[go: up one dir, main page]

JP5560089B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5560089B2
JP5560089B2 JP2010111921A JP2010111921A JP5560089B2 JP 5560089 B2 JP5560089 B2 JP 5560089B2 JP 2010111921 A JP2010111921 A JP 2010111921A JP 2010111921 A JP2010111921 A JP 2010111921A JP 5560089 B2 JP5560089 B2 JP 5560089B2
Authority
JP
Japan
Prior art keywords
amount
reducing agent
purification rate
calculation unit
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111921A
Other languages
Japanese (ja)
Other versions
JP2011241686A (en
Inventor
光一朗 福田
信也 広田
俊祐 利岡
英裕 漆原
昌利 丸山
正和 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2010111921A priority Critical patent/JP5560089B2/en
Publication of JP2011241686A publication Critical patent/JP2011241686A/en
Application granted granted Critical
Publication of JP5560089B2 publication Critical patent/JP5560089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気通路に上流から順に、酸化触媒、還元剤添加弁、選択還元型NOx触媒(以下、SCR触媒という)を配置し、還元剤添加弁から添加した還元剤から生成されるNH(アンモニア)を用いて、SCR触媒に流入する排気中のNOxを浄化することが行われている。ここで、還元剤の添加方法として、2通りの方法が従来から用いられている(例えば特許文献1(段落0005〜0008)参照)。 An oxidation catalyst, a reducing agent addition valve, and a selective reduction type NOx catalyst (hereinafter referred to as an SCR catalyst) are arranged in this order from the upstream in the exhaust passage of the internal combustion engine, and NH 3 (generated from the reducing agent added from the reducing agent addition valve ( Ammonia) is used to purify NOx in the exhaust gas flowing into the SCR catalyst. Here, as a method for adding the reducing agent, two methods have been conventionally used (see, for example, Patent Document 1 (paragraphs 0005 to 0008)).

第1の方法としては、内燃機関から排出されてSCR触媒へ流入するNOx量を推定し、そのNOx量に応じた分(当量比1)だけの還元剤を継続的に添加する当量添加方法である。この方法の場合には、還元剤の添加制御の応答遅れ、還元剤から加水分解してNHになるまでの遅れ等からNOx排出量が急激に変化した場合に対応が間に合わず、的確な添加量とすることが困難である。そのため、添加過多によるNHスリップや、添加不足によるNOx浄化率の低下が生じ得る。 The first method is an equivalent addition method in which the amount of NOx discharged from the internal combustion engine and flowing into the SCR catalyst is estimated, and a reducing agent corresponding to the amount of NOx (equivalent ratio 1) is continuously added. is there. In the case of this method, when the NOx emission amount changes suddenly due to a delay in response to the addition control of the reducing agent, a delay from hydrolysis of the reducing agent to NH 3 , etc., it is not possible to respond in time. It is difficult to make a quantity. Therefore, NH 3 slip due to excessive addition and NOx purification rate may decrease due to insufficient addition.

第2の方法としては、SCR触媒のNH吸着機能を利用し、予め飽和吸着量を超えない範囲でNHを吸着させて保持させておき、NOxを還元浄化させてSCR触媒に吸着させたNHが消費され次第、消費されたNH量に応じた分だけ還元剤を添加する吸着添加方法である。この方法の場合には、第1の方法に比して、応答遅れやNOx量の急激な変化に対応し易いため、従来では、主にこの第2の方法が採用されている。 As a second method, the NH 3 adsorption function of the SCR catalyst is used, NH 3 is adsorbed and held in advance within a range not exceeding the saturated adsorption amount, and NOx is reduced and purified and adsorbed on the SCR catalyst. This is an adsorption addition method in which as soon as NH 3 is consumed, a reducing agent is added by an amount corresponding to the amount of NH 3 consumed. In the case of this method, as compared with the first method, it is easy to cope with a response delay and an abrupt change in the amount of NOx. Therefore, conventionally, the second method is mainly employed.

ここで、この第2の方法の場合には、特許文献4の段落0003に記載があるように、SCR触媒へ吸着させておくNH量は、SCR触媒の飽和吸着量を超えない限りにおいてできるだけ多い方がよいと考えられていた。しかし、SCR触媒へ吸着させるNH量は多ければよいというものではなく、NHを吸着した状態であっても、できるだけ還元剤を添加している状態にしておくことの方が高いNOx浄化率を得ることができることが明らかになってきた。その一方で、還元剤を添加している状態にしておくと、NHがSCR触媒からすり抜けてしまうNHスリップが生じ易いという問題もある。 Here, in the case of the second method, as described in paragraph 0003 of Patent Document 4, the amount of NH 3 to be adsorbed on the SCR catalyst is as much as possible as long as it does not exceed the saturated adsorption amount of the SCR catalyst. Many were considered better. However, the amount of NH 3 to be adsorbed on the SCR catalyst is not necessarily large, and even when NH 3 is adsorbed, it is better to keep the state where a reducing agent is added as much as possible. It has become clear that you can get. There the other hand, when kept in a state that the addition of the reducing agent, also NH 3 slip is liable to occur that NH 3 will slip through the SCR catalyst.

特開2008−261253号公報JP 2008-261253 A 特開2009−293444号公報JP 2009-293444 A 特開2005−226504号公報JP 2005-226504 A 特開2005−127256号公報JP 2005-127256 A

本発明は上記問題点に鑑みてなされたもので、本発明の目的は、内燃機関の排気浄化装置において、選択還元型NOx触媒での高いNOx浄化率の確保とNHスリップ抑制との両立を実現する技術を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to achieve both of ensuring a high NOx purification rate and suppressing NH 3 slip in a selective reduction type NOx catalyst in an exhaust purification device of an internal combustion engine. It is to provide technology to be realized.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
を備えた内燃機関の排気浄化装置であって、
前記選択還元型NOx触媒のNOx浄化率を算出する浄化率算出部と、
前記浄化率算出部で算出されたNOx浄化率に基づいて、前記選択還元型NOx触媒に吸着したNHの推定吸着量を算出する推定吸着量算出部と、
前記推定吸着量算出部で算出された推定吸着量が、前記内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ前記選択還元型NOx触媒からのNHのスリップを抑制できるか否かの閾値である所定量以下であると、規定量以上の還元剤を前記還元剤添加部から添加し、前記推定吸着量が所定量を超えると、前記推定吸着量が多い程規定量を減量した還元剤を前記還元剤添加部から添加する添加制御部と、
を備えたことを特徴とする内燃機関の排気浄化装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
An exhaust purification device for an internal combustion engine comprising:
A purification rate calculation unit for calculating a NOx purification rate of the selective reduction type NOx catalyst;
An estimated adsorption amount calculation unit that calculates an estimated adsorption amount of NH 3 adsorbed on the selective reduction type NOx catalyst based on the NOx purification rate calculated by the purification rate calculation unit;
Whether the estimated adsorption amount calculated by the estimated adsorption amount calculation unit can achieve a certain NOx purification rate in all operating states of the internal combustion engine and can suppress the slip of NH 3 from the selective reduction type NOx catalyst. When the amount of the reducing agent is not less than a predetermined amount that is a threshold value, a reducing agent of a specified amount or more is added from the reducing agent addition unit. An addition control unit for adding the reduced reducing agent from the reducing agent addition unit;
An exhaust emission control device for an internal combustion engine, comprising:

ここで、所定量とは、推定吸着量がそれ以下の量であると、内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ選択還元型NOx触媒からのNHのスリップを抑制できる量であり、内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ選択還元型NOx触媒からのNHのスリップを抑制できるか否かの閾値である。 Here, the predetermined amount means that when the estimated adsorption amount is less than that, a NOx purification rate of a certain level or more can be realized in any operating state of the internal combustion engine, and NH 3 slip from the selective reduction type NOx catalyst can be achieved. This is an amount that can be suppressed, and is a threshold value that indicates whether or not an NOx purification rate of a certain level or more can be realized and NH 3 slip from the selective reduction type NOx catalyst can be suppressed in all operating states of the internal combustion engine.

選択還元型NOx触媒は、吸着させるNH量が多ければよいというものではなく、NHを吸着した状態であっても、できるだけ還元剤を添加している状態にしておくことの方が高いNOx浄化率を得ることができることが明らかになってきた。その一方で、還元剤を添加している状態にしておくと、NHが選択還元型NOx触媒からすり抜けてしまうNHスリップが生じ易いという問題もある。 Selective reduction type NOx catalyst is not that it more the amount of NH 3 adsorbed, even in a state in which adsorbs NH 3, towards keeping in a state that the addition of as much as possible reducing agent is higher NOx It has become clear that a purification rate can be obtained. There the other hand, when kept in a state that the addition of the reducing agent, also NH 3 slip is liable to occur that NH 3 will slip through the selective reduction NOx catalyst.

そこで本発明では、推定吸着量が所定量以下であると、内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ選択還元型NOx触媒からのNHのスリップを抑制できるので、規定量以上の還元剤を添加する。一方、推定吸着量が所定量を超えると、選択還元型NOx触媒からのNHのスリップが生じ易くなくなるので、推定吸着量が多い程規定量を減量した還元剤を添加する。これによって、推定吸着量が所定量を超えても、選択還元型NOx触媒の飽和吸着量を超えない範囲内で、できるだけ還元剤を添加している状態にしておくことができる。したがって、選択還元型NOx触媒での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。 Therefore, in the present invention, when the estimated adsorption amount is equal to or less than the predetermined amount, it is possible to realize a NOx purification rate of a certain level or more and suppress slip of NH 3 from the selective reduction type NOx catalyst in all operating states of the internal combustion engine. Add more reducing agent than specified. On the other hand, if the estimated adsorption amount exceeds a predetermined amount, NH 3 slip from the selective reduction-type NOx catalyst is less likely to occur. Therefore, as the estimated adsorption amount increases, the reducing agent whose amount is reduced is added. Thereby, even if the estimated adsorption amount exceeds a predetermined amount, the reducing agent can be added as much as possible within a range not exceeding the saturated adsorption amount of the selective reduction type NOx catalyst. Therefore, it is possible to achieve both a high NOx purification rate and NH 3 slip suppression in the selective reduction type NOx catalyst.

前記浄化率算出部で算出されたNOx浄化率に基づいて、還元剤の規定量を算出する規定量算出部を更に備えるとよい。   It is preferable to further include a specified amount calculation unit that calculates a specified amount of the reducing agent based on the NOx purification rate calculated by the purification rate calculation unit.

これによると、還元剤の規定量がNOx浄化率に基づいて算出されるので、還元剤の規定量がNOx浄化に適した量に設定できる。   According to this, since the prescribed amount of reducing agent is calculated based on the NOx purification rate, the prescribed amount of reducing agent can be set to an amount suitable for NOx purification.

前記浄化率算出部は、前記選択還元型NOx触媒に流入するNOとNOとの比、前記選択還元型NOx触媒の温度、及び排気流量からNOx浄化率を算出する想定浄化率算出部と、前記選択還元型NOx触媒に出入りするNOx濃度からNOx浄化率を算出する実浄化率算出部と、を有しており、
前記推定吸着量算出部は、前記実浄化率算出部で算出されたNOx浄化率に基づいて、前記推定吸着量を算出し、
前記規定量算出部は、前記想定浄化率算出部で算出されたNOx浄化率に基づいて、還元剤の規定量を算出するとよい。
The purification rate calculation unit includes an assumed purification rate calculation unit that calculates a NOx purification rate from a ratio of NO to NO 2 flowing into the selective reduction NOx catalyst, a temperature of the selective reduction NOx catalyst, and an exhaust flow rate; An actual purification rate calculation unit that calculates a NOx purification rate from the NOx concentration entering and exiting the selective reduction type NOx catalyst,
The estimated adsorption amount calculation unit calculates the estimated adsorption amount based on the NOx purification rate calculated by the actual purification rate calculation unit,
The prescribed amount calculation unit may calculate a prescribed amount of the reducing agent based on the NOx purification rate calculated by the assumed purification rate calculation unit.

想定浄化率算出部は、選択還元型NOx触媒に流入するNOとNOとの比、選択還元
型NOx触媒の温度、及び排気流量からNOx浄化率を算出するので、今現在のNOx浄化率を予測できる。実浄化率算出部は、選択還元型NOx触媒に出入りするNOx濃度からNOx浄化率を算出するので、タイムラグがあるものの直近における実際のNOx浄化率を導出できる。このため、推定吸着量は、タイムラグがあるものの直近における実際の量を導出でき、還元剤の規定量は、今現在必要な量を導出できる。
Assumed purification ratio calculating section, the ratio of NO to NO 2 flowing into the selective reduction type NOx catalyst, the temperature of the selective reduction type NOx catalyst, and therefore calculates the NOx purification ratio from the exhaust flow, now the current NOx purification rate Predictable. Since the actual purification rate calculation unit calculates the NOx purification rate from the NOx concentration entering and exiting the selective reduction type NOx catalyst, the actual actual NOx purification rate can be derived although there is a time lag. For this reason, although the estimated adsorption amount has a time lag, the latest actual amount can be derived, and the required amount of the reducing agent can be derived now.

前記浄化率算出部は、前記選択還元型NOx触媒に流入するNOとNOとの比、前記選択還元型NOx触媒の温度、及び排気流量からNOx浄化率を算出する想定浄化率算出部であるとよい。 The purification rate calculation unit is an assumed purification rate calculation unit that calculates a NOx purification rate from a ratio of NO to NO 2 flowing into the selective reduction type NOx catalyst, a temperature of the selective reduction type NOx catalyst, and an exhaust flow rate. Good.

想定浄化率算出部は、選択還元型NOx触媒に流入するNOとNOとの比、選択還元型NOx触媒の温度、及び排気流量からNOx浄化率を算出するので、今現在のNOx浄化率を予測できる。このため、推定吸着量は、今現在の量を導出でき、還元剤の規定量は、今現在必要な量を導出できる。 Assumed purification ratio calculating section, the ratio of NO to NO 2 flowing into the selective reduction type NOx catalyst, the temperature of the selective reduction type NOx catalyst, and therefore calculates the NOx purification ratio from the exhaust flow, now the current NOx purification rate Predictable. For this reason, the present amount can be derived as the estimated amount of adsorption, and the present amount necessary as the defined amount of the reducing agent can be derived.

前記浄化率算出部は、前記選択還元型NOx触媒に出入りするNOx濃度からNOx浄化率を算出する実浄化率算出部であるとよい。   The purification rate calculation unit may be an actual purification rate calculation unit that calculates a NOx purification rate from a NOx concentration entering and exiting the selective reduction type NOx catalyst.

実浄化率算出部は、選択還元型NOx触媒に出入りするNOx濃度からNOx浄化率を算出するので、タイムラグがあるものの直近における実際のNOx浄化率を導出できる。このため、推定吸着量は、タイムラグがあるものの直近における実際の量を導出でき、還元剤の規定量は、タイムラグがあるものの直近における実際に必要だった量を導出できる。   Since the actual purification rate calculation unit calculates the NOx purification rate from the NOx concentration entering and exiting the selective reduction type NOx catalyst, the actual actual NOx purification rate can be derived although there is a time lag. For this reason, the estimated amount of adsorption can derive the actual amount in the latest although there is a time lag, and the specified amount of the reducing agent can derive the amount actually required in the immediate vicinity of the time lag.

前記添加制御部が添加する還元剤の量を算出するための、前記推定吸着量算出部で算出された前記推定吸着量と所定量とに基づいて、還元剤の規定量に掛け合わされる増減量率を算出する増減量率算出部を更に備えるとよい。   Based on the estimated adsorption amount calculated by the estimated adsorption amount calculation unit and a predetermined amount for calculating the amount of reducing agent added by the addition control unit, an increase / decrease amount multiplied by a prescribed amount of the reducing agent It is preferable to further include an increase / decrease amount rate calculation unit for calculating the rate.

これによると、添加制御部が添加する還元剤の量が、還元剤の規定量に増減量率を掛け合わすことで算出できる。   According to this, the amount of the reducing agent added by the addition control unit can be calculated by multiplying the prescribed amount of the reducing agent by the increase / decrease rate.

前記添加制御部は、前記推定吸着量が所定量以下であると、規定量の還元剤を前記還元剤添加部から添加するとよい。   The addition control unit may add a specified amount of a reducing agent from the reducing agent adding unit when the estimated adsorption amount is equal to or less than a predetermined amount.

これによると、推定吸着量が所定量以下のときに規定量の還元剤を添加するので、選択還元型NOx触媒のNHの吸着量を確実にゆっくり増加させ、NHの吸着量が急激に増加することにより不意にNHスリップが生じることを回避することができる。 According to this, since the specified amount of reducing agent is added when the estimated adsorption amount is less than or equal to the predetermined amount, the adsorption amount of NH 3 of the selective reduction type NOx catalyst is surely slowly increased, and the adsorption amount of NH 3 rapidly increases. By increasing, it is possible to avoid an unexpected NH 3 slip.

前記添加制御部は、前記推定吸着量が所定量以下であると、前記推定吸着量が少ない程規定量を増量した還元剤を前記還元剤添加部から添加するとよい。   The addition control unit may add, from the reducing agent addition unit, a reducing agent that increases a specified amount as the estimated adsorption amount is smaller when the estimated adsorption amount is equal to or less than a predetermined amount.

これによると、推定吸着量が少ない程還元剤を増量するので、選択還元型NOx触媒のNHの吸着量をより早く増加させ、選択還元型NOx触媒のNOx浄化率をより早く上昇させることができる。 According to this, since the amount of reducing agent is increased as the estimated adsorption amount is smaller, the adsorption amount of NH 3 of the selective reduction type NOx catalyst can be increased more quickly, and the NOx purification rate of the selective reduction type NOx catalyst can be increased more quickly. it can.

また本発明は、
内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
を備えた内燃機関の排気浄化装置の還元剤添加方法であって、
前記選択還元型NOx触媒のNOx浄化率を算出し、
算出されたNOx浄化率に基づいて、前記選択還元型NOx触媒に吸着したNHの推定吸着量を算出し、
算出された推定吸着量が、前記内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ前記選択還元型NOx触媒からのNHのスリップを抑制できるか否かの閾値である所定量以下であると、規定量以上の還元剤を前記還元剤添加部から添加し、前記推定吸着量が所定量を超えると、前記推定吸着量が多い程規定量を減量した還元剤を前記還元剤添加部から添加することを特徴とする内燃機関の排気浄化装置の還元剤添加方法である。
The present invention also provides
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
A reducing agent addition method for an exhaust gas purification apparatus for an internal combustion engine comprising:
Calculating the NOx purification rate of the selective reduction type NOx catalyst;
Based on the calculated NOx purification rate, an estimated adsorption amount of NH 3 adsorbed on the selective reduction type NOx catalyst is calculated,
The calculated estimated adsorption amount is a threshold value as to whether or not a NOx purification rate of a certain level or more can be realized and NH 3 slip from the selective reduction type NOx catalyst can be suppressed in all operating states of the internal combustion engine. When the amount is below the fixed amount, a specified amount or more of the reducing agent is added from the reducing agent addition unit, and when the estimated adsorption amount exceeds a predetermined amount, the reducing agent is reduced by reducing the specified amount as the estimated adsorption amount increases. A reducing agent addition method for an exhaust gas purification apparatus for an internal combustion engine, wherein the addition is performed from an agent addition unit.

本発明によっても、内燃機関の排気浄化装置において、選択還元型NOx触媒での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。 According to the present invention as well, in the exhaust gas purification apparatus for an internal combustion engine, it is possible to achieve both a high NOx purification rate and NH 3 slip suppression in the selective reduction type NOx catalyst.

本発明によると、内燃機関の排気浄化装置において、選択還元型NOx触媒での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。 According to the present invention, in the exhaust gas purification apparatus for an internal combustion engine, it is possible to achieve both a high NOx purification rate and NH 3 slip suppression in the selective reduction type NOx catalyst.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. SCR触媒のNH吸着量とNOx浄化率との関係を示す図である。NH of the SCR catalyst 3 is a diagram showing the relationship between adsorption amount and NOx purification rate. 実施例1に係るECU内の制御ブロック図である。FIG. 3 is a control block diagram in the ECU according to the first embodiment. 実施例1に係る推定吸着量と増減量率との関係を示す図である。It is a figure which shows the relationship between the estimated amount of adsorption | suction which concerns on Example 1, and the increase / decrease rate. 実施例1に係るSCR触媒床温と所定量及び限界吸着量との関係を示す図である。It is a figure which shows the relationship between the SCR catalyst bed temperature which concerns on Example 1, and predetermined amount and limit adsorption amount. 実施例1の他の例に係るSCR触媒床温と所定量及び限界吸着量との関係を示す図である。FIG. 4 is a diagram showing a relationship between an SCR catalyst bed temperature, a predetermined amount, and a limit adsorption amount according to another example of Example 1. 実施例1に係る尿素水添加制御ルーチンを示すフローチャートである。3 is a flowchart illustrating a urea water addition control routine according to the first embodiment. 変形例1に係る推定吸着量と増減量率との関係を示す図である。It is a figure which shows the relationship between the estimated amount of adsorption | suction which concerns on the modification 1, and the increase / decrease amount rate. 変形例2に係るECU内の制御ブロック図である。FIG. 10 is a control block diagram in an ECU according to Modification 2. 変形例2に係る尿素水添加制御ルーチンを示すフローチャートである。10 is a flowchart showing a urea water addition control routine according to Modification 2.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
(内燃機関)
図1は、本発明の実施例1に係る内燃機関の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する車両駆動用の4ストロークサイクル・ディーゼルエンジンである。内燃機関1には、内燃機関1から排出された排気を流通させる排気通路2が接続されている。
<Example 1>
(Internal combustion engine)
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. The internal combustion engine 1 shown in FIG. 1 is a four-stroke cycle diesel engine for driving a vehicle having four cylinders. Connected to the internal combustion engine 1 is an exhaust passage 2 through which the exhaust discharged from the internal combustion engine 1 flows.

排気通路2の途中には、選択還元型NOx触媒(以下、SCR触媒という)3が配置されている。SCR触媒3は、NH(アンモニア)を用いて排気中のNOxを還元浄化する。例えば、NOは、4NO+4NH+O→4N+6HOのような反応によって、Nに還元される。NOは、6NO+8NH→7N+12HOのような反応によって、Nに還元される。NO及びNOは、NO+NO+2NH→2N+3HOのような反応によって、Nに還元される。またSCR触媒3は、NHを吸着する機能を有する。SCR触媒3は、ゼオライト等で形成される。 A selective reduction type NOx catalyst (hereinafter referred to as SCR catalyst) 3 is disposed in the middle of the exhaust passage 2. The SCR catalyst 3 reduces and purifies NOx in the exhaust gas using NH 3 (ammonia). For example, NO is reduced to N 2 by a reaction such as 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O. NO 2 is reduced to N 2 by a reaction such as 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O. NO and NO 2 are reduced to N 2 by a reaction such as NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O. The SCR catalyst 3 has a function of adsorbing NH 3 . The SCR catalyst 3 is formed of zeolite or the like.

SCR触媒3よりも上流の排気通路2には、SCR触媒3に供給するNHに加水分解
される還元剤として尿素水溶液(以下、尿素水という)を添加する尿素水添加弁4が配置されている。尿素水添加弁4からは、尿素水タンク5に蓄えられた尿素水が指令に基づいて排気通路2内に噴射される。噴射された尿素水は、(NH)2CO+HO→2NH+COのような反応で排気熱を用いて加水分解され、NHが生成される。尿素水添加弁4が、本発明の還元剤添加部に対応する。還元剤としては、尿素水以外にもアンモニア水溶液等のアンモニア系溶液を用いることができる。
In the exhaust passage 2 upstream of the SCR catalyst 3, a urea water addition valve 4 for adding a urea aqueous solution (hereinafter referred to as urea water) as a reducing agent hydrolyzed to NH 3 supplied to the SCR catalyst 3 is arranged. Yes. From the urea water addition valve 4, urea water stored in the urea water tank 5 is injected into the exhaust passage 2 based on a command. The injected urea water is hydrolyzed using exhaust heat in a reaction such as (NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 to generate NH 3 . The urea water addition valve 4 corresponds to the reducing agent addition part of the present invention. As the reducing agent, an ammonia-based solution such as an aqueous ammonia solution can be used in addition to the urea water.

尿素水添加弁4の直上流の排気通路2には、SCR触媒3に流入する排気中のNOx濃度を検出する第1NOxセンサ6が配置されている。第1NOxセンサ6は、第1NOx濃度取得部に対応する。SCR触媒3の直下流の排気通路2には、SCR触媒3から流出する排気中のNOx濃度を検出する第2NOxセンサ7が配置されている。第2NOxセンサ7は、第2NOx濃度取得部に対応する。なお、第1NOx濃度取得部及び第2NOx濃度取得部としては、内燃機関1の運転状態と予め算出したNOx濃度推定マップとからNOx濃度を推定するものでもよい。SCR触媒3には、SCR触媒床温を検出する温度センサ8が配置されている。温度センサ8は、触媒温度取得部に対応する。なお、触媒温度取得部としては、排気通路2に配置された排気温度と予め算出した触媒床温推定マップとからSCR触媒床温を推定するものでもよい。   A first NOx sensor 6 for detecting the NOx concentration in the exhaust gas flowing into the SCR catalyst 3 is disposed in the exhaust passage 2 immediately upstream of the urea water addition valve 4. The first NOx sensor 6 corresponds to a first NOx concentration acquisition unit. A second NOx sensor 7 that detects the NOx concentration in the exhaust gas flowing out from the SCR catalyst 3 is disposed in the exhaust passage 2 immediately downstream of the SCR catalyst 3. The second NOx sensor 7 corresponds to a second NOx concentration acquisition unit. The first NOx concentration acquisition unit and the second NOx concentration acquisition unit may estimate the NOx concentration from the operating state of the internal combustion engine 1 and a NOx concentration estimation map calculated in advance. The SCR catalyst 3 is provided with a temperature sensor 8 for detecting the SCR catalyst bed temperature. The temperature sensor 8 corresponds to a catalyst temperature acquisition unit. The catalyst temperature acquisition unit may estimate the SCR catalyst bed temperature from the exhaust temperature arranged in the exhaust passage 2 and a previously calculated catalyst bed temperature estimation map.

以上述べたように構成された内燃機関1には電子制御ユニット(以下、ECUという)9が併設されている。ECU9には、第1NOxセンサ6、第2NOxセンサ7、及び温度センサ8、並びに不図示のクランクポジションセンサ及びアクセル開度センサが電気的に接続されている。これらの出力信号がECU9に入力される。また、ECU9には、尿素水添加弁4が電気的に接続されており、ECU9によって制御される。   The internal combustion engine 1 configured as described above is provided with an electronic control unit (hereinafter referred to as ECU) 9. The ECU 9 is electrically connected to a first NOx sensor 6, a second NOx sensor 7, a temperature sensor 8, and a crank position sensor and an accelerator opening sensor (not shown). These output signals are input to the ECU 9. Further, the urea water addition valve 4 is electrically connected to the ECU 9 and is controlled by the ECU 9.

(尿素水添加制御)
従来、SCR触媒3へ尿素水を添加する場合として、主に、SCR触媒3のNHを吸着する機能を利用し、予め飽和吸着量を超えない範囲の目標吸着量でNHをSCR触媒3に吸着させて保持させておき、NOxの還元により保持されていたNHが消費され次第、目標吸着量になるように消費されたNHの量に応じた分だけ尿素水を供給する吸着添加方法が用いられていた。
(Urea water addition control)
Conventionally, as a case of adding urea water to the SCR catalyst 3, mainly by using the function of adsorbing NH 3 in the SCR catalyst 3, the NH 3 SCR catalyst 3 at the target adsorption amount of not exceeding a pre-saturation adsorption amount Adsorption and addition of supplying urea water in an amount corresponding to the amount of NH 3 consumed so as to reach the target adsorption amount as soon as NH 3 held by reduction of NOx is consumed. The method was used.

ここで、この方法の場合には、目標吸着量であるSCR触媒3へ吸着させておくNH量は、SCR触媒3の飽和吸着量を超えない限りにおいてできるだけ多い方がよいと考えられていた。しかし、SCR触媒3へ吸着させるNH量は多ければよいというものではなく、NHを吸着した状態であっても、できるだけ尿素水を添加している状態にしておくことの方が高いNOx浄化率を得ることができることが明らかになってきた。図2は、SCR触媒のNH吸着量とNOx浄化率との関係を示す図である。図2に示すように、同じNH吸着量であっても、尿素水を添加している状態の方が、添加していない状態よりもNOx浄化率が高くなる。その一方で、尿素水を添加している状態にしておくと、NHがSCR触媒3からすり抜けてしまうNHスリップが生じ易いという問題もある。 Here, in the case of this method, it was considered that the NH 3 amount to be adsorbed on the SCR catalyst 3 as the target adsorption amount should be as large as possible as long as the saturated adsorption amount of the SCR catalyst 3 is not exceeded. . However, SCR catalyst 3 NH 3 amount adsorbed to and not that it The more, even in a state where the adsorbed NH 3, and as far as possible the urea water added to the state is to keep it in the higher NOx purifying the It has become clear that rates can be obtained. FIG. 2 is a graph showing the relationship between the NH 3 adsorption amount of the SCR catalyst and the NOx purification rate. As shown in FIG. 2, even with the same NH 3 adsorption amount, the NOx purification rate is higher when urea water is added than when it is not added. There the other hand, when kept in a state that the addition of urea water, even NH 3 slip is liable to occur that NH 3 will slip through the SCR catalyst 3.

そこで、本実施例では、SCR触媒3に吸着したNHの推定吸着量が、内燃機関1のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つSCR触媒3からのNHのスリップを抑制できるか否かの閾値である所定量以下であると、規定量の尿素水を尿素水添加弁4から添加し、前記推定吸着量が所定量を超えると、前記推定吸着量が多い程規定量を減量した尿素水を尿素水添加弁4から添加するようにした。 Therefore, in this embodiment, the estimated adsorption amount of NH 3 adsorbed on the SCR catalyst 3 can realize a NOx purification rate higher than a certain level in all operating states of the internal combustion engine 1 and can prevent slip of NH 3 from the SCR catalyst 3. When a predetermined amount of urea water is added from the urea water addition valve 4 when the amount is equal to or less than a predetermined amount which is a threshold value indicating whether or not the amount can be suppressed, and the estimated amount of adsorption exceeds the predetermined amount, the larger the estimated amount of adsorption The urea water whose amount was reduced was added from the urea water addition valve 4.

ここで、所定量とは、SCR触媒3に吸着したNHの推定吸着量がそれ以下の量であると、内燃機関1のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つSCR触媒3からのNHのスリップを抑制できる量であり、内燃機関1のあらゆる運転状態で
、一定以上のNOx浄化率を実現でき且つSCR触媒3からのNHのスリップを抑制できるか否かの閾値である。本実施例の所定量は、SCR触媒3の吸着量に対しNOx浄化率が飽和する浄化率飽和吸着量を用いる。しかし、所定量としては、浄化率飽和吸着量に限られるものではない。
Here, the predetermined amount means that when the estimated adsorption amount of NH 3 adsorbed on the SCR catalyst 3 is an amount smaller than that, an NOx purification rate of a certain level or more can be realized in any operating state of the internal combustion engine 1 and the SCR catalyst. This is an amount that can suppress the slip of NH 3 from 3 , a threshold that determines whether or not a NOx purification rate of a certain level or more can be realized and the slip of NH 3 from the SCR catalyst 3 can be suppressed in any operating state of the internal combustion engine 1. It is. As the predetermined amount in this embodiment, a purification rate saturation adsorption amount at which the NOx purification rate is saturated with respect to the adsorption amount of the SCR catalyst 3 is used. However, the predetermined amount is not limited to the purification rate saturated adsorption amount.

本実施例によると、SCR触媒3に吸着したNHの推定吸着量が所定量以下であると、内燃機関1のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つSCR触媒3からのNHのスリップを抑制できるので、規定量の尿素水を添加する。一方、前記推定吸着量が所定量を超えると、SCR触媒3からのNHのスリップが生じ易くなくなるので、前記推定吸着量が多い程規定量を減量した尿素水を添加する。これによって、前記推定吸着量が所定量を超えても、SCR触媒3の飽和吸着量を超えない範囲内で、できるだけ尿素水を添加している状態にしておくことができる。したがって、SCR触媒3での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。 According to the present embodiment, when the estimated adsorption amount of NH 3 adsorbed on the SCR catalyst 3 is equal to or less than a predetermined amount, a NOx purification rate higher than a certain level can be realized in all operating states of the internal combustion engine 1 and Since a slip of NH 3 can be suppressed, a specified amount of urea water is added. On the other hand, if the estimated amount of adsorption exceeds a predetermined amount, NH 3 slip from the SCR catalyst 3 is not likely to occur, so urea water whose amount is reduced by a specified amount is added as the estimated amount of adsorption increases. Thereby, even if the estimated adsorption amount exceeds a predetermined amount, urea water can be added as much as possible within a range not exceeding the saturated adsorption amount of the SCR catalyst 3. Therefore, it is possible to achieve both a high NOx purification rate in the SCR catalyst 3 and NH 3 slip suppression.

図3は、本実施例に係るECU9内の制御ブロック図である。図3を用いて、SCR触媒3に吸着したNHの推定吸着量と所定量との関係に応じて、尿素水添加弁4からの尿素水の添加制御を行う具体的な構成について述べる。 FIG. 3 is a control block diagram in the ECU 9 according to the present embodiment. A specific configuration for performing urea water addition control from the urea water addition valve 4 in accordance with the relationship between the estimated amount of NH 3 adsorbed on the SCR catalyst 3 and a predetermined amount will be described with reference to FIG.

図3に示すように、ECU9は、内燃機関1の運転状態からマップにより推定されるSCR触媒3に流入するNOとNOとの比、温度センサ8で検出するSCR触媒3の温度、及びエアフローメータ10で検出する排気流量から、NOx浄化率を算出する想定浄化率算出部9aを有する。SCR触媒3に流入するNOとNOとの比には、SCR触媒3よりも上流の排気通路2に配置された酸化触媒でのNOからNOへの変化率等も考慮することもできる。これにより、想定浄化率算出部9aでは、今現在のSCR触媒3のNOx浄化率を予測できる。なお、想定浄化率算出部9aは、浄化率算出部の一部である。 As shown in FIG. 3, the ECU 9 determines the ratio of NO to NO 2 flowing into the SCR catalyst 3 estimated from the operating state of the internal combustion engine 1 based on the map, the temperature of the SCR catalyst 3 detected by the temperature sensor 8, and the air flow. An assumed purification rate calculation unit 9a that calculates the NOx purification rate from the exhaust gas flow rate detected by the meter 10 is provided. For the ratio of NO to NO 2 flowing into the SCR catalyst 3, the rate of change from NO to NO 2 in the oxidation catalyst disposed in the exhaust passage 2 upstream of the SCR catalyst 3 can also be considered. Thereby, in the assumed purification rate calculation part 9a, the present NOx purification rate of the SCR catalyst 3 can be predicted. The assumed purification rate calculation unit 9a is a part of the purification rate calculation unit.

ECU9は、第1NOxセンサ6及び第2NOxセンサ7で検出するSCR触媒3に出入りするNOx濃度からSCR触媒3のNOx浄化率を算出する実浄化率算出部9bを有する。実浄化率算出部9bでのNOx浄化率は、第1NOxセンサ6で検出するNOx濃度(以下、入NOx濃度という)から、第2NOxセンサ7で検出するNOx濃度(以下、出NOx濃度という)を引いた値を入NOx濃度で割ることで求めることができる。これにより、実浄化率算出部9bでは、タイムラグがあるものの直近におけるSCR触媒3の実際のNOx浄化率を導出できる。なお、実浄化率算出部9bは、浄化率算出部の一部である。   The ECU 9 has an actual purification rate calculation unit 9 b that calculates the NOx purification rate of the SCR catalyst 3 from the NOx concentration entering and exiting the SCR catalyst 3 detected by the first NOx sensor 6 and the second NOx sensor 7. The NOx purification rate in the actual purification rate calculation unit 9b is determined from the NOx concentration detected by the first NOx sensor 6 (hereinafter referred to as input NOx concentration) to the NOx concentration detected by the second NOx sensor 7 (hereinafter referred to as output NOx concentration). It can be obtained by dividing the subtracted value by the input NOx concentration. As a result, the actual purification rate calculation unit 9b can derive the actual NOx purification rate of the SCR catalyst 3 at the latest time, although there is a time lag. The actual purification rate calculation unit 9b is a part of the purification rate calculation unit.

ECU9は、第1NOxセンサ7で検出するSCR触媒3に流入するNOx濃度と、エアフローメータ10で検出する排気流量と、から、SCR触媒3に流入するNOx量を算出するNOx量算出部9cを有する。NOx量は、入NOx濃度に排気流量を掛けることで求めることができる。   The ECU 9 includes a NOx amount calculation unit 9c that calculates the NOx amount flowing into the SCR catalyst 3 from the NOx concentration flowing into the SCR catalyst 3 detected by the first NOx sensor 7 and the exhaust flow rate detected by the air flow meter 10. . The amount of NOx can be obtained by multiplying the input NOx concentration by the exhaust gas flow rate.

ECU9は、想定浄化率算出部9aで算出されたNOx浄化率に基づいて、尿素水の規定量を算出する規定量算出部9dを有する。規定量算出部9dでは、想定浄化率算出部9aで算出されたNOx浄化率にNOx量算出部9cで算出されたNOx量を掛けることにより、SCR触媒3で浄化する浄化NOx量を算出し、当該浄化NOx量と反応して消費されるであろうNHを生成する尿素水の量を規定量として算出する。想定浄化率算出部9aが今現在のNOx浄化率を予測するので、尿素水の規定量は今現在必要な量を導出できる。 The ECU 9 has a specified amount calculation unit 9d that calculates a specified amount of urea water based on the NOx purification rate calculated by the assumed purification rate calculation unit 9a. The specified amount calculation unit 9d calculates the purification NOx amount to be purified by the SCR catalyst 3 by multiplying the NOx purification rate calculated by the assumed purification rate calculation unit 9a by the NOx amount calculated by the NOx amount calculation unit 9c, The amount of urea water that generates NH 3 that reacts with the purified NOx amount and is consumed is calculated as a specified amount. Since the assumed purification rate calculation unit 9a predicts the current NOx purification rate, the currently required amount of urea water can be derived.

ECU9は、実浄化率算出部9bで算出されたNOx浄化率に基づいて、SCR触媒3に吸着したNHの推定吸着量を算出する推定吸着量算出部9eを有する。推定吸着量算
出部9eでは、実浄化率算出部9bで算出されたNOx浄化率にNOx量算出部9cで算出されたNOx量を掛けることにより、SCR触媒3で還元浄化された還元NOx量を算出する。還元NOx量に還元反応させたNH量が消費NH量である。前回の推定吸着量と消費NH量と添加制御部での尿素水の添加量とから、SCR触媒3に吸着したNHの推定吸着量を算出する。実浄化率算出部9bはタイムラグがあるものの直近における実際のNOx浄化率を導出するので、推定吸着量はタイムラグがあるものの直近における実際の量を導出できる。
The ECU 9 includes an estimated adsorption amount calculation unit 9e that calculates an estimated adsorption amount of NH 3 adsorbed on the SCR catalyst 3 based on the NOx purification rate calculated by the actual purification rate calculation unit 9b. The estimated adsorption amount calculation unit 9e multiplies the NOx purification rate calculated by the actual purification rate calculation unit 9b by the NOx amount calculated by the NOx amount calculation unit 9c, thereby reducing the reduced NOx amount reduced and purified by the SCR catalyst 3. calculate. The amount of NH 3 reduced to the amount of reduced NOx is the amount of consumed NH 3 . And a quantity of urea water in the addition control unit and the previous estimated amount of adsorption and consumption NH 3 amount, calculates an estimated amount of adsorption of NH 3 adsorbed in the SCR catalyst 3. Although the actual purification rate calculation unit 9b derives the latest actual NOx purification rate with a time lag, the estimated adsorption amount can derive the latest actual amount with a time lag.

ECU9は、添加制御部9gが添加する尿素水の量を算出するための、推定吸着量算出部9eで算出された推定吸着量と所定量とに基づいて、尿素水の規定量に掛け合わされる増減量率を算出する増減量率算出部9fを有する。図4は、増減量率算出部9fに設定される推定吸着量と増減量率との関係を示す図である。増減量率算出部9fには、図4に示すようなマップが設定される。図4に示すマップは、推定吸着量が所定量以下では増減量率が1であり、推定吸着量が所定量を超えると増減量率が限界吸着量のとき0となるように一次関数的に減少する。このマップに推定吸着量を取り込むことで、増減量率を算出する。ここで、図4に示すマップは、SCR触媒床温に応じて異なる。図5は、SCR触媒床温と所定量及び限界吸着量との関係を示す図である。図5に示す所定量及び限界吸着量の温度特性は予め判明している。このため、増減量率算出部9fでは、温度センサ8で検出したSCR触媒床温に応じて、図5に示す温度特性から、所定量及び限界吸着量を導出する。そして、導出した所定量及び限界吸着量から、図4に示すマップを設定する。なお、限界吸着量は、図5に示す特性のもの以外にも、過渡運転時のNHスリップ等を考慮した温度特性を用いてもよい。図6は、他の例に係るSCR触媒床温と所定量及び限界吸着量との関係を示す図である。所定量や限界吸着量は、図6に示すように、図5の温度特性とは異なるものから導出してもよい。図6に示す所定量の温度特性は、浄化率飽和吸着量よりも吸着量を多く設定しており、限界吸着量の温度特性は、過渡運転時のNHスリップを考慮しているので、最大の限界吸着量よりも吸着量を少なく設定している。 The ECU 9 multiplies the prescribed amount of urea water based on the estimated adsorption amount calculated by the estimated adsorption amount calculation unit 9e and a predetermined amount for calculating the amount of urea water added by the addition control unit 9g. It has an increase / decrease rate calculation unit 9f that calculates an increase / decrease rate. FIG. 4 is a diagram illustrating a relationship between the estimated adsorption amount and the increase / decrease amount rate set in the increase / decrease amount rate calculation unit 9f. A map as shown in FIG. 4 is set in the increase / decrease rate calculation unit 9f. The map shown in FIG. 4 is a linear function so that the increase / decrease amount rate is 1 when the estimated adsorption amount is equal to or less than the predetermined amount, and becomes 0 when the estimated adsorption amount exceeds the predetermined amount and the increase / decrease amount rate is the limit adsorption amount. Decrease. By taking the estimated adsorption amount into this map, the increase / decrease amount rate is calculated. Here, the map shown in FIG. 4 differs according to the SCR catalyst bed temperature. FIG. 5 is a diagram showing the relationship between the SCR catalyst bed temperature, the predetermined amount, and the limit adsorption amount. The temperature characteristics of the predetermined amount and the limit adsorption amount shown in FIG. 5 are known in advance. Therefore, the increase / decrease amount rate calculation unit 9f derives the predetermined amount and the limit adsorption amount from the temperature characteristics shown in FIG. 5 according to the SCR catalyst bed temperature detected by the temperature sensor 8. Then, a map shown in FIG. 4 is set from the derived predetermined amount and the limit adsorption amount. In addition to the characteristic shown in FIG. 5, the limit adsorption amount may be a temperature characteristic considering NH 3 slip during transient operation. FIG. 6 is a diagram illustrating a relationship between the SCR catalyst bed temperature, a predetermined amount, and a limit adsorption amount according to another example. As shown in FIG. 6, the predetermined amount and the limit adsorption amount may be derived from those different from the temperature characteristics of FIG. The temperature characteristic of the predetermined amount shown in FIG. 6 sets the adsorption amount larger than the purification rate saturated adsorption amount, and the temperature characteristic of the limit adsorption amount considers NH 3 slip at the time of transient operation. The adsorption amount is set to be smaller than the limit adsorption amount.

ECU9は、尿素水添加弁4から添加する尿素水の添加制御を行う添加制御部9gを有する。添加制御部9gは、規定量算出部9dで算出された規定量に増減量率算出部9fで算出された増減量率を掛けることによって、尿素水の添加量を導出する。そして、導出された添加量を尿素水添加弁4から添加する。つまり、増減量率が図4に示すマップで定まることから、推定吸着量が所定量以下であると、規定量の尿素水を尿素水添加弁4から添加し、推定吸着量が所定量を超えると、推定吸着量が多い程規定量を減量した尿素水を尿素水添加弁4から添加することになる。この場合には、推定吸着量が所定量以下のときに規定量の尿素水を添加するので、SCR触媒3のNHの吸着量を確実にゆっくり増加させ、NHの吸着量が急激に増加することにより不意にNHスリップが生じることを回避することができる。 The ECU 9 has an addition control unit 9 g that performs addition control of urea water added from the urea water addition valve 4. The addition control unit 9g multiplies the specified amount calculated by the specified amount calculation unit 9d by the increase / decrease rate rate calculated by the increase / decrease rate rate calculation unit 9f to derive the addition amount of urea water. Then, the derived addition amount is added from the urea water addition valve 4. That is, since the increase / decrease amount rate is determined by the map shown in FIG. 4, if the estimated adsorption amount is equal to or less than the predetermined amount, a prescribed amount of urea water is added from the urea water addition valve 4, and the estimated adsorption amount exceeds the predetermined amount. Then, as the estimated adsorption amount increases, the urea water whose amount is reduced by the specified amount is added from the urea water addition valve 4. In this case, since the specified amount of urea water is added when the estimated adsorption amount is less than the predetermined amount, the adsorption amount of NH 3 of the SCR catalyst 3 is surely slowly increased, and the adsorption amount of NH 3 increases rapidly. By doing so, it is possible to avoid an unexpected NH 3 slip.

ECU9が行う尿素水添加制御ルーチンについて、図7に示すフローチャートに基づいて説明する。図7は、尿素水添加制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎にECU9によって実行される。図7に示すルーチンが開始されると、S101では、想定浄化率算出部9aで想定浄化率を算出する。S102では、想定浄化率算出部9aで算出した想定浄化率と、NOx量算出部9cで算出したNOx量と、から、規定量算出部9dで尿素水の規定量を算出する。S103では、増減量率算出部9fで増減量率を算出する。S104では、規定量算出部9dで算出した尿素水の規定量と、増減量率算出部9fで算出した増減量率と、から、添加制御部9gで尿素水の添加量を算出し、添加を実行する。S105では、実浄化率算出部9bで実浄化率を算出する。S106では、前回の推定吸着量と、添加制御部9gで添加した尿素水の添加量と、実浄化率算出部9bで算出した実浄化率と、から、推定吸着量算出部9eでSCR触媒3に吸着されたNHの吸着量を推定する。本ステップの処理の後、本ルーチンを一旦終了する。以上
説明した本ルーチンによると、SCR触媒3での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。
A urea water addition control routine performed by the ECU 9 will be described based on a flowchart shown in FIG. FIG. 7 is a flowchart showing a urea water addition control routine. This routine is executed by the ECU 9 every predetermined time. When the routine shown in FIG. 7 is started, in S101, an assumed purification rate calculation unit 9a calculates an assumed purification rate. In S102, the specified amount of urea water is calculated by the specified amount calculation unit 9d from the assumed purification rate calculated by the assumed purification rate calculation unit 9a and the NOx amount calculated by the NOx amount calculation unit 9c. In S103, the increase / decrease rate calculation unit 9f calculates the increase / decrease rate. In S104, the addition amount of urea water is calculated by the addition control unit 9g from the specified amount of urea water calculated by the specified amount calculation unit 9d and the increase / decrease rate rate calculated by the increase / decrease rate rate calculation unit 9f. Run. In S105, the actual purification rate is calculated by the actual purification rate calculation unit 9b. In S106, the estimated adsorption amount calculation unit 9e calculates the SCR catalyst 3 from the previous estimated adsorption amount, the urea water addition amount added by the addition control unit 9g, and the actual purification rate calculated by the actual purification rate calculation unit 9b. The amount of NH 3 adsorbed on the surface is estimated. After the processing of this step, this routine is once ended. According to this routine described above, it is possible to achieve both a high NOx purification rate in the SCR catalyst 3 and NH 3 slip suppression.

<その他>
本発明に係る内燃機関の排気浄化装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。
<Others>
The exhaust gas purification apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

<変形例1>
例えば、増減量率算出部9fでは、図8に示すようなマップを設定するものでもよい。図8は、増減量率算出部9fに設定される推定吸着量と増減量率との関係を示す図である。図8に示すマップは、推定吸着量が所定量以下では推定吸着量が少ない程増減量率が1よりも大きく、推定吸着量が所定量のときに増減量率が1となり、推定吸着量が所定量を超えると増減量率が限界吸着量のとき0となるように一次関数的に減少する。これによると、添加制御部9gでは、増減量率が図8に示すマップで定まることから、推定吸着量が所定量以下であると、推定吸着量が少ない程規定量を増量した尿素水を尿素水添加弁4から添加し、推定吸着量が所定量を超えると、推定吸着量が多い程規定量を減量した尿素水を尿素水添加弁4から添加することになる。この場合には、推定吸着量が少ない程尿素水を増量するので、SCR触媒3のNHの吸着量をより早く増加させ、SCR触媒3のNOx浄化率をより早く上昇させることができる。
<Modification 1>
For example, the increase / decrease amount calculation unit 9f may set a map as shown in FIG. FIG. 8 is a diagram illustrating the relationship between the estimated adsorption amount and the increase / decrease amount rate set in the increase / decrease amount rate calculation unit 9f. The map shown in FIG. 8 shows that when the estimated adsorption amount is equal to or less than the predetermined amount, the smaller the estimated adsorption amount, the larger the increase / decrease rate rate is greater than 1, and when the estimated adsorption amount is the predetermined amount, the increase / decrease rate rate becomes 1. When the amount exceeds the predetermined amount, the rate of increase / decrease decreases linearly so that the rate of increase / decrease is 0. According to this, in the addition control unit 9g, the increase / decrease amount rate is determined by the map shown in FIG. 8, and if the estimated adsorption amount is equal to or less than the predetermined amount, the urea water with the specified amount increased as the estimated adsorption amount decreases. When added from the water addition valve 4 and the estimated adsorption amount exceeds a predetermined amount, the urea water whose amount is reduced by a specified amount is added from the urea water addition valve 4 as the estimated adsorption amount increases. In this case, since the urea water is increased as the estimated adsorption amount is smaller, the NH 3 adsorption amount of the SCR catalyst 3 can be increased more quickly, and the NOx purification rate of the SCR catalyst 3 can be increased more quickly.

<変形例2>
ECU9内の制御ブロック図は、図9に示すものでもよい。なお、ここでは、図3の制御ブロック図で説明したものについては説明を省略する。
<Modification 2>
A control block diagram in the ECU 9 may be as shown in FIG. In addition, description is abbreviate | omitted here about what was demonstrated with the control block diagram of FIG.

図9に示すように、ECU9は、規定量算出部9dで算出された規定量に増減量率算出部9fで算出された増減量率を掛けることによって、尿素水の添加量1を導出する添加量1算出部9hを有する。   As shown in FIG. 9, the ECU 9 multiplies the specified amount calculated by the specified amount calculation unit 9d by the increase / decrease rate rate calculated by the increase / decrease rate rate calculation unit 9f to derive the addition amount 1 of urea water. It has the quantity 1 calculation part 9h.

また、ECU9は、所定量と推定吸着量算出部9eで算出された推定吸着量とを一致するようにPID制御等でフィードバック制御する添加量2を算出する添加量2算出部9iを有する。添加量2算出部9iでは、所定量から推定吸着量を引いた値の関数として添加量2を算出する。この添加量2は、所定量から推定吸着量を引いた値が負(0以下)となる場合には、0として算出される。   In addition, the ECU 9 includes an addition amount 2 calculation unit 9i that calculates an addition amount 2 that is feedback-controlled by PID control or the like so that the predetermined amount matches the estimated adsorption amount calculated by the estimated adsorption amount calculation unit 9e. The addition amount 2 calculation unit 9i calculates the addition amount 2 as a function of a value obtained by subtracting the estimated adsorption amount from the predetermined amount. This addition amount 2 is calculated as 0 when the value obtained by subtracting the estimated adsorption amount from the predetermined amount is negative (0 or less).

ECU9は、添加量1と添加量2とを加算して最終添加量を算出し、添加を実行する添加制御部9jを有する。添加制御部9jでは、添加量1算出部9hで算出された添加量1と、添加量2算出部9iで算出された添加量2と、を加算して、尿素水の最終添加量を導出する。そして、導出された最終添加量を尿素水添加弁4から添加する。つまり、添加量2が所定量から推定吸着量を引いた値が負(0以下)となる場合には、0として算出されるので、推定吸着量が所定量以下であると、規定量以上の尿素水を尿素水添加弁4から添加し、推定吸着量が所定量を超えると、推定吸着量が多い程規定量を減量した尿素水を尿素水添加弁4から添加することになる。   The ECU 9 has an addition control unit 9j that adds the addition amount 1 and the addition amount 2 to calculate the final addition amount and executes the addition. The addition control unit 9j adds the addition amount 1 calculated by the addition amount 1 calculation unit 9h and the addition amount 2 calculated by the addition amount 2 calculation unit 9i to derive the final addition amount of urea water. . Then, the derived final addition amount is added from the urea water addition valve 4. That is, when the value obtained by subtracting the estimated adsorption amount from the predetermined amount is negative (0 or less), it is calculated as 0. Therefore, if the estimated adsorption amount is equal to or less than the predetermined amount, When urea water is added from the urea water addition valve 4 and the estimated adsorption amount exceeds a predetermined amount, the urea water whose amount is reduced by a specified amount is added from the urea water addition valve 4 as the estimated adsorption amount increases.

ECU9が行う尿素水添加制御ルーチンについて、図10に示すフローチャートに基づいて説明する。図10は、尿素水添加制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎にECU9によって実行される。なお、実施例1での図7に示すルーチンと同じステップについては説明を省略する。図10に示すルーチンが開始されると、S101〜S103が実行される。S201では、規定量算出部9dで算出した尿素水の規定量と、増減量率算出部9fで算出した増減量率と、から、添加量1算出部9hで尿素水の添加量1を算出する。S202では、添加量2算出部9iで所定量から推定吸着量
算出部9eで算出された推定吸着量を引いた値の関数として添加量2を算出する。S203では、添加制御部9jで添加量1と添加量2とを加算して最終添加量を算出し、添加を実行する。S105〜S106を実行し、このステップの処理の後、本ルーチンを一旦終了する。以上説明した本ルーチンによると、SCR触媒3での高いNOx浄化率の確保とNHスリップ抑制との両立を実現することができる。
The urea water addition control routine performed by the ECU 9 will be described based on the flowchart shown in FIG. FIG. 10 is a flowchart showing a urea water addition control routine. This routine is executed by the ECU 9 every predetermined time. The description of the same steps as those in the routine shown in FIG. When the routine shown in FIG. 10 is started, S101 to S103 are executed. In S201, the addition amount 1 of urea water is calculated by the addition amount 1 calculation unit 9h from the specified amount of urea water calculated by the specified amount calculation unit 9d and the increase / decrease rate rate calculated by the increase / decrease amount rate calculation unit 9f. . In S202, the addition amount 2 calculation unit 9i calculates the addition amount 2 as a function of a value obtained by subtracting the estimated adsorption amount calculated by the estimated adsorption amount calculation unit 9e from the predetermined amount. In S203, the addition control unit 9j adds the addition amount 1 and the addition amount 2 to calculate the final addition amount, and executes the addition. Steps S105 to S106 are executed, and after the processing of this step, this routine is once ended. According to this routine described above, it is possible to achieve both a high NOx purification rate in the SCR catalyst 3 and NH 3 slip suppression.

<変形例3>
また、実施例1では、浄化率算出部が、想定浄化率算出部9aと実浄化率算出部9bとの2つであったが、どちらか一方のみを用いるものでもよい。浄化率算出部が想定浄化率算出部9aのみであると、今現在のNOx浄化率を予測でき、推定吸着量は今現在の量を導出でき、尿素水の規定量は今現在必要な量を導出できる。浄化率算出部が実浄化率算出部9bのみであると、タイムラグがあるものの直近における実際のNOx浄化率を導出でき、推定吸着量はタイムラグがあるものの直近における実際の量を導出でき、尿素水の規定量はタイムラグがあるものの直近における実際に必要だった量を導出できる。
<Modification 3>
In the first embodiment, the purification rate calculation unit is the assumed purification rate calculation unit 9a and the actual purification rate calculation unit 9b. However, only one of them may be used. If the purification rate calculation unit is only the assumed purification rate calculation unit 9a, the current NOx purification rate can be predicted, the estimated adsorption amount can be derived from the current amount, and the specified amount of urea water is the amount currently required. Can be derived. When the purification rate calculation unit is only the actual purification rate calculation unit 9b, it is possible to derive the latest actual NOx purification rate although there is a time lag, and the estimated adsorption amount can derive the latest actual amount although there is a time lag. Although there is a time lag, the required amount can be derived from the amount actually required in the immediate future.

1:内燃機関、2:排気通路、3:SCR触媒、4:尿素水添加弁、5:尿素水タンク、6:第1NOxセンサ、7:第2NOxセンサ、8:温度センサ、9:ECU、9a:想定浄化率算出部、9b:実浄化率算出部、9c:NOx量算出部、9d:規定量算出部、9e:推定吸着量算出部、9f:増減量率算出部、9g:添加制御部、9h:添加量1算出部、9i:添加量2算出部、9j:添加制御部、10:エアフローメータ 1: internal combustion engine, 2: exhaust passage, 3: SCR catalyst, 4: urea water addition valve, 5: urea water tank, 6: first NOx sensor, 7: second NOx sensor, 8: temperature sensor, 9: ECU, 9a : Assumed purification rate calculation unit, 9b: actual purification rate calculation unit, 9c: NOx amount calculation unit, 9d: specified amount calculation unit, 9e: estimated adsorption amount calculation unit, 9f: increase / decrease amount rate calculation unit, 9g: addition control unit , 9h: addition amount 1 calculation unit, 9i: addition amount 2 calculation unit, 9j: addition control unit, 10: air flow meter

Claims (5)

内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
を備えた内燃機関の排気浄化装置であって、
前記選択還元型NOx触媒のNOx浄化率を算出する浄化率算出部と、
前記浄化率算出部で算出されたNOx浄化率に基づいて、前記選択還元型NOx触媒に吸着したNHの推定吸着量を算出する推定吸着量算出部と、
前記推定吸着量算出部で算出された推定吸着量が、前記内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ前記選択還元型NOx触媒からのNHのスリップを抑制できるか否かの閾値である所定量以下であると、規定量以上の還元剤を前記還元剤添加部から添加し、前記推定吸着量が所定量を超えると、前記推定吸着量が多い程規定量を減量した還元剤を前記還元剤添加部から添加する添加制御部と、
前記浄化率算出部で算出されたNOx浄化率に基づいて、還元剤の規定量を算出する規定量算出部と、を備え、
前記浄化率算出部は、前記選択還元型NOx触媒に流入するNOとNO との比、前記選択還元型NOx触媒の温度、及び排気流量からNOx浄化率を算出する想定浄化率算出部と、前記選択還元型NOx触媒に出入りするNOx濃度からNOx浄化率を算出する実浄化率算出部と、を有しており、
前記推定吸着量算出部は、前記実浄化率算出部で算出されたNOx浄化率に基づいて、前記推定吸着量を算出し、
前記規定量算出部は、前記想定浄化率算出部で算出されたNOx浄化率に基づいて、還元剤の規定量を算出することを特徴とする内燃機関の排気浄化装置。
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
An exhaust purification device for an internal combustion engine comprising:
A purification rate calculation unit for calculating a NOx purification rate of the selective reduction type NOx catalyst;
An estimated adsorption amount calculation unit that calculates an estimated adsorption amount of NH 3 adsorbed on the selective reduction type NOx catalyst based on the NOx purification rate calculated by the purification rate calculation unit;
Whether the estimated adsorption amount calculated by the estimated adsorption amount calculation unit can achieve a certain NOx purification rate in all operating states of the internal combustion engine and can suppress the slip of NH 3 from the selective reduction type NOx catalyst. When the amount of the reducing agent is not less than a predetermined amount that is a threshold value, a reducing agent of a specified amount or more is added from the reducing agent addition unit. An addition control unit for adding the reduced reducing agent from the reducing agent addition unit ;
A prescribed amount calculation unit for calculating a prescribed amount of the reducing agent based on the NOx purification rate calculated by the purification rate calculation unit,
The purification rate calculation unit includes an assumed purification rate calculation unit that calculates a NOx purification rate from a ratio of NO to NO 2 flowing into the selective reduction NOx catalyst, a temperature of the selective reduction NOx catalyst, and an exhaust flow rate; An actual purification rate calculation unit that calculates a NOx purification rate from the NOx concentration entering and exiting the selective reduction type NOx catalyst,
The estimated adsorption amount calculation unit calculates the estimated adsorption amount based on the NOx purification rate calculated by the actual purification rate calculation unit,
The exhaust gas purification apparatus for an internal combustion engine, wherein the specified amount calculation unit calculates a specified amount of reducing agent based on the NOx purification rate calculated by the assumed purification rate calculation unit .
前記添加制御部が添加する還元剤の量を算出するための、前記推定吸着量算出部で算出された前記推定吸着量と所定量とに基づいて、還元剤の規定量に掛け合わされる増減量率を算出する増減量率算出部を更に備えたことを特徴とする請求項1に記載の内燃機関の排気浄化装置。 Based on the estimated adsorption amount calculated by the estimated adsorption amount calculation unit and a predetermined amount for calculating the amount of reducing agent added by the addition control unit, an increase / decrease amount multiplied by a prescribed amount of the reducing agent The exhaust gas purification apparatus for an internal combustion engine according to claim 1, further comprising an increase / decrease amount rate calculation unit for calculating the rate. 前記添加制御部は、前記推定吸着量が所定量以下であると、規定量の還元剤を前記還元剤添加部から添加することを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化装置。 3. The internal combustion engine according to claim 1 , wherein the addition control unit adds a specified amount of a reducing agent from the reducing agent adding unit when the estimated adsorption amount is equal to or less than a predetermined amount. Exhaust purification device. 前記添加制御部は、前記推定吸着量が所定量以下であると、前記推定吸着量が少ない程規定量を増量した還元剤を前記還元剤添加部から添加することを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化装置。 The addition control unit, said the estimated amount of adsorption is equal to or less than a predetermined amount, according to claim 1, characterized in that the addition of the reducing agent was increased a predetermined amount the estimated smaller the adsorption amount of the reducing agent addition unit or The exhaust emission control device for an internal combustion engine according to claim 2 . 内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
を備えた内燃機関の排気浄化装置の還元剤添加方法であって、
前記選択還元型NOx触媒に流入するNOとNO との比、前記選択還元型NOx触媒の温度、及び排気流量から想定NOx浄化率を算出し、
前記選択還元型NOx触媒に出入りするNOx濃度から実NOx浄化率を算出し、
算出された実NOx浄化率に基づいて、前記選択還元型NOx触媒に吸着したNHの推定吸着量を算出し、
算出された想定NOx浄化率に基づいて、前記還元剤添加部から添加される還元剤の規定量を算出し、
算出された推定吸着量が、前記内燃機関のあらゆる運転状態で、一定以上のNOx浄化率を実現でき且つ前記選択還元型NOx触媒からのNHのスリップを抑制できるか否かの閾値である所定量以下であると、規定量以上の還元剤を前記還元剤添加部から添加し、前記推定吸着量が所定量を超えると、前記推定吸着量が多い程規定量を減量した還元剤を前記還元剤添加部から添加することを特徴とする内燃機関の排気浄化装置の還元剤添加方法。
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
A reducing agent addition method for an exhaust gas purification apparatus for an internal combustion engine comprising:
The ratio of NO to NO 2 which flows into the selective reduction type NOx catalyst calculates the assumed NOx purification rate the temperature of the selective reduction type NOx catalyst, and the exhaust flow rate,
An actual NOx purification rate is calculated from the NOx concentration entering and exiting the selective reduction type NOx catalyst,
Based on the calculated actual NOx purification rate, an estimated adsorption amount of NH 3 adsorbed on the selective reduction type NOx catalyst is calculated,
Based on the calculated assumed NOx purification rate, calculate a prescribed amount of reducing agent added from the reducing agent addition unit,
The calculated estimated adsorption amount is a threshold value as to whether or not a NOx purification rate of a certain level or more can be realized and NH 3 slip from the selective reduction type NOx catalyst can be suppressed in all operating states of the internal combustion engine. When the amount is below the fixed amount, a specified amount or more of the reducing agent is added from the reducing agent addition unit, and when the estimated adsorption amount exceeds a predetermined amount, the reducing agent is reduced by reducing the specified amount as the estimated adsorption amount increases. A reducing agent addition method for an exhaust gas purification apparatus for an internal combustion engine, wherein the reducing agent addition unit is added from an agent addition unit.
JP2010111921A 2010-05-14 2010-05-14 Exhaust gas purification device for internal combustion engine Active JP5560089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111921A JP5560089B2 (en) 2010-05-14 2010-05-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111921A JP5560089B2 (en) 2010-05-14 2010-05-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011241686A JP2011241686A (en) 2011-12-01
JP5560089B2 true JP5560089B2 (en) 2014-07-23

Family

ID=45408614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111921A Active JP5560089B2 (en) 2010-05-14 2010-05-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5560089B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002040B2 (en) * 2010-07-07 2012-08-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013190658A1 (en) 2012-06-20 2013-12-27 トヨタ自動車株式会社 Exhaust purification system for internal combustion engine
JP6003600B2 (en) * 2012-12-05 2016-10-05 トヨタ自動車株式会社 Control device for internal combustion engine
JP6241160B2 (en) * 2013-09-13 2017-12-06 いすゞ自動車株式会社 Exhaust gas purification system, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP6112093B2 (en) 2014-10-16 2017-04-12 トヨタ自動車株式会社 Exhaust purification system
JP6298003B2 (en) * 2015-03-30 2018-03-20 ヤンマー株式会社 engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022729A (en) * 2004-07-08 2006-01-26 Hino Motors Ltd Control method of exhaust emission control device
JP5165500B2 (en) * 2008-08-26 2013-03-21 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. Selective catalytic reduction control system and method
JP5398372B2 (en) * 2009-06-18 2014-01-29 Udトラックス株式会社 Engine exhaust purification system

Also Published As

Publication number Publication date
JP2011241686A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5880731B2 (en) Exhaust gas purification device for internal combustion engine
JP5002040B2 (en) Exhaust gas purification device for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP5672295B2 (en) Exhaust gas purification device deterioration judgment system
JP5333664B2 (en) Exhaust gas purification device for internal combustion engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP5398372B2 (en) Engine exhaust purification system
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
EP2940267B1 (en) Exhaust gas purification apparatus for internal combustion engine
US10077699B2 (en) Exhaust purifying system
JP6911479B2 (en) Exhaust gas purification system control device
US20180230878A1 (en) Exhaust gas purification apparatus for an internal combustion engine
US9810124B2 (en) Exhaust gas purification system of internal combustion engine
CN102985649B (en) Exhaust gas purification apparatus for internal combustion engine
EP3342998B1 (en) Exhaust gas purification apparatus for an internal combustion engine
US9464554B2 (en) Exhaust gas purification system for internal combustion engine
JP6436074B2 (en) Exhaust gas purification device for internal combustion engine
JP5880593B2 (en) Exhaust gas purification device for internal combustion engine
JP2012031787A (en) Device and method for exhaust emission control of internal combustion engine
JP2014181669A (en) Failure determination system for exhaust emission control device
JP2018035766A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5560089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250