[go: up one dir, main page]

JP5565719B2 - Continuous liquid-liquid extraction device using emulsion flow - Google Patents

Continuous liquid-liquid extraction device using emulsion flow Download PDF

Info

Publication number
JP5565719B2
JP5565719B2 JP2007136496A JP2007136496A JP5565719B2 JP 5565719 B2 JP5565719 B2 JP 5565719B2 JP 2007136496 A JP2007136496 A JP 2007136496A JP 2007136496 A JP2007136496 A JP 2007136496A JP 5565719 B2 JP5565719 B2 JP 5565719B2
Authority
JP
Japan
Prior art keywords
liquid
phase
extraction
emulsion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136496A
Other languages
Japanese (ja)
Other versions
JP2008289975A (en
Inventor
弘親 長縄
信之 柳瀬
哲志 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2007136496A priority Critical patent/JP5565719B2/en
Publication of JP2008289975A publication Critical patent/JP2008289975A/en
Application granted granted Critical
Publication of JP5565719B2 publication Critical patent/JP5565719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

水溶液に含まれる金属イオンなどの成分を、抽出剤を含む水と混じり合わない溶媒(有機溶媒など)に抽出する液-液抽出法(溶媒抽出法)は、金属の精製、核燃料の再処理、廃水中の微量有害成分の除去、有価物質の分離・回収による再資源化など、広く産業で利用されている。水溶液中の目的成分を効率的に溶媒抽出するためには、水相と抽出溶媒相をよく混合することによって液-液界面の面積を大きくすることで、界面反応を促進させる必要がある。そこで、通常は、振とう、撹拌などを持続的に行って、エマルション状態(水と有機溶媒などが混じりあって白濁した状態)を十分な時間、維持させることにより、液-液間の物質移行を平衡状態に達せしめる。   Liquid-liquid extraction methods (solvent extraction methods) that extract components such as metal ions contained in aqueous solutions into solvents (such as organic solvents) that do not mix with water containing extractants include metal purification, nuclear fuel reprocessing, Widely used in industry, such as removal of trace harmful components from wastewater and recycling by separation and recovery of valuable substances. In order to efficiently extract the target component in the aqueous solution, it is necessary to promote the interfacial reaction by increasing the area of the liquid-liquid interface by thoroughly mixing the aqueous phase and the extraction solvent phase. Therefore, the substance transfer between liquid and liquid is usually carried out by continuously shaking and stirring, and maintaining the emulsion state (a state in which water and organic solvent are mixed and clouded) for a sufficient period of time. To reach equilibrium.

本発明は、振とう、撹拌などを用いることなく連続的にエマルション状態を発現させ、尚且つエマルション状態の流れ(エマルションフローと称する)を利用することで、水相と抽出溶媒相との効率的な接触を迅速に完了させる方法、及びエマルションフローによる2液相接触を利用した連続液-液抽出装置に関するものである。   In the present invention, an emulsion state is continuously expressed without using shaking, stirring, and the like, and the flow of the emulsion state (referred to as an emulsion flow) is used, so that the aqueous phase and the extraction solvent phase can be efficiently used. The present invention relates to a method for rapidly completing simple contact, and a continuous liquid-liquid extraction device using two liquid phase contact by emulsion flow.

連続的に一定流量の水相と抽出溶媒相を導入しながら水相中の成分を抽出溶媒相に抽出する装置としては、撹拌機を利用するミキサセトラが広く普及している。また、パルス発生を液滴分散に利用したパルスカラム、遠心力を利用して分散・相分離を行う遠心抽出器といった比較的新しい連続液-液抽出装置も、様々な産業分野で利用されつつある。表1に、これらの既存の液-液抽出装置の間で比較されるいくつかの項目についてまとめた。いずれの液-液抽出装置も大量の溶液処理に適しており、総合的に判断すると、迅速性、混合状態の良好さ、コンパクトさのいずれについても良好と評価できる遠心抽出器が最も優れている。その一方で、どの既存装置も、操作性の悪さ、廃液の発生、流速・流量などの変化に対する弱さ、運転コスト及びメンテナンスコストの大きさ、安全面での不安など、いくつかの共通する問題点を抱えている(表2を参照)。   As an apparatus for continuously extracting a component in an aqueous phase into an extraction solvent phase while introducing a constant flow rate of an aqueous phase and an extraction solvent phase, a mixer setra using an agitator is widely used. In addition, relatively new continuous liquid-liquid extraction devices such as pulse columns that use pulse generation for droplet dispersion and centrifugal extractors that use centrifugal force to perform dispersion and phase separation are also being used in various industrial fields. . Table 1 summarizes some items compared between these existing liquid-liquid extraction devices. All liquid-liquid extraction devices are suitable for processing a large amount of solution, and when judged comprehensively, a centrifugal extractor that can be evaluated as good in terms of speed, good mixing condition, and compactness is the best. . On the other hand, all existing devices have some common problems, such as poor operability, generation of waste liquid, weakness to changes in flow rate and flow rate, large operating and maintenance costs, safety concerns, etc. I have a point (see Table 2).

Figure 0005565719
Figure 0005565719

Figure 0005565719
Figure 0005565719

溶媒抽出法では、水相と抽出溶媒相を十分に混合して液-液界面の面積を大きくする必要がある。水相と抽出溶媒相が混じり合い白濁したエマルション状態は、物質の相間移動(すなわち、溶媒抽出)に最も適した状態である。従来、混じり合わない2液相をエマルション状態にするためには、振とう、撹拌、遠心力、あるいは超音波による微振動といった機械的作用を持続的に与える方法がとられる。たとえば、ミキサセトラや遠心抽出器では、持続的な撹拌もしくは遠心力によってエマルション状態を維持させる。バッチ式の溶媒抽出では、2液相の持続的な振とうによってエマルション状態を維持させる装置(水平式もしくは縦振り式の振とう機、ボルテックスミキサーなど)が用いられる。   In the solvent extraction method, it is necessary to sufficiently mix the aqueous phase and the extraction solvent phase to increase the area of the liquid-liquid interface. The emulsion state in which the aqueous phase and the extraction solvent phase are mixed and clouded is the most suitable state for phase transfer of substances (ie, solvent extraction). Conventionally, in order to make two liquid phases which are not mixed into an emulsion state, a method of continuously giving mechanical action such as shaking, stirring, centrifugal force, or fine vibration by ultrasonic waves is used. For example, in a mixer setra and a centrifugal extractor, an emulsion state is maintained by continuous stirring or centrifugal force. In the batch type solvent extraction, an apparatus (such as a horizontal or vertical shaker, a vortex mixer, etc.) that maintains the emulsion state by continuous shaking of two liquid phases is used.

一方、パルスカラムでは、振とうの替わりにパルスを与えることで多孔板から水相を抽出溶媒相に液滴として分散させるが、エマルション状態にまでは至らない。また、エマルションは両相に超音波を当てることによっても生じるが、エマルションのサイズが小さくなり過ぎるために超音波を止めてもすぐに相分離が起こらない(たとえば、静置状態で相分離に10時間以上を要する)。溶媒抽出では、十分な両相の混合だけではなく速やかな相分離も重要であるため、超音波によってエマルション状態をつくりだす方法は適切とは言えない。また、超音波による継続的な微振動は、装置の材質劣化や接合部の破損をもたらす点からも好ましくはない。   On the other hand, in the pulse column, the water phase is dispersed as droplets from the perforated plate into the extraction solvent phase by giving a pulse instead of shaking, but does not reach an emulsion state. Emulsions are also generated by applying ultrasonic waves to both phases, but because the emulsion size becomes too small, phase separation does not occur immediately even when the ultrasonic waves are stopped (for example, phase separation 10 Takes more time). In solvent extraction, not only sufficient mixing of both phases but also rapid phase separation is important, and it is not appropriate to create an emulsion state by ultrasonic waves. In addition, continuous fine vibration due to ultrasonic waves is not preferable from the viewpoint of causing material deterioration of the apparatus and damage to the joint.

振とう、撹拌、あるいは遠心力を利用する方法は、通常の液-液抽出においてマクロ量の溶液を扱うほとんどの既存抽出装置に共通する原理である。しかしながら、2液相の混合に十分な機械的作用を絶えず一定に与え続けなければならないことは、必然的にいくつかのデメリットを派生させる。   The method using shaking, stirring, or centrifugal force is a principle common to most existing extraction apparatuses that handle a macro amount of solution in normal liquid-liquid extraction. However, the constant and constant mechanical action sufficient for mixing the two liquid phases inevitably leads to some disadvantages.

たとえば、1)機械的作用の持続的発生に大きなエネルギー負担を強いられるため、運転コストが大きい、2)持続的機械力を発生させる駆動部の負担が大きく、メンテナンスコストが大きい、3)連続抽出では、機械的作用を一定且つ精度良くコントロールしなければ抽出装置を安定に運転できないことから、常に調整作業を要するので、操作性が悪い、4)駆動部に強度の高い材料(たとえば、ステンレススチール)を必要とする、5)振とう、撹拌、あるいは高速回転に伴う騒音が発生する、が挙げられる(表2を参照)。現時点において、持続的機械力に依らず2液相をエマルション状態のまま保持する方法及びその方法を利用した連続液-液抽出装置は、まだ知られていない。   For example, 1) A large energy burden is imposed on the continuous generation of mechanical action, so the operation cost is large, 2) The burden on the drive unit that generates a continuous mechanical force is large, and the maintenance cost is large, 3) Continuous extraction Then, since the extraction device cannot be stably operated unless the mechanical action is controlled with a constant and high accuracy, adjustment work is always required, so operability is poor. 4) High strength material (for example, stainless steel for the drive unit) 5), and 5) noise associated with shaking, stirring, or high-speed rotation is generated (see Table 2). At present, a method for maintaining two liquid phases in an emulsion state irrespective of a continuous mechanical force and a continuous liquid-liquid extraction device using the method are not yet known.

本発明の課題は、表1に記したすべての項目について満足が得られ、尚且つ表2に挙げた既存装置(ミキサセトラ、パルスカラム、及び遠心抽出器)が共通に持っている欠点のすべてが克服できる連続液-液抽出の方法、及びその方法を利用した装置を提案することである。   The object of the present invention is that all the items listed in Table 1 are satisfied, and all of the disadvantages common to the existing devices (mixer-settler, pulse column, and centrifugal extractor) listed in Table 2 are present. It is to propose a method of continuous liquid-liquid extraction that can be overcome, and an apparatus using the method.

本願発明者は、前記課題を解決すべく鋭意研究を重ねた結果、持続的な機械力(振とう、撹拌、遠心力など)に依ることなく、2液相を安定なエマルション状態にすることに成功した。この方法を利用すれば、運転・維持コストが小さく、操作性が高く、安全性が高く、騒音もほとんど発生しない連続液-液抽出装置の創製が可能になる。   As a result of intensive studies to solve the above problems, the present inventor has decided to make the two liquid phases into a stable emulsion state without depending on continuous mechanical force (shaking, stirring, centrifugal force, etc.). Successful. If this method is used, it becomes possible to create a continuous liquid-liquid extraction device that has low operation and maintenance costs, high operability, high safety, and little noise.

具体的には、水溶液を微細化して噴出する機能を有するヘッド部を通じて、水相を抽出溶媒相の中に導入することにより、撹拌などの機械的作用を持続的に与えることなく、安定なエマルション状態を連続的な流れとしてつくりだせることを見出した。また、エマルション状態の流れであるエマルションフローは、容器形状が大きく変化する部位において速やかに消失することも、併せて発見した。本願発明装置であるエマルションフローを利用した連続液-液抽出装置では、既存の連続液-液抽出装置とは異なり、送液と同時に2液相混合が進行するため、送液のエネルギー負担のみが存在し、2液相混合に要するエネルギー負担は事実上存在しない。   Specifically, by introducing a water phase into an extraction solvent phase through a head part that has a function of atomizing an aqueous solution and ejecting it, a stable emulsion without continuously giving mechanical action such as stirring. I found that the state can be created as a continuous flow. It was also discovered that the emulsion flow, which is a flow in the emulsion state, quickly disappears at a site where the container shape greatly changes. Unlike the existing continuous liquid-liquid extraction device, the continuous liquid-liquid extraction device using the emulsion flow that is the invention device of the present invention is different from the existing continuous liquid-liquid extraction device. Exists and there is virtually no energy burden required for two-liquid phase mixing.

本願発明は、以上のような新しい知見に基づいて完成されたものである。本願発明では、まず第一に、エマルションフローを利用した新しい液-液抽出の原理を提案する。第二には、その新原理を利用した連続液-液抽出装置を提供する。   The present invention has been completed based on the above new findings. In the present invention, first, a new principle of liquid-liquid extraction using emulsion flow is proposed. Second, we will provide a continuous liquid-liquid extraction device that uses the new principle.

上記の通りの本願発明による方法を用いれば、従来の連続液-液抽出装置に共通する問題点(操作性の悪さ、コスト高、安全面での不安など)のすべてが解消され、尚且つ、迅速性、大量処理能力、効率性、コンパクトさについては、最良の既存装置(遠心抽出器)に匹敵する性能を有する装置の創製が可能となる。   By using the method according to the present invention as described above, all of the problems (poor operability, high cost, safety concerns, etc.) common to conventional continuous liquid-liquid extraction devices are eliminated, and With regard to rapidity, mass throughput, efficiency, and compactness, it is possible to create an apparatus having performance comparable to the best existing apparatus (centrifugal extractor).

エマルションフロー抽出装置の小型プロトタイプを製作し、エマルションフローの発生原理、及びその抽出性能の評価を行った。装置の概要を図1に示す。抽出性能評価としては、10 Lの試料水溶液中に含まれる微量成分を0.05Lの抽出溶媒相に抽出・濃集する実験を行った。その結果、表1に示したすべての項目にほぼ満足な結果が得られるとともに、既存装置では叶わなかった表2に挙げた項目についても、それらすべてを満足できることがわかった。   A small prototype of the emulsion flow extraction device was manufactured and the generation principle of the emulsion flow and its extraction performance were evaluated. An outline of the apparatus is shown in FIG. For evaluation of extraction performance, an experiment was conducted in which trace components contained in a 10 L sample aqueous solution were extracted and concentrated in a 0.05 L extraction solvent phase. As a result, it was found that almost satisfactory results were obtained for all the items shown in Table 1, and all items listed in Table 2 that could not be realized with the existing apparatus could be satisfied.

本発明を図1に基づいて説明する。試料水溶液リザーバーと連続液-液抽出装置とを結合する導管に設けられた送液ポンプにより、リザーバーからの水溶液を、抽出装置のヘッド部である水溶液微細化用の円筒を通し、そのヘッド部が配置されている抽出溶媒中に噴出する。この水溶液を微細化して抽出溶媒中に噴出させる機能を有する円筒は、例えば、耐溶媒性樹脂を素材とする円筒の一端を10μmから200μmのメッシュを有する耐溶媒性樹脂製のシートで覆った構造のもの、又は耐溶媒性樹脂を素材とする一端の閉じた円筒の回りに適当数の穴をあけ、その表面を前述のような樹脂製シートで覆った構造のものである。抽出溶媒が水よりも軽い液体である場合、図1に示すように、ヘッド部を装置上部に配置して上から下に向けて水溶液を噴出させるが、抽出溶媒が水よりも重い液体の場合には、図1とは上下が逆になり、ヘッド部を装置下部に配置して下から上に向けて水溶液を噴出させることになる。   The present invention will be described with reference to FIG. A solution pump provided in a conduit connecting the sample aqueous solution reservoir and the continuous liquid-liquid extraction device passes the aqueous solution from the reservoir through an aqueous solution refinement cylinder, which is the head portion of the extraction device. It spouts into the extraction solvent which is arranged. The cylinder having the function of making this aqueous solution fine and ejecting it into the extraction solvent has, for example, a structure in which one end of a cylinder made of solvent-resistant resin is covered with a sheet made of solvent-resistant resin having a mesh of 10 μm to 200 μm Or a structure in which an appropriate number of holes are formed around a closed cylinder made of a solvent-resistant resin and the surface thereof is covered with a resin sheet as described above. When the extraction solvent is a liquid lighter than water, as shown in FIG. 1, the head portion is arranged at the upper part of the apparatus and the aqueous solution is ejected from the top to the bottom, but when the extraction solvent is a liquid heavier than water 1 is upside down from FIG. 1, and the head portion is arranged at the lower part of the apparatus, and the aqueous solution is ejected from the bottom to the top.

水溶液を微細化して抽出溶媒中に噴出させることにより、抽出装置のカラム部には、水溶液と抽出溶媒との混合相からなる流れ(エマルションフローと称する)が発生する。その混合相が抽出装置の相分離部に到達して水溶液相と抽出溶媒相に分かれ、水溶液相は排水として取り出される一方、抽出溶媒相は再びエマルションフローの中に取り込まれる。抽出溶媒が水よりも軽い液体である場合、図1に示すように、エマルションフローは下降流となって発生し、水溶液相は装置下部から排水されるが、抽出溶媒が水よりも重い液体の場合には、図1とは上下が逆になり、エマルションフローは上昇流となって発生し、水溶液相は装置上部から排水されることになる。   When the aqueous solution is refined and ejected into the extraction solvent, a flow composed of a mixed phase of the aqueous solution and the extraction solvent (referred to as an emulsion flow) is generated in the column portion of the extraction device. The mixed phase reaches the phase separation part of the extraction device and is divided into an aqueous solution phase and an extraction solvent phase. The aqueous solution phase is taken out as waste water, while the extraction solvent phase is taken into the emulsion flow again. When the extraction solvent is a liquid lighter than water, as shown in FIG. 1, the emulsion flow is generated as a downward flow and the aqueous phase is drained from the lower part of the apparatus, but the extraction solvent is a liquid heavier than water. In this case, the upper and lower sides of FIG. 1 are reversed, the emulsion flow is generated as an upward flow, and the aqueous solution phase is drained from the upper part of the apparatus.

カラム部でのエマルション状態によって液-液界面反応が十分に達成できた後、相分離部において速やかに水相と抽出溶媒相とが相分離される。かかる相分離は、カラム部から相分離部にかけての容器の急激な形状・体積の変化により、縦方向の一定の流れを乱すとともに流速を激減させることで、エマルション状態を即座に解消させることで行われる。抽出溶媒が水よりも軽い液体である場合、図1に示すように、相分離部は装置下部に位置するが、抽出溶媒が水よりも重い液体の場合には、図1とは逆に、相分離部は装置上部に位置することになる。以下に、いくつかの具体的な実施例を示す。   After the liquid-liquid interface reaction has been sufficiently achieved by the emulsion state in the column part, the aqueous phase and the extraction solvent phase are rapidly separated in the phase separation part. Such phase separation is performed by immediately eliminating the emulsion state by disturbing a constant flow in the vertical direction and drastically decreasing the flow rate due to a sudden change in the shape and volume of the container from the column part to the phase separation part. Is called. When the extraction solvent is a liquid lighter than water, as shown in FIG. 1, the phase separation unit is located at the lower part of the apparatus. However, when the extraction solvent is a liquid heavier than water, contrary to FIG. The phase separation part is located in the upper part of the apparatus. The following are some specific examples.

(実施例1)装置の製作とエマルションフローの発生実験
エマルションフロー連続液-液抽出装置の小型プロトタイプを製作した(図1参照)。ヘッド部には、70μmのメッシュを有するテフロンシートで覆った一端の閉じたポリプロピレン製の筒(直径2 mmの穴を24個あけたもの)を用いた。また、カラム部の直径は30 mm、長さは400 mmであり、相分離部の底面の直径は150 mmである。
(Example 1) Production of device and generation experiment of emulsion flow A small prototype of an emulsion flow continuous liquid-liquid extraction device was produced (see Fig. 1). For the head part, a polypropylene tube (one with 24 holes of 2 mm in diameter) closed at one end and covered with a Teflon sheet having a mesh of 70 μm was used. The column portion has a diameter of 30 mm and a length of 400 mm, and the bottom surface of the phase separation portion has a diameter of 150 mm.

図2(b)に、抽出溶媒相として抽出剤であるビス(2-エチルヘキシル)リン酸(DEHPA)を1 × 10-2 M含むイソオクタン(0.05L)を用い、そこに、送液ポンプによって水を装置に0.5L/分の流量で通液したときの、エマルションフローの発生を写真で示す。ポンプを起動して5秒程度で、安定なエマルションフローが発生した。一方、図2(a)には、送液ポンプによって水を装置に通液していないときの状態が示されている。
(実施例2)Yb(III)及びU(VI)の抽出率と通液量との関係
(実施例1)で製作した装置を用いて、金属イオンの抽出に対する性能試験を行った。金属イオンとしてYb(III)及びU(VI)を選び、抽出剤としてDEHPAを用いて、これらの金属イオンの抽出率と通液量との関係を調べた。試料水溶液(水相)の体積は10L、抽出溶媒相の体積は0.05Lであり、抽出溶媒にはイソオクタンを用いた。水相は、硝酸を加えてpHを2.0に調整し、水相中のYb(III)及びU(VI)の濃度は、それぞれ6 × 10-6 M、4 × 10-8 Mとした。また、抽出溶媒相中の抽出剤(DEHPA)の濃度は1 × 10-2Mとした。水相のフィード流量は、0.5L/分で行った。なお、排水された水相を2L毎に少量採取し、それぞれの金属イオンの濃度を誘導結合プラズマ質量分析装置(ICP-MS)を用いて測定した。図3はその結果であり、水相のフィード流量が0.5L/分の場合、Yb(III)、U(VI)のいずれについても、通液量に関係なく、およそ90%の抽出率が得られることを示している。
(実施例3)水相のフィード流量とYbの抽出率との関係
(実施例1)で製作した装置を用いて、運転の安定性の観点から、フィード流量変化の影響についての性能試験を行った。金属イオンとしてYb(III)を選び、抽出剤としてDEHPAを用いて、試料水溶液(水相)のフィード流量とYb(III)の抽出率との関係を調べた。水相の体積は10L、抽出溶媒相の体積は0.05Lであり、抽出溶媒にはイソオクタンを用いた。水相は、硝酸を加えてpHを2.0に調整し、水相中のYb(III)の濃度は6 × 10-6 Mとした。また、抽出溶媒相中の抽出剤(DEHPA)の濃度は1 × 10-2 Mとした。フィード流量は、0.5L/分及びその半分以下の0.22L/分として、図3と同様に排水された水相を2L毎に少量採取し、それぞれのフィード流量の場合でのYb(III)の抽出率を比較した。図4はその結果であり、フィード流量が大きく変わっても、Ybの抽出率はほとんど変化せず、およそ90%であることを示している。
(実施例4)装置を停止したときに再開に要する時間
運転していた装置を一旦、完全に停止させた後、再度、送液ポンプを起動してから安定なエマルションフローが発生するまでの時間を測定した。
In FIG. 2 (b), isooctane (0.05 L) containing 1 × 10 −2 M of bis (2-ethylhexyl) phosphoric acid (DEHPA), which is an extractant, is used as the extraction solvent phase, and water is supplied thereto by a liquid feed pump. The photograph shows the generation of emulsion flow when the liquid was passed through the apparatus at a flow rate of 0.5 L / min. A stable emulsion flow occurred about 5 seconds after the pump was started. On the other hand, FIG. 2A shows a state when water is not passed through the apparatus by the liquid feed pump.
(Example 2) A performance test for extraction of metal ions was performed using an apparatus manufactured according to the relationship between the extraction rate of Yb (III) and U (VI) and the flow rate (Example 1). Using Yb (III) and U (VI) as metal ions and using DEHPA as an extractant, the relationship between the extraction rate of these metal ions and the flow rate was investigated. The volume of the sample aqueous solution (aqueous phase) was 10 L, the volume of the extraction solvent phase was 0.05 L, and isooctane was used as the extraction solvent. The aqueous phase was adjusted to pH 2.0 by adding nitric acid, and the concentrations of Yb (III) and U (VI) in the aqueous phase were 6 × 10 −6 M and 4 × 10 −8 M, respectively. The concentration of the extractant (DEHPA) in the extraction solvent phase was 1 × 10 −2 M. The feed flow rate of the aqueous phase was 0.5 L / min. A small amount of the drained aqueous phase was sampled every 2 L, and the concentration of each metal ion was measured using an inductively coupled plasma mass spectrometer (ICP-MS). Figure 3 shows the results. When the feed flow rate of the aqueous phase is 0.5 L / min, an extraction rate of approximately 90% is obtained for both Yb (III) and U (VI) regardless of the flow rate. It is shown that.
(Example 3) Using the device manufactured in the relationship between the feed flow rate of the aqueous phase and the extraction rate of Yb (Example 1), from the viewpoint of operational stability, a performance test was conducted on the effect of changes in the feed flow rate. It was. Using Yb (III) as the metal ion and DEHPA as the extractant, the relationship between the feed flow rate of the sample aqueous solution (aqueous phase) and the extraction rate of Yb (III) was investigated. The volume of the aqueous phase was 10 L, the volume of the extraction solvent phase was 0.05 L, and isooctane was used as the extraction solvent. The aqueous phase was adjusted to pH 2.0 by adding nitric acid, and the concentration of Yb (III) in the aqueous phase was 6 × 10 −6 M. The concentration of the extractant (DEHPA) in the extraction solvent phase was 1 × 10 −2 M. The feed flow rate is 0.5 L / min and 0.22 L / min, which is half or less, and a small amount of the drained water phase is sampled every 2 L in the same way as in Fig. 3, and Yb (III) of each feed flow rate is collected. The extraction rate was compared. FIG. 4 shows the result, which shows that even if the feed flow rate changes greatly, the extraction rate of Yb hardly changes and is about 90%.
(Embodiment 4) Time required for restarting when the apparatus is stopped
After the apparatus that had been operating was once completely stopped, the time from when the liquid feed pump was started to when a stable emulsion flow was generated was measured again.

水相のフィード流量を0.5L/分として装置を運転中に、送液ポンプを突然停止させた。2分経過した後、再度、流量を0.5L/分として送液ポンプを稼働させたところ、約5秒でエマルションフローが安定に発生している状態にまで到達することがわかった。すなわち、突然にフィードが完全停止しても、調整作業を要することなく、即座に運転を再開できることがわかった。   The liquid feed pump was suddenly stopped during operation of the apparatus at an aqueous phase feed flow rate of 0.5 L / min. After 2 minutes, when the liquid feed pump was operated again at a flow rate of 0.5 L / min, it was found that the emulsion flow reached a stable state in about 5 seconds. That is, it was found that even if the feed suddenly stops completely, the operation can be resumed immediately without requiring adjustment work.

水溶液中に含まれる目的成分の精製、有価成分の分離・回収による再資源化、有害成分の除去など、様々な産業分野において、液-液抽出のニーズは高い。本願発明の液-液抽出に関する方法及び装置は、産業利用において非常に有利に働く数々の特徴をもつ。たとえば、運転コスト及びメンテナンスコストが小さく、且つ装置そのものも安価であるという特徴は、産業利用上、重要な要素である。また、人件費などの面から、長時間の調整作業を要しないこと、運転状況を見張る必要がないこと、熟練を要することなく経験がなくても誰もが簡単に操作できることは、従来の装置にはない格別の利点である。さらに、運転に伴う廃液が生じないこと、既存装置と比べて安全性が高いこと、騒音が発生しないことなどのメリットは、環境への配慮という点から重要である。以上に加え、迅速性、大量処理能力、効率性、コンパクトさについては、最良の既存装置(遠心抽出器)に匹敵するため、今後、液-液抽出が関係する多くの産業において、大いに活用されるものと期待できる。また、今までの装置にはない種々の優れた特徴から、液-液抽出の新しい市場を開拓することも期待できる。   There are high needs for liquid-liquid extraction in various industrial fields such as purification of target components contained in aqueous solutions, recycling of valuable components by separation and recovery, and removal of harmful components. The liquid-liquid extraction method and apparatus of the present invention has numerous features that work very well in industrial applications. For example, the feature that the operation cost and the maintenance cost are small and the apparatus itself is inexpensive is an important factor for industrial use. In addition, from the standpoint of labor costs, it is not necessary to adjust for a long time, it is not necessary to watch the driving situation, and it is easy to operate without any skill and without any experience. This is a special advantage not available. In addition, merits such as no generation of waste liquid during operation, higher safety than existing devices, and no noise are important from the viewpoint of environmental considerations. In addition to the above, rapidity, mass throughput, efficiency, and compactness are comparable to the best existing equipment (centrifugal extractors), and will be greatly utilized in many industries that involve liquid-liquid extraction in the future. Can be expected. In addition, it can be expected that a new market for liquid-liquid extraction will be cultivated due to various excellent features not found in conventional equipment.

: 製作したエマルションフロー連続液-液抽出装置(小型プロトタイプ)の概要を示す図である。: It is a figure which shows the outline | summary of the manufactured emulsion flow continuous liquid-liquid extraction apparatus (small prototype). : (a)は通液しないときの状態を示し、(b)は送液ポンプを用いて水相を装置に通液したときのエマルションフローの発生を示した図である。: (A) shows a state when liquid is not passed, and (b) is a diagram showing the generation of emulsion flow when the aqueous phase is passed through the apparatus using a liquid feed pump. : 金属イオンに対する抽出性能試験の結果であり、Yb(III)及びU(VI)の抽出率と通液量との関係を示す図である。: It is a result of the extraction performance test with respect to metal ions, and is a diagram showing the relationship between the extraction rate of Yb (III) and U (VI) and the liquid flow rate. : 運転の安定性に関する性能試験の結果であり、水相のフィード流量の違いがYb(III)の抽出率に与える影響を示す図である。: It is the result of the performance test regarding the stability of operation, and shows the influence of the difference in the feed flow rate of the water phase on the extraction rate of Yb (III).

Claims (6)

送液ポンプによる水溶液の送液のみを利用して、筒状のカラム部内に設けられた微細化ヘッドを通じて水溶液を微細化して、当該カラム部内の抽出溶媒の中に噴出することにより、水相と抽出溶媒相が混合してエマルション状態の流れであるエマルションフローを作り、
筒状のカラム部内で、水相と抽出溶媒相の間の液−液界面反応が促進され、水相中の目的成分が迅速且つ効率的に抽出溶媒相に抽出され、
次いで、カラム部の径よりも拡径した径を有し、カラム部の体積よりも大きな体積を有する相分離部にエマルションフローを流入させて、縦方向の一定の流れを乱すとともに流速を減少させることで、エマルション状態を即座に解消させる、
ことを特徴とするエマルションフローを利用した、送液と同時に2液相混合を進行させる連続液−液抽出装置。
By using only the liquid solution feed by the liquid feed pump, the aqueous solution is refined through a miniaturization head provided in the cylindrical column part and ejected into the extraction solvent in the column part. The extraction solvent phase is mixed to create an emulsion flow that is a flow in the emulsion state.
In the cylindrical column part, the liquid-liquid interface reaction between the aqueous phase and the extraction solvent phase is promoted, and the target component in the aqueous phase is quickly and efficiently extracted into the extraction solvent phase.
Then, a diameter which is enlarged than the diameter of the column portion, and allowed to flow into the emulsion flow phase separation portion having a greater volume than the volume of the column portion, causing reduced flow rate with disturbing a constant flow in the longitudinal direction So that the emulsion state can be resolved immediately.
A continuous liquid-liquid extraction device that uses an emulsion flow to advance two-liquid phase mixing simultaneously with liquid feeding.
エマルションフローによる抽出及びエマルションの消失による相分離を1つの容器内でほとんど同時に進行させることで、迅速な連続的抽出を可能とする、請求項1に記載の連続液−液抽出装置。   The continuous liquid-liquid extraction device according to claim 1, wherein rapid continuous extraction is possible by allowing extraction by emulsion flow and phase separation by disappearance of emulsion to proceed almost simultaneously in one container. 水溶液を微細化して噴出する機能を有する微細化ヘッド、エマルション状態を維持するための筒状のカラム部、水相と抽出溶媒相の相分離を促す形状の部分の相分離部、及び送液ポンプから成り、
カラム部と相分離部の間に仕切りはなく容器として一体であり、
微細化ヘッドからの微細化された水溶液がカラム部内の抽出溶媒中に噴出されるように、微細化ヘッドは筒状のカラム部内に位置づけられている、
請求項1又は2に記載の連続液−液抽出装置。
A miniaturization head having a function of atomizing and ejecting an aqueous solution, a cylindrical column part for maintaining an emulsion state, a phase separation part having a shape that promotes phase separation of an aqueous phase and an extraction solvent phase, and a liquid feed pump Consisting of
There is no partition between the column part and the phase separation part, and it is an integral container.
The micronization head is positioned in the cylindrical column unit so that the micronized aqueous solution from the micronization head is ejected into the extraction solvent in the column unit.
The continuous liquid-liquid extraction apparatus according to claim 1 or 2.
微細化ヘッドが、耐溶媒性樹脂を素材とする円筒の一端を10μmから200μmのメッシュを有する耐溶媒性樹脂製のシートで覆った構造、又は耐溶媒性樹脂を素材とする一端の閉じた円筒の回りに適当数の穴をあけ、その表面を耐溶媒性樹脂のシートで覆った構造であるところの、請求項3に記載の連続液−液抽出装置。   A structure in which one end of a cylinder made of a solvent-resistant resin is covered with a sheet made of a solvent-resistant resin having a mesh of 10 μm to 200 μm, or a cylinder with one end closed using a solvent-resistant resin as a material The continuous liquid-liquid extraction device according to claim 3, wherein a suitable number of holes are formed around the surface of the substrate and the surface thereof is covered with a sheet of a solvent resistant resin. カラム部が、エマルション状態を長く維持させるための筒状部分を有し、筒壁における微細化水滴どうしの会合を防ぐため、疎水性樹脂を材料とする筒、又は内側を疎水加工もしくは疎水性シートで覆ったガラス筒を用いる、請求項4に記載の連続液−液抽出装置。 The column part has a cylindrical part for maintaining the emulsion state for a long time, in order to prevent the association of fine water droplets on the cylinder wall, or a hydrophobic resin or hydrophobic sheet inside the cylinder made of a hydrophobic resin material The continuous liquid-liquid extraction device according to claim 4, wherein a glass tube covered with is used. 相分離部が、エマルション状態における液−液界面反応が十分に達成できた後、速やかに水相と抽出溶媒相とを相分離させる部分であり、カラム部の径よりも拡径した径を有し、カラム部の体積よりも大きな体積を有する相分離部にエマルションフローを流入させて、縦方向の一定の流れを乱すとともに流速を減少させることで、エマルション状態を即座に解消させることを特徴とする、請求項4に記載の連続液−液抽出装置。 The phase separation part is a part that quickly separates the aqueous phase and the extraction solvent phase after the liquid-liquid interface reaction in the emulsion state has been sufficiently achieved, and has a diameter that is larger than the diameter of the column part. In addition , the emulsion flow is introduced into a phase separation section having a volume larger than the volume of the column section, disturbing a constant flow in the vertical direction and reducing the flow velocity, thereby eliminating the emulsion state immediately. The continuous liquid-liquid extraction device according to claim 4.
JP2007136496A 2007-05-23 2007-05-23 Continuous liquid-liquid extraction device using emulsion flow Active JP5565719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136496A JP5565719B2 (en) 2007-05-23 2007-05-23 Continuous liquid-liquid extraction device using emulsion flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136496A JP5565719B2 (en) 2007-05-23 2007-05-23 Continuous liquid-liquid extraction device using emulsion flow

Publications (2)

Publication Number Publication Date
JP2008289975A JP2008289975A (en) 2008-12-04
JP5565719B2 true JP5565719B2 (en) 2014-08-06

Family

ID=40165264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136496A Active JP5565719B2 (en) 2007-05-23 2007-05-23 Continuous liquid-liquid extraction device using emulsion flow

Country Status (1)

Country Link
JP (1) JP5565719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123907A (en) * 2014-12-26 2016-07-11 国立研究開発法人日本原子力研究開発機構 Emulsion flow control method
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system
DE112022001104T5 (en) 2021-04-16 2024-02-01 Japan Atomic Energy Agency MULTI-STAGE LIQUID-LIQUID TYPE APPARATUS AND METHOD FOR PRODUCING SPECIFIC SUBSTANCES USING SAME

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364758B1 (en) 2008-09-30 2016-06-29 Japan Atomic Energy Agency Continuous collection method of particle component in aqueous solution and apparatus therefor
JP4759769B2 (en) * 2009-07-22 2011-08-31 独立行政法人 日本原子力研究開発機構 Paint waste liquid treatment method
JP5720583B2 (en) 2012-01-13 2015-05-20 信越化学工業株式会社 Liquid-liquid extraction apparatus, multistage liquid-liquid extraction apparatus using the same, and multistage continuous extraction apparatus for rare earth elements
JP6649647B2 (en) * 2016-04-15 2020-02-19 国立研究開発法人産業技術総合研究所 Metal ion extraction / recovery method and apparatus used therefor
JP7572029B2 (en) 2020-07-20 2024-10-23 国立研究開発法人日本原子力研究開発機構 Method for forming and eliminating liquid-liquid mixed phase flow channel and module therefor
JP7563266B2 (en) 2021-03-24 2024-10-08 信越化学工業株式会社 Liquid-liquid extraction device and multi-stage liquid-liquid extraction device using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628701B2 (en) * 1985-03-20 1994-04-20 栗田工業株式会社 Extractor
JPH03249931A (en) * 1989-11-16 1991-11-07 Mitsubishi Kasei Corp Production of oil-in-water type uniform droplets dispersion and method for polymerizing uniform-diameter-polymer beads
JPH0568806A (en) * 1991-09-13 1993-03-23 Mitsubishi Kasei Corp Extraction of metal ions by emulsion method
WO1995003840A1 (en) * 1993-07-30 1995-02-09 The University Of Queensland A plasma delipidation system
JP2005125274A (en) * 2003-10-27 2005-05-19 Sumitomo Heavy Ind Ltd Extraction apparatus
JP4735797B2 (en) * 2004-03-26 2011-07-27 エス・ピー・ジーテクノ株式会社 Disposable membrane module for emulsion generation
JP2006187718A (en) * 2005-01-06 2006-07-20 Kri Inc Emulsion forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123907A (en) * 2014-12-26 2016-07-11 国立研究開発法人日本原子力研究開発機構 Emulsion flow control method
US11571634B2 (en) 2019-06-19 2023-02-07 Japan Atomic Energy Agency Method and apparatus for producing specific substances by extraction and separation in a liquid-liquid system
DE112022001104T5 (en) 2021-04-16 2024-02-01 Japan Atomic Energy Agency MULTI-STAGE LIQUID-LIQUID TYPE APPARATUS AND METHOD FOR PRODUCING SPECIFIC SUBSTANCES USING SAME

Also Published As

Publication number Publication date
JP2008289975A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5565719B2 (en) Continuous liquid-liquid extraction device using emulsion flow
Rosly et al. Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design
EP2614868B1 (en) Liquid-liquid extraction unit, multistage liquid-liquid extraction apparatus using the unit, and multistage continuous extraction system for rare earth elements
EP2364758B1 (en) Continuous collection method of particle component in aqueous solution and apparatus therefor
JP5305382B2 (en) Counterflow emulsion flow continuous liquid-liquid extraction device
Hailong et al. Solvent extraction of La (III) with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by membrane dispersion micro-extractor
JP6488512B2 (en) Emulsion flow control method
CA1073368A (en) Three phase separation
Lende et al. Emulsion ionic liquid membranes (EILMs) for removal of Pb (II) from aqueous solutions
Kostanyan Extraction chromatographic separation of rare-earth metals in a cascade of centrifugal extractors
Du et al. Microdroplet-based continuous countercurrent extraction with high phase ratio
Shimogouchi et al. Size distribution of droplets in a two liquid-phase mixture compared between liquid spraying and mechanical stirring
JP2024009325A (en) Method of extracting and recovering specific substance based on liquid-liquid extraction
Yanase et al. New apparatus for liquid-liquid extraction,“emulsion flow” extractor
JPS6031521B2 (en) Material extraction and separation equipment
JP7297294B2 (en) Method for producing specific substances by extraction and separation in a liquid-liquid system
Mokhtari et al. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix [4] arene Bearing Di-[N-(X) sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation
Naim et al. Automated prototype for desalination by emulsion liquid membrane technique
JP2022147876A (en) Liquid-liquid extractor and multi-stage liquid-liquid extractor using the same
Mokhtari et al. Extraction of alkali metals using emulsion liquid membrane by nano-baskets of calix [4] crown
Mokhtari et al. Nano‐baskets in Emulsion Liquid Membranes for Selective Extraction of Alkali Metals
Lü et al. Experimental investigation and simulation of a gas‐agitated sieve plate column
Mokhtari et al. Emulsion Liquid Membranes for Effective Inclusion Extraction of Alkali Metals by Nanobaskets of Calixarene
Belova Free supported liquid membranes
JP2009183870A (en) Centrifugal extraction method and centrifugal extraction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R150 Certificate of patent or registration of utility model

Ref document number: 5565719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250