio of a refrigerant, especially a liquid refrigerant changes. Therefore, depending on the conditions, there is a difference in the return amount of the refrigerant, particularly the liquid refrigerant, between the two heat source units. Then, a difference is also caused in the return amount of the oil dissolved in the liquid refrigerant. Therefore, there is a difference in the amount of oil held between the two heat source units, and a decrease in the amount of oil may cause problems such as poor lubrication in the compressor. Therefore, it was not preferable in terms of reliability.

本発明の目的は、熱源ユニットの冷媒不足を回避することができ、信頼性を向上させることができる蓄熱式空気調和装置を提供することにある。   An object of the present invention is to provide a heat storage type air conditioner capable of avoiding a shortage of refrigerant in a heat source unit and improving reliability.

上記目的を達成するために、本発明は、冷媒を室内空気と熱交換させる室内熱交換器を備えた少なくとも1台の室内ユニットと、前記室内ユニットと共に1つの冷凍サイクルを構成するように前記室内ユニットに対してガス配管及び液配管を介し並列接続され、冷媒を圧縮する圧縮機及び冷媒を室外空気と熱交換させる室外熱交換器を備えた複数台の熱源ユニットと、前記室内ユニットと前記熱源ユニットとの間に接続され、冷媒を蓄熱媒体と熱交換させる蓄熱熱交換器を備えた複数台又は1台の蓄熱ユニットと、前記圧縮機を制御するとともに、冷媒を前記室外熱交換器、前記蓄熱熱交換器、及び前記室内熱交換器のうちのいずれかに選択的に流通させるために複数の電磁弁を制御する制御手段とを備え、前記制御手段は、前記圧縮機及び前記複数の電磁弁を制御して、少なくとも、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を蒸発器として作動させる蓄熱運転や、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を過冷却器、前記室内熱交換器を蒸発器として作動させる蓄熱利用冷房運転に切換える蓄熱式空気調和装置において、前記複数台の熱源ユニットと前記複数台の蓄熱ユニットを同数とし、前記ガス配管は前記複数台の各熱源ユニットに対して分岐するとともに、分岐した分岐ガス配管は前記複数台の各熱源ユニットに接続され、蓄熱運転時に前記複数台の各蓄熱ユニットの前記蓄熱熱交換器から冷媒を気液二相状態で流出させ、前記気液二相状態の冷媒は前記複数台の各蓄熱ユニットに接続される蓄熱ガス配管を通って流出し、前記各蓄熱ガス配管はそれぞれ異なる前記分岐ガス配管に接続される

In order to achieve the above object, the present invention provides at least one indoor unit including an indoor heat exchanger for exchanging heat between refrigerant and indoor air, and the indoor unit so as to constitute one refrigeration cycle together with the indoor unit. A plurality of heat source units including a compressor that compresses the refrigerant and an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air, and the indoor unit and the heat source. A plurality of or one heat storage unit provided with a heat storage heat exchanger that is connected between the units and exchanges heat between the refrigerant and the heat storage medium, and the compressor is controlled, and the refrigerant is transferred to the outdoor heat exchanger, A heat storage heat exchanger, and a control means for controlling a plurality of solenoid valves to selectively flow to any of the indoor heat exchanger, the control means comprising the compressor and A plurality of solenoid valves to control at least the outdoor heat exchanger as a condenser and the heat storage heat exchanger as an evaporator, a heat storage operation, the outdoor heat exchanger as a condenser, the heat storage heat exchanger In the regenerative air conditioner that switches to a regenerative cooling operation that operates as a supercooler and the indoor heat exchanger as an evaporator, the same number of the plurality of heat source units and the plurality of heat storage units, and the gas pipe The branch gas pipe branches to each of the plurality of heat source units, and the branched branch gas pipe is connected to each of the plurality of heat source units, and refrigerant is supplied from the heat storage heat exchanger of each of the plurality of heat storage units during a heat storage operation. The refrigerant in the gas-liquid two-phase state flows out through the heat storage gas pipes connected to the plurality of heat storage units, and the heat storage gas pipes are different from each other. It is connected to the branch gas pipe.

本発明によれば、熱源ユニットの冷媒不足を回避することができ、信頼性を向上させることができる。   According to the present invention, a shortage of refrigerant in the heat source unit can be avoided, and reliability can be improved.

本発明の第1の実施形態における蓄熱式空気調和装置の全体構成を表すブロック図である。It is a block diagram showing the whole structure of the thermal storage type air conditioner in the 1st Embodiment of this invention. 本発明の第1の実施形態における室内ユニットの構成を表す図である。It is a figure showing the structure of the indoor unit in the 1st Embodiment of this invention. 本発明の第1の実施形態における熱源ユニットの構成を表す図である。It is a figure showing the structure of the heat-source unit in the 1st Embodiment of this invention. 本発明の第1の実施形態における蓄熱ユニットの構成を表す図であり、蓄熱運転時の弁の開閉状態を示す。It is a figure showing the structure of the thermal storage unit in the 1st Embodiment of this invention, and shows the open / close state of the valve at the time of thermal storage operation. 本発明の第1の実施形態におけるコントローラを関連機器とともに表す図である。It is a figure showing the controller in the 1st Embodiment of this invention with a related apparatus. 本発明の第1の実施形態における蓄熱ユニットの構成を表す図であり、蓄熱利用冷房運転時の弁の開閉状態を示す。It is a figure showing the structure of the thermal storage unit in the 1st Embodiment of this invention, and shows the opening-and-closing state of the valve at the time of the thermal storage utilization cooling operation. 本発明の第1の実施形態における蓄熱ユニットの構成を表す図であり、蓄熱非利用冷房運転時又は暖房運転時の弁の開閉状態を示す。It is a figure showing the structure of the heat storage unit in the 1st Embodiment of this invention, and shows the opening-and-closing state of the valve at the time of the heat storage non-use cooling operation or heating operation. 本発明の第2の実施形態における蓄熱ユニットの構成を表す図であり、蓄熱運転時の弁の開閉状態を示す。It is a figure showing the structure of the thermal storage unit in the 2nd Embodiment of this invention, and shows the open / close state of the valve at the time of thermal storage operation. 本発明の第2の実施形態におけるコントローラを関連機器とともに表す図である。It is a figure showing the controller in the 2nd Embodiment of this invention with a related apparatus. 本発明の第3の実施形態における蓄熱式空気調和装置の全体構成を表す図である。It is a figure showing the whole structure of the thermal storage type air conditioning apparatus in the 3rd Embodiment of this invention. 本発明の一変形例における蓄熱式空気調和装置の全体構成を表す図である。It is a figure showing the whole heat storage type air conditioner in a modification of the present invention.

本発明の第1の実施形態を、図1〜図7により説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は、本実施形態における蓄熱式空気調和装置の全体構成を表すブロック図である。図2は、本実施形態における室内ユニットの構成を表す図である。図3は、本実施形態における熱源ユニットの構成を表す図である。図4は、本実施形態における蓄熱ユニットの構成を表す図であり、蓄熱運転時の弁の開閉状態(黒塗りは閉状態、白塗りは開状態)を示す。図5は、本実施形態におけるコントローラを関連機器とともに表す図である。   FIG. 1 is a block diagram showing the overall configuration of a heat storage type air conditioner in the present embodiment. FIG. 2 is a diagram illustrating the configuration of the indoor unit in the present embodiment. FIG. 3 is a diagram illustrating the configuration of the heat source unit in the present embodiment. FIG. 4 is a diagram showing the configuration of the heat storage unit in the present embodiment, and shows the open / closed state of the valve during the heat storage operation (black is closed, white is open). FIG. 5 is a diagram illustrating the controller according to this embodiment together with related devices.

これら図1〜図4において、蓄熱式空気調和装置は、例えば2台の室内ユニット1a,1bと、これら室内ユニット1a,1bと共に1つの冷凍サイクルを構成するように並列接続された例えば2台の熱源ユニット2a,2bと、それら室内ユニット1a,1bと熱源ユニット2a,2bとの間に接続された例えば2台の蓄熱ユニット3a,3bと、コントローラ4とを備えている。   1 to 4, the regenerative air conditioner includes, for example, two indoor units 1a and 1b and, for example, two units connected in parallel so as to form one refrigeration cycle together with these indoor units 1a and 1b. Heat source units 2a and 2b, two heat storage units 3a and 3b, for example, connected between the indoor units 1a and 1b and the heat source units 2a and 2b, and a controller 4 are provided.

室内ユニット1a,1bは、共通ガス配管30及び共通液配管40に対して並列に接続されている。詳細には、室内ユニット1aは、共通ガス配管30に対して室内側分岐ガス配管31aを介し接続され、共通液配管40に対して室内側分岐液配管41aを介し接続されている。室内ユニット1bは、共通ガス配管30に対して室内側分岐ガス配管31bを介し接続され、共通液配管40に対して室内側分岐液配管41bを介し接続されている。   The indoor units 1 a and 1 b are connected in parallel to the common gas pipe 30 and the common liquid pipe 40. Specifically, the indoor unit 1a is connected to the common gas pipe 30 via an indoor branch gas pipe 31a, and is connected to the common liquid pipe 40 via an indoor branch liquid pipe 41a. The indoor unit 1b is connected to the common gas pipe 30 via an indoor branch gas pipe 31b, and is connected to the common liquid pipe 40 via an indoor branch liquid pipe 41b.

室内ユニット1aは、冷媒を室内空気と熱交換させる室内熱交換器5と、この室内熱交換器5に室内空気を送風する室内送風機(図示せず)と、室内熱交換器5の液冷媒側(図2中下側)に設けられ、後述する冷房運転時に冷媒を減圧するための室内膨張弁(電磁弁)6とを備えている。室内ユニット1bは、室内ユニット1aと同様の構成であり、その説明を省略する。   The indoor unit 1a includes an indoor heat exchanger 5 that exchanges heat between the refrigerant and room air, an indoor fan (not shown) that blows indoor air to the indoor heat exchanger 5, and a liquid refrigerant side of the indoor heat exchanger 5. And an indoor expansion valve (solenoid valve) 6 for depressurizing the refrigerant during cooling operation, which will be described later. The indoor unit 1b has the same configuration as the indoor unit 1a, and a description thereof will be omitted.

熱源ユニット2a,2bは、共通ガス配管30及び共通液配管40に対して並列に接続されている。詳細には、熱源ユニット2aは、共通ガス配管30に対して室外側分岐ガス配管32aを介し接続され、共通液配管40aに対して室外側分岐液配管43aを介し接続されている。熱源ユニット2bは、共通ガス配管30に対して室外側分岐ガス配管32bを介し接続され、共通液配管40aに対して室外側分岐液配管43bを介し接続されている。また、共通液配管40aと40bの間には蓄熱ユニット3aおよび3bが並列に接続されている。詳細には、蓄熱ユニット3aは共通液配管40aに対して蓄熱液配管42aで、共通液配管40bに対して蓄熱液配管42bで接続されており、蓄熱ユニット3bは共通液配管40aに対して蓄熱液配管42cで、共通液配管40bに対して蓄熱液配管42dで接続されている。   The heat source units 2 a and 2 b are connected in parallel to the common gas pipe 30 and the common liquid pipe 40. Specifically, the heat source unit 2a is connected to the common gas pipe 30 via the outdoor branch gas pipe 32a, and is connected to the common liquid pipe 40a via the outdoor branch liquid pipe 43a. The heat source unit 2b is connected to the common gas pipe 30 via the outdoor branch gas pipe 32b, and is connected to the common liquid pipe 40a via the outdoor branch liquid pipe 43b. Further, heat storage units 3a and 3b are connected in parallel between the common liquid pipes 40a and 40b. Specifically, the heat storage unit 3a is connected to the common liquid pipe 40a by a heat storage liquid pipe 42a and to the common liquid pipe 40b by a heat storage liquid pipe 42b, and the heat storage unit 3b stores heat to the common liquid pipe 40a. The liquid pipe 42c is connected to the common liquid pipe 40b by a heat storage liquid pipe 42d.

また、本実施形態の大きな特徴として、蓄熱ユニット3aと熱源ユニット2aが対応するように蓄熱ガス配管50aが室外側分岐ガス配管32aに、蓄熱ユニット3bと熱源ユニット2bが対応するように蓄熱ガス配管50bが室外側分岐ガス配管32bに接続されている(詳細は後述)。   Further, as a major feature of the present embodiment, the heat storage gas pipe 50a corresponds to the outdoor branch gas pipe 32a so that the heat storage unit 3a and the heat source unit 2a correspond, and the heat storage gas pipe so that the heat storage unit 3b and the heat source unit 2b correspond. 50b is connected to the outdoor branch gas pipe 32b (details will be described later).

熱源ユニット2aは、冷媒を圧縮する圧縮機7と、冷媒を室外空気と熱交換させる室外熱交換器8と、この室外熱交換器8に室外空気を送風する室外送風機9と、室外熱交換器8の液冷媒側(図3中下側)に設けられ、後述する暖房運転時に冷媒を減圧するための室外膨張弁(電磁弁)10とを備えている。また、熱源ユニット2aは、室外側分岐ガス配管32aを圧縮機7の吸込側ガス配管(低圧ガス配管)11及び吐出側ガス配管(高圧ガス配管)12のうちの一方と、室外熱交換器8からのガス配管14を圧縮機7の吸込側ガス配管11及び吐出側ガス配管12のうちの他方に連通するように切換える四方弁13(電磁弁)とを備えている。   The heat source unit 2a includes a compressor 7 that compresses refrigerant, an outdoor heat exchanger 8 that exchanges heat between the refrigerant and outdoor air, an outdoor fan 9 that blows outdoor air to the outdoor heat exchanger 8, and an outdoor heat exchanger. 8 is provided on the liquid refrigerant side (lower side in FIG. 3), and an outdoor expansion valve (solenoid valve) 10 for depressurizing the refrigerant during heating operation to be described later. In addition, the heat source unit 2a uses the outdoor branch gas pipe 32a as one of the suction side gas pipe (low pressure gas pipe) 11 and the discharge side gas pipe (high pressure gas pipe) 12 of the compressor 7 and the outdoor heat exchanger 8. A four-way valve 13 (electromagnetic valve) that switches the gas pipe 14 from the compressor to the other of the suction side gas pipe 11 and the discharge side gas pipe 12 of the compressor 7.

また、熱源ユニット2aは、後述する蓄熱非利用冷房運転時に液冷媒を過冷却するための過冷却回路15を備えている。この過冷却回路15は、室外熱交換器8からの液配管16と圧縮機7の吸込側ガス配管11との間で接続されたバイパス配管17と、このバイパス配管17に設けられたバイパス膨張弁(電磁弁)18と、バイパス配管17側の冷媒と液配管16側の冷媒とを熱交換させる過冷却熱交換器19とで構成されている。そして、蓄熱非利用冷房運転時には、バイパス膨張弁18が絞り状態(言い換えれば、全閉状態と全開状態との間)に制御される。これにより、室外熱交換器8からの冷媒の一部をバイパス膨張弁18にて減圧して低温化し、過冷却熱交換器19にて残りの液冷媒と熱交換させる。これにより、冷媒の一部は蒸発して過熱ガスとなり、この過熱ガスが圧縮機7の吸込側ガス配管11に流出する。一方、冷媒の残りは過冷却されて室外側分岐液配管43aに流出するようになっている。   Further, the heat source unit 2a includes a supercooling circuit 15 for supercooling the liquid refrigerant during a heat storage non-use cooling operation described later. The subcooling circuit 15 includes a bypass pipe 17 connected between the liquid pipe 16 from the outdoor heat exchanger 8 and the suction side gas pipe 11 of the compressor 7, and a bypass expansion valve provided in the bypass pipe 17. (Electromagnetic valve) 18 and a supercooling heat exchanger 19 for exchanging heat between the refrigerant on the bypass pipe 17 side and the refrigerant on the liquid pipe 16 side. Then, during the heat storage non-use cooling operation, the bypass expansion valve 18 is controlled to the throttle state (in other words, between the fully closed state and the fully open state). Thereby, a part of the refrigerant from the outdoor heat exchanger 8 is depressurized by the bypass expansion valve 18 to lower the temperature, and the supercooling heat exchanger 19 exchanges heat with the remaining liquid refrigerant. Thereby, a part of the refrigerant evaporates to become superheated gas, and this superheated gas flows out to the suction side gas pipe 11 of the compressor 7. On the other hand, the remaining refrigerant is supercooled and flows out to the outdoor branch liquid pipe 43a.

熱源ユニット2bは、熱源ユニット2aと同様の構成であり、その説明を省略する。   The heat source unit 2b has the same configuration as the heat source unit 2a, and a description thereof will be omitted.

蓄熱ユニット3aは、蓄熱液配管42aと42bとの間で接続された液配管20と、蓄熱媒体としての水を貯留する蓄熱槽(水タンク)21と、この蓄熱槽21内に設けられ、冷媒を水と熱交換させる蓄熱熱交換器22とを備えている。また、蓄熱熱交換器22の一方の出入口側(図3中右側)と液配管20との間で接続された分岐配管23aと、この分岐配管23aに介設された開閉弁(第1の電磁弁)24a,レシーバタンク25、及び蓄熱膨張弁(電磁弁)26とを備えている。蓄熱膨張弁26は、後述する蓄熱運転時に冷媒を減圧するためのものであり、レシーバタンク25は、後述する蓄熱運転時に余剰冷媒を貯留するためのものである。なお、レシーバタンク25で貯留する余剰冷媒量は蓄熱熱交換器22の内容積に応じて定まるので、これに基づいてレシーバタンク25の容積が設計されている。   The heat storage unit 3a is provided in the heat storage tank 21, a liquid pipe 20 connected between the heat storage liquid pipes 42a and 42b, a heat storage tank (water tank) 21 for storing water as a heat storage medium, and a refrigerant. And a heat storage heat exchanger 22 for exchanging heat with water. Also, a branch pipe 23a connected between one inlet / outlet side (right side in FIG. 3) of the heat storage heat exchanger 22 and the liquid pipe 20, and an on-off valve (first electromagnetic valve) interposed in the branch pipe 23a. Valve) 24a, receiver tank 25, and heat storage expansion valve (electromagnetic valve) 26. The heat storage expansion valve 26 is for depressurizing the refrigerant during a heat storage operation described later, and the receiver tank 25 is for storing surplus refrigerant during a heat storage operation described later. In addition, since the surplus refrigerant | coolant amount stored by the receiver tank 25 is decided according to the internal volume of the heat storage heat exchanger 22, the volume of the receiver tank 25 is designed based on this.

また、蓄熱ユニット3aは、分岐配管23aにおける蓄熱膨張弁26と蓄熱熱交換器22との間の部分と液配管20との間で接続された分岐配管23bと、この分岐配管23bに介設され、蓄熱熱交換器22側から液配管20側への流れを許容する逆止弁27とを備えている。また、蓄熱熱交換器22の他方の出入口側(図3中左側)と上述した蓄熱ガス配管50aとの間で接続された分岐配管23cと、この分岐配管23cに介設された開閉弁(第2の電磁弁)24bと、分岐配管23cにおける開閉弁24bより蓄熱ガス配管50a側(図4中左側)とレシーバタンク25との間で接続された冷媒戻し配管28と、この冷媒戻し配管28に介設された開閉弁(第3の電磁弁)24cとを備えている。また、分岐配管23cにおける開閉弁24bより蓄熱熱交換器22側(図4中右側)と液配管20との間で接続された分岐配管23dと、この分岐配管23dに介設された開閉弁(電磁弁)24dと、液配管20における分岐配管23bの接続部(及び分岐配管23aの接続部)と分岐配管24dの接続部との間に位置する開閉弁(電磁弁)24eとを備えている。   Further, the heat storage unit 3a is interposed between the branch pipe 23b connected between the portion of the branch pipe 23a between the heat storage expansion valve 26 and the heat storage heat exchanger 22 and the liquid pipe 20, and the branch pipe 23b. And a check valve 27 that allows a flow from the heat storage heat exchanger 22 side to the liquid pipe 20 side. Further, a branch pipe 23c connected between the other inlet / outlet side (the left side in FIG. 3) of the heat storage heat exchanger 22 and the above-described heat storage gas pipe 50a, and an on-off valve (first switch) interposed in the branch pipe 23c. 2) 24b, a refrigerant return pipe 28 connected between the heat storage gas pipe 50a side (left side in FIG. 4) and the receiver tank 25 from the on-off valve 24b in the branch pipe 23c, and the refrigerant return pipe 28. And an on-off valve (third electromagnetic valve) 24c interposed. In addition, a branch pipe 23d connected between the heat storage heat exchanger 22 side (right side in FIG. 4) and the liquid pipe 20 from the on-off valve 24b in the branch pipe 23c, and an on-off valve interposed in the branch pipe 23d ( 24d, and an open / close valve (solenoid valve) 24e positioned between the connecting part of the branch pipe 23b (and the connecting part of the branch pipe 23a) and the connecting part of the branch pipe 24d in the liquid pipe 20. .

蓄熱ユニット3bは、蓄熱ユニット3aと同様の構成であり、その説明を省略する。   The heat storage unit 3b has the same configuration as the heat storage unit 3a, and a description thereof is omitted.

コントローラ4は、上述した室内ユニット1a,1bにおける室内膨張弁6、熱源ユニット2a,2bにおける四方弁13,圧縮機7,室外送風機9,室外膨張弁10、及びバイパス膨張弁18、並びに蓄熱ユニット3a,3bにおける開閉弁24a〜24e及び蓄熱膨張弁26を制御する。これにより、蓄熱運転,蓄熱利用冷房運転,蓄熱非利用冷房運転、及び暖房運転のうちのいずれかに切換えるようになっている。なお、本実施形態においては、室内ユニット1a,1bの仕様が同じ(詳細には、室内熱交換器5,室内送風機、及び室内膨張弁6の能力が同じ)、熱源ユニット2a,2bの仕様が同じ(詳細には、圧縮機7,室外熱交換器8,室外送風機9,室外膨張弁10,バイパス膨張弁18、及び過冷却熱交換器19の能力が同じ)、蓄熱ユニット3a,3bの仕様が同じ(詳細には、蓄熱熱交換器22,レシーバタンク25、及び蓄熱膨張弁26の能力が同じ)であり、コントローラ4は、室内ユニット1a,1bの制御量を同じとし、熱源ユニット2a,2bの制御量を同じとし、蓄熱ユニット3a,3bの制御量を同じとしている。具体例の1つとして、熱源ユニット2a,2bにおける圧縮機7の回転数を同じとしている。   The controller 4 includes the indoor expansion valve 6 in the indoor units 1a and 1b, the four-way valve 13 in the heat source units 2a and 2b, the compressor 7, the outdoor blower 9, the outdoor expansion valve 10, the bypass expansion valve 18, and the heat storage unit 3a. , 3b, the on-off valves 24a to 24e and the heat storage expansion valve 26 are controlled. Thereby, it switches to any one of the heat storage operation, the heat storage use cooling operation, the heat storage non-use cooling operation, and the heating operation. In the present embodiment, the specifications of the indoor units 1a and 1b are the same (specifically, the capabilities of the indoor heat exchanger 5, the indoor blower, and the indoor expansion valve 6 are the same), and the specifications of the heat source units 2a and 2b are the same. Specifications of heat storage units 3a and 3b are the same (specifically, the compressor 7, outdoor heat exchanger 8, outdoor blower 9, outdoor expansion valve 10, bypass expansion valve 18, and supercooling heat exchanger 19 have the same capabilities) Are the same (specifically, the heat storage heat exchanger 22, the receiver tank 25, and the heat storage expansion valve 26 have the same capabilities), and the controller 4 sets the control amounts of the indoor units 1a and 1b to be the same, and the heat source unit 2a, The control amount of 2b is the same, and the control amounts of the heat storage units 3a and 3b are the same. As one specific example, the rotation speed of the compressor 7 in the heat source units 2a and 2b is the same.

次に、本実施形態における蓄熱運転時の動作とともに、主な作用効果を説明する。   Next, the main effect is demonstrated with the operation | movement at the time of the thermal storage driving | operation in this embodiment.

(1)蓄熱運転時
蓄熱ユニット3a,3bの蓄熱槽21内に氷を生成する(冷熱を蓄える)蓄熱運転を行う。この蓄熱運転時では、コントローラ4は、熱源ユニット2a,2bを両方とも稼働させる。詳細には、熱源ユニット2a,2bにおける圧縮機7及び室外送風機9を駆動するとともに、室外膨張弁10を全開状態、バイパス膨張弁18を全閉状態に制御する。また、四方弁13を制御し、前述の図3中実線で示すように、室外側分岐ガス配管32aを圧縮機7の吸込側ガス配管11に連通し、室外熱交換器8からのガス配管14を圧縮機7の吐出側ガス配管12に連通するように切換える。これにより、圧縮機7にてガス冷媒が圧縮され、そのガス冷媒が四方弁13を介し室外熱交換器8に流入し、室外熱交換器8にて凝縮して液冷媒となり(すなわち、室外熱交換器8が凝縮器として作動し)、その液冷媒(詳細には、飽和液冷媒)が室外側分岐液配管43,共通液配管40a,蓄熱液配管42aもしくは42cを介し蓄熱ユニット3a,3bに供給される。
(1) During heat storage operation A heat storage operation is performed in which ice is generated (stores cold energy) in the heat storage tank 21 of the heat storage units 3a and 3b. During the heat storage operation, the controller 4 operates both the heat source units 2a and 2b. Specifically, the compressor 7 and the outdoor blower 9 in the heat source units 2a and 2b are driven, and the outdoor expansion valve 10 is controlled to be fully opened, and the bypass expansion valve 18 is controlled to be fully closed. Further, the four-way valve 13 is controlled, and the outdoor branch gas pipe 32a is communicated with the suction side gas pipe 11 of the compressor 7 as shown by the solid line in FIG. Is switched to communicate with the discharge side gas pipe 12 of the compressor 7. Thereby, the gas refrigerant is compressed by the compressor 7, the gas refrigerant flows into the outdoor heat exchanger 8 via the four-way valve 13, and is condensed in the outdoor heat exchanger 8 to become a liquid refrigerant (that is, outdoor heat). The exchanger 8 operates as a condenser), and the liquid refrigerant (specifically, saturated liquid refrigerant) is transferred to the heat storage units 3a and 3b via the outdoor branch liquid pipe 43, the common liquid pipe 40a, and the heat storage liquid pipe 42a or 42c. Supplied.

また、コントローラ4は、前述の図4で示すように、蓄熱ユニット3a,3bにおける開閉弁24a,24b,24eを開状態、開閉弁24c,24dを閉状態に制御するとともに、蓄熱膨張弁26を絞り状態に制御する。これにより、蓄熱ユニット3a,3bからの液冷媒は開閉弁24e,24aを介しレシーバタンク25に流入し、その一部がレシーバタンク25から蓄熱膨張弁26に流出し、その残り(余剰分)がレシーバタンク25内に貯留される。すなわち、蓄熱熱交換器22の保有冷媒量が変動するのは蓄熱運転時のみであり、この蓄熱運転時にレシーバタンク25によって冷媒量が自動的に調整されるようになっている。そして、蓄熱膨張弁26にて液冷媒が減圧されて低温化し、その液冷媒が蓄熱熱交換器22にて蓄熱槽21内の水との熱交換により蒸発してガス冷媒となる(すなわち、蓄熱熱交換器22が蒸発器として作動する)。一方、蓄熱槽21内の水は、前述した冷媒との熱交換により熱を奪われて温度が徐々に低下し、十分に低下すると蓄熱熱交換器22の周りに着氷する。   Further, as shown in FIG. 4, the controller 4 controls the on-off valves 24a, 24b, 24e in the heat storage units 3a, 3b to be in an open state and the on-off valves 24c, 24d to be in a closed state, and the heat storage expansion valve 26 to be turned on. Control the aperture state. Thereby, the liquid refrigerant from the heat storage units 3a and 3b flows into the receiver tank 25 via the on-off valves 24e and 24a, a part of which flows out from the receiver tank 25 to the heat storage expansion valve 26, and the remainder (surplus). It is stored in the receiver tank 25. That is, the amount of refrigerant stored in the heat storage heat exchanger 22 fluctuates only during the heat storage operation, and the refrigerant amount is automatically adjusted by the receiver tank 25 during the heat storage operation. Then, the liquid refrigerant is depressurized and lowered in temperature by the heat storage expansion valve 26, and the liquid refrigerant is evaporated by heat exchange with the water in the heat storage tank 21 in the heat storage heat exchanger 22 to become a gas refrigerant (that is, heat storage). The heat exchanger 22 operates as an evaporator). On the other hand, the water in the heat storage tank 21 is deprived of heat due to the heat exchange with the refrigerant described above, the temperature gradually decreases, and when it sufficiently decreases, the water accumulates around the heat storage heat exchanger 22.

ここで、蓄熱熱交換器22の出口側では、ガス冷媒に液冷媒が混ざった気液二相状態となっている。その理由は、例えば蓄熱熱交換器22の出口側で冷媒を過熱ガス化させると、蓄熱熱交換器22の出口側の着氷量が減少し、蓄熱槽21内での着氷量が不均一となる不具合が生じるからである。そして、蓄熱槽21内での着氷量が不均一になると、水が氷となって体積膨張する際に大きな応力が発生し、伝熱管が破損する恐れがある。そのため、蓄熱槽21内での着氷量を均一にすることが望ましく、蓄熱熱交換器22の出口側では冷媒を気液二相状態としている。   Here, on the outlet side of the heat storage heat exchanger 22, a gas-liquid two-phase state in which the liquid refrigerant is mixed with the gas refrigerant is provided. The reason is that, for example, when the refrigerant is superheated and gasified on the outlet side of the heat storage heat exchanger 22, the amount of icing on the outlet side of the heat storage heat exchanger 22 decreases, and the amount of icing in the heat storage tank 21 is uneven. This is because a problem occurs. And if the amount of icing in the heat storage tank 21 becomes non-uniform | heterogenous, when water will become ice and volume expansion will occur, there exists a possibility that a heat exchanger tube may be damaged. Therefore, it is desirable to make the amount of icing in the heat storage tank 21 uniform, and the refrigerant is in a gas-liquid two-phase state on the outlet side of the heat storage heat exchanger 22.

そして、本実施形態においては、蓄熱ユニット3aの蓄熱熱交換器22から流出する気液二相状態の冷媒は、開閉弁24b及び蓄熱ガス配管50a,室外側分岐ガス配管32aを介し熱源ユニット2aの圧縮機7の吸込側に戻される。また、蓄熱ユニット3bの蓄熱熱交換器22から流出する気液二相状態の冷媒は、開閉弁24b及び蓄熱ガス配管50b、室外側分岐ガス配管32bを介し熱源ユニット2bの圧縮機7の吸込側に戻される。すなわち、蓄熱ユニット3aから熱源ユニット2a,2bへ気液二相状態の冷媒を分配せず、同様に、蓄熱ユニット3bから熱源ユニット2a,2bへ気液二相状態の冷媒を分配しないので、気液二相状態の冷媒の分配によって生じやすい熱源ユニットの冷媒不足を回避することができる。したがって、例えば圧縮機7内の潤滑不良等の不具合を回避することができ、信頼性を向上させることができる。   And in this embodiment, the refrigerant | coolant of the gas-liquid two-phase state which flows out from the thermal storage heat exchanger 22 of the thermal storage unit 3a passes through the on-off valve 24b, the thermal storage gas piping 50a, and the outdoor side branch gas piping 32a. Returned to the suction side of the compressor 7. The refrigerant in the gas-liquid two-phase state that flows out of the heat storage heat exchanger 22 of the heat storage unit 3b passes through the on-off valve 24b, the heat storage gas pipe 50b, and the outdoor branch gas pipe 32b, and the suction side of the compressor 7 of the heat source unit 2b. Returned to That is, the gas-liquid two-phase refrigerant is not distributed from the heat storage unit 3a to the heat source units 2a, 2b, and similarly, the gas-liquid two-phase refrigerant is not distributed from the heat storage unit 3b to the heat source units 2a, 2b. It is possible to avoid the shortage of refrigerant in the heat source unit that is likely to occur due to the distribution of the refrigerant in the liquid two-phase state. Therefore, for example, problems such as poor lubrication in the compressor 7 can be avoided, and the reliability can be improved.

また、本実施形態においては、蓄熱運転時に熱源ユニット2a,2bを両方とも稼働させるので、例えば熱源ユニット2a,2bのうちの一方のみを稼働させる場合と比べ、蓄熱運転時間の短縮や蓄熱率(言い換えれば、単位時間当たりの蓄熱量)の向上を図ることができる。   In the present embodiment, since both the heat source units 2a and 2b are operated during the heat storage operation, for example, compared with a case where only one of the heat source units 2a and 2b is operated, the heat storage operation time is shortened and the heat storage rate ( In other words, it is possible to improve the heat storage amount per unit time.

次に、本実施形態における蓄熱運転以外の他の運転時(詳細には、蓄熱利用冷房運転時,蓄熱非利用冷房運転時、及び暖房運転時)の動作とともに、他の作用効果を説明する。   Next, other operations and effects will be described together with the operation during the operation other than the heat storage operation in the present embodiment (specifically, during the heat storage use cooling operation, during the heat storage non-use cooling operation, and during the heating operation).

(2)蓄熱利用冷房運転時
蓄熱ユニット3a,3bの蓄熱槽21内の氷を利用した(すなわち、蓄熱を利用した)冷房運転を行う。この蓄熱利用冷房運転時では、コントローラ4は、室内ユニット側の負荷に応じて、熱源ユニット2a,2bのうちの一方もしくは両方を稼働させる。詳細には、熱源ユニット2a,2bのうちの一方もしくは両方における圧縮機7及び室外送風機9を駆動するとともに、室外膨張弁10を全開状態、バイパス膨張弁18を全閉状態に制御する。また、四方弁13を制御し、前述の図3中実線で示すように、室外側分岐ガス配管32aを圧縮機7の吸込側ガス配管11に連通し、室外熱交換器8からのガス配管14を圧縮機7の吐出側ガス配管12に連通するように切換える。これにより、圧縮機7にてガス冷媒が圧縮され、そのガス冷媒が四方弁13を介し室外熱交換器8に流入し、室外熱交換器8にて凝縮して液冷媒となり(すなわち、室外熱交換器8が凝縮器として作動し)、その液冷媒(詳細には、飽和液冷媒)が室外側分岐液配管43a,共通液配管40a,蓄熱液配管42aもしくは42cを介し蓄熱ユニット3a,3bに供給される。
(2) Cooling operation using heat storage Cooling operation using ice in the heat storage tank 21 of the heat storage units 3a and 3b (that is, using heat storage) is performed. During this heat storage utilization cooling operation, the controller 4 operates one or both of the heat source units 2a and 2b according to the load on the indoor unit side. Specifically, the compressor 7 and the outdoor blower 9 in one or both of the heat source units 2a and 2b are driven, and the outdoor expansion valve 10 is controlled to be fully opened, and the bypass expansion valve 18 is controlled to be fully closed. Further, the four-way valve 13 is controlled, and the outdoor branch gas pipe 32a is communicated with the suction side gas pipe 11 of the compressor 7 as shown by the solid line in FIG. Is switched to communicate with the discharge side gas pipe 12 of the compressor 7. Thereby, the gas refrigerant is compressed by the compressor 7, the gas refrigerant flows into the outdoor heat exchanger 8 via the four-way valve 13, and is condensed in the outdoor heat exchanger 8 to become a liquid refrigerant (that is, outdoor heat). The exchanger 8 operates as a condenser), and the liquid refrigerant (specifically, saturated liquid refrigerant) is transferred to the heat storage units 3a and 3b via the outdoor branch liquid pipe 43a, the common liquid pipe 40a, and the heat storage liquid pipe 42a or 42c. Supplied.

また、コントローラ4は、図6で示すように、蓄熱ユニット3a,3bにおける開閉弁24a,24b,24eを閉状態、開閉弁24c,24dを開状態に制御するとともに、蓄熱膨張弁26を全閉状態に制御する。これにより、熱源ユニット2a,2bのうちの一方もしくは両方からの液冷媒は開閉弁24dを介し蓄熱熱交換器22に流入し、蓄熱槽21内の氷との熱交換により過冷却され(すなわち、蓄熱熱交換器22が過冷却器として作動し)、その過冷却液冷媒が逆止弁27を介し流出して、蓄熱液配管42bもしくは42d、および共通液配管40b等を介し室内ユニットに供給される。   Further, as shown in FIG. 6, the controller 4 controls the on-off valves 24a, 24b, 24e in the heat storage units 3a, 3b to be closed and the on-off valves 24c, 24d to be opened, and fully closes the heat storage expansion valve 26. Control to the state. Thereby, the liquid refrigerant from one or both of the heat source units 2a and 2b flows into the heat storage heat exchanger 22 via the on-off valve 24d and is supercooled by heat exchange with ice in the heat storage tank 21 (that is, The heat storage heat exchanger 22 operates as a supercooler), and the supercooled liquid refrigerant flows out through the check valve 27 and is supplied to the indoor unit through the heat storage liquid pipe 42b or 42d, the common liquid pipe 40b, and the like. The

また、コントローラ4は、例えば、室内ユニット1a,1bにおける室内膨張弁6を絞り状態に制御する(あるいは、室内ユニット1a,1bのうちの一方における室内膨張弁6を絞り状態に制御し、他方における室内膨張弁6を全閉状態とする)。これにより、蓄熱ユニット3a,3bからの液冷媒は室内膨張弁6にて減圧されて低温化し、その液冷媒が室内熱交換器5にて室内空気との熱交換により蒸発してガス冷媒となり(すなわち、室内熱交換器5が蒸発器として作動し)、そのガス冷媒(詳細には、飽和ガス冷媒もしくは過熱ガス冷媒)が共通ガス配管30等を介し熱源ユニットに戻され、その熱源ユニットにて四方弁13を介し圧縮機7に戻される。   Further, the controller 4 controls, for example, the indoor expansion valve 6 in the indoor units 1a and 1b to the throttle state (or controls the indoor expansion valve 6 in one of the indoor units 1a and 1b to the throttle state and The indoor expansion valve 6 is fully closed). Thereby, the liquid refrigerant from the heat storage units 3a and 3b is depressurized and lowered in temperature by the indoor expansion valve 6, and the liquid refrigerant is evaporated by heat exchange with indoor air in the indoor heat exchanger 5 to become a gas refrigerant ( That is, the indoor heat exchanger 5 operates as an evaporator), and the gas refrigerant (specifically, a saturated gas refrigerant or a superheated gas refrigerant) is returned to the heat source unit via the common gas pipe 30 and the like. It is returned to the compressor 7 through the four-way valve 13.

この蓄熱利用冷房運転では、蓄熱ユニット3a,3bの蓄熱槽21内の氷との熱交換により液冷媒を過冷却して比エンタルピーの低い低温状態とし、室内ユニットの室内熱交換器5で液冷媒を蒸発する際のエンタルピー差を増大させるので、冷房能力が向上する。また、圧縮機の仕事を増やすことなく冷房能力を向上させることができ、効率の高い冷房運転を行うことができる。   In this heat storage-based cooling operation, the liquid refrigerant is supercooled by heat exchange with ice in the heat storage tank 21 of the heat storage units 3a, 3b to obtain a low temperature state with a low specific enthalpy, and the liquid refrigerant is used in the indoor heat exchanger 5 of the indoor unit. Since the enthalpy difference at the time of evaporating is increased, the cooling capacity is improved. Further, the cooling capacity can be improved without increasing the work of the compressor, and a highly efficient cooling operation can be performed.

(3)蓄熱非利用冷房運転時
蓄熱ユニット3a,3bの蓄熱槽21内の氷を利用しない(すなわち、蓄熱を利用しない)冷房運転を行う。この蓄熱非利用冷房運転時では、コントローラ4は、室内ユニット側の負荷に応じて、熱源ユニット2a,2bのうちの一方もしくは両方を稼働させる。詳細には、熱源ユニット2a,2bのうちの一方もしくは両方における圧縮機7及び室外送風機9を駆動するとともに、室外膨張弁10を全開状態に制御する。また、バイパス膨張弁18を絞り状態に制御する。また、四方弁13を制御し、前述の図3中実線で示すように、室外側分岐ガス配管32aを圧縮機7の吸込側ガス配管11に連通し、室外熱交換器8からのガス配管14を圧縮機7の吐出側ガス配管12に連通するように切換える。これにより、圧縮機7にてガス冷媒が圧縮され、そのガス冷媒が四方弁13を介し室外熱交換器8に流入し、室外熱交換器8にて凝縮して液冷媒となる(すなわち、室外熱交換器8が凝縮器として作動する)。そして、バイパス膨張弁18にて液冷媒の一部が減圧されて低温化し、過冷却熱交換器19にて残りの液冷媒との熱交換により蒸発して過熱ガスとなり、この過熱ガスが圧縮機7の吸込側ガス配管11に流出する。一方、前述した熱交換により過冷却された液冷媒は、室外側分岐液配管43a,共通液配管40a,蓄熱液配管42aもしくは42cを介し蓄熱ユニット3a,3bに流出される。
(3) Cooling operation not using heat storage Cooling operation is performed in which the ice in the heat storage tank 21 of the heat storage units 3a and 3b is not used (that is, heat storage is not used). During the heat storage non-use cooling operation, the controller 4 operates one or both of the heat source units 2a and 2b according to the load on the indoor unit side. Specifically, the compressor 7 and the outdoor blower 9 in one or both of the heat source units 2a and 2b are driven, and the outdoor expansion valve 10 is controlled to be fully opened. Further, the bypass expansion valve 18 is controlled to the throttle state. Further, the four-way valve 13 is controlled, and the outdoor branch gas pipe 32a is communicated with the suction side gas pipe 11 of the compressor 7 as shown by the solid line in FIG. Is switched to communicate with the discharge side gas pipe 12 of the compressor 7. Thereby, the gas refrigerant is compressed by the compressor 7, the gas refrigerant flows into the outdoor heat exchanger 8 through the four-way valve 13, and is condensed in the outdoor heat exchanger 8 to be a liquid refrigerant (that is, the outdoor The heat exchanger 8 operates as a condenser). Then, a part of the liquid refrigerant is depressurized and reduced in temperature by the bypass expansion valve 18, and evaporated by heat exchange with the remaining liquid refrigerant in the supercooling heat exchanger 19, and this superheated gas is converted into a compressor. 7 flows out to the suction side gas pipe 11. On the other hand, the liquid refrigerant supercooled by the heat exchange described above flows out to the heat storage units 3a and 3b via the outdoor branch liquid pipe 43a, the common liquid pipe 40a, and the heat storage liquid pipe 42a or 42c.

また、コントローラ4は、図7で示すように、蓄熱ユニット3a,3bにおける開閉弁24a,24b,24dを閉状態、開閉弁24c,24eを開状態に制御するとともに、蓄熱膨張弁26を全閉状態に制御する。これにより、熱源ユニット2a,2bのうちの一方もしくは両方からの液冷媒は開閉弁24eを介し流出して、蓄熱液配管42bもしくは42d、および共通液配管40b等を介し室内ユニットに供給される。   Further, as shown in FIG. 7, the controller 4 controls the on-off valves 24a, 24b, 24d in the heat storage units 3a, 3b to be closed and the on-off valves 24c, 24e to be in the open state, and fully closes the heat storage expansion valve 26. Control to the state. Thereby, the liquid refrigerant from one or both of the heat source units 2a and 2b flows out through the on-off valve 24e and is supplied to the indoor unit through the heat storage liquid pipe 42b or 42d, the common liquid pipe 40b, and the like.

また、コントローラ4は、例えば、室内ユニット1a,1bにおける室内膨張弁6を絞り状態に制御する(あるいは、室内ユニット1a,1bのうちの一方における室内膨張弁6を絞り状態に制御し、他方における室内膨張弁6を全閉状態とする)。これにより、蓄熱ユニット3a,3bからの液冷媒は室内膨張弁6にて減圧されて低温化し、その液冷媒が室内熱交換器5にて室内空気との熱交換により蒸発してガス冷媒となり(すなわち、室内熱交換器5が蒸発器として作動し)、そのガス冷媒(詳細には、飽和ガス冷媒もしくは過熱ガス冷媒)が共通ガス配管30等を介し熱源ユニットに戻され、その熱源ユニットにて四方弁13を介し圧縮機7に戻される。   Further, the controller 4 controls, for example, the indoor expansion valve 6 in the indoor units 1a and 1b to the throttle state (or controls the indoor expansion valve 6 in one of the indoor units 1a and 1b to the throttle state and The indoor expansion valve 6 is fully closed). Thereby, the liquid refrigerant from the heat storage units 3a and 3b is depressurized and lowered in temperature by the indoor expansion valve 6, and the liquid refrigerant is evaporated by heat exchange with indoor air in the indoor heat exchanger 5 to become a gas refrigerant ( That is, the indoor heat exchanger 5 operates as an evaporator), and the gas refrigerant (specifically, a saturated gas refrigerant or a superheated gas refrigerant) is returned to the heat source unit via the common gas pipe 30 and the like. It is returned to the compressor 7 through the four-way valve 13.

(4)暖房運転時
暖房運転時では、コントローラ4は、室内ユニット側の負荷に応じて、熱源ユニット2a,2bのうちの一方もしくは両方を稼働させる。詳細には、熱源ユニット2a,2bのうちの一方もしくは両方における圧縮機7及び室外送風機9を駆動するとともに、バイパス膨張弁18を全閉状態に制御する。また、室外膨張弁10を絞り状態に制御する。また、四方弁13を制御し、前述の図3中点線で示すように、室外側分岐ガス配管32aを圧縮機7の吐出側ガス配管12に連通し、室外熱交換器8からのガス配管14を圧縮機7の吸込側ガス配管11に連通するように切換える。これにより、圧縮機7にてガス冷媒が圧縮され、そのガス冷媒が四方弁13を介し流出して共通ガス配管30等を介し室内ユニットに供給される。
(4) During heating operation During the heating operation, the controller 4 operates one or both of the heat source units 2a and 2b according to the load on the indoor unit side. Specifically, the compressor 7 and the outdoor blower 9 in one or both of the heat source units 2a and 2b are driven, and the bypass expansion valve 18 is controlled to be fully closed. Further, the outdoor expansion valve 10 is controlled to be in the throttle state. Further, the four-way valve 13 is controlled, and the outdoor branch gas pipe 32a is communicated with the discharge side gas pipe 12 of the compressor 7 as shown by the dotted line in FIG. Is switched to communicate with the suction side gas pipe 11 of the compressor 7. Thereby, the gas refrigerant is compressed by the compressor 7, and the gas refrigerant flows out through the four-way valve 13 and is supplied to the indoor unit through the common gas pipe 30 and the like.

また、コントローラ4は、例えば、室内ユニット1a,1bにおける室内膨張弁6を全開状態に制御する(あるいは、室内ユニット1a,1bのうちの一方における室内膨張弁6を全開状態に制御し、他方における室内膨張弁6を全閉状態とする)。これにより、熱源ユニットからの冷媒は室内熱交換器5にて室内空気との熱交換により凝縮して液冷媒となり(すなわち、室内熱交換器5が凝縮器として作動し)、その液冷媒(詳細には、飽和液冷媒もしくは過冷却液冷媒)が共通液配管40b等を介し蓄熱ユニット3a,3bに流出される。   For example, the controller 4 controls the indoor expansion valve 6 in the indoor units 1a and 1b to a fully open state (or controls the indoor expansion valve 6 in one of the indoor units 1a and 1b to a fully open state and The indoor expansion valve 6 is fully closed). Thereby, the refrigerant from the heat source unit is condensed by the heat exchange with the indoor air in the indoor heat exchanger 5 to become a liquid refrigerant (that is, the indoor heat exchanger 5 operates as a condenser), and the liquid refrigerant (details) , A saturated liquid refrigerant or a supercooled liquid refrigerant) flows out to the heat storage units 3a and 3b through the common liquid pipe 40b and the like.

また、コントローラ4は、図7で示すように、蓄熱ユニット3a,3bにおける開閉弁24a,24b,24dを閉状態、開閉弁24c,24eを開状態に制御するとともに、蓄熱膨張弁26を全閉状態に制御する。これにより、室内ユニット1a,1bのうちの一方もしくは両方からの液冷媒は開閉弁24eを介し流出して共通液配管40a等を介し熱源ユニットに供給される。   Further, as shown in FIG. 7, the controller 4 controls the on-off valves 24a, 24b, 24d in the heat storage units 3a, 3b to be closed and the on-off valves 24c, 24e to be in the open state, and fully closes the heat storage expansion valve 26. Control to the state. Thereby, the liquid refrigerant from one or both of the indoor units 1a and 1b flows out through the on-off valve 24e and is supplied to the heat source unit through the common liquid pipe 40a and the like.

熱源ユニット2a,2bのうちの一方もしくは両方では、室外膨張弁10にて液冷媒が減圧されて低温化し、その液冷媒が室外熱交換器8にて室外空気との熱交換により蒸発してガス冷媒となり(すなわち、室外熱交換器8が蒸発器として作動し)、そのガス冷媒が四方弁13を介し圧縮機7に戻される。   In one or both of the heat source units 2a and 2b, the liquid refrigerant is depressurized and reduced in temperature by the outdoor expansion valve 10, and the liquid refrigerant is evaporated by heat exchange with the outdoor air in the outdoor heat exchanger 8 to be gas. It becomes a refrigerant (that is, the outdoor heat exchanger 8 operates as an evaporator), and the gas refrigerant is returned to the compressor 7 through the four-way valve 13.

なお、上述した蓄熱非利用冷房運転時及び暖房運転時では、コントローラ4は、蓄熱ユニット3a,3bにおける開閉弁24dを閉状態に制御する場合を例にとって説明したが、蓄熱熱交換器22に冷媒を充満させるために、開閉弁24dを開状態に制御してもよい。   Note that, in the above-described case where the heat storage non-utilizing cooling operation and the heating operation are performed, the controller 4 has been described as an example of controlling the on-off valve 24d in the heat storage units 3a and 3b to be closed. In order to fill the valve, the on-off valve 24d may be controlled to be in an open state.

以上のように本実施形態においては、蓄熱運転時に、開閉弁24a,24b,24eを開状態、蓄熱膨張弁26を絞り状態に制御することにより、冷凍サイクルの冷媒がレシーバタンク25を経由して循環する一方、蓄熱運転以外の他の運転時に、開閉弁24a,24bを閉状態、蓄熱膨張弁26を全閉状態に制御することにより、冷凍サイクルの冷媒がレシーバタンク25を経由しないで循環している。これにより、蓄熱運転時のみレシーバタンク25に余剰冷媒が貯留されて蓄熱熱交換器22への冷媒量を調整することができる。また、蓄熱運転時にレシーバタンク25に貯留された冷媒を、蓄熱運転以外の他の運転時にそのまま貯留させておくと、冷媒が不足する可能性が生じる。そこで、本実施形態においては、蓄熱運転時に開閉弁24cを閉状態に制御する一方、蓄熱運転以外の他の運転時に開閉弁24cを開状態に制御している。これにより、冷房運転時に、蓄熱ユニット3aのレシーバタンク25内の冷媒を冷媒戻し配管28及び蓄熱ガス配管50aを介し熱源ユニット2aの圧縮機7に戻し、蓄熱ユニット3bのレシーバタンク25内の冷媒を冷媒戻し配管28及び蓄熱ガス配管50bを介し熱源ユニット2bの圧縮機7に戻す。したがって、冷房運転時においても、熱源ユニットの冷媒不足を回避することができ、信頼性を向上させることができる。   As described above, in the present embodiment, the refrigerant in the refrigeration cycle passes through the receiver tank 25 by controlling the on-off valves 24a, 24b, and 24e to the open state and the heat storage expansion valve 26 to the throttled state during the heat storage operation. On the other hand, during the operation other than the heat storage operation, the refrigerant in the refrigeration cycle circulates without passing through the receiver tank 25 by controlling the on-off valves 24a and 24b to be closed and the heat storage expansion valve 26 to be fully closed. ing. Thereby, surplus refrigerant | coolant is stored by the receiver tank 25 only at the time of a thermal storage driving | operation, and the refrigerant | coolant amount to the thermal storage heat exchanger 22 can be adjusted. In addition, if the refrigerant stored in the receiver tank 25 during the heat storage operation is stored as it is during the operation other than the heat storage operation, the refrigerant may be insufficient. Therefore, in the present embodiment, the on-off valve 24c is controlled to be closed during the heat storage operation, while the on-off valve 24c is controlled to be open during other operations than the heat storage operation. Thus, during the cooling operation, the refrigerant in the receiver tank 25 of the heat storage unit 3a is returned to the compressor 7 of the heat source unit 2a via the refrigerant return pipe 28 and the heat storage gas pipe 50a, and the refrigerant in the receiver tank 25 of the heat storage unit 3b is returned. The refrigerant is returned to the compressor 7 of the heat source unit 2b through the refrigerant return pipe 28 and the heat storage gas pipe 50b. Therefore, even during the cooling operation, a shortage of refrigerant in the heat source unit can be avoided, and the reliability can be improved.

また暖房運転時には、レシーバタンク25内へ高圧ガスが流入させることによって、液冷媒が溜まり込むことを防止しており、熱源ユニットの冷媒不足を回避することができ、信頼性を向上させることができる。ところで、レシーバタンク25の周囲は低温外気であるため、レシーバタンク25内部に凝縮し、熱源ユニットにおいて冷媒不足となる可能性がある。この場合には、蓄熱膨張弁26の開度を全閉状態から所定開度開いた微開状態として、レシーバタンク25内の冷媒を分岐配管23b側へと流出させる制御を行う。本制御は、常時行っても良く、時間やサイクル状態に応じて適宜行うとしてもよい。また、本制御動作中以外には、開閉弁24cを閉として高圧ガス冷媒のレシーバタンクへの流入を遮断するとしても良い。   Further, during the heating operation, the high-pressure gas flows into the receiver tank 25 to prevent liquid refrigerant from accumulating, so that a shortage of refrigerant in the heat source unit can be avoided and reliability can be improved. . By the way, since the circumference | surroundings of the receiver tank 25 are low temperature external air, it condenses inside the receiver tank 25 and there exists a possibility that a refrigerant | coolant may run short in a heat-source unit. In this case, the opening degree of the heat storage expansion valve 26 is changed from the fully closed state to the slightly opened state opened by a predetermined opening degree, and the refrigerant in the receiver tank 25 is controlled to flow out to the branch pipe 23b side. This control may be performed all the time, or may be performed as appropriate according to the time and cycle state. Further, except during this control operation, the on-off valve 24c may be closed to block the flow of high-pressure gas refrigerant into the receiver tank.

これらの制御を導入することにより、暖房運転時においても、熱源ユニットの冷媒不足を回避することができ、すなわち蓄熱運転時以外の運転時における冷媒不足を回避することができるので、信頼性を向上させることができる。   By introducing these controls, it is possible to avoid shortage of refrigerant in the heat source unit even during heating operation, that is, avoid shortage of refrigerant during operation other than heat storage operation, thus improving reliability. Can be made.

また、上記第1の実施形態においては、熱源ユニット2a,2bは、過冷却回路15を備えた場合を例にとって説明したが、これに限られず、過冷却回路15を備えなくてもよい。この場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st Embodiment, although heat source unit 2a, 2b demonstrated taking the case where the supercooling circuit 15 was provided as an example, it is not restricted to this, The supercooling circuit 15 does not need to be provided. In this case, the same effect as described above can be obtained.

また、上記第1の実施形態においては、熱源ユニット2a,2bは、1つの圧縮機7をそれぞれ備えた場合を例にとって説明したが、これに限られない。すなわち、複数の圧縮機をそれぞれ備えてもよい。そして、熱源ユニット2a,2bの冷媒流量が同等となるように、運転台数を可変制御したり、そのうちの1台の圧縮機の回転数をインバータを介し可変制御したりしてもよい。このような場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st Embodiment, although heat source unit 2a, 2b demonstrated taking as an example the case where each provided the one compressor 7, it is not restricted to this. That is, a plurality of compressors may be provided. Then, the number of operating units may be variably controlled so that the refrigerant flow rates of the heat source units 2a and 2b are equal, or the rotational speed of one of the compressors may be variably controlled via an inverter. In such a case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、2台の室内ユニット1a,1b、2台の熱源ユニット2a,2b、及び2台の蓄熱ユニット3a,3bを備えた構成に適用した場合を例にとって説明したが、これに限られない。例えば、室内ユニットは1台又は3台以上備えてもよい。このような場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st and 2nd embodiment, the case where it applies to the structure provided with the two indoor units 1a and 1b, the two heat source units 2a and 2b, and the two heat storage units 3a and 3b. Although described as an example, the present invention is not limited to this. For example, one indoor unit or three or more indoor units may be provided. In such a case, the same effect as described above can be obtained.

また、例えば、熱源ユニットと蓄熱ユニットは同じ台数備えていればよく、3台以上備えてもよい。その場合には、同じ数だけの蓄熱ガス配管を設ければよい。すなわち、複数台の蓄熱ユニットのそれぞれの1台と複数台の熱源ユニットのそれぞれの1台が対応するように蓄熱ガス配管を接続すればよい。このような場合も、上記同様の効果を得ることができる。   Moreover, for example, the heat source unit and the heat storage unit may be provided in the same number, and may be provided in three or more units. In that case, the same number of heat storage gas pipes may be provided. That is, the heat storage gas pipes may be connected so that one of each of the plurality of heat storage units corresponds to one of each of the plurality of heat source units. In such a case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、2台の熱源ユニット2a,2b、および2台の蓄熱ユニット3a,3bの能力が同等の場合を例にとって説明したが、これに限らない。本実施例では、冷媒量を調整するレシーバタンク25を蓄熱ユニット3a,3bに備えているので、蓄熱熱交換器の内容積が異なる蓄熱ユニットを接続する場合であっても、熱源ユニットを変更する必要はない。したがって、接続する蓄熱ユニットを変更することによって、同じ熱源ユニットを用いて、蓄熱容量の異なるシステムを構築することができる。同様に能力の異なる熱源ユニットを接続することも可能であり、これにより、熱源ユニットの能力の組合せに応じて様々な能力のシステムを容易に構築することができる。また蓄熱性能や組合せる蓄熱ユニットに応じた熱源ユニットの専用設計が不要となるので、制御ソフトを変更することで、蓄熱機能を持たない熱源ユニットとの共用化を図ることも容易である。これにより、既設の非蓄熱システムを蓄熱システムへ拡張することが容易になるというメリットが生じる。   In the first and second embodiments, the case where the capacities of the two heat source units 2a and 2b and the two heat storage units 3a and 3b are equivalent is described as an example, but the present invention is not limited to this. In this embodiment, since the heat storage units 3a and 3b are provided with the receiver tank 25 for adjusting the refrigerant amount, the heat source unit is changed even when connecting heat storage units having different internal volumes of the heat storage heat exchanger. There is no need. Therefore, by changing the heat storage unit to be connected, systems having different heat storage capacities can be constructed using the same heat source unit. Similarly, it is also possible to connect heat source units having different capacities, whereby a system having various capacities can be easily constructed depending on the combination of the capacities of the heat source units. In addition, since a dedicated design of the heat source unit corresponding to the heat storage performance and the heat storage unit to be combined is not required, it is easy to share the heat source unit having no heat storage function by changing the control software. Thereby, the merit that it becomes easy to expand an existing non-heat storage system to a heat storage system arises.

本発明の第2の実施形態を、図8及び図9により説明する。なお、本実施形態において、上記第1の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A second embodiment of the present invention will be described with reference to FIGS. Note that in this embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

図8は、本実施形態における蓄熱ユニットの構成を表す図である。図9は、本実施形態におけるコントローラを関連機器とともに表す図である。   FIG. 8 is a diagram illustrating the configuration of the heat storage unit in the present embodiment. FIG. 9 is a diagram illustrating the controller according to the present embodiment together with related devices.

本実施形態では、蓄熱ユニット3a,3bの分岐配管23c(すなわち、蓄熱運転時に蓄熱熱交換器22の下流側となる位置)には温度センサ(温度検出器)29が設けられている。そして、蓄熱ユニット3a,3bの温度センサ29で検出された冷媒温度がコントローラ4に出力されるようになっている。   In the present embodiment, a temperature sensor (temperature detector) 29 is provided in the branch pipe 23c of the heat storage units 3a and 3b (that is, a position on the downstream side of the heat storage heat exchanger 22 during the heat storage operation). The refrigerant temperature detected by the temperature sensor 29 of the heat storage units 3 a and 3 b is output to the controller 4.

コントローラ4は、蓄熱運転時に、蓄熱ユニット3aの温度センサ29の検出温度と蓄熱ユニット3bの温度センサ29の検出温度が同じとなるように、蓄熱膨張弁26の開度を補正する。詳細には、例えば蓄熱ユニット3aの温度センサ29の検出温度と蓄熱ユニット3bの温度センサ29の検出温度との差分を演算し、検出温度が高いほうの蓄熱ユニットの蓄熱膨張弁26の開度をその差分に応じて大きくする。これにより、蓄熱ユニット3a,3bにおける蓄熱熱交換器22の下流側の冷媒流量を同じにすることができる。   During the heat storage operation, the controller 4 corrects the opening degree of the heat storage expansion valve 26 so that the detected temperature of the temperature sensor 29 of the heat storage unit 3a and the detected temperature of the temperature sensor 29 of the heat storage unit 3b are the same. Specifically, for example, the difference between the detected temperature of the temperature sensor 29 of the heat storage unit 3a and the detected temperature of the temperature sensor 29 of the heat storage unit 3b is calculated, and the opening degree of the heat storage expansion valve 26 of the heat storage unit with the higher detected temperature is calculated. Increase according to the difference. Thereby, the refrigerant | coolant flow volume of the downstream of the heat storage heat exchanger 22 in heat storage unit 3a, 3b can be made the same.

詳しく説明すると、熱源ユニット2a,2bにおける圧縮機7の上流側は室外側分岐ガス配管32a,32bを介し互いに連通しており、熱源ユニット2a,2bにおける圧縮機7の上流側の冷媒圧力、すなわち蓄熱ユニット3a,3bにおける蓄熱熱交換器22の下流側の冷媒圧力はほぼ同じである。そして、蓄熱ユニット3a,3bの仕様が同じであることから、蓄熱ユニット3a,3bにおける蓄熱熱交換器22の下流側の冷媒温度が同じとなるように蓄熱膨張弁26の開度を補正すれば、蓄熱ユニット3a,3b間の冷媒の流量比が同じとなるように調整することができる。その結果、熱源ユニット2a,2b間の冷媒の流量比が同じとなる。また、熱源ユニット2a,2bのうちの一方における冷媒の流量が少なくなって蓄熱熱交換器22の出口側で過熱ガス化するのを防止できるといった効果も得られる。   More specifically, the upstream side of the compressor 7 in the heat source units 2a and 2b communicates with each other via the outdoor branch gas pipes 32a and 32b, and the refrigerant pressure upstream of the compressor 7 in the heat source units 2a and 2b, that is, The refrigerant pressure on the downstream side of the heat storage heat exchanger 22 in the heat storage units 3a and 3b is substantially the same. And since the specification of heat storage unit 3a, 3b is the same, if the opening degree of the heat storage expansion valve 26 is corrected so that the refrigerant temperature of the downstream of the heat storage heat exchanger 22 in heat storage unit 3a, 3b may become the same. The refrigerant flow rate ratio between the heat storage units 3a and 3b can be adjusted to be the same. As a result, the flow rate ratio of the refrigerant between the heat source units 2a and 2b is the same. Moreover, the effect that the refrigerant | coolant flow volume in one of heat-source unit 2a, 2b decreases and it can prevent that it superheats and gasifies at the exit side of the thermal storage heat exchanger 22 is also acquired.

したがって、本実施形態においては、上記第1の実施形態と比べ、さらに熱源ユニットの冷媒不足を回避することができ、信頼性を向上させることができる。   Therefore, in the present embodiment, compared with the first embodiment, a shortage of refrigerant in the heat source unit can be avoided, and the reliability can be improved.

なお、上記第1及び第2の実施形態においては、熱源ユニット2a,2bは同じ仕様とし、蓄熱ユニット3a,3bは同じ仕様とした場合を例にとって説明したが、これに限られない。すなわち、例えば、一方の熱源ユニット2aの圧縮機7等を比較的大容量とし、他方の熱源ユニット2bの圧縮機7等を比較的小容量としつつ、それらの容量比に対応するように、一方の蓄熱ユニット3bの蓄熱熱交換器22等を比較的大容量とし、他方の蓄熱ユニット3aの蓄熱熱交換器22等を比較的小容量としてもよい。このような場合であっても、蓄熱熱交換器22の出口側の冷媒温度が等しくなるように蓄熱膨張弁26の開度を制御することによって、蓄熱熱交換器22の熱交換性能に応じた冷媒の流量比とすることができる。その場合には、一方の熱源ユニット2a及び蓄熱ユニット3aには冷媒が大流量となり、他方の熱源ユニット2b及び蓄熱ユニット3bには冷媒が小流量となるものの、熱源ユニット2aの圧縮機及び熱源ユニット2bの圧縮機にはそれぞれの容量に見合った流量の冷媒が供給される。したがって、このような変形例においても、上記第1及び第2の実施形態と同様の効果を得ることができる。   In the first and second embodiments, the heat source units 2a and 2b have the same specifications and the heat storage units 3a and 3b have the same specifications. However, the present invention is not limited to this. That is, for example, the compressor 7 or the like of one heat source unit 2a has a relatively large capacity, and the compressor 7 or the like of the other heat source unit 2b has a relatively small capacity while corresponding to the capacity ratio thereof. The heat storage heat exchanger 22 or the like of the heat storage unit 3b may have a relatively large capacity, and the heat storage heat exchanger 22 or the like of the other heat storage unit 3a may have a relatively small capacity. Even in such a case, by controlling the opening degree of the heat storage expansion valve 26 so that the refrigerant temperature on the outlet side of the heat storage heat exchanger 22 becomes equal, the heat exchange performance of the heat storage heat exchanger 22 is adjusted. The flow rate ratio of the refrigerant can be used. In that case, the refrigerant and the heat source unit 2a and the heat storage unit 3a have a large flow rate of refrigerant and the other heat source unit 2b and the heat storage unit 3b have a small flow rate of refrigerant. The compressor of 2b is supplied with a refrigerant having a flow rate corresponding to each capacity. Therefore, also in such a modification, the same effect as the first and second embodiments can be obtained.

また、上記第1又は第2の実施形態においては、前述の図5又は図9で示すように、圧縮機7,室外送風機9、及び電磁弁6,13a,13b,10,18,24a〜24e,蓄熱膨張弁26を制御するコントローラ4(制御手段)は、室内ユニット1a,1b、熱源ユニット2a,2b、及び蓄熱ユニット3a,3bとは別体に設けた場合を例にとって説明したが、これに限られない。すなわち、例えば、各室内ユニット1a,1bに電磁弁6を制御する第1の制御部をそれぞれ設け、熱源ユニット2a,2bに圧縮機7,室外送風機9、及び電磁弁13a,13b,10,18を制御する第2の制御部をそれぞれ設け、蓄熱ユニット3a,3bに電磁弁24a〜24e,蓄熱膨張弁26を制御する第3の制御部をそれぞれ設け、第1〜第3の制御部が連携して制御するように構成してもよい。この場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st or 2nd embodiment, as shown in above-mentioned FIG. 5 or FIG. 9, the compressor 7, the outdoor air blower 9, and the electromagnetic valves 6, 13a, 13b, 10, 18, 24a-24e. The controller 4 (control means) for controlling the heat storage expansion valve 26 has been described as an example in which the indoor units 1a and 1b, the heat source units 2a and 2b, and the heat storage units 3a and 3b are provided separately. Not limited to. That is, for example, each indoor unit 1a, 1b is provided with a first control unit for controlling the electromagnetic valve 6, and the heat source unit 2a, 2b is provided with a compressor 7, an outdoor blower 9, and electromagnetic valves 13a, 13b, 10, 18 A second control unit that controls the heat storage units 3a and 3b, a third control unit that controls the electromagnetic valves 24a to 24e and the heat storage expansion valve 26, respectively, and the first to third control units cooperate with each other. And may be configured to be controlled. In this case, the same effect as described above can be obtained.

本発明の第3の実施形態を図10により説明する。本実施形態は、蓄熱運転時に駆動する圧縮機等を、複数台の熱源ユニットのうちのいずれか1台の熱源ユニットのものに選択的に切換える実施形態である。なお、上記第1の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the compressor or the like that is driven during the heat storage operation is selectively switched to that of any one of the plurality of heat source units. In addition, the same code | symbol is attached | subjected to the part equivalent to the said 1st Embodiment, and description is abbreviate | omitted suitably.

図10は、本実施形態における蓄熱式空気調和装置の全体構成を表すブロック図である。   FIG. 10 is a block diagram showing the overall configuration of the heat storage type air conditioner in the present embodiment.

本実施形態では、熱源ユニット2a,2bと蓄熱ユニット3a,3bは蓄熱ガス配管51a〜51cを介し互いに並列接続されている。別の言い方をすれば、蓄熱ガス配管51a〜51cは、蓄熱ユニット3aに対して熱源ユニット2a,2bが対応するように、蓄熱ユニット3bに対して熱源ユニット2a,2bが対応するように接続されている。   In the present embodiment, the heat source units 2a and 2b and the heat storage units 3a and 3b are connected in parallel to each other via the heat storage gas pipes 51a to 51c. In other words, the heat storage gas pipes 51a to 51c are connected so that the heat source units 2a and 2b correspond to the heat storage unit 3b so that the heat source units 2a and 2b correspond to the heat storage unit 3a. ing.

そして、コントローラ4は、蓄熱運転時に、熱源ユニット2a,2bのうちのいずれか1台の熱源ユニットにおける圧縮機7及び室外送風機9を駆動させ、他の熱源ユニットにおける圧縮機7及び室外送風機9を停止させる。詳しく説明すると、蓄熱運転は、一般的に、夜間に長時間かけて行うものであり、昼間の負荷の高い冷房運転と比べて必要な圧縮機容量も十分小さい。そのため、1台の熱源ユニットの稼働により2台分の蓄熱ユニットの蓄熱量を確保することは比較的容易である。   And the controller 4 drives the compressor 7 and the outdoor air blower 9 in any one heat source unit of the heat source units 2a and 2b during the heat storage operation, and causes the compressor 7 and the outdoor air blower 9 in the other heat source units to operate. Stop. More specifically, the heat storage operation is generally performed for a long time at night, and the required compressor capacity is sufficiently small as compared with the cooling operation with a high daytime load. Therefore, it is relatively easy to ensure the heat storage amount of the two heat storage units by operating one heat source unit.

第一の実施例では、蓄熱ユニット3a,3bと熱源ユニット2a,2bを離して設置すると、室外側分岐ガス配管32a,32bが長くなり、施工スペースの増大や施工性が悪くなり易いという課題があったが、本実施例では、室外側分岐ガス配管32a,32bを短くできる。代わりに共通ガス配管30は長くなるが、配管本数が減少するため、施工スペースを低減できるだけでなく、施工性も向上させることができる。   In the first embodiment, when the heat storage units 3a and 3b and the heat source units 2a and 2b are installed apart from each other, the outdoor branch gas pipes 32a and 32b become longer, and the problem is that the construction space is increased and the workability is liable to deteriorate. However, in this embodiment, the outdoor branch gas pipes 32a and 32b can be shortened. Instead, the common gas pipe 30 becomes longer, but the number of pipes decreases, so that not only the construction space can be reduced, but also the workability can be improved.

また、第一の実施例では、特に蓄熱ユニット3a,3bの容量が異なる場合など、各熱源ユニット2a,2bがどちらの蓄熱ユニット3a,3bに接続されているのか、コントローラ4に認識させる必要があるので、実際の配管系統と設定値が異なっていると、正しく動作しない可能性があった。しかし、本実施例では各熱源ユニット2a,2bと蓄熱ユニット3aと3bの接続対応関係をコントローラ4へ認識させる必要がないというメリットが得られる。したがって、認識させるための施工を削減できるだけでなく、例えば、接続対応関係の設定ミスによる施工不良等が発生することを避けられるので、信頼性が向上する。   Further, in the first embodiment, it is necessary to make the controller 4 recognize which heat storage unit 3a, 3b is connected to which heat source unit 2a, 2b, particularly when the heat storage units 3a, 3b have different capacities. Therefore, if the set value is different from the actual piping system, it may not work properly. However, in this embodiment, there is an advantage that it is not necessary to make the controller 4 recognize the connection correspondence between the heat source units 2a and 2b and the heat storage units 3a and 3b. Therefore, not only can the construction for recognition be reduced, but also, for example, it is possible to avoid the occurrence of construction failure due to a setting error in the connection correspondence relationship, thereby improving the reliability.

また、コントローラ4は、蓄熱運転時に駆動する圧縮機7等を、積算運転時間(及び過去の運転回数等の情報)に基づいて、熱源ユニット2a又は2bのものに選択的に切換える。これにより、熱源ユニット2a,2bの積算運転時間の均一化を図るようになっている。また、熱源ユニット2a,2bのうちの一方の熱源ユニットが故障した場合に、他方の熱源ユニットを稼働するように切換え、運転を継続させるようになっている。   The controller 4 selectively switches the compressor 7 or the like that is driven during the heat storage operation to that of the heat source unit 2a or 2b based on the accumulated operation time (and information such as the past number of operations). Thereby, the integrated operation time of the heat source units 2a and 2b is made uniform. Further, when one of the heat source units 2a and 2b fails, the other heat source unit is switched to operate and the operation is continued.

以上のように構成された本実施形態においては、例えば蓄熱運転時に熱源ユニット2aの圧縮機7等を駆動させ、熱源ユニット2bの圧縮機7等を停止させた場合、蓄熱ユニット3aの蓄熱熱交換器22から流出する気液二相状態の冷媒と蓄熱ユニット3bの蓄熱熱交換器22から流出する気液二相状態の冷媒は、蓄熱ガス配管51cを介し共通ガス配管30に合流するものの、稼働中の熱源ユニット2aの圧縮機7の吸込側のみに戻される。これにより、蓄熱運転時に熱源ユニット2a,2bへ気液二相状態の冷媒を分配しないので、気液二相状態の冷媒の分配によって生じやすい熱源ユニットの冷媒不足を回避することができる。したがって、例えば圧縮機7内の潤滑不良等の不具合を回避することができ、信頼性を向上させることができる。   In the present embodiment configured as described above, for example, when the compressor 7 or the like of the heat source unit 2a is driven during the heat storage operation and the compressor 7 or the like of the heat source unit 2b is stopped, the heat storage heat exchange of the heat storage unit 3a is performed. Although the gas-liquid two-phase refrigerant flowing out of the storage unit 22 and the gas-liquid two-phase refrigerant flowing out of the heat storage heat exchanger 22 of the heat storage unit 3b merge into the common gas pipe 30 via the heat storage gas pipe 51c, It is returned only to the suction side of the compressor 7 of the heat source unit 2a inside. Thereby, since the refrigerant in the gas-liquid two-phase state is not distributed to the heat source units 2a and 2b during the heat storage operation, it is possible to avoid the refrigerant shortage of the heat source unit that is likely to occur due to the distribution of the refrigerant in the gas-liquid two-phase state. Therefore, for example, problems such as poor lubrication in the compressor 7 can be avoided, and the reliability can be improved.

なお、上記第3の実施形態においては、特に説明しなかったが、例えば、熱源ユニット2aの圧縮機7等と熱源ユニット2bの圧縮機7等は同じ容量であってもよい。また、例えば、一方の熱源ユニット2aの圧縮機7等を比較的大容量としつつ、他方の熱源ユニット2bの圧縮機7等を比較的小容量としてもよい。その場合には、コントローラ4は、蓄熱運転を短時間で行いたいときや外気温度が高く所定の蓄熱量が確保しにくいとき等の条件に応じて、蓄熱運転時に稼働する熱源ユニットを選択してもよい。この場合も、上記同様の効果を得ることができる。   Although not specifically described in the third embodiment, for example, the compressor 7 and the like of the heat source unit 2a and the compressor 7 and the like of the heat source unit 2b may have the same capacity. For example, the compressor 7 or the like of one heat source unit 2a may have a relatively large capacity while the compressor 7 or the like of the other heat source unit 2b may have a relatively small capacity. In that case, the controller 4 selects a heat source unit that operates during the heat storage operation depending on conditions such as when it is desired to perform the heat storage operation in a short time or when the outside air temperature is high and it is difficult to secure a predetermined heat storage amount. Also good. In this case, the same effect as described above can be obtained.

また、上記第3の実施形態においては、2台の蓄熱ユニットを接続した場合の例に示したが、これに限らない。すなわち、図11に示すように、蓄熱ユニットを1台としても良い。このような変形例においても、蓄熱運転時に駆動する圧縮機7等を、複数の熱源ユニット間で切換えることにより、蓄熱熱交換器22から流出する気液二相状態の冷媒を複数の熱源ユニット2a,2bへ分配する必要がなくなるので、各熱源ユニットでの冷媒不足を回避することができ、信頼性を向上させることができる。   Moreover, in the said 3rd Embodiment, although shown in the example at the time of connecting two heat storage units, it does not restrict to this. That is, as shown in FIG. 11, it is good also as one heat storage unit. Also in such a modification, by switching the compressor 7 or the like that is driven during the heat storage operation between the plurality of heat source units, the gas-liquid two-phase refrigerant flowing out of the heat storage heat exchanger 22 is changed to the plurality of heat source units 2a. , 2b is not necessary, so that a shortage of refrigerant in each heat source unit can be avoided and reliability can be improved.

なお、上記第3の実施形態及び変形例においては、上記第2の実施形態と同様、蓄熱ユニット3a,3bの分岐配管23cに温度センサ29を設け、コントローラ4が蓄熱運転時に蓄熱ユニット3aの温度センサ29の検出温度と蓄熱ユニット3bの温度センサ29の検出温度が同じとなるように蓄熱膨張弁26の開度を補正してもよい。この場合には、蓄熱熱交換器22の出口側での過熱ガス化を防止できる。   In the third embodiment and the modified example, as in the second embodiment, the temperature sensor 29 is provided in the branch pipe 23c of the heat storage units 3a and 3b, and the controller 4 performs the temperature of the heat storage unit 3a during the heat storage operation. You may correct the opening degree of the thermal storage expansion valve 26 so that the detection temperature of the sensor 29 and the detection temperature of the temperature sensor 29 of the thermal storage unit 3b may become the same. In this case, overheating gasification on the outlet side of the heat storage heat exchanger 22 can be prevented.

また、上記第3の実施形態及び変形例においては、2台の室内ユニット1a,1b、2台の熱源ユニット2a,2b、及び1台もしくは2台の蓄熱ユニット3a,3bを備えた構成に適用した場合を例にとって説明したが、これに限られない。すなわち、例えば、室内ユニットは1台又は3台以上備えてもよい。また、例えば、熱源ユニットは3台以上備えてもよい。また、例えば、蓄熱ユニットは1台もしくは3台以上備えてもよい。それらの場合も、上記同様の効果を得ることができる。   Moreover, in the said 3rd Embodiment and modification, it applies to the structure provided with the two indoor units 1a and 1b, the two heat source units 2a and 2b, and the one or two heat storage units 3a and 3b. However, the present invention is not limited to this. That is, for example, one or three or more indoor units may be provided. Further, for example, three or more heat source units may be provided. Further, for example, one or more heat storage units may be provided. In those cases, the same effect as described above can be obtained.

1a,1b 室内ユニット
2a,2b 熱源ユニット
3a,3b 蓄熱ユニット
4 コントローラ(制御手段)
5 室内熱交換器
6 室内膨張弁(電磁弁)
7 圧縮機
8 室外熱交換器
10 室外膨張弁(電磁弁)
11 吸込側ガス配管
12 吐出側ガス配管
13 四方弁(切換弁,電磁弁)
14 ガス配管
20 液配管
22 蓄熱熱交換器
24a 開閉弁(第1の電磁弁)
24b 開閉弁(第2の電磁弁)
24c 開閉弁(第3の電磁弁)
24d 開閉弁(電磁弁)
25 レシーバタンク
26 蓄熱膨張弁
28 冷媒戻し配管
29 温度センサ(温度検出器)
30 共通ガス配管
31a,31b 室内側分岐ガス配管
32a,32b 室外側分岐ガス配管
40a,40b 共通液配管
41a,41b 室内側分岐液配管
42a〜42d 蓄熱液配管
43a,43b 室外側分岐液配管
50a,50b 蓄熱ガス配管(第1の蓄熱ガス配管)
51a〜51c 蓄熱ガス配管(第2の蓄熱ガス配管)
52a,52b 蓄熱ガス配管(第3の蓄熱ガス配管)
1a, 1b Indoor units 2a, 2b Heat source units 3a, 3b Heat storage unit 4 Controller (control means)
5 Indoor heat exchanger 6 Indoor expansion valve (solenoid valve)
7 Compressor 8 Outdoor heat exchanger 10 Outdoor expansion valve (solenoid valve)
11 Suction side gas piping 12 Discharge side gas piping 13 Four-way valve (switching valve, solenoid valve)
14 Gas piping 20 Liquid piping 22 Heat storage heat exchanger 24a On-off valve (first solenoid valve)
24b On-off valve (second solenoid valve)
24c On-off valve (third solenoid valve)
24d Open / close valve (solenoid valve)
25 Receiver tank 26 Thermal storage expansion valve 28 Refrigerant return pipe 29 Temperature sensor (temperature detector)
30 Common gas piping 31a, 31b Indoor side branch gas piping 32a, 32b Outdoor side branch gas piping 40a, 40b Common liquid piping 41a, 41b Indoor side branch liquid piping 42a-42d Thermal storage liquid piping 43a, 43b Outdoor branch liquid piping 50a, 50b Thermal storage gas piping (first thermal storage gas piping)
51a-51c Thermal storage gas piping (2nd thermal storage gas piping)
52a, 52b Thermal storage gas piping (third thermal storage gas piping)

Claims (4)

冷媒を室内空気と熱交換させる室内熱交換器を備えた少なくとも1台の室内ユニットと、
前記室内ユニットと共に1つの冷凍サイクルを構成するように前記室内ユニットに対してガス配管及び液配管を介し並列接続され、冷媒を圧縮する圧縮機及び冷媒を室外空気と熱交換させる室外熱交換器を備えた複数台の熱源ユニットと、
前記室内ユニットと前記熱源ユニットとの間に接続され、冷媒を蓄熱媒体と熱交換させる蓄熱熱交換器を備えた複数台の蓄熱ユニットと、
前記圧縮機を制御するとともに、冷媒を前記室外熱交換器、前記蓄熱熱交換器、及び前記室内熱交換器のうちのいずれかに選択的に流通させるために複数の電磁弁を制御する制御手段とを備え、
前記制御手段は、前記圧縮機及び前記複数の電磁弁を制御して、少なくとも、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を蒸発器として作動させる蓄熱運転や、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を過冷却器、前記室内熱交換器を蒸発器として作動させる蓄熱利用冷房運転に切換える蓄熱式空気調和装置において、
前記複数台の熱源ユニットと前記複数台の蓄熱ユニットを同数とし、
前記ガス配管は前記複数台の各熱源ユニットに対して分岐するとともに、分岐した分岐ガス配管は前記複数台の各熱源ユニットに接続され、
蓄熱運転時に前記複数台の各蓄熱ユニットの前記蓄熱熱交換器から冷媒を気液二相状態で流出させ、前記気液二相状態の冷媒は前記蓄熱ユニット毎に接続される蓄熱ガス配管を通って流出し、前記各蓄熱ガス配管はそれぞれ異なる前記分岐ガス配管に接続される
ことを特徴とする蓄熱式空気調和装置。
At least one indoor unit including an indoor heat exchanger for exchanging heat between the refrigerant and room air;
A compressor that compresses refrigerant and an outdoor heat exchanger that exchanges heat with outdoor air are connected in parallel to the indoor unit via a gas pipe and a liquid pipe so as to form one refrigeration cycle together with the indoor unit. A plurality of heat source units provided,
A plurality of heat storage units connected between the indoor unit and the heat source unit, and provided with a heat storage heat exchanger for exchanging heat between the refrigerant and the heat storage medium;
Control means for controlling the compressor and controlling a plurality of solenoid valves for selectively circulating the refrigerant to any one of the outdoor heat exchanger, the heat storage heat exchanger, and the indoor heat exchanger And
The control means controls the compressor and the plurality of solenoid valves, and at least a heat storage operation for operating the outdoor heat exchanger as a condenser and the heat storage heat exchanger as an evaporator, and the outdoor heat exchanger. In a regenerative air conditioner that switches to a regenerative cooling operation that operates as a condenser, the regenerator heat exchanger as a subcooler, and the indoor heat exchanger as an evaporator,
The same number of the plurality of heat source units and the plurality of heat storage units,
The gas pipe branches to each of the plurality of heat source units, and the branched branch gas pipe is connected to each of the plurality of heat source units.
During the heat storage operation, the refrigerant flows out from the heat storage heat exchanger of each of the plurality of heat storage units in a gas-liquid two-phase state, and the refrigerant in the gas-liquid two-phase state passes through a heat storage gas pipe connected to each heat storage unit. The regenerative air conditioner is characterized in that each heat storage gas pipe is connected to a different branch gas pipe .
冷媒を室内空気と熱交換させる室内熱交換器を備えた少なくとも1台の室内ユニットと、
前記室内ユニットと共に1つの冷凍サイクルを構成するように前記室内ユニットに対してガス配管及び液配管を介し並列接続され、冷媒を圧縮する圧縮機及び冷媒を室外空気と熱交換させる室外熱交換器を備えた複数台の熱源ユニットと、
前記室内ユニットと前記熱源ユニットとの間に接続され、冷媒を蓄熱媒体と熱交換させる蓄熱熱交換器を備えた複数台又は1台の蓄熱ユニットと、
前記圧縮機を制御するとともに、冷媒を前記室外熱交換器、前記蓄熱熱交換器、及び前記室内熱交換器のうちのいずれかに選択的に流通させるために複数の電磁弁を制御する制御手段とを備え、
前記制御手段は、前記圧縮機及び前記複数の電磁弁を制御して、少なくとも、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を蒸発器として作動させる蓄熱運転や、前記室外熱交換器を凝縮器、前記蓄熱熱交換器を過冷却器、前記室内熱交換器を蒸発器として作動させる蓄熱利用冷房運転に切換える蓄熱式空気調和装置において、
蓄熱運転時に前記蓄熱熱交換器から流出する気液二相状態の冷媒を、前記ガス配管へ導出する蓄熱ガス配管を備えるとともに、
前記制御手段は、蓄熱運転時に駆動する前記圧縮機を、前記複数台の熱源ユニットのうちのいずれか1台の前記熱源ユニットのものに選択的に切換え、他の前記熱源ユニットが備える前記圧縮機は停止させることを特徴とする蓄熱式空気調和装置。
At least one indoor unit including an indoor heat exchanger for exchanging heat between the refrigerant and room air;
A compressor that compresses refrigerant and an outdoor heat exchanger that exchanges heat with outdoor air are connected in parallel to the indoor unit via a gas pipe and a liquid pipe so as to form one refrigeration cycle together with the indoor unit. A plurality of heat source units provided,
A plurality of or one heat storage unit including a heat storage heat exchanger connected between the indoor unit and the heat source unit to exchange heat between the refrigerant and the heat storage medium;
Control means for controlling the compressor and controlling a plurality of solenoid valves for selectively circulating the refrigerant to any one of the outdoor heat exchanger, the heat storage heat exchanger, and the indoor heat exchanger And
The control means controls the compressor and the plurality of solenoid valves, and at least a heat storage operation for operating the outdoor heat exchanger as a condenser and the heat storage heat exchanger as an evaporator, and the outdoor heat exchanger. In a regenerative air conditioner that switches to a regenerative cooling operation that operates as a condenser, the regenerator heat exchanger as a subcooler, and the indoor heat exchanger as an evaporator,
While comprising a heat storage gas pipe that leads out the gas-liquid two-phase refrigerant flowing out of the heat storage heat exchanger during the heat storage operation to the gas pipe,
The control means selectively switches the compressor driven during the heat storage operation to one of the plurality of heat source units, and the compressor included in the other heat source unit. Is a regenerative air conditioner that is stopped .
請求項1,2記載の蓄熱式空気調和装置において、
前記複数台の蓄熱ユニットは、
蓄熱運転時に前記蓄熱熱交換器の上流側となる位置に設けられ、蓄熱運転時に冷媒を減圧する膨張弁と、
蓄熱運転時に前記蓄熱熱交換器の下流側となる位置に設けられた温度検出器とを備え、
前記制御手段は、
蓄熱運転時に、全ての前記蓄熱ユニットの前記温度検出器で検出された冷媒温度が同じとなるように、前記膨張弁の開度を補正することを特徴とする蓄熱式空気調和装置。
The regenerative air conditioner according to claim 1 or 2,
The plurality of heat storage units are:
An expansion valve that is provided at a position on the upstream side of the heat storage heat exchanger during the heat storage operation and depressurizes the refrigerant during the heat storage operation;
A temperature detector provided at a position on the downstream side of the heat storage heat exchanger during heat storage operation,
The control means includes
The regenerative air conditioning apparatus, wherein the opening degree of the expansion valve is corrected so that the refrigerant temperatures detected by the temperature detectors of all the heat storage units are the same during the heat storage operation.
請求項1〜3のうちのいずれか1項記載の蓄熱式空気調和装置において、
前記蓄熱ユニットは、
蓄熱運転時に前記蓄熱熱交換器の上流側となる位置に設けられ、蓄熱運転時に冷媒を減圧する膨張弁と、
蓄熱運転時に前記膨張弁の上流側となる位置に設けられたレシーバタンクと、
前記熱源ユニット及び前記室内ユニットからの液配管と前記レシーバタンクとの間を連通・遮断する第1の電磁弁と、
前記蓄熱熱交換器と前記蓄熱ガス配管との間を連通・遮断する第2の電磁弁と、
前記レシーバタンクと前記蓄熱ガス配管との間で接続された冷媒戻し配管と、
前記冷媒戻し配管を連通・遮断させる第3の電磁弁とを備え、
前記運転制御手段は、
蓄熱運転時に、前記第1及び第2の電磁弁を開状態、前記第3の電磁弁を閉状態、前記膨張弁を絞り状態に制御する一方、蓄熱運転以外の他の運転時に、前記第1及び第2の電磁弁を閉状態、前記第3の電磁弁を開状態、前記膨張弁を全閉状態に制御することを特徴とする蓄熱式空気調和装置。
The regenerative air conditioner according to any one of claims 1 to 3,
The heat storage unit is
An expansion valve that is provided at a position on the upstream side of the heat storage heat exchanger during the heat storage operation and depressurizes the refrigerant during the heat storage operation;
A receiver tank provided at a position upstream of the expansion valve during heat storage operation;
A first solenoid valve for communicating / blocking between the heat source unit and the liquid pipe from the indoor unit and the receiver tank;
A second solenoid valve for communicating / blocking between the heat storage heat exchanger and the heat storage gas pipe;
A refrigerant return pipe connected between the receiver tank and the heat storage gas pipe;
A third solenoid valve for communicating / blocking the refrigerant return pipe,
The operation control means includes
During the heat storage operation, the first and second solenoid valves are opened, the third solenoid valve is closed, and the expansion valve is controlled to be in the throttled state. And a second electromagnetic valve is closed, the third electromagnetic valve is opened, and the expansion valve is fully closed.
JP2011089713A 2011-04-14 2011-04-14 Thermal storage air conditioner Expired - Fee Related JP5572579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089713A JP5572579B2 (en) 2011-04-14 2011-04-14 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089713A JP5572579B2 (en) 2011-04-14 2011-04-14 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JP2012220169A JP2012220169A (en) 2012-11-12
JP5572579B2 true JP5572579B2 (en) 2014-08-13

Family

ID=47271877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089713A Expired - Fee Related JP5572579B2 (en) 2011-04-14 2011-04-14 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP5572579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631671B1 (en) 2018-09-28 2020-01-15 ダイキン工業株式会社 Air conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133946A (en) * 1993-11-10 1995-05-23 Furukawa Electric Co Ltd:The Air-conditioning system
JP3653372B2 (en) * 1997-04-18 2005-05-25 三洋電機株式会社 Air conditioning system
JP3304866B2 (en) * 1998-02-13 2002-07-22 株式会社日立製作所 Thermal storage type air conditioner
JP4282864B2 (en) * 2000-02-22 2009-06-24 三菱電機株式会社 Thermal storage refrigeration system
JP2005042943A (en) * 2003-07-23 2005-02-17 Hitachi Ltd Heat storage type air conditioner
JP2006194478A (en) * 2005-01-12 2006-07-27 Tokyo Electric Power Co Inc:The Ice thermal storage air conditioner

Also Published As

Publication number Publication date
JP2012220169A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
US12173940B2 (en) Air conditioning system with capacity control and controlled hot water generation
JP6081033B1 (en) Air conditioner
EP2933588B1 (en) Air conditioning hot water supply composite system
JP4804396B2 (en) Refrigeration air conditioner
AU2004267299A1 (en) Refrigeration system
JP5901107B2 (en) Multi-type air conditioning system
AU2011358039A1 (en) Air-conditioning apparatus
KR20180039862A (en) Heat pump type water heater and Control method of it
US11226112B2 (en) Air-conditioning system
JP6508394B2 (en) Refrigeration system
EP2771627B1 (en) Regenerative air-conditioning apparatus
JP6246394B2 (en) Air conditioner
JP6846915B2 (en) Multi-chamber air conditioner
JP5872052B2 (en) Air conditioner
JP4553761B2 (en) Air conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP5005011B2 (en) Air conditioner
JP5572579B2 (en) Thermal storage air conditioner
CN114341569A (en) Heat source unit and refrigerating device
JP2007107859A (en) Gas heat pump type air conditioner
JP5517131B2 (en) Thermal storage air conditioner
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
KR102014457B1 (en) A combined refrigerating and air conditioning system
JP2006242506A (en) Thermal storage air conditioner
JP2015152270A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees