[go: up one dir, main page]

JP5543647B2 - Support board for coreless buildup - Google Patents

Support board for coreless buildup Download PDF

Info

Publication number
JP5543647B2
JP5543647B2 JP2013152293A JP2013152293A JP5543647B2 JP 5543647 B2 JP5543647 B2 JP 5543647B2 JP 2013152293 A JP2013152293 A JP 2013152293A JP 2013152293 A JP2013152293 A JP 2013152293A JP 5543647 B2 JP5543647 B2 JP 5543647B2
Authority
JP
Japan
Prior art keywords
copper foil
support substrate
organic
layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013152293A
Other languages
Japanese (ja)
Other versions
JP2013251563A (en
Inventor
裕昭 津吉
慎哉 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013152293A priority Critical patent/JP5543647B2/en
Publication of JP2013251563A publication Critical patent/JP2013251563A/en
Application granted granted Critical
Publication of JP5543647B2 publication Critical patent/JP5543647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本件発明は、コアレスビルドアップ法で多層プリント配線板を製造する際に用いるコアレスビルドアップ用支持基板に関する。   The present invention relates to a coreless buildup support substrate used when a multilayer printed wiring board is manufactured by a coreless buildup method.

近年の携帯用電子機器には、軽量化を目的として電池の小型化が要求されている。また、その電池を小型化しても、従来レベルの電池寿命を機器単位で維持するには、低消費電力化が必須となっている。そこで、電子機器に組み込まれるLSIなどの能動素子には、低電圧下での動作信頼性の確保が要求される。これらの要求を満足させつつ、低電圧下での動作信頼性を向上させた結果、LSI等を搭載するインターポーザーとしての多層プリント配線板は、層間絶縁厚さの低減が可能となり、更なる軽量化が試みられている。   In recent years, portable electronic devices are required to have smaller batteries for the purpose of weight reduction. Moreover, even if the battery is downsized, low power consumption is indispensable in order to maintain a conventional battery life in units of equipment. Therefore, it is required for active elements such as LSIs incorporated in electronic devices to ensure operation reliability under a low voltage. As a result of improving the operation reliability under low voltage while satisfying these requirements, the multilayer printed wiring board as an interposer that mounts LSI etc. can reduce the interlayer insulation thickness and further reduce weight An attempt is being made.

そこで、フレキシブル銅張積層板に配線を形成した後、多層化して得られる多層フレキシブルプリント配線板をインターポーザーとして用いる方式も検討されてきた。しかし、フレキシブル多層プリント配線板では、ベースフィルムと接着剤層との合計厚さを、目標とする必要最小限の絶縁層厚さまで低減することが困難であった。そこで、近年の多層プリント配線板の製造方法には、所謂コア基板を用いることなく、高分子材料のみからなる絶縁樹脂層と導体層とが交互に積層するコアレスビルドアップ法を用いた製造方法が採用されている。   Therefore, a method of using a multilayer flexible printed wiring board obtained by forming a wiring on a flexible copper-clad laminate and then multilayering it as an interposer has been studied. However, in the flexible multilayer printed wiring board, it is difficult to reduce the total thickness of the base film and the adhesive layer to the target minimum required insulating layer thickness. Therefore, a method for manufacturing a multilayer printed wiring board in recent years includes a manufacturing method using a coreless buildup method in which insulating resin layers and conductor layers made of only a polymer material are alternately stacked without using a so-called core substrate. It has been adopted.

例えば、特許文献1では、コア基板を有さず、高分子材料からなる誘電体層と導体層とが交互に積層された配線基板を容易に得ることが可能な製造方法と、それにより得られる配線基板を開示している。具体的には、支持基板上に2枚の金属箔が分離可能に密着した金属箔密着体を張り合わせ、露出した金属箔上に誘電体と導体層とを交互に形成した多層プリント配線板の構造(ビルドアップ配線層)を形成し、最終的には2枚の金属箔が重複している位置で切断して金属箔間で分離し、多層プリント配線板を得ている。そして、実施の形態によればガラスエポキシ基板を使用する例が記載されており、支持基板にはリジッド基板を用いる技術である。   For example, in Patent Document 1, a manufacturing method capable of easily obtaining a wiring substrate that does not have a core substrate and in which dielectric layers and conductor layers made of a polymer material are alternately laminated, and the manufacturing method can be obtained thereby. A wiring board is disclosed. Specifically, a multilayer printed wiring board structure in which a metal foil adhesion body in which two metal foils are separably adhered to each other on a support substrate is laminated, and dielectrics and conductor layers are alternately formed on the exposed metal foil. (Build-up wiring layer) is formed, and finally cut at the position where the two metal foils overlap to be separated between the metal foils to obtain a multilayer printed wiring board. And according to embodiment, the example which uses a glass epoxy board | substrate is described, It is the technique which uses a rigid board | substrate for a support substrate.

また、特許文献2では、仮基板の上に剥離できる状態でビルドアップ配線層を形成する配線基板の製造方法において、何ら不具合が発生することなく、信頼性良く低コストで製造できる方法を開示している。具体的には、プリプレグ上の配線形成領域に下地層を配置し、下地層よりも大きな金属箔を配線形成領域の外周部に接するように重ねて配置し、加熱・加圧することによって仮基板を作成している。その後、仮基板上の金属箔上にビルドアップ配線層を形成し、その構造体の下地層の周縁部分を切断することにより、金属箔上にビルドアップ配線層が形成された配線部材を得ている。そして、特許文献2の請求項3の記載をみれば、ガラス不織布に樹脂を含浸させたプリプレグを用い、仮基板にはリジッド基板を用いることを前提とした技術であることが理解できる。   Patent Document 2 discloses a method of manufacturing a wiring board that forms a build-up wiring layer in a state where it can be peeled off from a temporary board, and can be manufactured reliably and at low cost without causing any problems. ing. Specifically, a base layer is arranged in the wiring formation region on the prepreg, a metal foil larger than the base layer is placed so as to be in contact with the outer periphery of the wiring formation region, and the temporary substrate is heated and pressed. Creating. Thereafter, a build-up wiring layer is formed on the metal foil on the temporary substrate, and a peripheral member of the base layer of the structure is cut to obtain a wiring member having the build-up wiring layer formed on the metal foil. Yes. And if the description of Claim 3 of patent document 2 is seen, it can be understood that it is a technique on the assumption that a prepreg obtained by impregnating a resin into a glass nonwoven fabric and a rigid substrate is used as a temporary substrate.

特開2005−79107号公報JP 2005-79107 A 特開2007−158174号公報JP 2007-158174 A

しかしながら、特許文献1及び特許文献2に開示のコアレスビルドアップ法を用いた製造方法を採用して、特許文献1の支持基板又は特許文献2の仮基板の上にビルドアップ配線層を形成した後は、双方の基板共に、その基板端部を切断しなければ多層プリント配線板製造用積層体として取り出すことが出来ない。即ち、プリント配線板の製造において、生産歩留まり、生産効率を左右する板取効率を高めることを考えると好ましくない。また、この基板端部を切断した際に発生する端材は、リサイクル、再生利用が不可能なものであり、単に廃棄物発生量が多い製造方法となる。   However, after adopting the manufacturing method using the coreless buildup method disclosed in Patent Document 1 and Patent Document 2, the buildup wiring layer is formed on the support substrate of Patent Document 1 or the temporary substrate of Patent Document 2. Both substrates cannot be taken out as a multilayer printed wiring board manufacturing laminate unless their substrate ends are cut. That is, in the production of printed wiring boards, it is not preferable in view of increasing the board yield efficiency that affects production yield and production efficiency. Further, the end material generated when the end portion of the substrate is cut cannot be recycled and reused, and the manufacturing method simply generates a large amount of waste.

ここで、特許文献2に記載のコアレスビルドアップ法を用いた多層プリント配線板の製造プロセスを、図4及び図5を用いて述べておく。図4(a)に示すように、絶縁層構成材4の表面に、小型の銅箔2Sと、その小型の銅箔2Sを覆うようにして、一回り大きなサイズの大型の銅箔2Lを配して、プレス加工することにより、図4(b)に示す積層体を得る。そして、大型の銅箔2Lの上に、絶縁層4と多層配線回路6とをビルドアップ工法で積層し、図5(c)に示す積層体とする。その後、図5(c)に示した切断線Cpで端部切断することで、小型の銅箔2Sと大型の銅箔2Lとの間で、剥離して図5(d)に示す多層銅張積層板1となる。その後、この多層銅張積層板1の外層銅箔部をエッチング加工して、多層プリント配線板が得られる。   Here, the manufacturing process of the multilayer printed wiring board using the coreless buildup method described in Patent Document 2 will be described with reference to FIGS. As shown in FIG. 4A, on the surface of the insulating layer constituting material 4, a small copper foil 2S and a large copper foil 2L that is one size larger are arranged so as to cover the small copper foil 2S. And the laminated body shown in FIG.4 (b) is obtained by pressing. And the insulating layer 4 and the multilayer wiring circuit 6 are laminated | stacked on the large sized copper foil 2L by the buildup method, and it is set as the laminated body shown in FIG.5 (c). After that, the end portion is cut at the cutting line Cp shown in FIG. 5C, and the multilayer copper-clad shown in FIG. 5D is peeled off between the small copper foil 2S and the large copper foil 2L. The laminated plate 1 is obtained. Thereafter, the outer layer copper foil portion of the multilayer copper clad laminate 1 is etched to obtain a multilayer printed wiring board.

以上のことから理解できるように、コアレスビルドアップ法による多層プリント配線板の製造方法において、原材料コストの上昇を必要とせず、安定した品質の配線層を備える多層プリント配線板製造用の多層銅張積層板の製造が可能で、且つ、資源の無駄遣いを防止するため、発生する廃棄物量が少ない製造方法が要求されてきた。   As can be understood from the above, in the method of manufacturing a multilayer printed wiring board by the coreless buildup method, there is no need to increase raw material costs, and multilayer copper-clad for manufacturing a multilayer printed wiring board having a stable quality wiring layer is provided. In order to be able to manufacture a laminated board and prevent waste of resources, there has been a demand for a manufacturing method that generates less waste.

そこで、本件発明者等は、鋭意研究の結果、以下に示すコアレスビルドアップ用支持基板を用いることで、安価で且つ安定した品質の配線層を備える多層プリント配線板の製造が可能なことに想到した。   Thus, as a result of earnest research, the inventors of the present invention have conceived that it is possible to produce a multilayer printed wiring board having a wiring layer with a stable and inexpensive quality by using the following coreless buildup support substrate. did.

本件出願に係るコアレスビルドアップ法で多層プリント配線板を製造する際に用いるコアレスビルドアップ用支持基板は、銅箔の表面に有機防錆処理を施し、当該銅箔の表面に有機防錆処理被膜を備えるベース銅箔を得て、当該ベース銅箔の有機防錆処理被膜を備える面に対して、半硬化状態の絶縁層構成材を張り合わせ、当該ベース銅箔と絶縁層とを備えることを特徴とする。 The support substrate for coreless buildup used when manufacturing a multilayer printed wiring board by the coreless buildup method according to the present application is subjected to organic rust prevention treatment on the surface of the copper foil, and organic rust prevention treatment coating on the surface of the copper foil. A base copper foil comprising a base copper foil is obtained, and a surface of the base copper foil provided with an organic anti-rust treatment film is laminated with a semi-cured insulating layer constituent material, and the base copper foil and the insulating layer are provided. And

また、本件出願に係るコアレスビルドアップ法で多層プリント配線板を製造する際に用いるコアレスビルドアップ用支持基板は、銅箔の表面に無機防錆処理層を形成し、当該銅箔の無機防錆処理層の表面に有機防錆処理被膜を設けたベース銅箔を用いて、当該ベース銅箔の有機防錆処理被膜を備える面に対して、半硬化状態の絶縁層構成材を張り合わせ、銅箔/無機防錆処理層/有機防錆処理被膜/絶縁層の層構成を備えることを特徴とする。   In addition, the coreless buildup support substrate used when manufacturing the multilayer printed wiring board by the coreless buildup method according to the present application forms an inorganic rust prevention treatment layer on the surface of the copper foil, and the inorganic rust prevention of the copper foil. Using a base copper foil provided with an organic anti-rust treatment film on the surface of the treatment layer, a semi-cured insulating layer constituent material is laminated to the surface of the base copper foil provided with the organic anti-rust treatment film, and the copper foil It is characterized by having a layer structure of / inorganic rust preventive treatment layer / organic rust preventive treatment coat / insulating layer.

本件出願に係るコアレスビルドアップ用支持基板に用いる前記有機防錆処理被膜は、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸の中から選択される1種又は2種以上の有機防錆剤を用いて形成したものであることが好ましい。   The organic rust preventive coating used for the coreless buildup support substrate according to the present application is made of one or more organic rust inhibitors selected from nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. It is preferable that it is formed using.

本件出願に係るコアレスビルドアップ用支持基板において前記有機防錆処理被膜は、質量換算厚さが1mg/m〜100mg/mの厚さであることが好ましい。 The organic rust-proofing coating at the support substrate for coreless buildup according to the present application, it is preferable mass conversion thickness is the thickness of 1mg / m 2 ~100mg / m 2 .

本件出願に係るコアレスビルドアップ用支持基板において、前記ベース銅箔を前記絶縁層から引き剥がす際の密着強さが1gf/cm〜100gf/cmであることが好ましい。   In the support substrate for coreless buildup according to the present application, it is preferable that the adhesion strength when the base copper foil is peeled from the insulating layer is 1 gf / cm to 100 gf / cm.

そして、上述の本件出願に係るコアレスビルドアップ用支持基板は、有機防錆処理被膜と絶縁層との間に、ベース銅箔のサイズと比べて小型のサイズの離型フィルムを挟み込んだ状態で張り合わせることも好ましい。   The coreless buildup support substrate according to the above-mentioned application is laminated with a release film having a size smaller than that of the base copper foil sandwiched between the organic anticorrosive coating and the insulating layer. It is also preferable.

本件発明に係るコアレスビルドアップ用支持基板を多層プリント配線板の製造で用いることで、ビルドアップ法で多層銅張積層板を製造する際に、コアレスビルドアップ用支持基板を構成する絶縁樹脂層の除去を行う際の基板端部の切断が不要になる。その結果、本件発明に係るコアレスビルドアップ用支持基板を使用したビルドアップ法で多層銅張積層板を製造すると、板取効率が高まり、生産歩留まり、生産効率が向上すると共に、廃棄物発生量が少なくなる。   By using the support substrate for coreless buildup according to the present invention in the manufacture of a multilayer printed wiring board, when manufacturing a multilayer copper clad laminate by the buildup method, the insulating resin layer constituting the support substrate for coreless buildup It is not necessary to cut the edge of the substrate when performing the removal. As a result, when a multilayer copper clad laminate is manufactured by the build-up method using the support substrate for coreless build-up according to the present invention, the plate-making efficiency is increased, the production yield and the production efficiency are improved, and the amount of waste generated is small. Become.

本件発明に係るコアレスビルドアップ法による多層プリント配線板製造のプロセスを説明するためのフロー図である。It is a flowchart for demonstrating the process of multilayer printed wiring board manufacture by the coreless buildup method which concerns on this invention. 本件発明に係るコアレスビルドアップ法による多層プリント配線板製造のプロセスを説明するためのフロー図である。It is a flowchart for demonstrating the process of multilayer printed wiring board manufacture by the coreless buildup method which concerns on this invention. 本件発明に係るコアレスビルドアップ法による多層プリント配線板製造のプロセスで用いるコアレスビルドアップ用支持基板の形態を説明するための概念図である。It is a conceptual diagram for demonstrating the form of the support substrate for coreless buildup used in the process of multilayer printed wiring board manufacture by the coreless buildup method which concerns on this invention. 従来のコアレスビルドアップ法による多層プリント配線板製造のプロセスを説明するためのフロー図である。It is a flowchart for demonstrating the process of multilayer printed wiring board manufacture by the conventional coreless buildup method. 従来のコアレスビルドアップ法による多層プリント配線板製造のプロセスを説明するためのフロー図である。It is a flowchart for demonstrating the process of multilayer printed wiring board manufacture by the conventional coreless buildup method.

以下、本件発明に係るコアレスビルドアップ用支持基板の形態に関して、多層プリント配線板の製造方法を通して述べる。   Hereinafter, the form of the support substrate for coreless buildup according to the present invention will be described through a method for manufacturing a multilayer printed wiring board.

多層プリント配線板の製造形態: 本件発明に係るコアレスビルドアップ用支持基板は、以下に述べる多層プリント配線板の製造で使用される。以下、各工程毎に説明する。 Production form of multilayer printed wiring board: The support substrate for coreless buildup according to the present invention is used in the production of a multilayer printed wiring board described below. Hereinafter, each step will be described.

コアレスビルドアップ用支持基板作成工程: このコアレスビルドアップ用支持基板作成工程では、銅箔の表面に有機防錆処理を施し、当該銅箔の表面に有機防錆処理被膜を備えるベース銅箔を用いる。最初に、このベース銅箔の製造に関して述べる。即ち、図1(A)に示すように銅箔2を準備して、その銅箔2の表面に有機防錆処理を施し、図1(B)に示すように、当該銅箔2の表面に有機防錆処理被膜3を備えるベース銅箔2Bを得る。この図1(B)には、当該銅箔2の片面側に有機防錆処理被膜3を備える形態を表示しているが、当該銅箔2の両面に有機防錆処理被膜3を備えても構わない。 Coreless buildup support substrate creation step: In this coreless buildup support substrate creation step, a base copper foil having an organic rust-proofing coating on the surface of the copper foil and an organic rust-proofing coating on the surface of the copper foil is used. . First, the production of this base copper foil will be described. That is, as shown in FIG. 1 (A), a copper foil 2 is prepared, and the surface of the copper foil 2 is subjected to an organic rust prevention treatment. As shown in FIG. 1 (B), the surface of the copper foil 2 is applied. A base copper foil 2 </ b> B provided with the organic antirust treatment coating 3 is obtained. In FIG. 1 (B), a form in which the organic rust-proofing coating 3 is provided on one side of the copper foil 2 is displayed, but the organic rust-proofing coating 3 is provided on both sides of the copper foil 2. I do not care.

最初に、ここで言う銅箔に関して説明する。この銅箔は、電解法で製造した電解銅箔、圧延法で製造した圧延銅箔のいずれの使用も可能であり、製造方法に関しての限定は無い。また、使用する銅箔の厚さに関しても、特段の限定は無い。しかし、当該銅箔で形成した層を最終的に完全にエッチング除去したり、微細なファインピッチ回路を形成する際の回路形成能を考えれば、薄い銅箔である方が好ましい。更に、銅箔の表面に粗化が施されているか否かに関しても問わないが、銅箔の絶縁層構成材との張り合わせ面は、平滑である方が、コアレスビルドアップ用支持基板を構成する樹脂層と銅箔層との界面で分離する際の密着強さが低下し、分離が容易となるため好ましい。   First, the copper foil referred to here will be described. The copper foil can be either an electrolytic copper foil produced by an electrolytic method or a rolled copper foil produced by a rolling method, and there is no limitation on the production method. Moreover, there is no special limitation regarding the thickness of the copper foil to be used. However, considering the ability to form a circuit when the layer formed of the copper foil is finally completely removed by etching or a fine fine pitch circuit is formed, it is preferable to use a thin copper foil. Further, it does not matter whether or not the surface of the copper foil is roughened, but the surface of the laminated copper foil with the insulating layer constituting material constitutes a coreless buildup support substrate. The adhesion strength at the time of separation at the interface between the resin layer and the copper foil layer is reduced, and separation is facilitated, which is preferable.

この有機防錆被膜3は、有機防錆剤として機能する窒素含有有機化合物、硫黄含有有機化合物、カルボン酸の中から選択される1種又は2種以上を混合して用いることで形成されるものであることが好ましい。以下、各化合物に関して述べる。   This organic rust preventive coating 3 is formed by mixing one or more selected from nitrogen-containing organic compounds, sulfur-containing organic compounds and carboxylic acids that function as organic rust preventives. It is preferable that Hereinafter, each compound will be described.

有機防錆剤としての窒素含有有機化合物は、置換基を有する窒素含有有機化合物を含んでおり、置換基を有するトリアゾール化合物である1,2,3−ベンゾトリアゾール(以下、「BTA」と称する。)、カルボキシベンゾトリアゾール、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア、1H−1,2,4−トリアゾール及び3−アミノ−1H−1,2,4−トリアゾール、イミダゾール等を用いることが好ましい。   The nitrogen-containing organic compound as the organic rust preventive includes a nitrogen-containing organic compound having a substituent, and is referred to as 1,2,3-benzotriazole (hereinafter referred to as “BTA”) which is a triazole compound having a substituent. ), Carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino-1H-1,2,4-triazole, imidazole, etc. It is preferable.

有機防錆剤としての硫黄含有有機化合物は、メルカプトベンゾチアゾール、チオシアヌル酸及び2−ベンズイミダゾールチオール等を用いることが好ましい。   It is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like as the sulfur-containing organic compound as the organic rust preventive.

有機防錆剤としてのカルボン酸は、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。   As the carboxylic acid as the organic rust preventive, it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.

以上の有機防錆剤を用いて、銅箔の表面に有機防錆処理被膜を形成する。このときの有機防錆処理被膜の形成は、上述の有機防錆剤を、水又は有機溶媒等の溶媒に溶解させ、そこに銅箔を浸漬させるか、当該溶液を有機防錆処理被膜を形成しようとする銅箔表面にシャワーリング、噴霧法、滴下する等の方法が使用可能であり、当該溶液と銅箔表面とが十分に接触可能である限り、特に限定した手法を考える必要はない。   Using the organic rust preventive agent described above, an organic rust preventive film is formed on the surface of the copper foil. At this time, the organic rust-proofing film is formed by dissolving the above-mentioned organic rust-preventing agent in a solvent such as water or an organic solvent, and immersing the copper foil therein, or forming the organic rust-proofing film in the solution. Methods such as showering, spraying, and dropping can be used on the surface of the copper foil to be used, and there is no need to consider a particularly limited method as long as the solution and the surface of the copper foil can be sufficiently contacted.

このときの有機防錆剤を含む溶媒の有機防錆剤濃度は、特に限定されるものではなく、本来濃度が高くとも低くとも問題の無いものである。なぜなら、有機防錆処理被膜の形成原理を考えると、金属である銅箔の表層にある酸化銅に対し、有機防錆剤が吸着し、その吸着した状態から、表層に存在する酸素等の結合子と結びつき、有機防錆剤が安定して存在するようになる。即ち、最低限として有機防錆剤の単分子被膜が、銅箔表面を被覆すれば良いと考えられるからである。   The concentration of the organic rust inhibitor in the solvent containing the organic rust inhibitor at this time is not particularly limited, and there is no problem even if the concentration is originally high or low. This is because the organic rust preventive agent is adsorbed to the copper oxide on the surface of the copper foil, which is a metal, and from the adsorbed state, the bonds such as oxygen existing on the surface layer are considered, considering the principle of forming the organic rust preventive coating. As a result, the organic rust preventive agent is stably present. That is, it is because it is thought that the monomolecular film of the organic rust preventive agent should cover the copper foil surface as a minimum.

しかしながら、当該溶媒中の有機防錆剤濃度が高いほど、有機防錆剤が銅箔表面に吸着する速度が速くなるのが当然であり、ここに銅箔表面に有機防錆処理被膜を形成する際の連続製造ラインの速度(接触時間:5秒〜60秒)を考え合わせると、当該溶媒中の有機防錆剤濃度は0.01g/l〜10g/l、液温20℃〜60℃の範囲を採用することが好ましい。   However, it is natural that the higher the concentration of the organic rust inhibitor in the solvent, the higher the rate at which the organic rust inhibitor is adsorbed on the copper foil surface, and the organic rust treatment film is formed on the copper foil surface here. When considering the speed of the continuous production line (contact time: 5 seconds to 60 seconds), the concentration of the organic rust inhibitor in the solvent is 0.01 g / l to 10 g / l, and the liquid temperature is 20 ° C. to 60 ° C. It is preferable to adopt the range.

ここで、有機防錆剤濃度が0.01g/l未満の場合には、短時間での銅箔表面への有機防錆剤の吸着は困難であり、しかも形成される有機防錆処理被膜の厚さにバラツキが生じ、プレス加工後の絶縁層(絶縁層構成材が硬化した層)と有機防錆処理被膜との界面での剥離安定性が不安定になる。一方、有機防錆剤濃度が10g/lを超える濃度としても、特に有機防錆剤の銅箔表面への吸着速度が増加するものでもなく、生産コスト面から見て好ましくない。   Here, when the organic rust inhibitor concentration is less than 0.01 g / l, it is difficult to adsorb the organic rust inhibitor to the copper foil surface in a short time, and the organic rust preventive coating film to be formed The thickness varies, and the peeling stability at the interface between the insulating layer after pressing (the layer in which the insulating layer constituent material is cured) and the organic anticorrosive coating becomes unstable. On the other hand, even if the organic rust inhibitor concentration exceeds 10 g / l, the adsorption rate of the organic rust inhibitor on the copper foil surface is not particularly increased, which is not preferable from the viewpoint of production cost.

上述した防錆処理剤を用いることにより、有機防錆処理被膜の厚さを制御する意味での、吸着量制御を容易にし、絶縁層と銅箔との密着強度を一定の範囲に収めることが可能となる。その結果、絶縁層(絶縁層構成材が硬化した層)と有機防錆処理被膜との界面での分離安定性が向上する。   By using the rust preventive agent described above, it is easy to control the amount of adsorption in the sense of controlling the thickness of the organic rust preventive coating, and the adhesion strength between the insulating layer and the copper foil can be kept within a certain range. It becomes possible. As a result, the separation stability at the interface between the insulating layer (the layer in which the insulating layer constituent material is cured) and the organic rust preventive film is improved.

従って、形成された有機防錆処理被膜の厚さ、言い換えれば、銅箔表面に存在する有機防錆剤の量が重要となる。即ち、銅箔表面の有機防錆処理被膜の厚さは、1nm〜1μmの範囲であることが好ましい。この有機防錆処理被膜の厚さ範囲で、ビルドアップ積層後の絶縁層(絶縁層構成材が硬化した層)と有機防錆処理被膜との界面での適正な剥離状態が確保できる。有機防錆処理被膜の厚さが1nm未満の場合には、銅箔表面の有機防錆剤からなる有機防錆処理被膜の厚みにバラツキが生じ、均一な有機防錆処理被膜が形成できない。一方、有機防錆処理被膜の厚さが1μmを超えても、ビルドアップ積層後の絶縁層(絶縁層構成材が硬化した層)と有機防錆処理被膜との界面での剥離状態が、それ以上に良好になるものでない。   Therefore, the thickness of the formed organic rust preventive film, in other words, the amount of the organic rust preventive agent present on the copper foil surface is important. That is, it is preferable that the thickness of the organic antirust treatment film on the surface of the copper foil is in the range of 1 nm to 1 μm. Within the thickness range of the organic rust-proof coating, it is possible to ensure an appropriate peeled state at the interface between the build-up laminated insulating layer (layer in which the insulating layer constituent material is cured) and the organic rust-proof coating. When the thickness of the organic rust preventive film is less than 1 nm, the thickness of the organic rust preventive film made of the organic rust preventive agent on the copper foil surface varies, and a uniform organic rust preventive film cannot be formed. On the other hand, even if the thickness of the organic rust-proof coating exceeds 1 μm, the peeled state at the interface between the insulating layer after build-up lamination (layer in which the insulating layer constituent material is cured) and the organic rust-proof coating It will not be better than that.

この有機防錆処理被膜の厚さはnm〜μmレベルと、非常に薄いものである。従って、その厚さの測定には、使用する有機防錆剤の種類により、適正な分析法を選択し、使用することが望ましい。しかし、透過型電子顕微鏡(TEM)、化学定量分析法を用いることが好ましい。化学定量分析法は、銅箔表面に存在する有機防錆剤を、有機防錆剤の種類に合わせて選択した所定の溶媒中に溶解させ、その溶媒を液体クロマトグラフィーを用いて定量分析を実施する等である。この透過型電子顕微鏡を用いた観察と化学定量分析法とを併用して、検量線法で膜厚換算する事も可能である。例えば、有機防錆剤としてBTAを用いた場合には、FIBで試料調整した試料を用いたTEM観察による有機防錆処理被膜の厚さが1nm〜20nmの範囲であると、化学定量分析法で分析し換算した有機防錆処理被膜の質量厚さは、1mg/m〜100mg/mの範囲となるという相関関係がある。 The thickness of this organic rust preventive film is very thin at the nm to μm level. Therefore, it is desirable to select and use an appropriate analysis method according to the type of organic rust preventive used for the measurement of the thickness. However, it is preferable to use a transmission electron microscope (TEM) or a chemical quantitative analysis method. In chemical quantitative analysis, the organic rust inhibitor present on the copper foil surface is dissolved in a predetermined solvent selected according to the type of organic rust inhibitor, and the solvent is quantitatively analyzed using liquid chromatography. Etc. It is also possible to convert the film thickness by the calibration curve method by combining the observation using this transmission electron microscope and the chemical quantitative analysis method. For example, when BTA is used as an organic rust preventive agent, the thickness of the organic rust preventive film by TEM observation using a sample prepared by FIB is in the range of 1 nm to 20 nm. mass thickness of the analysis in terms organic rust-proofing coating is correlated as in the range of 1mg / m 2 ~100mg / m 2 .

以上に述べてきた有機防錆処理被膜は、銅箔の最表面に存在していれば足りるものである。従って、銅箔の表面に亜鉛、亜鉛合金等の無機防錆処理層を形成し、その表面に有機防錆処理被膜を設けても構わない。無機防錆処理層と有機防錆処理被膜とを併用すると、銅箔表面の耐酸化性能が飛躍的に向上し長期保存性能が向上すると同時に、ビルドアップ配線層形成時に使用する種々の薬品に対する耐薬品性能が向上するため好ましい。   The organic rust preventive film described above is sufficient if it exists on the outermost surface of the copper foil. Therefore, an inorganic rust-proofing layer such as zinc or zinc alloy may be formed on the surface of the copper foil, and an organic rust-proofing film may be provided on the surface. The combined use of an inorganic rust-proofing layer and an organic rust-proofing coating dramatically improves the oxidation resistance performance of the copper foil surface and improves long-term storage performance, while at the same time being resistant to various chemicals used when forming build-up wiring layers. It is preferable because chemical performance is improved.

そして、コアレスビルドアップ用支持基板の作成は、図1(C)に示すように、前記ベース銅箔2Bの有機防錆処理被膜3を備える面を絶縁層構成材4に張り合わせ、当該ベース銅箔2Bと絶縁層4とで構成されるコアレスビルドアップ用支持基板5を得る。ここでの張り合わせに関して、特段の限定は無く、使用する絶縁層構成材の種類に応じて、通常の銅張積層板の製造条件を採用する事が可能である。なお、本件明細書及び図面においては、半硬化状態の絶縁層構成材と加熱して硬化した後の絶縁層(絶縁層構成材が硬化した層)とを明確に区別することなく、図面では同一の符号(4)を使用している。   Then, as shown in FIG. 1 (C), the coreless buildup support substrate is prepared by laminating the surface of the base copper foil 2B with the organic rust-proofing coating 3 on the insulating layer constituting material 4, and the base copper foil. A support substrate 5 for coreless buildup composed of 2B and the insulating layer 4 is obtained. There is no particular limitation on the bonding here, and it is possible to adopt normal manufacturing conditions for a copper-clad laminate depending on the type of insulating layer constituent material used. In addition, in this specification and drawing, it is the same in drawing, without distinguishing clearly the insulating layer constituent material of a semi-hardened state, and the insulating layer (layer which the insulating layer constituent material hardened | cured) after hardening by heating. (4) is used.

また、この図1(C)には、絶縁層構成材4の片面側にベース銅箔2Bの有機防錆処理被膜3を備える面を張り合わせた場合を掲載している。しかし、2枚のベース銅箔2Bを用いて、絶縁層構成材4の両面に、ベース銅箔2Bの有機防錆処理被膜3を備える面を張り合わせて、コアレスビルドアップ用支持基板5の両面にベース銅箔2Bを設け、両面にビルドアップ配線層を形成して両面ビルドアップ配線層付支持基板を製造することも可能である。   Moreover, in this FIG.1 (C), the case where the surface provided with the organic rustproofing coating 3 of the base copper foil 2B is stuck on the single side | surface side of the insulating layer structural material 4 is published. However, using two base copper foils 2B, both surfaces of the insulating layer constituting material 4 are bonded to both surfaces of the base copper foil 2B provided with the organic rust-proofing coating 3 to both surfaces of the coreless buildup support substrate 5. It is also possible to manufacture a support substrate with a double-sided buildup wiring layer by providing the base copper foil 2B and forming buildup wiring layers on both sides.

そして、この支持基板作成工程において、前記ベース銅箔2Bの有機防錆処理被膜3を備える面と絶縁層構成材4との間に離型フィルム11を挟み込んだ状態で張り合わせ、当該ベース銅箔2B/離型フィルム11/絶縁層4とで構成されるコアレスビルドアップ用支持基板5’を得るとする事も好ましい。例えば、図3(i)に示すように、絶縁層構成材4の表面に、ベース銅箔2Bのサイズと比べて、ひと回り小型のサイズの離型フィルム11を配置して、その上に、絶縁層構成材4と同様のサイズのベース銅箔2Bを重ねて載置して、プレス加工することにより、図3(ii)に示す積層体を得る。この積層体は、離型フィルム11を配した中心部においては、全く張り合わせられていない。しかし、離型フィルム11の存在しない縁端部においては、ベース銅箔2Bと絶縁層4とが一時的に密着して張り合わせられた状態となっている。この図3(ii)に示すコアレスビルドアップ用支持基板5’も、上述の図1(C)に示すコアレスビルドアップ用支持基板5と同様に使用可能である。なお、当該離型フィルム11は、リサイクル可能であるため、資源の有効活用、環境保護の観点からも好ましい。   And in this support substrate preparation process, it bonds together in the state which pinched | released the release film 11 between the surface provided with the organic rust prevention coating 3 of the said base copper foil 2B, and the insulating layer structural material 4, and the said base copper foil 2B It is also preferable to obtain a coreless buildup support substrate 5 ′ composed of: / release film 11 / insulating layer 4. For example, as shown in FIG. 3 (i), a release film 11 having a size slightly smaller than the size of the base copper foil 2B is disposed on the surface of the insulating layer constituting material 4, and insulation is provided thereon. A base copper foil 2B having the same size as that of the layer constituent material 4 is placed on top of each other and pressed to obtain a laminate shown in FIG. 3 (ii). This laminated body is not bonded at all in the central portion where the release film 11 is disposed. However, in the edge part where the release film 11 does not exist, the base copper foil 2B and the insulating layer 4 are temporarily in close contact with each other. The coreless buildup support substrate 5 'shown in FIG. 3 (ii) can also be used in the same manner as the coreless buildup support substrate 5 shown in FIG. 1C. In addition, since the said release film 11 is recyclable, it is preferable also from a viewpoint of effective utilization of resources and environmental protection.

ビルドアップ配線層形成工程: この工程では、前記コアレスビルドアップ用支持基板5の前記ベース銅箔2Bの表面に、絶縁層4と内層回路6を含む配線層とを交互に積層配置したビルドアップ配線層10を形成して、図2(D)に示すビルドアップ配線層付支持基板20を得る。本件発明において用いるビルドアップ工法に関しては、特段の限定は無いが、典型的なものを例示的に述べておく。例えば、コアレスビルドアップ用支持基板5の前記ベース銅箔2Bの表面に、樹脂フィルムを張り合わせる手法、樹脂組成物を塗布する手法等により絶縁層構成材4の層を設ける等の手法を採用することが出来る。絶縁層構成材4として樹脂フィルムを用いる場合には、当該樹脂フィルムの表面に銅箔に代表される金属箔を同時にプレス加工で張り合わせ、事後的に、必要に応じたビアホール等の層間導通手段7の形成と組み合わせて、当該金属箔をエッチング加工して、内層回路6を形成する。また、コアレスビルドアップ用支持基板5の前記ベース銅箔2Bの表面に、樹脂フィルムのみを張り合わせ、その表面にセミアディティブ法で内層回路6のパターンを形成することも出来る。 Build-up wiring layer forming step: In this step, build-up wiring in which insulating layers 4 and wiring layers including inner layer circuits 6 are alternately stacked on the surface of the base copper foil 2B of the support substrate 5 for coreless build-up. The layer 10 is formed, and the support substrate 20 with a buildup wiring layer shown in FIG. The build-up method used in the present invention is not particularly limited, but a typical one will be described as an example. For example, a method of providing a layer of the insulating layer constituent material 4 by a method of laminating a resin film on the surface of the base copper foil 2B of the coreless buildup support substrate 5 or a method of applying a resin composition is adopted. I can do it. When a resin film is used as the insulating layer constituting material 4, a metal foil typified by a copper foil is simultaneously bonded to the surface of the resin film by press working, and thereafter, interlayer conduction means 7 such as via holes as necessary. In combination with the formation, the metal foil is etched to form the inner layer circuit 6. Alternatively, only the resin film can be bonded to the surface of the base copper foil 2B of the coreless buildup support substrate 5, and the pattern of the inner circuit 6 can be formed on the surface by a semi-additive method.

また、絶縁層構成材4の層を樹脂組成物を塗布する手法で形成する場合には、コアレスビルドアップ用支持基板5の前記ベース銅箔2Bの表面に当該樹脂組成物を塗布し、乾燥、硬化させ、研磨作業を行った後に、必要に応じてビアホール等の層間導通手段7を形成するため、硬化した樹脂層の所望の位置に穿孔加工を施す。その後、その穿孔部の孔内への導電性ペースト充填、当該孔内への導体ポスト挿入配置等を行い、その後、硬化した樹脂層の表面に導電性ペーストで回路形状を形成したり、セミアディティブ法で内層回路6を直接形成する等の採用が可能である。   Moreover, when forming the layer of the insulating layer constituting material 4 by a technique of applying a resin composition, the resin composition is applied to the surface of the base copper foil 2B of the support substrate 5 for coreless buildup, dried, After curing and polishing, drilling is performed at a desired position of the cured resin layer in order to form interlayer conduction means 7 such as via holes as necessary. After that, the conductive paste is filled in the hole of the perforated part, the conductor post is inserted and arranged in the hole, and then the circuit shape is formed with the conductive paste on the surface of the cured resin layer, or semi-additive For example, the inner layer circuit 6 may be directly formed by a method.

以上に述べた方法でのビルドアップ配線層の形成操作を必要回数繰り返すことにより、図2(D)に例示的に示したビルドアップ配線層付支持基板20が得られる。この段階で、外層回路8を備える外層面に、必要に応じて、ソルダーレジスト9を施すことも可能である。   By repeating the formation operation of the build-up wiring layer by the method described above as many times as necessary, the support substrate 20 with the build-up wiring layer exemplarily shown in FIG. 2D is obtained. At this stage, a solder resist 9 can be applied to the outer layer surface including the outer layer circuit 8 as necessary.

なお、ビルドアップ配線層を形成する最初の段階で、当該コアレスビルドアップ用支持基板5を構成するベース銅箔2Bの表面に、メッキレジスト等を用いて、回路形成を行う部分以外を被覆して、回路形成を行う部位に金、錫、ニッケル等からなる外層回路パターンを予め形成して用いることも可能である。このようにすることで、一面側の外層回路形状が、既に組み込まれた状態のビルドアップ配線層付支持基板が得られる。   In the initial stage of forming the build-up wiring layer, the surface of the base copper foil 2B constituting the coreless build-up support substrate 5 is covered with a plating resist or the like except for the part where the circuit is formed. It is also possible to use an outer layer circuit pattern made of gold, tin, nickel or the like in advance at the site where the circuit is formed. By doing in this way, the support substrate with a build-up wiring layer in which the outer layer circuit shape on the one surface side is already incorporated is obtained.

ビルドアップ配線層付支持基板分離工程: この工程では、前記ビルドアップ配線層付支持基板20を、前記コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面で分離して、図2(E)に示す多層銅張積層板1を得る。なお、ここで言う多層銅張積層板1は、ビルドアップ配線層10とコアレスビルドアップ用支持基板5のベース銅箔2Bとが密着した状態の積層体のことを言う。このときの前記コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面での分離は、引き剥がすことにより行えるものであり、ベース銅箔2Bが有機防錆処理被膜3を備えるが故に可能となる。 Support substrate separation step with buildup wiring layer: In this step, the support substrate 20 with buildup wiring layer is separated at the interface between the base copper foil 2B and the insulating layer 4 of the support substrate 5 for coreless buildup, A multilayer copper-clad laminate 1 shown in FIG. In addition, the multilayer copper clad laminated board 1 said here says the laminated body of the state in which the buildup wiring layer 10 and the base copper foil 2B of the support substrate 5 for coreless buildup were closely_contact | adhered. At this time, the separation of the coreless buildup support substrate 5 at the interface between the base copper foil 2B and the insulating layer 4 can be performed by peeling off the base copper foil 2B. This is possible.

そして、図3(ii)に示すコアレスビルドアップ用支持基板5’を用いた場合には、ビルドアップ配線層付支持基板20のコアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面での分離作業が、ビルドアップ配線層付支持基板20の縁端部領域のみで良くなるため、分離作業が容易となり好ましい。   When the coreless buildup support substrate 5 ′ shown in FIG. 3 (ii) is used, the base copper foil 2B and the insulating layer 4 of the coreless buildup support substrate 5 of the support substrate 20 with the buildup wiring layer are provided. Since the separation work at the interface is only in the edge region of the support substrate 20 with the build-up wiring layer, the separation work is facilitated, which is preferable.

前記コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面での密着強さは、JIS C6481に準拠して測定した場合の値が、1gf/cm〜100gf/cmの範囲であることが好ましい。この密着強さが、低いほど分離作業は容易になる。しかし、この密着強さビルドアップ積層時に、コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面で、プレス圧によるズレが発生する場合があり、良好なプレス成形加工が行えなくなる場合がある。一方、この密着強さが、100gf/cmを超えると、多層銅張積層板1のサイズが大型化すると、コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面での分離作業が困難となり、容易に分離できるというイメージではなくなる。   The adhesion strength at the interface between the base copper foil 2B and the insulating layer 4 of the coreless buildup support substrate 5 is a value measured in accordance with JIS C6481 in the range of 1 gf / cm to 100 gf / cm. Preferably there is. The lower the adhesion strength, the easier the separation work. However, during this adhesion strength build-up stacking, there is a case where a deviation due to the press pressure may occur at the interface between the base copper foil 2B and the insulating layer 4 of the support substrate 5 for coreless build-up. It may disappear. On the other hand, when the adhesion strength exceeds 100 gf / cm, when the size of the multilayer copper-clad laminate 1 is increased, the separation at the interface between the base copper foil 2B and the insulating layer 4 of the support substrate 5 for coreless buildup is performed. The work becomes difficult and it is no longer an image that can be easily separated.

多層プリント配線板形成工程: この工程は、コアレスビルドアップ用支持基板5のベース銅箔2Bと絶縁層4との界面での分離後に、前記多層銅張積層板1を用いて、所望の多層プリント配線板に加工する工程である。 Multilayer printed wiring board forming step: This step is performed by using the multilayer copper clad laminate 1 after separation at the interface between the base copper foil 2B and the insulating layer 4 of the support substrate 5 for coreless buildup, and using the multilayer copper clad laminate 1 This is a process for processing a wiring board.

ここで言う多層銅張積層板から多層プリント配線板への加工方法の一例を挙げれば、例えば、図2(E)に示す多層銅張積層板1の場合には、その外層にある銅箔層2を、エッチング加工して、外層回路配線を形成して、多層プリント配線板を得ることもできる。また、図2(E)に示す多層銅張積層板1の場合には、その外層にある銅箔層2を、完全にエッチング除去し、そのままの状態で多層プリント配線板として使用することもできる。更に、図2(E)に示す多層銅張積層板1の外層にある銅箔層2を、完全にエッチング除去し、露出した樹脂層の表面に、導電性ペーストで回路形状を形成したり、セミアディティブ法等で外層回路を直接形成して多層プリント配線板とする事も可能である。これらの工程に関しては、当業者であれば、容易に想起できるものであるため、図面を用いた説明は、省略している。   If an example of the processing method from a multilayer copper clad laminated board to a multilayer printed wiring board said here is given, for example in the case of the multilayer copper clad laminated board 1 shown in FIG.2 (E), the copper foil layer in the outer layer 2 can be etched to form outer layer circuit wiring to obtain a multilayer printed wiring board. In the case of the multilayer copper clad laminate 1 shown in FIG. 2 (E), the copper foil layer 2 on the outer layer can be completely removed by etching and used as it is as a multilayer printed wiring board. . Further, the copper foil layer 2 on the outer layer of the multilayer copper clad laminate 1 shown in FIG. 2 (E) is completely removed by etching, and a circuit shape is formed with a conductive paste on the surface of the exposed resin layer. It is also possible to form a multilayer printed wiring board by directly forming an outer layer circuit by a semi-additive method or the like. Those skilled in the art can easily think about these steps, and thus the description using the drawings is omitted.

以上に述べた本件発明に係るコアレスビルドアップ法による多層プリント配線板の製造方法を用いることで、プレス加工後の基板端部の切断が不要になる。その結果、多層プリント配線板の板取効率が高まり、生産歩留まり、生産効率が向上し、廃棄物発生量が少なくなる。   By using the manufacturing method of the multilayer printed wiring board by the coreless buildup method according to the present invention described above, it is not necessary to cut the edge of the substrate after the press working. As a result, the boarding efficiency of the multilayer printed wiring board is increased, the production yield is improved, the production efficiency is improved, and the amount of waste generated is reduced.

本件発明に係る多層プリント配線板の形態: 本件発明に係る多層プリント配線板は、上述の本件発明に係る多層プリント配線板の製造方法を用いて得られたことを特徴とする。ここで言う多層プリント配線板は、絶縁層の厚さ、使用銅箔の厚さ、これらの層数等に関して、特段の限定は無い。また、この多層プリント配線板の層内にビアホール等の層間導通手段を設けることも、当然に可能なことである。 Form of multilayer printed wiring board according to the present invention: The multilayer printed wiring board according to the present invention is obtained by using the above-described method for producing a multilayer printed wiring board according to the present invention. The multilayer printed wiring board here is not particularly limited with respect to the thickness of the insulating layer, the thickness of the copper foil used, the number of these layers, and the like. It is naturally possible to provide interlayer conduction means such as via holes in the layers of the multilayer printed wiring board.

本件発明に係る多層プリント配線板は、上述のコアレスビルドアップ法で製造した多層銅張積層板を用いて得られるものである。この多層銅張積層板は、コアレスビルドアップ用支持基板から分離する際の基板端部の切断が不要である。従って、この多層銅張積層板から多層プリント配線板に加工する段階で、基板端部の切断時に発生する金属片、樹脂片等のエッチングプロセスの障害となる異物の表面付着が無い。この結果、回路形成のためのエッチングによる回路形成性に優れ、エッチング歩留まりを向上させ、且つ、高品質の多層プリント配線板を得ることができる。   The multilayer printed wiring board according to the present invention is obtained by using a multilayer copper-clad laminate produced by the coreless buildup method described above. This multilayer copper-clad laminate does not require cutting of the substrate end when separating from the coreless buildup support substrate. Therefore, at the stage of processing from this multilayer copper-clad laminate to a multilayer printed wiring board, there is no surface adhesion of foreign matter that obstructs the etching process, such as metal pieces and resin pieces, generated when the substrate edge is cut. As a result, the circuit formability by etching for circuit formation is excellent, the etching yield is improved, and a high quality multilayer printed wiring board can be obtained.

本件発明に係る多層プリント配線板の製造方法を用いると、ビルドアップ法で多層プリント配線板を製造しても、コアレスビルドアップ用支持基板を構成する絶縁樹脂層の除去を行う際の基板端部の切断が不要になる。その結果、多層プリント配線板の板取効率が高まり、生産歩留まり、生産効率が向上すると共に、廃棄物発生量が少なくなる。   When the multilayer printed wiring board manufacturing method according to the present invention is used, even if the multilayer printed wiring board is manufactured by the build-up method, the substrate end portion when removing the insulating resin layer constituting the coreless build-up support substrate No need for cutting. As a result, the boarding efficiency of the multilayer printed wiring board is increased, the production yield and the production efficiency are improved, and the amount of waste generated is reduced.

1 多層銅張積層板
2 銅箔
2B ベース銅箔
2S 銅箔(小型サイズ)
2L 銅箔(大型サイズ)
3 有機防錆処理被膜
4 絶縁層構成材、絶縁層
5 コアレスビルドアップ用支持基板
6 内層回路
7 層間導通手段
8 外層回路
9 ソルダーレジスト
10 ビルドアップ配線層
11 離型フィルム
20 ビルドアップ配線層付支持基板
Cp 切断線
1 multilayer copper clad laminate 2 copper foil 2B base copper foil 2S copper foil (small size)
2L copper foil (large size)
DESCRIPTION OF SYMBOLS 3 Organic rust prevention coating 4 Insulation layer constituent material, insulating layer 5 Coreless buildup support substrate 6 Inner layer circuit 7 Interlayer conduction means 8 Outer layer circuit 9 Solder resist 10 Buildup wiring layer 11 Release film 20 Support with buildup wiring layer Substrate Cp cutting line

Claims (6)

コアレスビルドアップ法で多層プリント配線板を製造する際に用いる支持基板であって、
当該支持基板は、銅箔の表面に有機防錆処理を施し、当該銅箔の表面に有機防錆処理被膜を備えるベース銅箔を得て、当該ベース銅箔の有機防錆処理被膜を備える面に対して、半硬化状態の絶縁層構成材を張り合わせ、当該ベース銅箔と絶縁層とを備えることを特徴とするコアレスビルドアップ用支持基板。
A support substrate used when manufacturing a multilayer printed wiring board by a coreless buildup method,
The support substrate is provided with an organic rust-proofing treatment on the surface of the copper foil, obtaining a base copper foil having an organic rust-proofing coating on the surface of the copper foil, and a surface having the organic rust-proofing coating of the base copper foil On the other hand, a support substrate for coreless buildup, comprising a semi-cured insulating layer constituent material and a base copper foil and an insulating layer.
コアレスビルドアップ法で多層プリント配線板を製造する際に用いる支持基板であって、
当該支持基板は、銅箔の表面に無機防錆処理層を設け、当該銅箔の無機防錆処理層の表面に有機防錆処理被膜を設けたベース銅箔を用いて、当該ベース銅箔の有機防錆処理被膜を備える面に対して、半硬化状態の絶縁層構成材を張り合わせた、銅箔/無機防錆処理層/有機防錆処理被膜/絶縁層の層構成を備えることを特徴とするコアレスビルドアップ用支持基板。
A support substrate used when manufacturing a multilayer printed wiring board by a coreless buildup method,
The support substrate is provided with an inorganic rust-proofing layer on the surface of the copper foil, and a base copper foil provided with an organic rust-proofing film on the surface of the inorganic rust-proofing layer of the copper foil. It is characterized by having a layer structure of copper foil / inorganic rust preventive treatment layer / organic rust preventive treatment coat / insulating layer, in which a semi-cured insulating layer constituent material is bonded to the surface provided with the organic rust preventive treatment coat Support substrate for coreless buildup.
前記有機防錆処理被膜は、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸の中から選択される1種又は2種以上の有機防錆剤を用いて形成したものである請求項1又は請求項2に記載のコアレスビルドアップ用支持基板。 The organic rust-preventing treatment film is formed using one or more organic rust preventive agents selected from nitrogen-containing organic compounds, sulfur-containing organic compounds, and carboxylic acids. Item 3. The coreless buildup support substrate according to Item 2. 前記有機防錆処理被膜は、質量換算厚さが1mg/m〜100mg/mの厚さである請求項1〜請求項3のいずれか一項に記載のコアレスビルドアップ用支持基板。 The organic rust-proofing coating, coreless buildup supporting substrate according to any one of claims 1 to 3 mass conversion thickness is the thickness of 1mg / m 2 ~100mg / m 2 . 前記ベース銅箔を前記絶縁層から引き剥がす際の密着強さが1gf/cm〜100gf/cmである請求項1〜請求項4のいずれか一項に記載のコアレスビルドアップ用支持基板。 The support substrate for coreless buildup according to any one of claims 1 to 4, wherein an adhesion strength when the base copper foil is peeled from the insulating layer is 1 gf / cm to 100 gf / cm. コアレスビルドアップ用支持基板において、有機防錆処理被膜と絶縁層との間に、ベース銅箔のサイズと比べて小型のサイズの離型フィルムを挟み込んだ状態で張り合わせた請求項1〜請求項5のいずれか一項に記載のコアレスビルドアップ用支持基板。 6. The coreless buildup support substrate, wherein a release film having a size smaller than that of the base copper foil is sandwiched between the organic anticorrosive coating and the insulating layer. The coreless buildup support substrate according to any one of the above.
JP2013152293A 2013-07-23 2013-07-23 Support board for coreless buildup Expired - Fee Related JP5543647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152293A JP5543647B2 (en) 2013-07-23 2013-07-23 Support board for coreless buildup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152293A JP5543647B2 (en) 2013-07-23 2013-07-23 Support board for coreless buildup

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008258458A Division JP5328281B2 (en) 2008-10-03 2008-10-03 Manufacturing method of multilayer printed wiring board and multilayer printed wiring board obtained by using the method

Publications (2)

Publication Number Publication Date
JP2013251563A JP2013251563A (en) 2013-12-12
JP5543647B2 true JP5543647B2 (en) 2014-07-09

Family

ID=49849901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152293A Expired - Fee Related JP5543647B2 (en) 2013-07-23 2013-07-23 Support board for coreless buildup

Country Status (1)

Country Link
JP (1) JP5543647B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027528A (en) * 1996-07-09 1998-01-27 Tokai Rubber Ind Ltd Manufacture of pressure sensitive switch
JP3612594B2 (en) * 1998-05-29 2005-01-19 三井金属鉱業株式会社 Composite foil with resin, method for producing the same, multilayer copper-clad laminate using the composite foil, and method for producing multilayer printed wiring board
JP3370624B2 (en) * 1999-08-24 2003-01-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
JP4541763B2 (en) * 2004-01-19 2010-09-08 新光電気工業株式会社 Circuit board manufacturing method
JP4570070B2 (en) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil provided with resin layer for forming insulating layer, copper-clad laminate, printed wiring board, method for producing multilayer copper-clad laminate, and method for producing printed wiring board

Also Published As

Publication number Publication date
JP2013251563A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5328281B2 (en) Manufacturing method of multilayer printed wiring board and multilayer printed wiring board obtained by using the method
JP6314085B2 (en) Manufacturing method of printed wiring board and copper foil for laser processing
WO2012133638A1 (en) Multilayer printed wiring board manufacturing method, and multilayer printed wiring board obtained by said manufacturing method
KR101077340B1 (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
US20120125667A1 (en) Printed circuit board and method of manufacturing the same
JP5580135B2 (en) Printed wiring board manufacturing method and printed wiring board
US20090236130A1 (en) Multilayered printed circuit board and method of manufacturing the same
JP2011171528A (en) Manufacturing method of multilayer wiring board
TW201543983A (en) Copper clad laminate with protective layer and multi-layer printed wiring board
JPWO2018066114A1 (en) Method of manufacturing multilayer wiring board
CN104701189A (en) Manufacturing method of three-layered packaging substrates and three-layered packaging substrates
JP5263835B2 (en) Method for manufacturing printed circuit board
JPWO2018066113A1 (en) Method of manufacturing multilayer wiring board
WO2014192895A1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
US20090236131A1 (en) Multilayered printed circuit board and method of manufacturing the same
JP4508140B2 (en) Built-in module
JP4192946B2 (en) MATERIAL FOR MULTILAYER WIRING BOARD CONTAINING CAPACITOR, MULTILAYER WIRING BOARD SUBSTRATE, MULTILAYER WIRING BOARD AND METHOD FOR PRODUCING THE SAME
JP5543647B2 (en) Support board for coreless buildup
TW200920203A (en) Process for producing printed wiring board and printed wiring board produced by the production process
TWI573508B (en) Printed circuit board manufacturing method and printed circuit board
JP2009016518A (en) Multilayer wiring board
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP2009021435A (en) Manufacturing method of wiring board
JP2004349693A (en) Resin adhesive layer on surface of copper
WO2010026895A1 (en) Method for manufacturing multilayer laminated circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5543647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees