JP5547455B2 - Hypochlorite decomposition catalyst, method for producing the same, and method for using the same - Google Patents
Hypochlorite decomposition catalyst, method for producing the same, and method for using the same Download PDFInfo
- Publication number
- JP5547455B2 JP5547455B2 JP2009256600A JP2009256600A JP5547455B2 JP 5547455 B2 JP5547455 B2 JP 5547455B2 JP 2009256600 A JP2009256600 A JP 2009256600A JP 2009256600 A JP2009256600 A JP 2009256600A JP 5547455 B2 JP5547455 B2 JP 5547455B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- hypochlorite
- group
- same
- decomposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 title claims description 92
- 239000003054 catalyst Substances 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 21
- 238000000354 decomposition reaction Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 239000008240 homogeneous mixture Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000003610 charcoal Chemical class 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- 238000004898 kneading Methods 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000002351 wastewater Substances 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- -1 for example Chemical compound 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
- Removal Of Specific Substances (AREA)
Description
本発明は、次亜塩素酸塩を分解する触媒およびその製造方法並びに使用方法に関する。より詳細には、8、9または10族元素酸化物と2族元素化合物とを含む安価で高活性な次亜塩素酸塩分解用触媒および、その製造方法、さらにこの触媒を用いて次亜塩素含有排水中の次亜塩素酸塩を分解する方法および分解した際に発生した原子状酸素を有機物と接触させて酸化分解する方法に関する。 The present invention relates to a catalyst for decomposing hypochlorite, a method for producing the same and a method for using the same. More specifically, an inexpensive and highly active hypochlorite decomposition catalyst containing a Group 8, 9 or 10 element oxide and a Group 2 element compound, a method for producing the catalyst, and hypochlorite using the catalyst The present invention relates to a method for decomposing hypochlorite in contained wastewater and a method for oxidizing and decomposing atomic oxygen generated during decomposition by contacting with organic matter.
次亜塩素酸塩を製造する工場では排水中に次亜塩素酸塩が含まれる。また、食品加工工場などから出る有機物排水に次亜塩素酸塩を添加し浄化するとき、過剰に添加した次亜塩素酸塩が処理後排水中に残留する。 Hypochlorite is contained in wastewater at factories that produce hypochlorite. In addition, when hypochlorite is added to and purified from organic wastewater from food processing plants, excessively added hypochlorite remains in the wastewater after treatment.
次亜塩素酸塩を含む排水は異臭を放つだけでなく、酸との接触により有毒な塩素ガスを生成するため、未処理のまま公共水系に放出すると公害の原因となる。 Wastewater containing hypochlorite does not only give off a strange odor, but also produces toxic chlorine gas by contact with acid, and if released into a public water system untreated, it causes pollution.
次亜塩素酸塩を含む排水の処理法には、亜硫酸塩や過酸化水素水等の還元剤を用いて次亜塩素酸塩を酸化分解する方法がある。しかし、この方法を用いて多量の次亜塩素酸塩を含む排水を処理するには、多量の還元剤が必要となるためランニングコストが高くなる。さらに、変動する次亜塩素酸塩濃度に応じて還元剤を添加するには高度の技術と、そのための設備投資が必要となる。 As a method for treating wastewater containing hypochlorite, there is a method in which hypochlorite is oxidized and decomposed using a reducing agent such as sulfite or hydrogen peroxide. However, in order to treat waste water containing a large amount of hypochlorite using this method, a large amount of reducing agent is required, and therefore the running cost is increased. Furthermore, in order to add a reducing agent according to the varying hypochlorite concentration, advanced technology and capital investment for that are required.
ニッケル、コバルト等を含む固定床触媒上で次亜塩素酸塩を分解する方法がある。この手法は次亜塩素酸塩が触媒上で酸素を発生して自発的に分解するので、ランニングコストが低くなる。しかし、この触媒は金属を活性成分とするため、金属使用量が多いと活性は高いが、触媒のコストも高くなる。 There is a method of decomposing hypochlorite on a fixed bed catalyst containing nickel, cobalt and the like. This technique lowers the running cost because hypochlorite decomposes spontaneously by generating oxygen on the catalyst. However, since this catalyst contains metal as an active component, the activity is high when the amount of metal used is large, but the cost of the catalyst also increases.
