[go: up one dir, main page]

JP5544999B2 - Illumination device and image reading device - Google Patents

Illumination device and image reading device Download PDF

Info

Publication number
JP5544999B2
JP5544999B2 JP2010091417A JP2010091417A JP5544999B2 JP 5544999 B2 JP5544999 B2 JP 5544999B2 JP 2010091417 A JP2010091417 A JP 2010091417A JP 2010091417 A JP2010091417 A JP 2010091417A JP 5544999 B2 JP5544999 B2 JP 5544999B2
Authority
JP
Japan
Prior art keywords
light
hole
light source
light guide
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010091417A
Other languages
Japanese (ja)
Other versions
JP2011223389A (en
Inventor
卓 松澤
裕之 河野
達樹 岡本
正 美濃部
達也 國枝
信高 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010091417A priority Critical patent/JP5544999B2/en
Publication of JP2011223389A publication Critical patent/JP2011223389A/en
Application granted granted Critical
Publication of JP5544999B2 publication Critical patent/JP5544999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Description

本発明は、照明装置および照明装置を有する画像読取装置に関し、特に、ファクシミリ、コピー機、スキャナなどに使用される照明装置および画像読取装置に関する。   The present invention relates to an illuminating device and an image reading device having the illuminating device, and more particularly to an illuminating device and an image reading device used for a facsimile, a copier, a scanner, and the like.

一般に、画像読取装置などで使用されるサイドライト方式の照明装置は、LEDなどの光源と光を伝達する導光体とから構成され、光源から発せられた光を、対向して設置された導光体の入射面から導光体内部へと導入する。導光体は、入射した光を拡散、反射する散乱領域と散乱領域に対向する位置に設けられた出射部とを有し、入射した光を導光体の長手方向(主走査方向)に導光するとともに、散乱領域により散乱させて出射部から出射する。導光体から出射した線状の光は画像の読取対象領域を照明する。   In general, a sidelight type illumination device used in an image reading device or the like is composed of a light source such as an LED and a light guide that transmits light, and guides light emitted from the light source to be installed facing the light source. The light is introduced from the light incident surface into the light guide. The light guide has a scattering region for diffusing and reflecting incident light and an emission part provided at a position facing the scattering region, and guides the incident light in the longitudinal direction (main scanning direction) of the light guide. Light is emitted and scattered from the scattering region and emitted from the emitting portion. The linear light emitted from the light guide illuminates the image reading target area.

特許文献1の照明装置では、導光体の端面に設置した複数の光源と導光体の端部とを反射シートで覆うことにより、光源から放射された光のうち導光体端部に入射しない角度で放射された光が反射シートで折り返される。これにより、導光体に入射する光量を増加させている。   In the illumination device of Patent Document 1, a plurality of light sources installed on the end face of the light guide and the end of the light guide are covered with a reflection sheet, so that the light emitted from the light source is incident on the end of the light guide. The light emitted at an angle that is not reflected is folded back by the reflection sheet. This increases the amount of light incident on the light guide.

特開2002−42529号公報(第3〜4頁)JP 2002-42529 (pages 3 to 4)

しかし、特許文献1のように複数の光源を並べて配置した場合、一つの光源から放射された光の一部が隣接する光源のレンズまたはパッケージに当たることで、屈折、散乱、吸収による光の損失が生じていた。また、すべての光源を一括して反射シートで覆うことにより、反射シートで反射した光が他の光源に当たり、上記の損失がより大きいものとなっていた。さらに、反射シートで囲まれた空間を大きく設けていることにより、反射シートで光が反射する回数が増加するため、反射シートに吸収される光量が増加していた。その結果、導光体に入射する光量が低下し、画像の読取対象領域を照明する照明効率が低下するという問題があった。   However, when a plurality of light sources are arranged side by side as in Patent Document 1, a part of light emitted from one light source hits a lens or package of an adjacent light source, so that light loss due to refraction, scattering, and absorption occurs. It was happening. Further, by covering all the light sources together with the reflection sheet, the light reflected by the reflection sheet hits another light source, and the loss is larger. Furthermore, since the number of times the light is reflected by the reflection sheet increases by providing a large space surrounded by the reflection sheet, the amount of light absorbed by the reflection sheet increases. As a result, there is a problem in that the amount of light incident on the light guide is reduced, and the illumination efficiency for illuminating the image reading target area is reduced.

本発明は、このような課題を解決するためになされたものであり、光源から放射される光を効率よく導光体に入射させ、画像読取に十分な光量を読取領域に照射する照明装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an illumination device that efficiently enters light emitted from a light source into a light guide and irradiates a reading region with a sufficient amount of light for image reading. The purpose is to provide.

本発明は、読取対象の読取領域に読取光を照射する照明装置であって、光が出射する領域である発光部を有する光源と、その内壁に光を全反射する正反射面が形成された貫通孔を有し、発光部から出射した光の光軸が貫通孔の内部を通過する状態に設置された反射部材と、光入射部と光出射部とを有し、貫通孔を通過して光入射部から入射した光が内部を伝播するとともに光出射部から読取領域に向けて出射する導光体とを備え、貫通孔の一方の開口に光源が当接し、他方の開口に光入射部が当接し、光源、貫通孔の一方の開口、貫通孔の他方の開口及び光入射部のそれぞれの重なりを光軸の方向から見たときに、前記貫通孔の一方の開口は前記光源の中であって前記貫通孔の一方の開口の形状は前記発光部の外形形状と一致しており、かつ貫通孔の他方の開口が光入射部の領域内にあることを特徴とする照明装置。 The present invention is an illuminating device that irradiates reading light to a reading region to be read, and includes a light source having a light emitting portion that is a region from which light is emitted, and a regular reflection surface that totally reflects light on the inner wall. A reflection member that has a through-hole, and is disposed in a state in which the optical axis of light emitted from the light-emitting portion passes through the inside of the through-hole, a light incident portion, and a light emission portion; A light guide that propagates through the inside and emits light from the light emitting portion toward the reading region, the light source abuts on one opening of the through hole, and the light incident portion on the other opening When the overlapping of the light source, one opening of the through hole, the other opening of the through hole, and the light incident portion is viewed from the direction of the optical axis, the one opening of the through hole is in the light source. wherein the shape of one opening of the through hole coincides with the outer shape of the light emitting portion, and a is Lighting apparatus other opening of the through hole is characterized in that in the region of the light incident portion.

以上のように、本発明に係る照明装置および画像読取装置は、内面が鏡面のパイプ状部材を光源と入射面の間に設けることにより、導光体に入射する光の損失を抑え、照明効率の良い照明装置を得ることができる。   As described above, the illumination device and the image reading device according to the present invention provide a pipe-shaped member having a mirror surface between the light source and the incident surface, thereby suppressing the loss of light incident on the light guide and improving the illumination efficiency. A good lighting device can be obtained.

本発明の実施の形態1に係る画像読取装置の概略斜視図である1 is a schematic perspective view of an image reading apparatus according to Embodiment 1 of the present invention. 図1の画像読取装置のA−A線に沿った位置における断面図である。FIG. 2 is a cross-sectional view of the image reading apparatus in FIG. 1 at a position along the line AA. 本発明の実施の形態1に係る画像読取装置の組立図である。1 is an assembly diagram of an image reading apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る画像読取装置の導光体の光伝播を説明する模式図である。It is a schematic diagram explaining the light propagation of the light guide of the image reading apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明装置の導光体の端部における組立図である。It is an assembly drawing in the edge part of the light guide of the illuminating device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明装置の導光体の端部を説明する模式図である。It is a schematic diagram explaining the edge part of the light guide of the illuminating device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明装置の反射部材の貫通孔の穴径を説明する模式図である。It is a schematic diagram explaining the hole diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明装置の反射部材の貫通孔の穴径が光源の発光部より小さい場合の光路を説明する模式図である。It is a schematic diagram explaining the optical path in case the hole diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 1 of this invention is smaller than the light emission part of a light source. 本発明の実施の形態1に係る照明装置の反射部材の貫通孔の穴径が導光体の厚みより大きい場合の光路を説明する模式図である。It is a schematic diagram explaining the optical path when the hole diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 1 of this invention is larger than the thickness of a light guide. 本発明の実施の形態1に係る照明装置の反射部材の貫通孔の穴径が光源の発光部より大きい場合の光路を説明する模式図である。It is a schematic diagram explaining the optical path in case the hole diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 1 of this invention is larger than the light emission part of a light source. 本発明の実施の形態1に係る画像読取装置の光路を説明する模式図である。It is a schematic diagram explaining the optical path of the image reading apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る画像読取装置の回路ブロック図である。1 is a circuit block diagram of an image reading apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る反射型導光体を用いた画像読取装置の光路を説明する模式図である。It is a schematic diagram explaining the optical path of the image reading apparatus using the reflective light guide which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る画像読取装置の反射型導光体の光伝播を説明する模式図である。It is a schematic diagram explaining the light propagation of the reflective light guide of the image reading apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る屈折型導光体を用いた画像読取装置の光路を説明する模式図である。It is a schematic diagram explaining the optical path of the image reading apparatus using the refractive light guide which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る画像読取装置の屈折型導光体の光伝播を説明する模式図である。It is a schematic diagram explaining the light propagation of the refraction type light guide of the image reading device concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る画像読取装置の光源の光の損失を説明する模式図である。It is a schematic diagram explaining the light loss of the light source of the image reading apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る画像読取装置の光源に反射部材を設置したときの光路を説明する模式図である。It is a schematic diagram explaining the optical path when a reflecting member is installed in the light source of the image reading apparatus according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る照明装置の円筒型反射部材を説明する模式図である。It is a schematic diagram explaining the cylindrical reflection member of the illuminating device which concerns on Embodiment 4 of this invention. 図19のD−D線に沿った断面図である。It is sectional drawing along the DD line of FIG. 本発明の実施の形態4に係る照明装置の四角筒反射部材に砲弾型光源を設置したときに生じる隙間を説明する模式図である。It is a schematic diagram explaining the clearance gap produced when a bullet-type light source is installed in the square tube reflecting member of the illuminating device which concerns on Embodiment 4 of this invention. 図21のE−E線に沿った断面図である。It is sectional drawing along the EE line of FIG. 本発明の実施の形態5に係る照明装置の四角筒反射部材を説明する模式図である。It is a schematic diagram explaining the square cylinder reflection member of the illuminating device which concerns on Embodiment 5 of this invention. 図23のF−F線に沿った断面図である。It is sectional drawing along the FF line of FIG. 本発明の実施の形態6に係る照明装置の金属反射部材の斜視図である。It is a perspective view of the metal reflective member of the illuminating device which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る照明装置の金属反射部材に光源を設置したときの光路を説明する模式図である。It is a schematic diagram explaining the optical path when a light source is installed in the metal reflective member of the illuminating device which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る照明装置の樹脂反射ブロックの斜視図である。It is a perspective view of the resin reflective block of the illuminating device which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る照明装置の分割反射ブロックの斜視図である。It is a perspective view of the division | segmentation reflection block of the illuminating device which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る照明装置の分割反射ブロックを2つ重ねた状態を説明する模式図である。It is a schematic diagram explaining the state which piled up the two division | segmentation reflection blocks of the illuminating device which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る照明装置の導光体と光源の間にフィルタを入れたときの光路を説明する模式図である。It is a schematic diagram explaining the optical path when a filter is inserted between the light guide and the light source of the illumination device according to Embodiment 9 of the present invention. 本発明の実施の形態10に係る照明装置のホルダーと反射部材を一体化した状態を説明する模式図である。It is a schematic diagram explaining the state which integrated the holder and reflection member of the illuminating device which concerns on Embodiment 10 of this invention. 本発明の実施の形態10に係る照明装置の図26の部材を2つ繋げた状態を説明する模式図である。It is a schematic diagram explaining the state which connected two members of FIG. 26 of the illuminating device which concerns on Embodiment 10 of this invention. 本発明の実施の形態11に係る照明装置の反射部材に板材を接合した状態を説明する模式図である。It is a schematic diagram explaining the state which joined the board | plate material to the reflection member of the illuminating device which concerns on Embodiment 11 of this invention. 本発明の実施の形態11に係る照明装置の反射部材に接合する板材の模式図である。It is a schematic diagram of the board | plate material joined to the reflection member of the illuminating device which concerns on Embodiment 11 of this invention. 図33のI−I線に沿った断面図である。It is sectional drawing along the II line | wire of FIG. 図33のJ−J線に沿った断面図である。It is sectional drawing along the JJ line of FIG. 本発明の実施の形態12に係る照明装置の反射部材の貫通孔の内径が光源側より導光体側で広くなるようにしたときの光路を説明する模式図である。It is a schematic diagram explaining an optical path when the internal diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 12 of this invention is made wider on the light guide side rather than the light source side. 本発明の実施の形態12に係る照明装置の反射部材の貫通孔の内径が導光体側より光源側で広くなるようにしたときの光路を説明する模式図である。It is a schematic diagram explaining an optical path when the internal diameter of the through-hole of the reflection member of the illuminating device which concerns on Embodiment 12 of this invention is made wider on the light source side rather than the light guide side. 本発明の実施の形態12に係る照明装置の反射部材の正反射面に傾斜がない場合の金属蒸着を説明する模式図である。It is a schematic diagram explaining metal vapor deposition in case the regular reflection surface of the reflection member of the illuminating device which concerns on Embodiment 12 of this invention does not have an inclination. 本発明の実施の形態12に係る照明装置の反射部材の正反射面に傾斜がある場合の金属蒸着を説明する模式図である。It is a schematic diagram explaining metal vapor deposition in case the regular reflection surface of the reflection member of the illuminating device which concerns on Embodiment 12 of this invention has an inclination. 本発明の実施の形態13に係る照明装置の反射部材の正反射面を繋げた状態を説明する模式図である。It is a schematic diagram explaining the state which connected the regular reflection surface of the reflection member of the illuminating device which concerns on Embodiment 13 of this invention.

本発明の実施形態について、図を参照して以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals.

実施の形態1.
以下、本発明の実施の形態1に係る画像読取装置の構成について図1〜4を用いて説明する。
図1は、本発明の実施の形態1による照明装置を備えた画像読取装置(密着イメージセンサ、CISとも呼ぶ)の概略斜視図である。図2は、図1のA−A線に沿った断面図である。図3は、図1の画像読取装置の分解図である。図4は、図1〜3に示した照明装置で用いられる導光体の端部の模式図で、図1に示す導光体2をX−Z平面で切った断面図である。
Embodiment 1 FIG.
Hereinafter, the configuration of the image reading apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic perspective view of an image reading apparatus (also referred to as a contact image sensor or CIS) including an illumination device according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is an exploded view of the image reading apparatus of FIG. 4 is a schematic view of an end portion of a light guide used in the illumination device shown in FIGS. 1 to 3, and is a cross-sectional view of the light guide 2 shown in FIG. 1 cut along an XZ plane.

ここで、図中に示すXYZ直交座標について図2を用いて説明する。Y軸方向とは、紙面の左右方向であり、原稿1の送り方向に対応し、副走査方向とも呼ぶ。X軸方向は上記Y軸方向と直交し、紙面の奥行き方向であり、主走査方向とも呼ぶ。また、Z軸方向は上記X軸方向と上記Y軸方向の両方に直交し、紙面の上下方向であり、読取深度方向とも呼ぶ。このように、主走査方向をX軸方向、副走査方向をY軸方向、読取深度方向をZ軸方向とそれぞれ規定する。   Here, XYZ orthogonal coordinates shown in the figure will be described with reference to FIG. The Y-axis direction is the left-right direction on the paper surface, corresponds to the feed direction of the document 1, and is also called the sub-scanning direction. The X-axis direction is orthogonal to the Y-axis direction and is the depth direction of the paper surface, and is also called the main scanning direction. Further, the Z-axis direction is orthogonal to both the X-axis direction and the Y-axis direction, and is the vertical direction of the paper surface, which is also called the reading depth direction. Thus, the main scanning direction is defined as the X-axis direction, the sub-scanning direction is defined as the Y-axis direction, and the reading depth direction is defined as the Z-axis direction.

図1を参照して、本発明の実施の形態1に係る画像読取装置は、筐体9の中に、X軸方向に延びる読取光学系(ロッドレンズアレイ)5が配置され、その両側にこれを挟むように同じくX軸方向に延びる導光体2が設けられる。導光体2の両端部は光入射部13で、その近傍に光源11が設けられる。筐体9の上面は透明体3で覆われ、透明体3の直上または所定の距離だけ離れた位置に原稿1が載置される。一方、筐体9の下面にはセンサIC4、信号処理IC(ASIC(ApplICation SpecIC Integrated Circuit))7、コネクタ8を備えたセンサ基板6が配置される。   Referring to FIG. 1, in an image reading apparatus according to Embodiment 1 of the present invention, a reading optical system (rod lens array) 5 extending in the X-axis direction is arranged in a housing 9, and this is arranged on both sides thereof. Similarly, a light guide 2 that extends in the X-axis direction is provided so as to sandwich the gap. Both ends of the light guide 2 are light incident portions 13, and a light source 11 is provided in the vicinity thereof. The upper surface of the housing 9 is covered with the transparent body 3, and the document 1 is placed directly above the transparent body 3 or at a position separated by a predetermined distance. On the other hand, a sensor substrate 6 having a sensor IC 4, a signal processing IC (ASIC (Applied Spec IC Integrated Circuit)) 7, and a connector 8 is disposed on the lower surface of the housing 9.

光源11の光は導光体2の内部を伝達し、導光体2の上面から出射する。導光体2から出射した光は、原稿1上の画像読取領域30(図1〜3の中に破線で示す部分)に到達して反射され、読取光学系5を通り、読取光学系5の下に設けられたセンサIC4で読み取られる。
導光体2、読取光学系5、センサIC4は、原稿1の有効読み取り幅(主走査方向の有効読み取り幅)と同等以上の長さを有している。センサIC4で反射光を読み取る際、原稿1と筐体9とが相対的にY軸方向(副走査方向)に移動する。これにより原稿1の画像データが読み取られる。読み取った画像データは信号処理IC7へ送られ、補正処理などが行われる。
The light from the light source 11 is transmitted through the light guide 2 and is emitted from the upper surface of the light guide 2. The light emitted from the light guide 2 reaches the image reading region 30 (the portion indicated by the broken line in FIGS. 1 to 3) on the document 1 and is reflected, passes through the reading optical system 5, and passes through the reading optical system 5. Reading is performed by the sensor IC 4 provided below.
The light guide 2, the reading optical system 5, and the sensor IC 4 have a length equal to or greater than the effective reading width (effective reading width in the main scanning direction) of the document 1. When the reflected light is read by the sensor IC 4, the document 1 and the housing 9 relatively move in the Y-axis direction (sub-scanning direction). As a result, the image data of the document 1 is read. The read image data is sent to the signal processing IC 7 for correction processing and the like.

画像読取装置の各構成要素について詳しく説明する。   Each component of the image reading apparatus will be described in detail.

原稿1は、例えば、写真、一般文書などのイメージ情報である被読取媒体(被照射体)である。   The document 1 is, for example, a read medium (irradiated body) that is image information such as a photograph or a general document.

導光体2はX軸方向(主走査方向)に延長した棒状体であり、例えば石英ロッド等から形成される。導光体2の断面は、図2を参照して、四角柱の導光路20と円柱を二分割した形状の集光レンズ21から形成される。
集光レンズ21は導光路20の上面の一部を覆うように設けられる。集光レンズ21の曲面部分は光出射部31で、導光体2の内部の光が外部に出射する領域である。光出射部31は、原稿1上にある画像読取領域30を出射光が照射する形状に形成される。
導光路20の下面の光出射部31と対向する位置には光散乱層(光散乱領域)32が形成される。光散乱領域32は、導光体2の一部(光散乱領域の形成領域)に対し、白色顔料等の光反射性塗料の塗布、粗面加工、鋸歯状のプリズム形状加工、または、ピラミッド状のエンボス形状加工を行うことにより形成できる。特にプリズム形状加工やエンボス形状加工を用いる場合は、導光体2の成形と同時に一体成形することも可能である。円柱型(ロッド型)導光体のように導光体2に平坦領域が無い場合には、外周の一部を削り平坦化して光散乱領域32を形成しても良い。
The light guide 2 is a rod-like body extending in the X-axis direction (main scanning direction), and is formed of, for example, a quartz rod. The cross section of the light guide 2 is formed of a rectangular light guide 20 and a condensing lens 21 having a shape obtained by dividing a cylinder into two parts with reference to FIG.
The condenser lens 21 is provided so as to cover a part of the upper surface of the light guide path 20. The curved surface portion of the condenser lens 21 is a light emitting portion 31, which is a region where the light inside the light guide 2 is emitted to the outside. The light emitting unit 31 is formed in a shape in which the image reading area 30 on the document 1 is irradiated with the emitted light.
A light scattering layer (light scattering region) 32 is formed at a position facing the light emitting portion 31 on the lower surface of the light guide path 20. The light scattering region 32 is applied to a part of the light guide 2 (region where the light scattering region is formed) by applying a light reflecting paint such as a white pigment, rough surface processing, sawtooth prism processing, or pyramid shape. It can be formed by performing an emboss shape processing. In particular, when prism shape processing or emboss shape processing is used, it is possible to integrally mold the light guide 2 at the same time. When the light guide 2 does not have a flat region like a columnar (rod type) light guide, a part of the outer periphery may be shaved and flattened to form the light scattering region 32.

透明体3は原稿1の搬送経路を形成する。また、画像読取装置の内部への異物の混入を防止する役目を担い、アクリルやポリカーボネートなどの透明樹脂、または透明ガラス材などにより構成される。   The transparent body 3 forms a transport path for the document 1. Also, it plays a role of preventing foreign matters from entering the image reading apparatus, and is made of a transparent resin such as acrylic or polycarbonate, or a transparent glass material.

読取光学系5は、原稿1の画像読取領域30において反射された反射光が読取光学系5の光軸方向から入射するように設けられ、入射した光を収束させる。   The reading optical system 5 is provided so that the reflected light reflected from the image reading area 30 of the document 1 is incident from the optical axis direction of the reading optical system 5 and converges the incident light.

センサIC4は、読取光学系5で収束された光を受光し、光電変換して電気信号を出力するセンサで、半導体チップなどで構成された光電変換部、その他の駆動回路等を搭載している。図3を参照して、センサIC4はその他の電子部品と共にセンサ基板6に載置される。   The sensor IC 4 is a sensor that receives the light converged by the reading optical system 5 and photoelectrically converts it to output an electrical signal. The sensor IC 4 is equipped with a photoelectric conversion unit composed of a semiconductor chip or the like, and other driving circuits. . Referring to FIG. 3, sensor IC 4 is mounted on sensor substrate 6 together with other electronic components.

信号処理IC(ASIC)7は、センサIC4の光電変換出力を処理して出力するものであり、CPUやRAMと連動して信号処理を行う信号処理回路や、センサIC4からの出力をデジタル化するアナログデジタル変換回路などからなる。信号処理IC7もセンサ基板6に載置される。   The signal processing IC (ASIC) 7 processes and outputs the photoelectric conversion output of the sensor IC 4, and digitizes the output from the signal processing circuit that performs signal processing in conjunction with the CPU and RAM, and the sensor IC 4. Consists of analog-digital conversion circuit. The signal processing IC 7 is also placed on the sensor substrate 6.

センサ基板6には更に外部コネクタ8も載置される。外部コネクタ8は、センサIC4の光電変換出力やASIC7の信号処理出力を含む入出力信号のインターフェースとして用いられる。   An external connector 8 is also placed on the sensor substrate 6. The external connector 8 is used as an interface for input / output signals including the photoelectric conversion output of the sensor IC 4 and the signal processing output of the ASIC 7.

筐体9は、導光体2、読取光学系5及びセンサ基板6を収納、保持するように設けられ、金属やプラスチックで形成される。   The housing 9 is provided so as to accommodate and hold the light guide 2, the reading optical system 5, and the sensor substrate 6, and is formed of metal or plastic.

光源11はLEDチップ等により構成され、通常、可視光や赤外、紫外光などを発する。光源11は導光体2の両端部にある光入射部13の近傍に配置される。   The light source 11 is composed of an LED chip or the like, and usually emits visible light, infrared light, ultraviolet light, or the like. The light source 11 is disposed in the vicinity of the light incident portions 13 at both ends of the light guide 2.

図4を用いて導光体2端部の構成について詳しく説明する。
光源11は、駆動する電極パターンなどと共に光源基板12に実装される。
光源基板12は、光源保持部(ホルダー、またはLEDホルダー)10により導光体2の両端に固定される。このとき、光源11が導光体2の光入射部13の近傍に位置し、光源11の放射する光の光軸が導光体2の光入射部13に垂直に入射するように光源基板12は固定される。光源11は導光体2の両端に設けてもよいし、一方の端部にのみ設けることにしてもよい。また、一方の端部に複数の光源11を設けてもよい。
The configuration of the end portion of the light guide 2 will be described in detail with reference to FIG.
The light source 11 is mounted on the light source substrate 12 together with an electrode pattern to be driven.
The light source substrate 12 is fixed to both ends of the light guide 2 by a light source holding part (holder or LED holder) 10. At this time, the light source substrate 12 is positioned so that the light source 11 is positioned in the vicinity of the light incident portion 13 of the light guide 2 and the optical axis of the light emitted from the light source 11 is perpendicularly incident on the light incident portion 13 of the light guide 2. Is fixed. The light source 11 may be provided at both ends of the light guide 2 or may be provided only at one end. A plurality of light sources 11 may be provided at one end.

ホルダー10には電源用コネクタ41が載置される。電源用コネクタ41は光源11駆動用電源の端子で、電源は照明装置の外部から供給される。   A power connector 41 is placed on the holder 10. The power connector 41 is a terminal for driving the light source 11, and the power is supplied from outside the lighting device.

光源11と導光体2の光入射部13の間には反射部材14が設けられる。反射部材14は貫通孔16を有する円筒体(パイプ形状)で、光源11の光軸が貫通孔16を通過する位置に設置される。このとき、図4を参照して、貫通孔16の光源11側の開口周辺を第1の開口部17、導光体2の光入射部13側の開口周辺を第2の開口部18とする。第1の開口部17は光源11と接し、第2の開口部18は導光体2の光入射部13と接している。第1の開口部と光源11との接し方をより具体的に説明すると、光源11が貫通孔16の開口に内接し、光源基板2が反射部材14の端部に当接している。   A reflection member 14 is provided between the light source 11 and the light incident portion 13 of the light guide 2. The reflection member 14 is a cylindrical body (pipe shape) having a through hole 16 and is installed at a position where the optical axis of the light source 11 passes through the through hole 16. At this time, referring to FIG. 4, the periphery of the opening on the light source 11 side of the through hole 16 is the first opening 17, and the periphery of the opening on the light incident portion 13 side of the light guide 2 is the second opening 18. . The first opening 17 is in contact with the light source 11, and the second opening 18 is in contact with the light incident part 13 of the light guide 2. The contact between the first opening and the light source 11 will be described more specifically. The light source 11 is inscribed in the opening of the through hole 16, and the light source substrate 2 is in contact with the end of the reflecting member 14.

図5は、導光体2の端部の組立図である。また、図6は、図5に示す部材を組立てた状態を示す模式図である。
反射部材14の貫通孔16の開口は光源11の外形形状と同じ円形で、貫通孔16の内壁面には正反射面15が設けられている。
FIG. 5 is an assembly view of the end portion of the light guide 2. FIG. 6 is a schematic view showing a state where the members shown in FIG. 5 are assembled.
The opening of the through hole 16 of the reflecting member 14 has the same circular shape as the outer shape of the light source 11, and a regular reflection surface 15 is provided on the inner wall surface of the through hole 16.

反射部材14の内壁面に設けた正反射面15は、金属蒸着や金属研磨面などで鏡面を確保し、かつ、画像読取に必要な波長帯域で50%以上の反射率を確保する。正反射面15の反射率が高いほど反射による光量損失が少なく、照明効率の増加が見込める。そのため実際に使用する際には正反射面15の反射率は85%以上を確保することが望ましい。   The regular reflection surface 15 provided on the inner wall surface of the reflection member 14 ensures a mirror surface such as a metal vapor deposition or a metal polishing surface, and ensures a reflectance of 50% or more in a wavelength band necessary for image reading. As the reflectance of the regular reflection surface 15 is higher, the light amount loss due to reflection is smaller, and an increase in illumination efficiency can be expected. Therefore, when actually used, it is desirable to ensure that the reflectance of the regular reflection surface 15 is 85% or more.

図7を用いて反射部材14の形状について詳しく説明する。
反射部材14の貫通孔16の径をφ、光源11の径をλ、光源11の発光部33の径をψとする。また、導光体2の光入射部13のうちホルダー10を固定する位置における深度方向の厚みをτとする。
発光部33とは、光源11から光が出射する部分のことを指す。例えば、光源11としてレンズなしのLED(表面実装型LED)、ベアチップLED、有機ELを用いた場合には光源11の表面において光が出射する領域を発光部33とするが、砲弾型光源やレンズ付きLEDを用いた場合には砲弾部やレンズを発光部33とする。
このとき、反射部材14の貫通孔16の穴径φは、光源11の発光部33の径ψ以上、光源11の径λ以下となるようにする((1)式)。また、反射部材14の貫通孔16の穴径φは、導光体2の光入射部13の深度方向の厚みτ以下となるようにする((2)式)。

ψ≦φ≦λ (1)式

φ≦τ (2)式
The shape of the reflecting member 14 will be described in detail with reference to FIG.
The diameter of the through hole 16 of the reflecting member 14 is φ, the diameter of the light source 11 is λ, and the diameter of the light emitting portion 33 of the light source 11 is ψ. Moreover, the thickness of the depth direction in the position which fixes the holder 10 among the light-incidence parts 13 of the light guide 2 is set to (tau).
The light emitting unit 33 refers to a portion where light is emitted from the light source 11. For example, when an LED without a lens (surface mounted LED), a bare chip LED, or an organic EL is used as the light source 11, a region where light is emitted on the surface of the light source 11 is used as the light emitting unit 33. When the attached LED is used, the bullet portion and the lens are used as the light emitting portion 33.
At this time, the hole diameter φ of the through hole 16 of the reflecting member 14 is set to be not less than the diameter ψ of the light emitting portion 33 of the light source 11 and not more than the diameter λ of the light source 11 (equation (1)). In addition, the hole diameter φ of the through hole 16 of the reflecting member 14 is set to be equal to or smaller than the thickness τ in the depth direction of the light incident portion 13 of the light guide 2 (equation (2)).

ψ ≦ φ ≦ λ (1)

φ ≦ τ (2)

なお、本実施の形態1では、貫通孔16の両端の開口の形状は等しいものとして説明したため、貫通孔16の穴径φは光源11の径λと導光体2の厚みτのいずれか小さい方を超えないようにする必要がある((3)式、(4)式)。

ψ≦φ≦λ (λ≦τ) (3)式

ψ≦φ≦τ (τ<λ) (4)式

しかし、(3)式、(4)式の条件を満たさない場合には、貫通孔16の両端の開口の形状を変えることで対応できる。これについては実施の形態12で説明する。
In the first embodiment, since the shapes of the openings at both ends of the through-hole 16 are the same, the hole diameter φ of the through-hole 16 is smaller than either the diameter λ of the light source 11 or the thickness τ of the light guide 2. It is necessary not to exceed this (formula (3), formula (4)).

ψ ≦ φ ≦ λ (λ ≦ τ) (3)

ψ ≦ φ ≦ τ (τ <λ) (4)

However, when the conditions of the expressions (3) and (4) are not satisfied, it can be dealt with by changing the shapes of the openings at both ends of the through hole 16. This will be described in Embodiment 12.

反射部材14の貫通孔16の径が上記の(1)式、(2)式の条件を満たさない場合、以下の問題が生じる。
図8は、光源11の発光部33の径ψよりも反射部材14の貫通孔16の径φが小さい場合を示す。この場合、破線で示す光源11からの光の一部が反射部材14の貫通孔16に設けた正反射面15以外の面で反射し、導光体2に入射しない。そのため、原稿1の画像読取領域30を照射する光量に損失が生じる。
また、図9は、導光体2の厚みτよりも反射部材14の貫通孔16の径φが大きい場合を示す。この場合、破線で示す光源11からの光の一部がホルダー10によって反射、散乱し、多重反射して導光体2に入射する。そのため、図8の構成の場合と同様に、光量損失が発生する。仮にホルダー10の内部を鏡面にして正反射しか起こらないようにしても、導光体2に光が入射するまでに多重反射するため光量損失となる。
更に、図10は、光源11のサイズλよりも反射部材14の貫通孔16の径φが大きい場合を示す。光源11に想定しているLEDなどはパッケージは白い樹脂で作られていることが多く、パッケージに光が当たった場合、散乱するものの高い反射率が期待できる。そのため、導光体2の一端から入射して導光体2の内部を透過してきた光を、導光体2の他端に設けた光源11のパッケージ部分で反射させて折り返し、再び導光体2に入射させることで光の利用効率が上がる。しかし、図10のように光源11のサイズよりも反射部材14の貫通孔16の径φが大きいと、導光体2を透過してきた光は、光源11のパッケージ部分ではなく光源基板12などの低反射率な部材で反射される。そのため、光量損失となり照明効率が低下する。
以上のように、反射部材14の貫通孔16の径φが(1)式、(2)式の条件を満たさない場合には、光量が損失するという問題が生じる。
When the diameter of the through hole 16 of the reflecting member 14 does not satisfy the conditions of the above formulas (1) and (2), the following problems occur.
FIG. 8 shows a case where the diameter φ of the through hole 16 of the reflecting member 14 is smaller than the diameter ψ of the light emitting portion 33 of the light source 11. In this case, a part of light from the light source 11 indicated by a broken line is reflected by a surface other than the regular reflection surface 15 provided in the through hole 16 of the reflection member 14 and does not enter the light guide 2. Therefore, a loss occurs in the amount of light that irradiates the image reading area 30 of the document 1.
FIG. 9 shows a case where the diameter φ of the through hole 16 of the reflecting member 14 is larger than the thickness τ of the light guide 2. In this case, a part of the light from the light source 11 indicated by a broken line is reflected and scattered by the holder 10, and is reflected multiple times and enters the light guide 2. Therefore, as in the case of the configuration of FIG. 8, a light amount loss occurs. Even if only the regular reflection occurs with the inside of the holder 10 as a mirror surface, the light is lost due to multiple reflections before the light enters the light guide 2.
Further, FIG. 10 shows a case where the diameter φ of the through hole 16 of the reflecting member 14 is larger than the size λ of the light source 11. As for the LED assumed for the light source 11, the package is often made of a white resin, and when the package is exposed to light, a high reflectance can be expected although it is scattered. Therefore, the light incident from one end of the light guide 2 and transmitted through the inside of the light guide 2 is reflected by the package portion of the light source 11 provided at the other end of the light guide 2 and turned back. The light utilization efficiency is increased by making the light incident on 2. However, when the diameter φ of the through hole 16 of the reflecting member 14 is larger than the size of the light source 11 as shown in FIG. 10, the light transmitted through the light guide 2 is not in the package portion of the light source 11 but in the light source substrate 12 or the like. Reflected by a low reflectance member. Therefore, the amount of light is lost and the illumination efficiency is reduced.
As described above, when the diameter φ of the through hole 16 of the reflecting member 14 does not satisfy the conditions of the expressions (1) and (2), there is a problem that the amount of light is lost.

次に、本実施の形態に係る照明装置及びそれを用いた画像読取装置の動作について説明する。
図4の破線の矢印は、導光体2の端部周辺において光が伝播する様子を示している。図4を参照して、光源11から出射した光は、直接、または反射部材14の正反射面15で正反射した後、光入射部13より導光体2の内部に入射する。導光体2に入射した光は、光を伝搬させる役目を担う導光体2の内部を、全反射を繰り返しながら主走査方向(長手方向、X軸方向)に進行する。また、導光体2に設けられた光散乱領域32で散乱反射した光の一部が、光散乱領域32と対向する位置に設けられた光出射部31から外部に出射する。
Next, operations of the illumination device according to the present embodiment and an image reading device using the same will be described.
The broken arrows in FIG. 4 indicate how light propagates around the end of the light guide 2. With reference to FIG. 4, the light emitted from the light source 11 is incident on the inside of the light guide 2 directly or after being regularly reflected by the regular reflection surface 15 of the reflecting member 14. The light incident on the light guide 2 travels in the main scanning direction (longitudinal direction, X-axis direction) while repeating total reflection inside the light guide 2 that plays a role of propagating light. Further, part of the light scattered and reflected by the light scattering region 32 provided in the light guide 2 is emitted to the outside from the light emitting unit 31 provided at a position facing the light scattering region 32.

導光体2から出射した光の光路を図11に示す。図11は、図1のA−A線に沿った断面図である。
導光体2の光出射部31から出射した光は、主走査方向に亘って均一な輝度ないし強度を有し、透過体3により屈折し、原稿1の画像読取領域30を照射する。原稿1の画像読取領域30への光の照射角度Cは、光散乱領域32と導光体2の光出射部31とを結ぶ延長線(図11に破線で示す)と読取光学系5の光軸(図11に一点鎖線で示す)とで決まる角度となる。
原稿1の画像読取領域30で反射した反射光42は、読取光学系5で収束されてセンサIC4で受光される。
センサIC4は、受光した光を光電変換により光強度に応じた電気信号に変換(光電変換)して出力する。電気信号はセンサ基板6に搭載されたASIC7等により信号処理され、最終的には外部コネクタ8から画像読取装置の外部へ原稿1の画像信号として出力される。
An optical path of light emitted from the light guide 2 is shown in FIG. FIG. 11 is a cross-sectional view taken along line AA in FIG.
The light emitted from the light emitting portion 31 of the light guide 2 has a uniform luminance or intensity over the main scanning direction, is refracted by the transmission body 3 and irradiates the image reading area 30 of the document 1. The irradiation angle C of light to the image reading area 30 of the document 1 is an extension line (indicated by a broken line in FIG. 11) connecting the light scattering area 32 and the light emitting portion 31 of the light guide 2 and the light of the reading optical system 5. The angle is determined by the axis (indicated by a dashed line in FIG. 11).
The reflected light 42 reflected from the image reading area 30 of the document 1 is converged by the reading optical system 5 and received by the sensor IC 4.
The sensor IC 4 converts the received light into an electrical signal corresponding to the light intensity by photoelectric conversion (photoelectric conversion) and outputs the electrical signal. The electrical signal is subjected to signal processing by an ASIC 7 or the like mounted on the sensor substrate 6 and finally output from the external connector 8 to the outside of the image reading apparatus as an image signal of the document 1.

図12は、画像読取装置の駆動回路のブロック図である。
タイミングジェネレータのシステムクロック(SCLK)に同期して、CISのクロック信号(CLK)と同期したスタート信号(SI)のタイミングで、センサIC4の受光部で光電変換されたアナログ出力(SO)が得られる。
アナログ出力(SO)はASIC7のアナログデジタル(A/D)変換回路でデジタル信号に変換された後、信号処理回路においてサンプル・ホールドを含むシェーディング補正や全ビット補正などが行われる。デジタル信号の補正処理には、デジタル信号データを記憶したRAM領域と基準データを記憶したRAM領域からデータを採取し、演算加工する。加工後の信号SIGは外部コネクタ8から出力される。
FIG. 12 is a block diagram of a drive circuit of the image reading apparatus.
An analog output (SO) photoelectrically converted by the light receiving unit of the sensor IC 4 is obtained at the timing of the start signal (SI) synchronized with the CIS clock signal (CLK) in synchronization with the system clock (SCLK) of the timing generator. .
The analog output (SO) is converted into a digital signal by an analog / digital (A / D) conversion circuit of the ASIC 7, and then shading correction including sample and hold, all bit correction, and the like are performed in the signal processing circuit. For digital signal correction processing, data is sampled from a RAM area storing digital signal data and a RAM area storing reference data, and is processed. The processed signal SIG is output from the external connector 8.

以上説明したように、本実施の形態によれば、光源11と導光体2の光入射部13の間に貫通孔16を有するパイプ形状で内面が鏡面の反射部材14を設け、反射部材14の貫通孔16の径が、光源11の発光部33の穴径以上、かつ光源11の穴径以下、かつ導光体2の厚み以下となるように構成する。これにより、光源11から導光体2に直接入射していなかった光の大半を反射部材14の貫通孔16に形成した正反射面15における1回の正反射で折り返して導光体2に入射させることができるので、照明効率が上がる。   As described above, according to the present embodiment, the reflecting member 14 having a through-hole 16 between the light source 11 and the light incident portion 13 of the light guide 2 and having a mirror surface on the inner surface is provided. The diameter of the through hole 16 is configured to be not less than the hole diameter of the light emitting portion 33 of the light source 11, not more than the hole diameter of the light source 11, and not more than the thickness of the light guide 2. As a result, most of the light that is not directly incident on the light guide 2 from the light source 11 is folded back by one regular reflection on the regular reflection surface 15 formed in the through hole 16 of the reflection member 14 and is incident on the light guide 2. Lighting efficiency is improved.

また、反射部材14で光源11を囲み、導光体2と光源11の間の空間を狭くしたことにより、少ない反射回数で導光体2に光が再入射するため、反射による光量損失が減少する。   Further, since the light source 11 is surrounded by the reflecting member 14 and the space between the light guide 2 and the light source 11 is narrowed, the light re-enters the light guide 2 with a small number of reflections, thereby reducing the light amount loss due to reflection. To do.

なお、光源11、反射部材14の貫通孔16、導光体2の光入射部13は上述した形状に限らず、本実施の形態にかかる照明装置を光軸の方向から見たときに、貫通孔16と光源11と光入射部13がそれぞれ次の関係を満たしていれば良い。
なお、以下で使用する光軸方向とは光源11の光軸方向であり、X方向と平行な軸である。
第1の開口部17においては、光軸方向から見たときに、貫通孔16の開口が光源11の最大寸法と一致している、または光源11の最大寸法の中にある。更に、光軸方向から見たときに、発光部33の光を発光する領域が貫通孔16の開口と一致している、または貫通孔16の開口の中にある。
第2の開口部18においては、光軸方向から見たときに、貫通孔16の開口が導光体2の光入射部13の領域と一致している、または導光体2の光入射部13の領域の中にある。
The light source 11, the through hole 16 of the reflecting member 14, and the light incident portion 13 of the light guide 2 are not limited to the shapes described above, but pass through when the illumination device according to the present embodiment is viewed from the direction of the optical axis. The hole 16, the light source 11, and the light incident part 13 should just satisfy | fill the following relationship, respectively.
The optical axis direction used below is the optical axis direction of the light source 11 and is an axis parallel to the X direction.
In the first opening 17, the opening of the through hole 16 coincides with the maximum dimension of the light source 11 or is within the maximum dimension of the light source 11 when viewed from the optical axis direction. Furthermore, when viewed from the optical axis direction, the region of the light emitting portion 33 that emits light coincides with the opening of the through hole 16 or is in the opening of the through hole 16.
In the second opening 18, when viewed from the optical axis direction, the opening of the through hole 16 coincides with the region of the light incident portion 13 of the light guide 2 or the light incident portion of the light guide 2. There are 13 areas.

また、第1の開口部17における光源11と反射部材2との接し方について、光源11が貫通孔16の開口に内接していると説明したが、これに限らず、光源11により貫通孔6の開口が閉じられていれば良い。例えば、開口を閉じるように反射部材14の端部に光源11を当接させてもよい。また、光源11の発光部33が貫通孔16の開口に内接するように構成してもよい。   Moreover, although it has been described that the light source 11 is in contact with the opening of the through hole 16 as to how the light source 11 and the reflecting member 2 are in contact with each other in the first opening portion 17, the present invention is not limited to this. As long as the opening is closed. For example, the light source 11 may be brought into contact with the end of the reflecting member 14 so as to close the opening. Further, the light emitting unit 33 of the light source 11 may be configured to be inscribed in the opening of the through hole 16.

実施の形態2.
次に、図13〜16を参照して、本発明の実施の形態2に係る画像読取装置の構成について説明する。
Embodiment 2. FIG.
Next, the configuration of the image reading apparatus according to the second embodiment of the present invention will be described with reference to FIGS.

図14、16は、本発明の実施の形態2に係る画像読取装置で用いる導光体の端部の断面図である。図14は、反射を用いて光を外部に出射させる反射型導光体102の断面を、図16は、屈折を用いて光を外部に出射させる屈折型導光体202の断面を示す。図13、15は、図14、16に示した導光体を組み込んだ画像読取装置の断面図である。
なお、本発明の実施の形態2に係る画像読取装置は、導光体が異なるほかは実施の形態1と同様である。そのため、以下では実施の形態1と相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1と同様の効果も奏する。
14 and 16 are cross-sectional views of the end portion of the light guide used in the image reading apparatus according to Embodiment 2 of the present invention. FIG. 14 shows a cross section of a reflective light guide 102 that emits light to the outside using reflection, and FIG. 16 shows a cross section of a refractive light guide 202 that emits light to the outside using refraction. 13 and 15 are cross-sectional views of an image reading apparatus incorporating the light guide shown in FIGS.
The image reading apparatus according to the second embodiment of the present invention is the same as that of the first embodiment except that the light guide is different. Therefore, only differences from the first embodiment will be described below. In addition, the embodiment described below has the same effect as that of the first embodiment in addition to the effect due to the configuration unique to the present embodiment.

まず、反射型導光体102を用いた画像読取装置の構成について説明する。
図13は、反射型導光体102を組み込んだ画像読取装置をY−Z平面で切った断面図である。2つの反射型導光体102は、読取光学系5を挟んで設置される。本実施の形態に係る照明装置は、対向する2つの反射型導光体102から射出される光の重ねあわせで副走査方向に均一な照度分布を得る構成となっている。
First, the configuration of the image reading apparatus using the reflective light guide 102 will be described.
FIG. 13 is a cross-sectional view of the image reading apparatus incorporating the reflective light guide 102 taken along the YZ plane. The two reflective light guides 102 are installed with the reading optical system 5 interposed therebetween. The illuminating device according to the present embodiment is configured to obtain a uniform illuminance distribution in the sub-scanning direction by superimposing the light emitted from the two reflective light guides 102 opposed to each other.

反射型導光体102は、図14を参照して、断面が台形形状でX方向(主走査方向)に延長した棒状体で、長手方向の一端面に光入射部113が設けられ、光入射部113と対向する端面に傾斜を持つ反射面43が設けられる。また、反射型導光体102の上面には光出射部131が設けられる。反射面43の角度は、反射型導光体102の設置位置と原稿1の画像読取領域30の位置に基づき、光出射部131から出射する光が原稿1の画像読取領域30を照射するように調整される。反射面43は、反射型導光体102の表面にアルミなどの金属を蒸着して形成される。   Referring to FIG. 14, the reflective light guide 102 is a rod-like body having a trapezoidal cross section and extending in the X direction (main scanning direction). A reflecting surface 43 having an inclination is provided on the end surface facing the portion 113. Further, a light emitting part 131 is provided on the upper surface of the reflective light guide 102. The angle of the reflection surface 43 is based on the installation position of the reflective light guide 102 and the position of the image reading area 30 of the document 1 so that the light emitted from the light emitting unit 131 irradiates the image reading area 30 of the document 1. Adjusted. The reflective surface 43 is formed by vapor-depositing a metal such as aluminum on the surface of the reflective light guide 102.

光源11は光軸の向き、つまり光の出射方向が副走査方向と一致するように光入射部113の近傍に配置される。実施の形態1では、導光体2の両端に光入射部13が設けられ、光源11は光軸の向きが主走査方向と一致するように光入射部13の近傍に配置されていた点が異なる。   The light source 11 is disposed in the vicinity of the light incident portion 113 so that the direction of the optical axis, that is, the light emission direction coincides with the sub-scanning direction. In the first embodiment, the light incident portions 13 are provided at both ends of the light guide 2, and the light source 11 is disposed in the vicinity of the light incident portion 13 so that the direction of the optical axis coincides with the main scanning direction. Different.

光源11と反射型導光体102の光入射部113の間には実施の形態1と同じ反射部材14が設置されている。   Between the light source 11 and the light incident portion 113 of the reflective light guide 102, the same reflective member 14 as in the first embodiment is installed.

次に、反射型導光体102を用いた照明装置及びそれを組み込んだ画像読取装置の動作について説明する。
図14に示す破線矢印は、反射型導光体102の光入射部113から入射した光の光路を示す。光入射面113から入射した光は、反射型導光体102の内部で全反射を繰り返しながら副走査方向に伝播し、反射面43で蹴り上げられて光出射部131から外部に出射する。光が反射型導光体102から出射した後の動作は、実施の形態1と等しい。
Next, the operation of the illumination device using the reflective light guide 102 and the image reading device incorporating it will be described.
A broken line arrow shown in FIG. 14 indicates an optical path of light incident from the light incident portion 113 of the reflective light guide 102. The light incident from the light incident surface 113 propagates in the sub-scanning direction while repeating total reflection inside the reflective light guide 102, is kicked up by the reflective surface 43, and is emitted to the outside from the light emitting portion 131. The operation after the light is emitted from the reflective light guide 102 is the same as in the first embodiment.

次に、屈折型導光体202を用いた画像読取装置の構成について説明する。
図15は、屈折型導光体202を組み込んだ画像読取装置をY−Z平面で切った断面図である。2つの屈折型導光体202は、読取光学系5を挟んで設置される。本実施の形態に係る照明装置も、対向する2つの屈折型導光体202から射出される光の重ねあわせで副走査方向に均一な照度分布を得る構成となっている。
Next, the configuration of the image reading apparatus using the refractive light guide 202 will be described.
FIG. 15 is a cross-sectional view of the image reading apparatus incorporating the refractive light guide 202 taken along the YZ plane. The two refractive light guides 202 are installed with the reading optical system 5 interposed therebetween. The illumination device according to the present embodiment is also configured to obtain a uniform illuminance distribution in the sub-scanning direction by superimposing light emitted from two opposing refractive light guides 202.

屈折型導光体202は、図16を参照して、断面が台形形状でX方向(主走査方向)に延長した棒状体で、長手方向の一端面に光入射部213が設けられ、光入射部213と対向する端面に反射型導光体102とは逆向きの傾斜を持つ屈折面44が設けられる。屈折面44の角度は、屈折型導光体202の設置位置と原稿1の画像読取領域30に基づき、光入射部213から出射する光が原稿1の画像読取領域30を照射するように調整される。   Referring to FIG. 16, the refractive light guide 202 is a rod-like body having a trapezoidal cross section and extending in the X direction (main scanning direction). A refracting surface 44 having an inclination opposite to that of the reflective light guide 102 is provided on the end surface facing the portion 213. The angle of the refracting surface 44 is adjusted based on the installation position of the refractive light guide 202 and the image reading area 30 of the document 1 so that the light emitted from the light incident portion 213 irradiates the image reading area 30 of the document 1. The

光源11は光軸の向き、つまり光の出射方向が副走査方向と一致するように光入射部213の近傍に配置される。   The light source 11 is disposed in the vicinity of the light incident portion 213 so that the direction of the optical axis, that is, the light emission direction coincides with the sub-scanning direction.

光源11と屈折型導光体202の光入射部213の間には実施の形態1と同じ反射部材14が設置されている。   The same reflecting member 14 as in the first embodiment is installed between the light source 11 and the light incident portion 213 of the refractive light guide 202.

次に、屈折型導光体202を用いた照明装置及びそれを組み込んだ画像読取装置の動作について説明する。
図15に示す破線矢印は、屈折型導光体202の光入射部213から入射した光の光路を示す。光入射面213から入射した光は、屈折型導光体202の内部で全反射を繰り返しながら副走査方向に伝播し、屈折面44で屈折して外部に出射する。光が屈折型導光体202から出射した後の動作は実施の形態1と等しい。
Next, operations of the illumination device using the refractive light guide 202 and the image reading device incorporating the illumination device will be described.
A broken line arrow shown in FIG. 15 indicates an optical path of light incident from the light incident portion 213 of the refractive light guide 202. The light incident from the light incident surface 213 propagates in the sub-scanning direction while repeating total reflection inside the refractive light guide 202, refracts at the refracting surface 44, and exits to the outside. The operation after the light is emitted from the refractive light guide 202 is the same as in the first embodiment.

以上のように、反射型導光体102、または屈折型導光体202を用いた画像読取装置においても、光源11と導光体の間に反射部材14を設けることで、光源11から出射した光のうち導光体の光入射部に直接到達しない角度で出射した光を反射部材14の貫通孔16の内壁面で正反射により折り返して導光体に入射させることが出来る。これにより、導光体に入射する光量が増加し、その結果として照明光量が増加する。   As described above, even in the image reading apparatus using the reflective light guide 102 or the refractive light guide 202, the reflective member 14 is provided between the light source 11 and the light guide to emit light from the light source 11. Of the light, light emitted at an angle that does not directly reach the light incident portion of the light guide can be folded back by regular reflection on the inner wall surface of the through hole 16 of the reflection member 14 and can be incident on the light guide. Thereby, the light quantity which injects into a light guide increases, As a result, the illumination light quantity increases.

実施の形態3.
図17、18を参照して、本発明の実施の形態3に係る画像読取装置の構成について説明する。
Embodiment 3 FIG.
The configuration of the image reading apparatus according to the third embodiment of the present invention will be described with reference to FIGS.

実施の形態3は、実施の形態1、2において導光体の光入射部の近傍に複数個の光源11を配置した照明装置及びそれを組み込んだ画像読取装置である。
なお、本発明の実施の形態3に係る画像読取装置は、導光体の端部に設けた光源11と反射部材14の数が異なるほかは実施の形態1、2と同様である。そのため、以下では実施の形態1をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1、2と同様の効果も奏する。
The third embodiment is an illuminating device in which a plurality of light sources 11 are arranged in the vicinity of the light incident portion of the light guide in the first and second embodiments, and an image reading apparatus incorporating the same.
The image reading apparatus according to Embodiment 3 of the present invention is the same as Embodiments 1 and 2 except that the number of light sources 11 and reflection members 14 provided at the end of the light guide is different. Therefore, only the differences will be described below based on the first embodiment. In addition, the embodiment described below has the same effects as those of the first and second embodiments, in addition to the effects caused by the configuration unique to the present embodiment.

図17は、図1に示す導光体2をX−Y平面で切った断面図で、導光体2の光入射部13の近傍に光源としてレンズ45付きのLED46を2つ設置している。また、図17中の破線は、LED46から出射される光の光路を示す。
図17のように同一の空間内に複数のLED46が存在する状態でLED46を点灯すると、LED46からの出射光の中に、他のLED46のレンズ45にあたり反射、屈折され導光体2の光入射部13に到達しない成分が発生する。また、レンズ45で屈折されLED46のパッケージ内に吸収される成分や、LED46のパッケージに直接あたり吸収される成分も発生する。その結果、導光体への光の入射効率が悪化する。
FIG. 17 is a cross-sectional view of the light guide 2 shown in FIG. 1 cut along an XY plane, and two LEDs 46 with lenses 45 are installed as light sources near the light incident portion 13 of the light guide 2. . Moreover, the broken line in FIG. 17 shows the optical path of the light radiate | emitted from LED46.
When the LED 46 is turned on in a state where there are a plurality of LEDs 46 in the same space as shown in FIG. 17, the light emitted from the LED 46 is reflected and refracted by the lens 45 of the other LED 46 and is incident on the light guide 2. A component that does not reach the portion 13 is generated. Further, components that are refracted by the lens 45 and absorbed in the package of the LED 46 and components that are directly absorbed by the package of the LED 46 are also generated. As a result, the light incident efficiency to the light guide body is deteriorated.

そこで、導光体の光入射部の近傍に複数個の光源11を配置する場合には、図18を参照して、LED46ごとに反射部材14を設置する。これにより、LED46から出射した光の導光体2への入射効率を悪化させる上記の成分を、反射部材14の貫通孔16に設けた正反射面15で折り返し、導光体2の光入射部13に導くことで導光体2への入射効率を改善し、より効率の良い照明を行うことが可能となる。   Therefore, when a plurality of light sources 11 are arranged in the vicinity of the light incident portion of the light guide, the reflecting member 14 is installed for each LED 46 with reference to FIG. As a result, the above-described component that deteriorates the incident efficiency of the light emitted from the LED 46 to the light guide 2 is folded back at the regular reflection surface 15 provided in the through hole 16 of the reflection member 14, and the light incident portion of the light guide 2. By guiding to 13, the incident efficiency to the light guide 2 can be improved and more efficient illumination can be performed.

実施の形態4.
図19〜22を参照して、本発明の実施の形態4に係る画像読取装置の構成について説明する。
Embodiment 4 FIG.
The configuration of the image reading apparatus according to the fourth embodiment of the present invention will be described with reference to FIGS.

実施の形態4は、実施の形態1〜3において反射部材14の貫通孔16の形状を光源11の発光部33を光軸方向から見たときの外形形状(断面)と一致させた画像読取装置である。
なお、本発明の実施の形態4に係る画像読取装置は、反射部材14が異なるほかは実施の形態1〜3と同様である。そのため、以下では実施の形態1をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜3と同様の効果も奏する。
The fourth embodiment is an image reading apparatus in which the shape of the through hole 16 of the reflecting member 14 in the first to third embodiments matches the outer shape (cross section) when the light emitting unit 33 of the light source 11 is viewed from the optical axis direction. It is.
The image reading apparatus according to the fourth embodiment of the present invention is the same as the first to third embodiments except that the reflecting member 14 is different. Therefore, only the differences will be described below based on the first embodiment. In addition, the embodiment described below has the same effects as those of the first to third embodiments in addition to the effect caused by the configuration unique to the present embodiment.

本実施の形態では、光源11として砲弾型光源38やレンズ45付きのLED46などを用いる。この場合、砲弾型光源38の砲弾部47やレンズ付きLEDのレンズ部(集光部)45が発光部33となる。   In the present embodiment, a bullet-type light source 38 or an LED 46 with a lens 45 is used as the light source 11. In this case, the bullet portion 47 of the bullet-type light source 38 and the lens portion (collecting portion) 45 of the LED with lens become the light emitting portion 33.

反射部材14には、穴形状が光源11の発光部33を光軸方向から見たときの外形形状(断面)と一致する貫通孔16が設けられる。通常、砲弾型光源38の砲弾部47やレンズ付きLEDのレンズ部(集光部)45の断面は円形である。よって、反射部材14には、光源11の砲弾部47やレンズ45の断面と同じ大きさの円形の貫通孔16が設けられている。
図19は、貫通孔16が円形の反射部材(円筒型反射部材)36の模式図で、図20は、図19に示した円筒型反射部材36のD−D線に沿った断面図である。
The reflecting member 14 is provided with a through hole 16 whose hole shape matches the outer shape (cross section) of the light emitting unit 33 of the light source 11 when viewed from the optical axis direction. In general, the cross section of the bullet portion 47 of the bullet-type light source 38 and the lens portion (light collecting portion) 45 of the LED with lens is circular. Therefore, the reflecting member 14 is provided with a circular through hole 16 having the same size as the cross section of the bullet portion 47 and the lens 45 of the light source 11.
FIG. 19 is a schematic view of a reflective member (cylindrical reflective member) 36 having a circular through-hole 16, and FIG. 20 is a cross-sectional view taken along line DD of the cylindrical reflective member 36 shown in FIG. 19. .

砲弾型光源38やレンズ45付きのLED46は、円筒型反射部材36の貫通孔16に発光部33が内接するように配置される。   The bullet-type light source 38 and the LED 46 with the lens 45 are arranged so that the light emitting portion 33 is inscribed in the through hole 16 of the cylindrical reflection member 36.

次に、反射部材の貫通孔16と光源11の発光部33の形状が一致していない場合の問題点を説明する。   Next, problems when the shape of the light-emitting portion 33 of the light source 11 and the through hole 16 of the reflecting member do not match will be described.

図21は、砲弾型光源38に貫通孔16が四角形の反射部材(四角筒型反射部材)37を配置した状態を、四角筒型反射部材37の開口側から見た模式図である。光源11と四角筒型反射部材37との間には、斜線部で示す隙間が生じる。この隙間が導光体への光の入射効率に与える影響について、図22を用いて説明する。   FIG. 21 is a schematic view of a state in which a reflection member (square tube reflection member) 37 having a square through hole 16 is arranged in the bullet-type light source 38 as viewed from the opening side of the square tube reflection member 37. A gap indicated by a hatched portion is generated between the light source 11 and the square cylindrical reflection member 37. The influence of the gap on the light incident efficiency on the light guide will be described with reference to FIG.

図22は、図21のE−E線に沿った断面図である。砲弾型光源38から出射した光の一部は図中の実線矢印のような光路で砲弾型光源38と四角筒型反射部材37との間の隙間を抜けて照明装置の外部に漏れる。そのため、導光体2の光入射部13に入射する光量が減少するという問題がある。
また、導光体2の両端に光源を設けた場合、導光体2の他端に設けた砲弾型光源38から出射し、導光体2の内部を透過してきた光の一部が、図中の破線矢印のような光路で砲弾型光源38と四角筒型反射部材37との隙間を抜けて照明装置の外部に漏れる。そのため、導光体2に入射する光量が減少するという問題がある。
22 is a cross-sectional view taken along line EE in FIG. Part of the light emitted from the bullet-type light source 38 leaks outside the illumination device through the gap between the bullet-type light source 38 and the rectangular tube-shaped reflecting member 37 through an optical path as indicated by a solid line arrow in the figure. Therefore, there exists a problem that the light quantity which injects into the light-incidence part 13 of the light guide 2 reduces.
When light sources are provided at both ends of the light guide 2, a part of the light emitted from the bullet-type light source 38 provided at the other end of the light guide 2 and transmitted through the light guide 2 is shown in FIG. The light passes through the gap between the bullet-type light source 38 and the rectangular tube-shaped reflecting member 37 along the optical path as indicated by the broken arrow inside, and leaks to the outside of the illumination device. Therefore, there is a problem that the amount of light incident on the light guide 2 is reduced.

よって、反射部材14の貫通孔16の穴形状を光源11の発光部33の断面形状と一致させることにより、反射部材14と光源11の間の隙間がなくなり、光源11と反射部材14の間から光が漏れなくなる。これにより、光源11から照射される光を効率的に導光体2に入射させることができる。   Therefore, by making the hole shape of the through hole 16 of the reflection member 14 coincide with the cross-sectional shape of the light emitting portion 33 of the light source 11, there is no gap between the reflection member 14 and the light source 11, and between the light source 11 and the reflection member 14. Light will not leak. Thereby, the light irradiated from the light source 11 can be efficiently incident on the light guide 2.

実施の形態5.
図23、24を参照して、本発明の実施の形態5に係る画像読取装置の構成について説明する。
Embodiment 5 FIG.
The configuration of the image reading apparatus according to the fifth embodiment of the present invention will be described with reference to FIGS.

実施の形態5は、実施の形態4と同様、実施の形態1〜3において反射部材14の穴形状を光軸方向から見たときの光源11の外形形状(断面)と一致させた画像読取装置である。
なお、本発明の実施の形態5に係る画像読取装置は、反射部材14が異なるほかは実施の形態1〜3と同様である。そのため、以下では実施の形態1をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜3と同様の効果も奏する。
In the fifth embodiment, similarly to the fourth embodiment, the image reading apparatus in which the hole shape of the reflecting member 14 in the first to third embodiments is made to match the outer shape (cross section) of the light source 11 when viewed from the optical axis direction. It is.
The image reading apparatus according to the fifth embodiment of the present invention is the same as the first to third embodiments except that the reflecting member 14 is different. Therefore, only the differences will be described below based on the first embodiment. In addition, the embodiment described below has the same effects as those of the first to third embodiments in addition to the effect caused by the configuration unique to the present embodiment.

本実施の形態では、光源11としてレンズのないLED(表面実装型LED)39、ベアチップLED、有機ELなどを用いる。   In the present embodiment, an LED (surface mounted LED) 39 without a lens, a bare chip LED, an organic EL, or the like is used as the light source 11.

反射部材14には、光軸方向から見たときの光源11の外形形状と一致する形状の貫通穴16が設けられる。表面実装型LED39、有機ELの外形形状は正方形や長方形などの四角であることが多い。よって、反射部材14には、光源11の外形形状と同じ四角形の貫通孔16が設けられる。
図23は、貫通孔16の穴形状が四角の反射部材(四角筒型反射部材)37の模式図で、図24は、図23に示した四角筒型反射部材37のF−F線に沿った断面図である。
The reflecting member 14 is provided with a through hole 16 having a shape that matches the outer shape of the light source 11 when viewed from the optical axis direction. The external shape of the surface-mounted LED 39 and the organic EL is often a square such as a square or a rectangle. Therefore, the reflective member 14 is provided with a rectangular through-hole 16 that is the same as the outer shape of the light source 11.
FIG. 23 is a schematic diagram of a reflecting member (square tube reflecting member) 37 in which the through hole 16 has a square shape, and FIG. 24 is taken along line FF of the rectangular tube reflecting member 37 shown in FIG. FIG.

表面実装型LED、ベアチップLED、有機ELなどは、表面が四角筒型反射部材37の端面に当接するように配置される。   The surface-mount type LED, bare chip LED, organic EL, and the like are arranged so that the surface is in contact with the end face of the square tube type reflecting member 37.

次に、反射部材の貫通孔16と光源11の形状を一致させることにより導光体に入射する光の入射効率が改善する理由について説明する。   Next, the reason why the incident efficiency of light incident on the light guide is improved by matching the shape of the through hole 16 of the reflecting member and the light source 11 will be described.

図24は、表面実装型LED39に四角筒型反射部材37を配置した状態を、四角筒型反射部材37の開口側から見た模式図である。光源11と四角筒型反射部材37との間に隙間はない。このように表面実装型LED39の外形形状と反射部材の貫通孔16の形状を一致させることで、光源11と反射部材の隙間から外部に光が漏れることがない。   FIG. 24 is a schematic view of the state in which the rectangular tube-shaped reflecting member 37 is disposed on the surface-mounted LED 39 as viewed from the opening side of the rectangular tube-shaped reflecting member 37. There is no gap between the light source 11 and the square cylindrical reflection member 37. In this way, by matching the outer shape of the surface-mounted LED 39 and the shape of the through hole 16 of the reflecting member, light does not leak outside through the gap between the light source 11 and the reflecting member.

また、導光体2の両端に光源を設けた場合、導光体2の他端に設けた光源11から出射し、導光体2を透過してきた光が、光源基板12などよりも反射率の高い表面実装型LED39の表面で折り返すことで、より効率的に導光体2へ光を入射させることができる。   When light sources are provided at both ends of the light guide 2, the light emitted from the light source 11 provided at the other end of the light guide 2 and transmitted through the light guide 2 is more reflective than the light source substrate 12 or the like. The light can be incident on the light guide 2 more efficiently by folding back on the surface of the high surface mount LED 39.

更に、本実施の形態は、組み立て面のメリットも有する。表面実装型LED39、ベアチップLED、有機ELの表面から光が出射する領域である発光部48は円形であるため、実施の形態4に従えば、本実施の形態の反射部材として円筒型反射部材36を設置してもよい。しかし、表面実装型LED39は凹凸が少ないため、発光部48を円筒型反射部材36の貫通孔16に内接させ難く、円筒型反射部材36を安定して設置することができない。そのため、光源11の外形形状と等しい貫通孔16を有する四角筒型反射部材37を使用することで、端面を揃えることで位置が決まり、反射部材14を安定して設置することができる。   Furthermore, this embodiment also has the merit of an assembly surface. Since the light emitting portion 48 which is a region where light is emitted from the surface of the surface-mounted LED 39, bare chip LED, and organic EL is circular, according to the fourth embodiment, the cylindrical reflecting member 36 is used as the reflecting member of the present embodiment. May be installed. However, since the surface-mounted LED 39 has few irregularities, it is difficult for the light-emitting portion 48 to be inscribed in the through hole 16 of the cylindrical reflection member 36, and the cylindrical reflection member 36 cannot be stably installed. Therefore, by using the rectangular cylindrical reflection member 37 having the through hole 16 equal to the outer shape of the light source 11, the position is determined by aligning the end faces, and the reflection member 14 can be stably installed.

実施の形態6.
本発明の実施の形態6に係る画像読取装置は、実施の形態1〜5で説明した反射部材14複数個分と同じ機能を有し、金属ブロックに穴を開けることにより形成される反射ブロック49を用いたものである。
なお、本発明の実施の形態6に係る画像読取装置は、反射部材が異なるほかは実施の形態1〜5と同様である。そのため、以下では実施の形態3をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜5と同様の効果も奏する。
Embodiment 6 FIG.
The image reading apparatus according to the sixth embodiment of the present invention has the same function as that of a plurality of the reflecting members 14 described in the first to fifth embodiments, and is a reflection block 49 formed by making a hole in a metal block. Is used.
The image reading apparatus according to the sixth embodiment of the present invention is the same as those of the first to fifth embodiments except that the reflecting member is different. Therefore, only different points will be described below based on the third embodiment. In addition, the embodiment described below has the same effects as those of the first to fifth embodiments in addition to the effects caused by the configuration unique to the present embodiment.

図25は、3つの反射部材14を一体化した反射ブロック49を示す模式図である。金属ブロックには、光源の外形形状と同じ形状の貫通孔16が設けられている。反射ブロック49を形成する金属ブロックの材質は、貫通孔16に形成される正反射面15の反射率を考慮し、アルミなどの反射率の高い金属を使うことが望ましい。   FIG. 25 is a schematic diagram showing a reflection block 49 in which three reflection members 14 are integrated. The metal block is provided with a through hole 16 having the same shape as the outer shape of the light source. In consideration of the reflectance of the regular reflection surface 15 formed in the through hole 16, the material of the metal block forming the reflection block 49 is preferably a metal having a high reflectance such as aluminum.

図26は、図25に示した反射ブロック49を用いた照明装置を、X−Y平面で切断した断面図である。導光体2の両端に設けられた光入射部13には、光源11としてレンズ45付きのLED46が3つずつ配置されている。3つの光源のレンズ45部分は反射ブロック49の貫通孔16の内部に納まり、光源のLED46部分に反射ブロック49が当接している。   FIG. 26 is a cross-sectional view of the illumination device using the reflection block 49 shown in FIG. 25 taken along the XY plane. In the light incident portions 13 provided at both ends of the light guide 2, three LEDs 46 with lenses 45 are disposed as the light source 11. The lens 45 portions of the three light sources are accommodated in the through holes 16 of the reflection block 49, and the reflection block 49 is in contact with the LED 46 portion of the light source.

以上のように、本実施の形態6によれば、複数の反射部材を一体化した反射ブロック49を用いることで、アレイ光源など複数個の光源を必要とする照明装置において部品点数を減らすことができる。   As described above, according to the sixth embodiment, by using the reflection block 49 in which a plurality of reflection members are integrated, the number of components can be reduced in an illumination device that requires a plurality of light sources such as an array light source. it can.

また、図26に破線の矢印で示すように、導光体2の一端の光入射部13から内部に入射、透過し、導光体2の他端から漏れていた光を、光入射部13と接している反射ブロック49の端面で反射して導光体内に戻すことが可能になる。これにより、反射部材14を使用したときよりも照明効率を増加させることができる。   In addition, as indicated by a broken arrow in FIG. 26, the light incident on the light incident portion 13 at one end of the light guide 2 and transmitted through the light incident portion 13 and leaked from the other end of the light guide 2 is converted into the light incident portion 13. It is possible to reflect the light at the end face of the reflection block 49 in contact with the light and return it to the light guide. Thereby, illumination efficiency can be increased compared with the case where the reflection member 14 is used.

さらに金属製の反射ブロック49がLED46に密着しているため、LED46が発する熱を反射ブロック49が吸収して照明装置の外部のフレームに伝えることができるため、放熱効果も得ることが出来る。   Furthermore, since the metal reflection block 49 is in close contact with the LED 46, the heat generated by the LED 46 can be absorbed by the reflection block 49 and transmitted to the frame outside the lighting device, so that a heat dissipation effect can also be obtained.

実施の形態7.
本実施の形態7に係る画像読取装置は、実施の形態6で記載した金属製の反射ブロック49の代わりに樹脂で形成した樹脂反射ブロック19を用いるものである。
なお、本発明の実施の形態7に係る画像読取装置は、反射部材が異なるほかは実施の形態6と同様である。そのため、以下では実施の形態6をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態6と同様の効果も奏する。
Embodiment 7 FIG.
The image reading apparatus according to the seventh embodiment uses a resin reflection block 19 formed of resin instead of the metal reflection block 49 described in the sixth embodiment.
The image reading apparatus according to the seventh embodiment of the present invention is the same as that of the sixth embodiment except that the reflecting member is different. Therefore, only differences will be described below based on the sixth embodiment. Further, the embodiment described below also has the same effect as that of the sixth embodiment in addition to the effect resulting from the configuration unique to the present embodiment.

図27は、樹脂反射ブロック19の形状を示す模式図である。樹脂反射ブロック19の形状は実施の形態6で示した反射ブロック49と等しいが、樹脂で形成しているため、貫通孔16を設けただけでは内壁面に鏡面が確保できない。内壁面が樹脂の場合、例え反射率が高い樹脂を使用していたとしても、当たった光は正反射せず散乱する。そのため、樹脂反射ブロック19の貫通孔16の内壁では光が散乱して多数回の反射がおこり、反射の度に内壁が光を吸収し、その結果光の損失が発生する。貫通孔16の内壁面が樹脂製の場合、導光体2への入射効率は、貫通孔16の内壁面の鏡面が確保できた場合の1/2〜1/3程度となる。   FIG. 27 is a schematic diagram showing the shape of the resin reflection block 19. The shape of the resin reflection block 19 is the same as that of the reflection block 49 shown in the sixth embodiment. However, since the resin reflection block 19 is made of resin, a mirror surface cannot be secured on the inner wall surface simply by providing the through hole 16. When the inner wall surface is a resin, even if a resin having a high reflectance is used, the hit light is scattered without being regularly reflected. Therefore, light is scattered on the inner wall of the through-hole 16 of the resin reflection block 19 and many reflections occur, and the inner wall absorbs light every time it is reflected, resulting in light loss. When the inner wall surface of the through hole 16 is made of resin, the incident efficiency to the light guide 2 is about 1/2 to 1/3 when the mirror surface of the inner wall surface of the through hole 16 can be secured.

そこで、樹脂反射ブロック19の貫通孔16の内壁面には金属蒸着や金属メッキなどにより正反射面15を形成し、貫通孔16の内壁面における光の反射が正反射となるようにする必要がある。正反射面15で反射率が50%以上確保できれば、金属製の反射ブロック49を用いた場合と同程度の導光体入射効率が確保できる。   Therefore, it is necessary to form the regular reflection surface 15 on the inner wall surface of the through hole 16 of the resin reflection block 19 by metal vapor deposition or metal plating so that the reflection of light on the inner wall surface of the through hole 16 becomes regular reflection. is there. If the reflectance of 50% or more can be secured on the regular reflection surface 15, light guide incident efficiency comparable to that when the metal reflection block 49 is used can be secured.

樹脂は金属と比較して軽量で安価であり、反射ブロック単体または他部品と一体で金型成型を行うことも可能である。そのため、樹脂製反射ブロック19を用いることで組立が容易になり、量産コストが抑えられる。   Resin is lighter and less expensive than metal, and can be molded with a single reflective block or other parts. For this reason, the use of the resin reflection block 19 facilitates assembly and reduces the mass production cost.

実施の形態8.
本実施の形態8に係る画像読取装置は、実施の形態6と7で記載した反射ブロック49、または樹脂反射ブロック19を複数に分割したものである。以下では、反射ブロック49を用いて構成を説明する。
なお、本発明の実施の形態8に係る画像読取装置は、反射部材の構成が異なるほかは実施の形態6、7と同様である。そのため、以下では実施の形態6をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態6、7と同様の効果も奏する。
Embodiment 8 FIG.
In the image reading apparatus according to the eighth embodiment, the reflection block 49 or the resin reflection block 19 described in the sixth and seventh embodiments is divided into a plurality of parts. Below, a structure is demonstrated using the reflection block 49. FIG.
The image reading apparatus according to the eighth embodiment of the present invention is the same as the sixth and seventh embodiments except that the configuration of the reflecting member is different. Therefore, only differences will be described below based on the sixth embodiment. In addition, the embodiment described below also has the same effect as the sixth and seventh embodiments in addition to the effect resulting from the configuration unique to the present embodiment.

図28は、実施の形態6で説明した反射ブロック49を図25に示すG−G線に沿って2つに分割した分割反射ブロック40の模式図である。分割反射ブロック40は、貫通孔16に設けた正反射面15が表面にむき出しになるように分割される。図29は2つの分割反射ブロック40を正反射面15が対向するように重ねた状態を示す模式図である。本実施の形態8では、分割した部材を2つ用いることにより分割前の部材と同じ機能を実現する。   FIG. 28 is a schematic diagram of the divided reflection block 40 in which the reflection block 49 described in the sixth embodiment is divided into two along the line GG shown in FIG. The division | segmentation reflection block 40 is divided | segmented so that the regular reflection surface 15 provided in the through-hole 16 may be exposed to the surface. FIG. 29 is a schematic diagram showing a state in which two divided reflection blocks 40 are overlapped so that the regular reflection surface 15 faces each other. In the eighth embodiment, the same function as that of the member before division is realized by using two divided members.

反射ブロック49を2つに分割しない場合、以下のような問題がある。
実施の形態6のように金属ブロックに穴を開けて反射ブロック49を形成する場合には、正反射面15の鏡面を確保するために貫通孔16の内壁面を研磨する必要がある。また、実施の形態7の樹脂製反射ブロック19においては、貫通孔16の内壁面に正反射面15を形成するために金属蒸着を行う必要がある。
しかし、実施の形態6、7に示す構成では、光源11のレンズが2〜5mm程度と小さい場合、反射ブロック49や樹脂製反射ブロック19の貫通孔16の穴径も小さくなり、鏡面を確保するための研磨が行いにくいという問題がある。また、金属蒸着を行う際に蒸発させた金属分子が貫通孔16の内壁面に均一に行き渡らないため歩留りが悪くなるという問題もある。
When the reflection block 49 is not divided into two, there are the following problems.
When the reflection block 49 is formed by making a hole in the metal block as in the sixth embodiment, it is necessary to polish the inner wall surface of the through-hole 16 in order to ensure a mirror surface of the regular reflection surface 15. Further, in the resin reflection block 19 according to the seventh embodiment, it is necessary to perform metal deposition in order to form the regular reflection surface 15 on the inner wall surface of the through hole 16.
However, in the configuration shown in Embodiments 6 and 7, when the lens of the light source 11 is as small as about 2 to 5 mm, the hole diameters of the through holes 16 of the reflection block 49 and the resin reflection block 19 are also reduced, and a mirror surface is secured. Therefore, there is a problem that it is difficult to polish. Another problem is that the yield of the metal molecules is deteriorated because the metal molecules evaporated during the metal deposition are not uniformly distributed on the inner wall surface of the through hole 16.

そこで、図28を参照して、反射ブロック49や樹脂製反射ブロック19を2つに分割することにより、貫通孔16の内壁面が剥き出しの状態となり、正反射面15の研磨、または金属蒸着が簡易に行えるようになる。そのため、反射ブロック49や樹脂製反射ブロック19の製造工程において歩留りが改善する。 Therefore, referring to FIG. 28, by dividing the reflection block 49 and the resin reflection block 19 into two, the inner wall surface of the through hole 16 is exposed, and the regular reflection surface 15 is polished or metallized. It becomes easy to do. Therefore, the yield is improved in the manufacturing process of the reflection block 49 and the resin reflection block 19.

実施の形態9.
本実施の形態9に係る画像読取装置は、実施の形態1〜8で記載した反射部材と導光体2の間にIRカットフィルタなどのフィルタ51を設置する領域を設けたものである。
なお、本発明の実施の形態9に係る画像読取装置は、反射部材の形状とフィルタ51の有無が異なるほかは実施の形態1〜8と同様である。そのため、以下では実施の形態6をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜8と同様の効果も奏する。
Embodiment 9 FIG.
In the image reading apparatus according to the ninth embodiment, an area for installing a filter 51 such as an IR cut filter is provided between the reflecting member described in the first to eighth embodiments and the light guide 2.
The image reading apparatus according to the ninth embodiment of the present invention is the same as those in the first to eighth embodiments except that the shape of the reflecting member and the presence or absence of the filter 51 are different. Therefore, only differences will be described below based on the sixth embodiment. In addition, the embodiment described below has the same effects as those of the first to eighth embodiments in addition to the effects caused by the configuration unique to the present embodiment.

カラー画像を取得する場合には、センサ4の前にバンドパスフィルタを設置し、バンドパスフィルタで分離された各波長成分RGBをセンサ4で検知する方法が一般に行われている。しかし、センサ4の前に設置したバンドパスフィルタが赤外など目的の波長以外の波長を透過したり、光源11が可視光以外の紫外光や赤外光を放出したりすることにより、センサ4が目的の波長以外の光を検知してしまう場合がある。このような場合には、可視光以外の光をカットするフィルタ51を光源11と導光体2の間に設置する必要がある。   When acquiring a color image, a method is generally used in which a band pass filter is installed in front of the sensor 4 and each wavelength component RGB separated by the band pass filter is detected by the sensor 4. However, when the bandpass filter installed in front of the sensor 4 transmits wavelengths other than the target wavelength such as infrared, or the light source 11 emits ultraviolet light or infrared light other than visible light, the sensor 4 May detect light other than the target wavelength. In such a case, it is necessary to install a filter 51 that cuts light other than visible light between the light source 11 and the light guide 2.

そこで、導光体2と反射ブロック49の間にIRカットフィルタなどのフィルタ51を設置する領域を設ける。
図30は、図26に示す照明装置において、導光体2の光入射部13と接する反射ブロック49の端部を一部削り、導光体2の光入射部13と反射ブロック49の間にフィルタ51を格納する領域を設け、その領域にフィルタ51を納めた状態を示す模式図である。フィルタ51は、導光体2の光入射部13と反射ブロック49の端面とで挟まれることにより固定される。
Therefore, an area for installing a filter 51 such as an IR cut filter is provided between the light guide 2 and the reflection block 49.
FIG. 30 is a plan view of the lighting device shown in FIG. 26, in which a part of the end of the reflection block 49 in contact with the light incident portion 13 of the light guide 2 is shaved, It is a schematic diagram showing a state where an area for storing the filter 51 is provided and the filter 51 is placed in the area. The filter 51 is fixed by being sandwiched between the light incident part 13 of the light guide 2 and the end face of the reflection block 49.

以上のように、フィルタ51が必要な画像読取装置においては、フィルタ51が設置できるミゾを反射部材14、または反射ブロック49に設けることで、導光体2への入射効率を増加させながら、部品点数を増やすことなく各種フィルタ51を設置することができる。   As described above, in an image reading apparatus that requires the filter 51, by providing the reflecting member 14 or the reflecting block 49 with a groove on which the filter 51 can be installed, the incident efficiency to the light guide 2 is increased, and the component Various filters 51 can be installed without increasing the number of points.

実施の形態10.
本実施の形態10に係る画像読取装置は、実施の形態1〜9の反射部材をホルダー10と一体化した一体部材52を用いるものである。
なお、本発明の実施の形態10に係る画像読取装置は、反射部材とホルダーの形状が異なるほかは実施の形態1〜9と同様である。そのため、以下では実施の形態6をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜9と同様の効果も奏する。
Embodiment 10 FIG.
The image reading apparatus according to the tenth embodiment uses an integral member 52 in which the reflecting member according to the first to ninth embodiments is integrated with the holder 10.
The image reading apparatus according to the tenth embodiment of the present invention is the same as those of the first to ninth embodiments except that the shapes of the reflecting member and the holder are different. Therefore, only differences will be described below based on the sixth embodiment. In addition, the embodiment described below has the same effects as those of the first to ninth embodiments in addition to the effects resulting from the configuration unique to the present embodiment.

図31は図26に示す反射ブロック49をホルダー10と一体化した一体部材52の形状の例を示す模式図である。図31(b)は図31(a)のG−G線に沿った断面図、図31(c)は図31(b)のH−H線に沿った断面図である。   FIG. 31 is a schematic diagram showing an example of the shape of the integral member 52 in which the reflection block 49 shown in FIG. 26 is integrated with the holder 10. 31B is a cross-sectional view taken along line GG in FIG. 31A, and FIG. 31C is a cross-sectional view taken along line HH in FIG.

図31(a)〜(c)を参照して、一体部材52には、図2に示す導光体2が収まる形状の溝57が一体部材52の端面から中ほどまで切られている。更に、上記溝57の底面には反対側の端面まで貫通する穴(貫通孔)54が3つ設けられ、貫通孔54の内壁面には正反射面15が形成されている。   Referring to FIGS. 31A to 31C, a groove 57 having a shape in which the light guide 2 shown in FIG. 2 is accommodated is cut in the integrated member 52 from the end surface of the integrated member 52 to the middle. Further, the bottom surface of the groove 57 is provided with three holes (through holes) 54 penetrating to the opposite end surface, and the regular reflection surface 15 is formed on the inner wall surface of the through hole 54.

上記の一体部材52の溝57に導光体2の端部を挿通し、貫通孔54の開口を有する端面に光源11を実装した光源基板12を設置する。一体部材52を筐体9の内部に設置することで導光体2を既定の位置に固定する。   The end portion of the light guide 2 is inserted into the groove 57 of the integrated member 52, and the light source substrate 12 on which the light source 11 is mounted is installed on the end surface having the opening of the through hole 54. The light guide 2 is fixed at a predetermined position by installing the integral member 52 inside the housing 9.

以上のように、反射ブロック49とホルダー10とを一体化した一体部材52を用いることにより、照明装置の部材数を低減することができる。   As described above, by using the integrated member 52 in which the reflection block 49 and the holder 10 are integrated, the number of members of the lighting device can be reduced.

また、読取光学系5を挟んで配置される2つの導光体2にそれぞれ設けられた一体部材52を、図32を参照して、1つに繋げた構造とすることにより、さらに照明系の部材数を低減することができる。   Further, the integrated members 52 provided on the two light guides 2 arranged with the reading optical system 5 interposed therebetween are connected to one by referring to FIG. The number of members can be reduced.

実施の形態11.
本実施の形態11に係る画像読取装置は、穴を開けた板材58に実施の形態1〜5で説明した反射部材14を接合した接合部材23を用いたものである。
なお、本発明の実施の形態11に係る画像読取装置は、反射部材が異なるほかは実施の形態1〜5と同様である。そのため、以下では実施の形態3をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜5と同様の効果も奏する。
Embodiment 11 FIG.
The image reading apparatus according to the eleventh embodiment uses a joining member 23 obtained by joining the reflecting member 14 described in the first to fifth embodiments to a plate material 58 having a hole.
The image reading apparatus according to the eleventh embodiment of the present invention is the same as the first to fifth embodiments except that the reflecting member is different. Therefore, only different points will be described below based on the third embodiment. In addition, the embodiment described below has the same effects as those of the first to fifth embodiments in addition to the effects caused by the configuration unique to the present embodiment.

図33は、接合部材23の形状を示す模式図である。接合部材23は、板材58と実施の形態3で説明した反射部材14からなる。   FIG. 33 is a schematic diagram showing the shape of the joining member 23. The joining member 23 includes the plate member 58 and the reflecting member 14 described in the third embodiment.

板材58は、図34を参照して、実施の形態3で説明した反射部材14の貫通孔16の穴形状と同じ形の穴22を有する。また、板材58は、反射率を確保するため、金属や金属蒸着を行った樹脂、ガラスなどで作製することが望ましい。   The plate member 58 has a hole 22 having the same shape as the hole shape of the through hole 16 of the reflecting member 14 described in the third embodiment with reference to FIG. Further, it is desirable that the plate member 58 is made of a metal, a resin subjected to metal vapor deposition, glass, or the like in order to ensure reflectivity.

反射部材14は、光軸方向から見たときに、反射部材14の貫通孔16と板材58に設けた穴22が重なるように板材58に接合される。図35は、図33のI−I線に沿った断面図である。図36は、図33のJ−J線に沿った断面図である。板材58には導光体2の光入射部13が当接し、接合部材23に接合した反射部材14には光源11が当接する。   The reflection member 14 is joined to the plate material 58 so that the through hole 16 of the reflection member 14 and the hole 22 provided in the plate material 58 overlap when viewed from the optical axis direction. 35 is a cross-sectional view taken along the line II of FIG. 36 is a cross-sectional view taken along line JJ of FIG. The light incident portion 13 of the light guide 2 abuts on the plate material 58, and the light source 11 abuts on the reflection member 14 joined to the joining member 23.

以上のような構成とすることにより、導光体2の一端に設けた光入射部13から入射し、内部を透過した後に導光体2の他端から漏れていく光を、板材58で反射して導光体2内に戻すことが可能になる。これにより、実施の形態6のように導光体2と光源11の間に反射ブロック49を設置したときと同じ照明効率の改善が期待できる。   With the configuration described above, the light that enters from the light incident portion 13 provided at one end of the light guide 2 and passes through the inside and then leaks from the other end of the light guide 2 is reflected by the plate material 58. Thus, it can be returned into the light guide 2. Thereby, the improvement of the illumination efficiency same as when the reflective block 49 is installed between the light guide 2 and the light source 11 as in the sixth embodiment can be expected.

また、反射部材14が本実施の形態11のような形状であれば、実施の形態6で示した反射ブロック49と比較して作製に必要な材料の量を大幅に減らすことができる。そのため、コストを低減することができると同時に、軽量化が可能である。   Further, if the reflecting member 14 has a shape as in the eleventh embodiment, the amount of material necessary for production can be significantly reduced as compared with the reflecting block 49 shown in the sixth embodiment. Therefore, the cost can be reduced and the weight can be reduced.

実施の形態12.
本実施の形態12に係る画像読取装置は、実施の形態1〜11で記載した反射部材14及び反射ブロック49の正反射面15に傾斜をつけたものである。
なお、本発明の実施の形態12に係る画像読取装置は、反射部材の形状が異なるほかは実施の形態1〜11と同様である。そのため、以下では実施の形態1をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜11と同様の効果も奏する。
Embodiment 12 FIG.
In the image reading apparatus according to the twelfth embodiment, the reflection member 14 and the regular reflection surface 15 of the reflection block 49 described in the first to eleventh embodiments are inclined.
The image reading apparatus according to the twelfth embodiment of the present invention is the same as the first to eleventh embodiments except that the shape of the reflecting member is different. Therefore, only the differences will be described below based on the first embodiment. In addition, the embodiment described below also has the same effects as those of the first to eleventh embodiments in addition to the effects caused by the configuration unique to the present embodiment.

図37を参照して、光源11と導光体2の光入射部13の間に設けられた反射部材59は、貫通孔64を有する円筒体(パイプ形状)で、第1の開口部17に光源11が接し、第2の開口部18に導光体2の光入射部13が接している。貫通孔64の内壁面には正反射面15が形成される。   Referring to FIG. 37, the reflecting member 59 provided between the light source 11 and the light incident portion 13 of the light guide 2 is a cylindrical body (pipe shape) having a through hole 64, and is formed in the first opening 17. The light source 11 is in contact, and the light incident part 13 of the light guide 2 is in contact with the second opening 18. A regular reflection surface 15 is formed on the inner wall surface of the through hole 64.

図37を用いて反射部材59の貫通孔64の形状について詳しく説明する。
反射部材59の第1の開口部17の開口の径をφ1、第2の開口部18の開口の径をφ2、光源11の径をλ、光源11の発光部33の径をψとする。また、導光体2の光入射部13のうちホルダー10を固定する位置における深度方向の厚みをτとする。
このとき、第1の開口部17の開口の径φ1は、光源11の発光部33の径ψ以上、光源11の径λ以下にする((5)式)。また、第2の開口部18の開口の径φ2は、導光体2の光入射部13の深度方向の厚みτ以下にする((6)式)。導光体2側の開口φ1と光源11側の開口φ2は異なる大きさにする((7)式)。
ψ≦φ1≦λ (5)式

φ2≦τ (6)式

φ1≠φ2 (7)式
The shape of the through hole 64 of the reflecting member 59 will be described in detail with reference to FIG.
The diameter of the opening of the first opening 17 of the reflecting member 59 is φ1, the diameter of the opening of the second opening 18 is φ2, the diameter of the light source 11 is λ, and the diameter of the light emitting portion 33 of the light source 11 is φ. Moreover, the thickness of the depth direction in the position which fixes the holder 10 among the light-incidence parts 13 of the light guide 2 is set to (tau).
At this time, the diameter φ1 of the opening of the first opening 17 is set to be not less than the diameter ψ of the light emitting part 33 of the light source 11 and not more than the diameter λ of the light source 11 (equation (5)). Further, the diameter φ2 of the opening of the second opening 18 is set to be equal to or less than the thickness τ in the depth direction of the light incident part 13 of the light guide 2 (Equation (6)). The opening φ1 on the light guide 2 side and the opening φ2 on the light source 11 side have different sizes (formula (7)).
ψ ≦ φ1 ≦ λ (5)

φ2 ≦ τ (6)

φ1 ≠ φ2 Equation (7)

このように、反射部材59に設けた貫通孔64の両端の開口の大きさを変えることにより正反射面15は傾斜する。   As described above, the regular reflection surface 15 is inclined by changing the sizes of the openings at both ends of the through hole 64 provided in the reflection member 59.

正反射面15に傾斜をつけることによるメリットを以下に示す。
まず、図37を参照して、第2の開口部18の開口が、第1の開口部17の開口より大きくなるように形成される。これにより、導光体2を透過してきた光の一部が図37の破線矢印で示す光路で折り返されて再び導光体2に入射する。その結果、導光体2からの透過光を効率よく導光体2に戻すことができるため、照明効率を改善することができる。
Advantages obtained by inclining the regular reflection surface 15 will be described below.
First, referring to FIG. 37, the opening of second opening 18 is formed to be larger than the opening of first opening 17. As a result, part of the light transmitted through the light guide 2 is folded back along the optical path indicated by the broken-line arrow in FIG. 37 and enters the light guide 2 again. As a result, since the transmitted light from the light guide 2 can be efficiently returned to the light guide 2, the illumination efficiency can be improved.

また、図38を参照して、第2の開口部18の開口が、第1の開口部17の開口より小さくなるように形成され、光源11として白色LEDが用いられる。一般に白色LEDは青色の光を放出するLEDチップ60の前に蛍光体61が設置されている。この蛍光体61にあたった青色の光が赤と緑の光に変換され、その合計として白色の光が出射される。そのため、蛍光体61が青色の光を赤と緑に変換する効率によって光源11から発光する光の色味が決まる。そこで、図38の実線矢印で示す光路で光源11から発光した光をもう一度蛍光体61に戻し、青から赤または緑の光に再度変換させることで、光源11の色味を調整することが可能になる。   Referring to FIG. 38, the opening of the second opening 18 is formed to be smaller than the opening of the first opening 17, and a white LED is used as the light source 11. In general, a white LED is provided with a phosphor 61 in front of an LED chip 60 that emits blue light. The blue light that hits the phosphor 61 is converted into red and green light, and white light is emitted as the total. Therefore, the color of light emitted from the light source 11 is determined by the efficiency with which the phosphor 61 converts blue light into red and green. Therefore, the color of the light source 11 can be adjusted by returning the light emitted from the light source 11 along the optical path indicated by the solid line arrow in FIG. 38 to the phosphor 61 again and converting it from blue to red or green light again. become.

また、傾斜をつけることにより正反射面15の金属蒸着がしやすくなる。金属蒸着を行う際には、蒸着金属の分子が飛んでくる蒸着方向24に対して、金属蒸着を行いたい面の投影面積25が確保される必要がある。図39を参照して、正反射面15に傾斜をあたえていない場合には、異なる方向から2回に分けて金属蒸着を行う必要がある。しかし、図40を参照して、正反射面15に傾斜をつけることにより、正反射面15すべての投影面積25が同時に確保できるため、1回で金属蒸着を行うことができる。これにより、作製コスト、時間の削減を図ると共に歩留りの改善が可能である。   Moreover, it becomes easy to perform metal vapor deposition of the regular reflection surface 15 by providing an inclination. When performing metal vapor deposition, it is necessary to secure a projected area 25 of a surface on which metal vapor deposition is desired with respect to the vapor deposition direction 24 in which molecules of the vapor deposited metal fly. Referring to FIG. 39, when the regular reflection surface 15 is not inclined, it is necessary to perform metal deposition in two steps from different directions. However, referring to FIG. 40, by providing the regular reflection surface 15 with an inclination, the projected area 25 of all the regular reflection surfaces 15 can be secured at the same time, so that metal deposition can be performed at a time. Thereby, the manufacturing cost and time can be reduced and the yield can be improved.

実施の形態13.
本実施の形態13に係る画像読取装置は、光源11ごとに設けていた正反射面を一つに繋げ、1つの正反射面63で囲まれた空間に複数個の光源11を設置したものである。
なお、本発明の実施の形態13に係る画像読取装置は、反射部材の形状が異なるほかは実施の形態1〜12と同様である。そのため、以下では実施の形態6をもとに、相違する点についてのみ説明を行う。また、以下に説明する実施の形態は、本実施の形態に特有の構成に起因する効果のほかに、実施の形態1〜12と同様の効果も奏する。
Embodiment 13 FIG.
In the image reading apparatus according to the thirteenth embodiment, the regular reflection surface provided for each light source 11 is connected to one, and a plurality of light sources 11 are installed in a space surrounded by one regular reflection surface 63. is there.
The image reading apparatus according to the thirteenth embodiment of the present invention is the same as the first to twelfth embodiments except that the shape of the reflecting member is different. Therefore, only differences will be described below based on the sixth embodiment. In addition, the embodiment described below has the same effects as those of the first to twelfth embodiments in addition to the effects resulting from the configuration unique to the present embodiment.

図41は、本実施の形態で用いる反射部材62の形状を示す模式図である。反射部材62は、図25に示す反射ブロック49において各貫通孔16の間の壁を取り払い1つなげたものである。   FIG. 41 is a schematic diagram showing the shape of the reflecting member 62 used in the present embodiment. The reflecting member 62 is formed by removing the walls between the through holes 16 in the reflecting block 49 shown in FIG.

反射ブロック49の貫通孔16は光源11の大きさに合わせて形成されるため、使用する光源11や導光体2の大きさによっては、貫通孔16の径や隣接する貫通孔16の間の壁が数mm程度になり機械加工や成型が困難になる場合がある。
そこで、図41を参照して、反射部材に設ける複数の貫通孔の間の壁をなくし、製反射面63を1つにつなげることで反射部材の製作が容易になる。
Since the through hole 16 of the reflection block 49 is formed in accordance with the size of the light source 11, depending on the size of the light source 11 and the light guide 2 to be used, the diameter of the through hole 16 and the distance between the adjacent through holes 16 are different. There are cases where the wall becomes several mm and machining and molding become difficult.
Therefore, referring to FIG. 41, the wall between the plurality of through holes provided in the reflecting member is eliminated, and the reflecting surface 63 is connected to one, so that the reflecting member can be easily manufactured.

1 原稿、2 導光体、3 透明体、4 センサ(センサIC)、5 読取光学系(ロッドレンズアレイ)、6 センサ基板、7 信号処理IC(ASIC)、8 外部コネクタ、9 筐体、10 ホルダー、11 光源、12 光源基板、13 光入射部、14 反射部材、15 正反射面、16 貫通孔、17 第1の開口部、18 第2の開口部、19 樹脂反射ブロック、20 導光路、21 集光レンズ、22 穴、23 接合部材、24 蒸着方向、25 投影面積、30 画像読取領域、31 光出射部、32 光散乱領域、33 発光部、34 反射導光体、35 屈折型導光体、36 円筒型反射部材、37 四角筒型反射部材、38 砲弾型光源、39 表面実装型LED、40 分割反射ブロック、41 電源用コネクタ、42 反射光、43 反射面、44 屈折面、45 集光部、46 LED、47 砲弾部、48 発光部、49 反射ブロック、50 樹脂、51 フィルタ、52 一体化部材、53 ブロック、54 貫通穴、55 矢印、56 矢印、57 溝、58 板材、59 反射部材、60 LEDチップ、61 蛍光体、62 反射部材、63 正反射面、64 貫通穴。   DESCRIPTION OF SYMBOLS 1 Original, 2 Light guide, 3 Transparent body, 4 Sensor (sensor IC), 5 Reading optical system (rod lens array), 6 Sensor board, 7 Signal processing IC (ASIC), 8 External connector, 9 Case, 10 Holder, 11 Light source, 12 Light source substrate, 13 Light incident part, 14 Reflecting member, 15 Regular reflection surface, 16 Through hole, 17 First opening part, 18 Second opening part, 19 Resin reflection block, 20 Light guide path, 21 Condensing lens, 22 holes, 23 bonding member, 24 deposition direction, 25 projection area, 30 image reading area, 31 light emitting part, 32 light scattering area, 33 light emitting part, 34 reflective light guide, 35 refractive light guide Body, 36 cylindrical reflection member, 37 square tube reflection member, 38 shell-type light source, 39 surface mount LED, 40 split reflection block, 41 power connector, 42 reflected light, 43 Projection surface, 44 Refraction surface, 45 Condensing part, 46 LED, 47 Cannonball part, 48 Light emitting part, 49 Reflection block, 50 Resin, 51 Filter, 52 Integrated member, 53 block, 54 Through hole, 55 arrow, 56 arrow , 57 groove, 58 plate material, 59 reflection member, 60 LED chip, 61 phosphor, 62 reflection member, 63 regular reflection surface, 64 through hole.

Claims (5)

読取対象の読取領域に読取光を照射する照明装置であって、
光が出射する領域である発光部を有する光源と、
その内壁に光を全反射する正反射面が形成された貫通孔を有し、前記発光部から出射した光の光軸が前記貫通孔の内部を通過する状態に設置された反射部材と、
光入射部と光出射部とを有し、前記貫通孔を通過して前記光入射部から入射した光が内部を伝播するとともに前記光出射部から読取領域に向けて出射する導光体とを備え、
前記貫通孔の一方の開口に前記光源が当接し、他方の開口に前記光入射部が当接し、
前記光源、前記貫通孔の一方の開口、前記貫通孔の他方の開口及び前記光入射部のそれぞれの重なりを前記光軸の方向から見たときに、前記貫通孔の一方の開口は前記光源の中であって前記貫通孔の一方の開口の形状は前記発光部の外形形状と一致しており、かつ前記貫通孔の他方の開口が前記光入射部の領域内にあることを特徴とする照明装置。
An illumination device for irradiating reading light to a reading area to be read,
A light source having a light emitting portion that is a region from which light is emitted;
A reflection member that has a through hole formed with a regular reflection surface that totally reflects light on its inner wall, and is installed in a state in which the optical axis of the light emitted from the light emitting portion passes through the inside of the through hole;
A light guide having a light incident part and a light emitting part, and light that has passed through the through-hole and entered from the light incident part propagates through the inside and is emitted from the light emitting part toward the reading region. Prepared,
The light source is in contact with one opening of the through hole, and the light incident portion is in contact with the other opening,
When the respective overlaps of the light source, the one opening of the through hole, the other opening of the through hole, and the light incident portion are viewed from the direction of the optical axis, the one opening of the through hole is the opening of the light source. The illumination is characterized in that the shape of one opening of the through hole coincides with the outer shape of the light emitting portion , and the other opening of the through hole is in the region of the light incident portion. apparatus.
反射部材は、所定の波長以外の光をカットするフィルタを設置する溝を備えることを特徴とする請求項1に記載の照明装置。  The lighting device according to claim 1, wherein the reflection member includes a groove in which a filter for cutting light other than a predetermined wavelength is installed. 光入射部に光源を複数配置し、
反射部材を前記光源ごとに配置したことを特徴とする請求項1又は請求項2に記載の照明装置。
A plurality of light sources are arranged in the light incident part,
The lighting device according to the reflecting member to claim 1 or claim 2, characterized in that arranged in each of the light source.
光軸の方向から見たときの発光部と同じ形状の穴をブロック形状の部材に開けることにより、反射部材を形成したことを特徴とする請求項1から3のいずれか1項に記載の照明装置。 By opening a hole having the same shape as the light emission portion as viewed from the direction of the optical axis member of the block-shaped, according to any one of claims 1 to 3, characterized in that the formation of the reflecting member Lighting device. 請求項1からのいずれか1項に記載の照明装置を用いて読取対象の読取領域に読取光を照射することを特徴とする画像読取装置。 Image reading apparatus characterized by irradiating the reading light to the reading area of the reading target by using the illumination device according to any one of claims 1 4.
JP2010091417A 2010-04-12 2010-04-12 Illumination device and image reading device Active JP5544999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091417A JP5544999B2 (en) 2010-04-12 2010-04-12 Illumination device and image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091417A JP5544999B2 (en) 2010-04-12 2010-04-12 Illumination device and image reading device

Publications (2)

Publication Number Publication Date
JP2011223389A JP2011223389A (en) 2011-11-04
JP5544999B2 true JP5544999B2 (en) 2014-07-09

Family

ID=45039748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091417A Active JP5544999B2 (en) 2010-04-12 2010-04-12 Illumination device and image reading device

Country Status (1)

Country Link
JP (1) JP5544999B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888999B2 (en) * 2012-01-19 2016-03-22 株式会社エンプラス Lighting device
CN104094047B (en) * 2012-02-07 2018-01-12 三菱电机株式会社 Light supply apparatus
JP6291707B2 (en) 2012-08-10 2018-03-14 三菱電機株式会社 Contact image sensor, output correction device for contact image sensor, and output correction method for contact image sensor
JP6128897B2 (en) * 2013-03-06 2017-05-17 キヤノン株式会社 Illumination device and image reading device
JP2015207154A (en) * 2014-04-21 2015-11-19 沖電気工業株式会社 Linear light source, optical sensor, discrimination unit, and automatic transaction apparatus using the same
KR101742452B1 (en) 2014-06-02 2017-05-31 가부시키가이샤 비넥스 Line light source and optical line sensor unit
WO2018155472A1 (en) * 2017-02-22 2018-08-30 三菱電機株式会社 Illumination device and image reading device
JP7383426B2 (en) * 2019-08-30 2023-11-20 コイズミ照明株式会社 Sockets, light source units and lighting equipment
JP7461172B2 (en) 2020-03-02 2024-04-03 グローリー株式会社 Illumination device for image sensors
JP7590273B2 (en) 2020-08-27 2024-11-26 キヤノン・コンポーネンツ株式会社 Light-emitting unit, lighting device, reading device and recording system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420887B2 (en) * 1996-06-28 2003-06-30 シャープ株式会社 LED backlight
JPWO2008013234A1 (en) * 2006-07-27 2009-12-17 キヤノン・コンポーネンツ株式会社 Line illumination device, image sensor, and image reading device using the same

Also Published As

Publication number Publication date
JP2011223389A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5544999B2 (en) Illumination device and image reading device
TWI461636B (en) Light source device
JP2013078102A (en) Image sensor module
TWI496451B (en) Light source device
JP5096346B2 (en) High brightness light emitting diode device
JPH11134918A (en) Linear lighting system
KR19980079882A (en) Onboard beam exit device
WO2004064380A1 (en) Image reading device
JPH10241432A (en) Illumination device and information processor provided therewith
WO2019003480A1 (en) Light guide body and image reading apparatus
JP2003346509A (en) Linear light source for image scanner and liquid crystal module
JP5618637B2 (en) Document reading light source device
CN106575456A (en) Line light source and light sensor unit
JP2015231163A (en) Image reading apparatus
CN110313168B (en) Illumination device and image reading device
JP6128897B2 (en) Illumination device and image reading device
JP6395988B1 (en) Light guide and image reading apparatus
JP6150020B2 (en) Light guide, light source device and image reading device
JP4096421B2 (en) Image reading device
JP6087069B2 (en) Document scanner
JP2006148956A (en) Line illuminator and image reader
JP2785758B2 (en) Linear light source
TWI856589B (en) Lighting module and linear light-guiding unit thereof
JP5865675B2 (en) Image sensor module
JP2012059493A (en) Light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5544999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250