固定床触媒のコストを低くするには、触媒活性を高めることと活性成分を希釈することが必要となる。一般的に、触媒活性は活性成分の表面積を高めることで達成できる。希釈剤は使用中に崩壊しないものを選ばなければならない。特許文献1に記載されているように、一般的に次亜塩素酸塩排水のpHは高いため、希釈剤や結合剤は崩壊し易い。 In order to reduce the cost of the fixed bed catalyst, it is necessary to increase the catalytic activity and dilute the active components. In general, catalytic activity can be achieved by increasing the surface area of the active ingredient. Diluents must be chosen that do not disintegrate during use. As described in Patent Document 1, since the pH of hypochlorite waste water is generally high, the diluent and binder are likely to collapse.
特許文献1では、ポリフッ化ビニリデンのような熱可塑性樹脂結合剤を用い、微細な金属酸化物と一体化させることにより、崩壊に強い触媒を開発した。しかし、樹脂の熱可塑性を利用して成形するため、熱処理時に活性成分である金属酸化物が樹脂に埋没し、触媒活性が低下する恐れがある。 In Patent Document 1, a catalyst that resists collapse is developed by using a thermoplastic resin binder such as polyvinylidene fluoride and integrating it with a fine metal oxide. However, since molding is performed by utilizing the thermoplasticity of the resin, there is a possibility that the metal oxide which is an active component is buried in the resin during the heat treatment and the catalytic activity is lowered.
特許文献2では比較的安価なアルミン酸カルシウムセメントを希釈剤かつ結合剤として用い、複雑な組成および細孔構造の制御を行うことにより、高い活性と耐崩壊性を両立した。しかし、複雑な細孔構造の制御を行うことは製造コスト高を招く。また、アルミン酸カルシウムセメントは水中でセメントゲルを形成し、粒子同士が結合する性質を持つ。結合したアルミン酸カルシウムセメント粒子間に活性成分である金属酸化物が埋没し、触媒活性が低下する恐れがある。 In Patent Document 2, a relatively inexpensive calcium aluminate cement is used as a diluent and a binder, and the complex composition and pore structure are controlled to achieve both high activity and resistance to disintegration. However, controlling the complex pore structure results in high manufacturing costs. In addition, calcium aluminate cement forms a cement gel in water and has a property of bonding particles. There is a possibility that the metal oxide as an active component is buried between the bonded calcium aluminate cement particles, and the catalytic activity is lowered.
これら技術を用いて、高活性かつ耐崩壊性に優れた次亜塩素酸塩分解触媒を調製するためには、高価な材料の使用や細孔構造の制御を必要とするため、コスト低減が困難である。 Using these technologies to prepare a hypochlorite decomposition catalyst with high activity and excellent decay resistance requires the use of expensive materials and control of the pore structure, making it difficult to reduce costs. It is.
さらに、特許文献3は、次亜塩素酸塩の分解時に生成する原子状酸素を用いて汚染物質を酸化するための触媒として、次亜塩素酸分解触媒を転用可能であると述べている。 Further, Patent Document 3 states that a hypochlorous acid decomposition catalyst can be diverted as a catalyst for oxidizing pollutants using atomic oxygen generated during decomposition of hypochlorite.
しかしながら、排水中の次亜塩素酸塩の分解触媒としての使用および、その際発生した原子状酸素を更に排水中の有機物を酸化分解するための触媒としての使用を両立する触媒であって、安価で高活性な触媒については未だ実現されていない。 However, it is a catalyst that can be used both as a catalyst for decomposing hypochlorite in wastewater and as a catalyst for further oxidizing and decomposing organic substances in wastewater from the atomic oxygen generated at that time. However, a highly active catalyst has not been realized yet.
本発明は、安価で塩基性水溶液中での耐崩壊性に優れた原料を用いた次亜塩素酸塩分解触媒を提供することにある。更に、上記触媒を使用して次亜塩素酸塩を分解する方法およびこの方法により発生した原子状酸素を利用した有機物分解の方法を提供することにある。 An object of the present invention is to provide a hypochlorite decomposition catalyst using a raw material which is inexpensive and excellent in resistance to disintegration in a basic aqueous solution. Furthermore, another object of the present invention is to provide a method for decomposing hypochlorite using the above catalyst and a method for decomposing organic matter using atomic oxygen generated by this method.
本発明者らは、上記の課題を解決すべく鋭意研究を続けた結果、8、9または10族元素酸化物と2族元素化合物とを含む触媒は、次亜塩素酸塩に対して非常に優れた分解能力を有し、且つ細孔構造の制御の必要がなく安価な原料を使用することができ、pHの高い次亜塩素酸塩含有排水中における長時間の使用でも耐崩壊性に優れることを見出した。この知見に基づき、更に詳細に検討することによって本発明を完成した。 As a result of continual research to solve the above-mentioned problems, the present inventors have found that a catalyst containing a Group 8, 9, or 10 element oxide and a Group 2 element compound is much less than hypochlorite. It has excellent decomposing ability, and it is not necessary to control the pore structure, and it is possible to use inexpensive raw materials, and it is excellent in decay resistance even when used for a long time in wastewater containing hypochlorite with high pH. I found out. Based on this knowledge, the present invention was completed by examining in more detail.
すなわち、本発明は、次亜塩素酸塩を分解し原子状酸素を発生させるための触媒であって、8、9または10族元素酸化物と2族元素化合物とを含む混合物において、
2族元素がマグネシウム、カルシウム、ストロンチウム、バリウムから選択される1種類以上の元素であり、化合物が水酸化物、炭酸塩、硫酸塩のいずれかの形態であることを特徴とする次亜塩素酸塩分解用触媒に関する。
That is, the present invention provides a catalyst for decomposing and generating an atomic oxygen hypochlorite, and a 8,9, or Group 10 element oxide and Group 2 element compound in including mixtures,
Magnesium 2 group elements, calcium, strontium, more than one kind of element selected from barium, hydroxide compounds, charcoal salts, hypochlorous characterized in that it is in the form of either sulfate The present invention relates to a catalyst for acid salt decomposition.
更に、上記触媒は、8、9または10族元素が、鉄、コバルト、ニッケルから選択される1種類以上の金属であることを特徴とする。 Furthermore, the catalyst is 8,9 or 10 element, wherein iron, cobalt, that Ru one or more metals der selected from nickel.
更に、上記触媒は、8、9または10族元素酸化物を5〜70重量%、2族元素化合物を95〜30重量%含む均質混合物であることを特徴とする。 Further, the catalyst is characterized in that it is a homogeneous mixture containing 5-70% by weight of Group 8, 9 or 10 element oxide and 95-30% by weight of Group 2 element compound.
また、本発明は、8、9または10族元素酸化物と2族元素化合物との混合物に対し水を添加して混練し、押出成形し、80〜400℃で乾燥することを特徴とする次亜塩素酸塩分解用触媒の製造方法に関する。 Further, the present invention is characterized in that water is added to a mixture of Group 8, 9 or 10 element oxide and Group 2 element compound, kneaded, extruded, and dried at 80 to 400 ° C. The present invention relates to a method for producing a chlorite decomposition catalyst.
また、本発明は、上記触媒の存在下、次亜塩素酸塩水溶液を分解し原子状酸素を発生させることを特徴とする方法に関する。 The present invention also relates to a method characterized by decomposing a hypochlorite aqueous solution to generate atomic oxygen in the presence of the catalyst.
更に、上記方法は、次亜塩素酸塩水溶液を、pH6〜14、10〜100℃の条件で、上記触媒と接触させることを特徴とする。 Furthermore, the method is characterized in that an aqueous hypochlorite solution is brought into contact with the catalyst under conditions of pH 6 to 14 and 10 to 100 ° C.
更に、上記方法により発生した原子状酸素を有機物と接触させて酸化分解することを特徴とする。 Further, the present invention is characterized in that atomic oxygen generated by the above method is oxidatively decomposed by contacting with an organic substance.
本発明の触媒は、次亜塩素酸塩に対して非常に優れた分解能力を有し、且つ細孔構造の制御の必要がなく安価な原料を使用することができ、pHの高い次亜塩素酸塩含有排水中における長時間の使用でも耐崩壊性に優れ、更に次亜塩素酸塩から発生した原子状酸素を排水中の有機物分解に有効に利用でき、あらゆる規模の次亜塩素酸塩含有排水の浄化に適している。 The catalyst of the present invention has a very excellent decomposition ability with respect to hypochlorite, and it is not necessary to control the pore structure, and an inexpensive raw material can be used. Excellent resistance to disintegration even in long-term use in acid-containing wastewater. Furthermore, atomic oxygen generated from hypochlorite can be effectively used for organic matter decomposition in wastewater, and contains hypochlorite of all sizes. Suitable for wastewater purification.
以下に本発明を詳述する。 The present invention is described in detail below.
本発明の触媒は、8、9または10族元素酸化物と2族元素化合物とを含む混合物である。 The catalyst of the present invention is a mixture containing a Group 8, 9 or 10 element oxide and a Group 2 element compound.
8、9または10族元素は鉄、コバルト、ニッケルから選択される1種類以上の金属であり、この酸化物は、高表面積であることが望ましい。 The Group 8, 9, or 10 element is one or more metals selected from iron, cobalt, and nickel, and the oxide desirably has a high surface area.
2族元素は、マグネシウム、カルシウム、ストロンチウム、バリウムから選択される1種類以上の金属であり、その化合物は、水酸化物、酸化物、炭酸塩、硫酸塩からなる。 The group 2 element is one or more metals selected from magnesium, calcium, strontium, and barium, and the compound is composed of a hydroxide, an oxide, a carbonate, and a sulfate.
本発明の触媒は、5〜70重量%の8、9または10族元素酸化物と95〜30重量%の2族元素化合物とを含む均質混合物である。ここで、触媒の成形体において、8、9または10族元素酸化物の含有量が70重量%を超えると、成型性の悪化とコスト高のため好ましくなく、5重量%未満であると大量の次亜塩素酸塩処理するには活性が低いため好ましくない。 The catalyst of the present invention is a homogeneous mixture comprising 5 to 70% by weight of Group 8, 9 or 10 elemental oxide and 95 to 30% by weight of Group 2 elemental compound. Here, in the molded article of the catalyst, when the content of the group 8, 9, or 10 element oxide exceeds 70% by weight, it is not preferable due to deterioration of moldability and high cost. The hypochlorite treatment is not preferable because of its low activity.
また、これらの混合物に成形助剤を添加して成形してもよい。成形助剤としては、例えば、メチルセルロースやステアリン酸マグネシウムが挙げられ、任意の量を添加することができる。 Moreover, you may shape | mold by adding a shaping | molding adjuvant to these mixtures. Examples of the molding aid include methyl cellulose and magnesium stearate, and an arbitrary amount can be added.
得られた触媒は、BET表面積は少なくとも30m2/g、特に60〜150m2/gである。また、かさ密度は、0.7〜1.2g/mlである。 The resulting catalyst, BET surface area is at least 30 m 2 / g, especially 60~150m 2 / g. The bulk density is 0.7 to 1.2 g / ml.
本発明に係わる触媒の形状やサイズはその使用形態により適宜選択することができる。一般的には直径が1〜6mmで長さが3〜20mm程度の円柱状ペレットが好適に用いられるが、種々の形状の触媒、錠剤形状、顆粒状及び破砕粒状の触媒でも利用できる。上記直径のペレットは、次亜塩素酸塩に直接使用することができ、細孔構造の制御が必要な触媒と比較すると簡便に製造することができる。 The shape and size of the catalyst according to the present invention can be appropriately selected depending on the usage form. Generally, cylindrical pellets having a diameter of 1 to 6 mm and a length of about 3 to 20 mm are preferably used, but various shapes of catalysts, tablets, granules, and crushed particles can also be used. The pellets with the above diameter can be used directly for hypochlorite, and can be easily produced as compared with a catalyst that requires control of the pore structure.
上記触媒の組成により、活性成分である8、9、または10族元素酸化物を多量に含有しながら、次亜塩素酸塩水溶液中で安定な2族元素化合物を成型助材として作用させることができる。そのため、高活性と耐崩壊性を両立することができる。 Depending on the composition of the catalyst, a stable Group 2 element compound can act as a molding aid in a hypochlorite aqueous solution while containing a large amount of Group 8, 9, or 10 element oxide as an active ingredient. it can. Therefore, both high activity and disintegration resistance can be achieved.
従って、本発明の触媒は、工業規模の排水を連続的に処理したとしても、成形体の粉化や割れが生じないため崩壊しない。 Accordingly, the catalyst of the present invention does not collapse even if industrial-scale wastewater is continuously treated, because the molded body does not powder or crack.
本発明に係る触媒の製造方法として、例えば、一般的な押出円柱状ペレットを製造する場合には、所定量の8、9または10族元素酸化物と2族元素化合物をニーダーなどの混練機を用いて、混合粉体に対して20〜50重量%の水を添加して混練する。この混合粉は、8、9または10族元素酸化物50重量%に対して2族元素化合物を50重量%混合したものである。 As a method for producing a catalyst according to the present invention, for example, when producing general extruded cylindrical pellets, a kneader such as a kneader is used to mix a predetermined amount of Group 8, 9, or 10 element oxide and Group 2 element compound. And 20 to 50% by weight of water is added to the mixed powder and kneaded. This mixed powder is obtained by mixing 50% by weight of a Group 2 element compound with 50% by weight of a Group 8, 9 or 10 element oxide.
得られた混合物を押出成形機あるいはディスクペレッタと、所定の形状のダイスを用いて円柱状ペレットに成形し、80〜400℃、好ましくは100〜300℃の温度で乾燥する。ペレットを80℃以下で乾燥させると、乾燥効率が悪く、400℃を超えて乾燥させると、高温により8、9または10族元素酸化物が焼結するため活性が低下する。 The obtained mixture is formed into a cylindrical pellet using an extruder or a disk pelleter and a die having a predetermined shape, and dried at a temperature of 80 to 400 ° C, preferably 100 to 300 ° C. When the pellets are dried at 80 ° C. or lower, the drying efficiency is poor. When the pellets are dried at a temperature exceeding 400 ° C., the activity decreases because the group 8, 9, or 10 element oxide is sintered at a high temperature.
本発明に係る触媒の使用方法は特に限定されるものではなく、移動床や流動床に使用することもできるが、通常は固定床に使用する。例えば円筒内に触媒を充填し、次亜塩素酸塩を含む排液を流通させることにより、排液中の次亜塩素酸塩を安全且つ効率良く除去することができる。 The method of using the catalyst according to the present invention is not particularly limited and can be used for a moving bed or a fluidized bed, but is usually used for a fixed bed. For example, it is possible to remove the hypochlorite in the effluent safely and efficiently by filling the cylinder with the catalyst and circulating the effluent containing the hypochlorite.
次亜塩素酸塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウムあるいは次亜塩素酸塩カルシウムを好適に用いることができる。これら次亜塩素酸塩と共に使用するアルカリ水溶液は、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。 As hypochlorite, for example, sodium hypochlorite, potassium hypochlorite, or calcium hypochlorite can be suitably used. Examples of the alkaline aqueous solution used with these hypochlorites include aqueous solutions of sodium hydroxide, potassium hydroxide, and the like.
本発明の方法において、次亜塩素酸塩水溶液を、pH6〜14、10〜100℃の条件で、触媒と接触させる。使用する次亜塩素酸塩水溶液の濃度は、用途に応じて適宜決定することができる。 In the method of the present invention, an aqueous hypochlorite solution is brought into contact with the catalyst under conditions of pH 6 to 14 and 10 to 100 ° C. The concentration of the hypochlorite aqueous solution to be used can be appropriately determined according to the application.
本発明による触媒は、また、次亜塩素酸塩の分解時に生成する原子状酸素を用いて汚染物質を酸化するための触媒としても使用可能である。 The catalyst according to the present invention can also be used as a catalyst for oxidizing pollutants using atomic oxygen produced during the decomposition of hypochlorite.
例えば、有機物を含有する排水を上記次亜塩素酸塩水溶液と共に、上記触媒に接触させることができる。この有機物含有排水としては、特に制限はなく、食品加工工場などから出る有機物排水などがある。ここで、共存させる次亜塩素酸塩水溶液の量は、排水中に含まれる有機物を酸化分解するために必要な理論量の1〜100重量倍であることが好ましく、1〜10重量倍であることがより好ましい。 For example, wastewater containing organic matter can be brought into contact with the catalyst together with the hypochlorite aqueous solution. There is no restriction | limiting in particular as this organic matter containing waste_water | drain, Organic waste water etc. which come from a food processing factory etc. are included. Here, the amount of the hypochlorite aqueous solution to be coexisted is preferably 1 to 100 times the theoretical amount necessary to oxidatively decompose the organic matter contained in the wastewater, and is 1 to 10 times the weight. It is more preferable.
本発明による触媒は、次亜塩素酸塩など酸化剤の分解触媒として使用でき、且つ酸化剤を用いた汚染物質の酸化触媒としても強い活性を有し、効果的に使用できる。 The catalyst according to the present invention can be used as a decomposition catalyst for oxidizing agents such as hypochlorite, and has strong activity as an oxidation catalyst for pollutants using oxidizing agents, and can be used effectively.
以下、本発明の具体的な実施例にかかる触媒の調製例と、それらの触媒を用いた実施例を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the preparation example of the catalyst concerning the specific Example of this invention and the Example using those catalysts are demonstrated in detail, this invention is not limited to these.
(触媒の性能試験)
NaOHを用いてpH10に調整した0.28molL−1NaClO水溶液100mlを75℃に加温し、触媒10g投入から1h後の酸素発生量を調べた。さらに24h放置し、崩壊の有無を目視により確認した。
(Catalyst performance test)
100 ml of 0.28 mol L −1 NaClO aqueous solution adjusted to pH 10 with NaOH was heated to 75 ° C., and the amount of oxygen generated after 1 hour from the introduction of 10 g of the catalyst was examined. Furthermore, it was left to stand for 24 hours and the presence or absence of collapse was confirmed visually.
(実施例1)
酸化ニッケル300gと水酸化カルシウム600gを混練し、ディスクペレッタを用いて直径3mm、長さ5〜7mmに押出した。次に150℃で10h乾燥し、触媒を得た。NaOHを用いてpH10に調整した0.28molL−1NaClO水溶液100mlを75℃に加温し、触媒10g投入から1h後の酸素発生量を調べた。さらに24h放置し、崩壊の有無を目視により確認した。得られた触媒の崩壊ならびに酸素発生量の結果を表1に示す。
Example 1
Nickel oxide 300 g and calcium hydroxide 600 g were kneaded and extruded to 3 mm in diameter and 5 to 7 mm in length using a disk pelleter. Next, it was dried at 150 ° C. for 10 hours to obtain a catalyst. 100 ml of 0.28 mol L −1 NaClO aqueous solution adjusted to pH 10 with NaOH was heated to 75 ° C., and the amount of oxygen generated after 1 hour from the introduction of 10 g of the catalyst was examined. Furthermore, it was left to stand for 24 hours and the presence or absence of collapse was confirmed visually. Table 1 shows the results of the decay of the catalyst and the amount of oxygen generated.
(実施例2)
酸化ニッケル300gと水酸化カルシウム300gと水酸化マグネシウム300gを混練し、ディスクペレッタを用いて直径3mm、長さ5〜7mmに押出した。次に150℃で10h乾燥し、触媒を得た。NaOHを用いてpH10に調整した0.28molL−1NaClO水溶液100mlを75℃に加温し、触媒10g投入から1h後の酸素発生量を調べた。さらに24h放置し、崩壊の有無を目視により確認した。得られた触媒の崩壊ならびに酸素発生量の結果を表1に示す。
(Example 2)
Nickel oxide 300 g, calcium hydroxide 300 g, and magnesium hydroxide 300 g were kneaded and extruded to a diameter of 3 mm and a length of 5 to 7 mm using a disk pelleter. Next, it was dried at 150 ° C. for 10 hours to obtain a catalyst. 100 ml of 0.28 mol L −1 NaClO aqueous solution adjusted to pH 10 with NaOH was heated to 75 ° C., and the amount of oxygen generated after 1 hour from the introduction of 10 g of the catalyst was examined. Furthermore, it was left to stand for 24 hours and the presence or absence of collapse was confirmed visually. Table 1 shows the results of the decay of the catalyst and the amount of oxygen generated.
(比較例1)
酸化ニッケル300gとアルミナ600gを混練し、ディスクペレッタを用いて直径3mm、長さ5〜7mmに押出した。次に150℃で10h乾燥し、触媒を得た。NaOHを用いてpH10に調整した0.28molL−1NaClO水溶液100mlを75℃に加温し、触媒10g投入から1h後の酸素発生量を調べた。さらに24h放置し、崩壊の有無を目視により確認した。得られた触媒の崩壊ならびに酸素発生量の結果を表2に示す。
(Comparative Example 1)
Nickel oxide 300 g and alumina 600 g were kneaded and extruded to 3 mm in diameter and 5 to 7 mm in length using a disk pelleter. Next, it was dried at 150 ° C. for 10 hours to obtain a catalyst. 100 ml of 0.28 mol L −1 NaClO aqueous solution adjusted to pH 10 with NaOH was heated to 75 ° C., and the amount of oxygen generated after 1 hour from the introduction of 10 g of the catalyst was examined. Furthermore, it was left to stand for 24 hours and the presence or absence of collapse was confirmed visually. The results of decay of the catalyst and the amount of oxygen generated are shown in Table 2.
(比較例2)
酸化ニッケル300gと水ガラス50gを混練し、錠剤成型機を用いて直径10mm、長さ9〜10mmに成型した。NaOHを用いてpH10に調整した0.28molL−1NaClO水溶液100mlを75℃に加温し、触媒10g投入から1h後の酸素発生量を調べた。さらに24h放置し、崩壊の有無を目視により確認した。得られた触媒の酸素発生量の結果を表2に示す。
(Comparative Example 2)
Nickel oxide 300 g and water glass 50 g were kneaded and formed into a diameter of 10 mm and a length of 9 to 10 mm using a tablet molding machine. 100 ml of 0.28 mol L −1 NaClO aqueous solution adjusted to pH 10 with NaOH was heated to 75 ° C., and the amount of oxygen generated after 1 hour from the introduction of 10 g of the catalyst was examined. Furthermore, it was left to stand for 24 hours and the presence or absence of collapse was confirmed visually. Table 2 shows the results of oxygen generation amount of the obtained catalyst.
上記表1,2の結果より、本発明の8、9または10族元素酸化物と2族元素化合物とを含む触媒は、8、9または10族元素酸化物と2族元素化合物との両方を含まない組成の触媒と比較して、触媒が崩壊しないと共に高い酸素発生量の両方を可能にすることが示された。 From the results of Tables 1 and 2 above, the catalyst containing the Group 8, 9 or 10 element oxide and the Group 2 element compound of the present invention has both the Group 8, 9 or 10 element oxide and the Group 2 element compound. It has been shown that the catalyst does not decay and allows both high oxygen evolution as compared to a catalyst with no composition.
Claims (7)
2族元素がマグネシウム、カルシウム、ストロンチウム、バリウムから選択される1種類以上の元素であり、化合物が水酸化物、炭酸塩、硫酸塩のいずれかの形態であることを特徴とする次亜塩素酸塩分解用触媒。 In a mixture for decomposing hypochlorite and generating atomic oxygen, comprising a group 8, 9, or 10 element oxide and a group 2 element compound ,
Magnesium 2 group elements, calcium, strontium, more than one kind of element selected from barium, hydroxide compounds, charcoal salts, hypochlorous characterized in that it is in the form of either sulfate Catalyst for acidolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009256600A JP5547455B2 (en) | 2009-11-09 | 2009-11-09 | Hypochlorite decomposition catalyst, method for producing the same, and method for using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009256600A JP5547455B2 (en) | 2009-11-09 | 2009-11-09 | Hypochlorite decomposition catalyst, method for producing the same, and method for using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011098328A JP2011098328A (en) | 2011-05-19 |
JP5547455B2 true JP5547455B2 (en) | 2014-07-16 |
Family
ID=44189960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009256600A Expired - Fee Related JP5547455B2 (en) | 2009-11-09 | 2009-11-09 | Hypochlorite decomposition catalyst, method for producing the same, and method for using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5547455B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114682262B (en) * | 2020-12-29 | 2023-09-01 | 中国石油化工股份有限公司 | Hypochlorite decomposition catalyst |
WO2023205883A1 (en) * | 2022-04-26 | 2023-11-02 | Albertah2 Corporation | Two-step hydrogen production |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8701397D0 (en) * | 1987-01-22 | 1987-02-25 | Ici Plc | Effluent treatment |
GB9515300D0 (en) * | 1995-07-26 | 1995-09-20 | Ici Plc | Catalyst |
JP3686060B2 (en) * | 2002-11-19 | 2005-08-24 | 株式会社セイスイ | Method and system for treating contaminated mixed water |
-
2009
- 2009-11-09 JP JP2009256600A patent/JP5547455B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011098328A (en) | 2011-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100506346C (en) | Filtration medium for eliminating ozone disinfection by-product in water and method of preparing the same and filter element produced by said filtration medium | |
Melero et al. | Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater | |
Wang et al. | Photocatalytic degradation of sulfonamides by Bi2O3-TiO2/PAC ternary composite: Mechanism, degradation pathway | |
CN1559938A (en) | Catalytic ozonation oxidation feedwater advanced treatment method using iron oxyhydroxide as catalyst | |
CA2671051A1 (en) | Dry-scrubbing media compositions and methods of production and use | |
KR0133169B1 (en) | Catalysts | |
Nguyen et al. | Development of biochar supported NiFe2O4 composite for peroxydisulfate (PDS) activation to effectively remove moxifloxacin from wastewater | |
JP5547455B2 (en) | Hypochlorite decomposition catalyst, method for producing the same, and method for using the same | |
JP2012091167A (en) | Method for treating water containing nutrient salts and oxidizing substance | |
US4400304A (en) | Catalyst pellets with resin binder for decomposition of hypochlorite | |
JP4129059B2 (en) | Calcium aluminate-based catalyst and use of the catalyst | |
CN111889108B (en) | Catalyst material for oxidative decomposition of organic matters in wastewater and preparation method thereof | |
JP4135974B2 (en) | Calcium aluminate cement catalyst | |
KR101548599B1 (en) | Room temperature adsorption decomposer and method of manufacture for sewer odor remove | |
JP5940047B2 (en) | Waste water purification material | |
USRE32392E (en) | Catalyst pellets with resin binder for decomposition of hypochlorite | |
JP3695845B2 (en) | Water purification material | |
Huynh et al. | Synthesis of composite material derived from soybean curd and sludge containing Fe for removal of paracetamol by heterogeneous Fenton oxidation | |
CN105478106A (en) | Novel manganese dioxide-loaded ceramic-based catalyst and its preparation method and use | |
GB2059793A (en) | Catalyst pellets with resin binder for decomposition of hypochlorite and method of use | |
CN102464400A (en) | Ozone advanced oxidation process for emergency treatment of drinking water | |
JPS61149240A (en) | Molded catalyst for decomposing hypochlorite and preparation thereof | |
JP7603467B2 (en) | Method for decomposing hazardous organic compounds in wastewater | |
JP5032755B2 (en) | Soil treatment material and soil purification method using the same | |
KR20120138416A (en) | Water treatment agent for removing taste and odors, and green algae in water, method for preparing the same and using method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5547455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |