JP5537867B2 - Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle - Google Patents
Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle Download PDFInfo
- Publication number
- JP5537867B2 JP5537867B2 JP2009194858A JP2009194858A JP5537867B2 JP 5537867 B2 JP5537867 B2 JP 5537867B2 JP 2009194858 A JP2009194858 A JP 2009194858A JP 2009194858 A JP2009194858 A JP 2009194858A JP 5537867 B2 JP5537867 B2 JP 5537867B2
- Authority
- JP
- Japan
- Prior art keywords
- shunt resistor
- current
- terminal
- vehicle
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002184 metal Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 23
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000570 Cupronickel Inorganic materials 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Secondary Cells (AREA)
Description
本発明は、電流検出抵抗に使用されるシャント抵抗と、このシャント抵抗を備える車両用の電源装置及び車両に関する。 The present invention relates to a shunt resistor used for a current detection resistor, a power supply device for a vehicle including the shunt resistor, and a vehicle.
所定の電気抵抗を有する金属板からなるシャント抵抗は、流れる電流に比例する電圧が発生する(例えば特許文献1)。したがって、シャント抵抗の両端に発生する電圧を検出して、シャント抵抗に流れる電流を検出できる。特に、金属板からなるシャント抵抗は、放熱特性に優れることから、大電流の検出に適しており、車両用の電源装置を構成する電池に流れる電流検出に使用される。 A shunt resistor made of a metal plate having a predetermined electric resistance generates a voltage proportional to the flowing current (for example, Patent Document 1). Therefore, the current flowing through the shunt resistor can be detected by detecting the voltage generated at both ends of the shunt resistor. In particular, a shunt resistor made of a metal plate is suitable for detecting a large current because it has excellent heat dissipation characteristics, and is used for detecting a current flowing in a battery constituting a power supply device for a vehicle.
図6に、全体を金属板で構成したシャント抵抗30の一例を示す。このシャント抵抗30は、一対の電流端子31と、この電流端子31間に通電される電流によって発生する電圧降下を検出する一対の電圧端子32とを有する金属板からなる。電圧検出用の電圧端子32を電流端子31と個別に設けることにより、通電部分の接触抵抗などの影響を回避している。このようなシャント抵抗30を用いて電流量を検出する場合、シャント抵抗30の電圧端子32に接続端子を取り付けてその電位差を測定し、該電位差を電流値に変換する。
FIG. 6 shows an example of a
シャント抵抗は、所望の抵抗値を得るために銅や銅ニッケル合金などの金属板で一様に構成される。一方、シャント抵抗を接続するための端子は、導電性や接触抵抗低減の観点から、シャント抵抗とは異なる金属で構成されることが多い。このようなシャント抵抗を使用する際は、電圧端子を接続する部分で、シャント抵抗を構成する金属とは異種の金属を接合させて電気接続を得ることになる。このシャント抵抗に通電して実際の電流検出を行う際には、電圧端子間で温度差が生じ、ゼーベック効果により熱起電力が発生する。この熱起電力が、測定する電位差に誤差を生じさせるため、該電位差から得られる電流値にも誤差が生じる。 The shunt resistor is uniformly composed of a metal plate such as copper or copper nickel alloy in order to obtain a desired resistance value. On the other hand, a terminal for connecting a shunt resistor is often made of a metal different from the shunt resistor from the viewpoint of conductivity and contact resistance reduction. When such a shunt resistor is used, an electric connection is obtained by joining a metal different from the metal constituting the shunt resistor at a portion where the voltage terminal is connected. When the current is detected by energizing the shunt resistor, a temperature difference is generated between the voltage terminals, and a thermoelectromotive force is generated due to the Seebeck effect. Since this thermoelectromotive force causes an error in the potential difference to be measured, an error also occurs in the current value obtained from the potential difference.
また異種金属の組み合わせに起因する問題は、電流端子間の通電ラインにおいても存在する。ここではペルチェ効果が発生するため、通電方向において温度分布が大きく変化する。温度分布の変化は、大電流を通電するほど大きくなる。この結果、電流端子に近接する電圧端子にも熱伝導して、各電圧端子が各々逆方向に伝熱される結果、電圧端子間の温度差が一層大きくなる。このため熱起電力がさらに大きくなって、電流誤差に影響を与えることとなる。 A problem due to the combination of different metals also exists in the energization line between the current terminals. Here, since the Peltier effect occurs, the temperature distribution largely changes in the energization direction. The change in temperature distribution increases as a large current is applied. As a result, heat is also conducted to the voltage terminals adjacent to the current terminals, and each voltage terminal is transferred in the opposite direction, and as a result, the temperature difference between the voltage terminals is further increased. For this reason, the thermoelectromotive force is further increased, which affects the current error.
このような誤差の発生は、用途によっては問題とならない程度の誤差として無視できるものの、正確な電流値の検出が求められる用途においては問題となる。例えばハイブリッドカーや電気自動車等の電動車両に搭載されて、電池のSOC(State Of Charge)を検出するための電流検出回路に使用される場合は、充放電が頻繁に切り替わり、通電パターンによっては充電側と放電側の電流検出値に差が生じるため、無視できないほどのSOC誤差となる。特に最近はSOCを厳密に管理することが求められるため、より高精度な電流検出が求められていた。 The occurrence of such an error can be ignored as an error that does not cause a problem depending on the application, but becomes a problem in an application in which accurate current value detection is required. For example, when mounted on an electric vehicle such as a hybrid car or an electric vehicle and used in a current detection circuit for detecting the SOC (State Of Charge) of the battery, charging / discharging is frequently switched, and charging is performed depending on the energization pattern. Since there is a difference between the current detection values on the discharge side and the discharge side, the SOC error is not negligible. In particular, since the SOC is required to be strictly managed recently, more accurate current detection has been required.
本発明は、従来のこのような問題を解決するためになされたものである。本発明の主な目的は、温度差の発生を抑制して高精度な電流検出が可能なシャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両を提供することにある。 The present invention has been made to solve such a conventional problem. A main object of the present invention is to provide a power supply device for a vehicle including a shunt resistor and a shunt resistor capable of highly accurate current detection while suppressing occurrence of a temperature difference, and a vehicle.
上記課題を解決するために、本発明の第1の側面に係るシャント抵抗によれば、一対の電流端子と、前記一対の電流端子間に通電される電流によって発生する電圧降下を検出するための一対の電圧端子と、を有し、略一様な金属板で構成されたシャント抵抗であって、各電流端子と電圧端子との間で、熱的影響を阻害するための伝熱阻害手段を、前記電流端子と電圧端子との間に各々設けることができる。これにより、電流端子と電圧端子との間の熱抵抗を伝熱阻害手段で高めて、電流端子から電圧端子への熱伝導を抑制し、熱起電力に起因する温度差の発生を抑制して検出誤差を低減できる。 In order to solve the above problem, according to the shunt resistor according to the first aspect of the present invention, a voltage drop generated by a pair of current terminals and a current passed between the pair of current terminals is detected. A shunt resistor having a pair of voltage terminals and configured by a substantially uniform metal plate, and a heat transfer inhibiting means for inhibiting a thermal influence between each current terminal and the voltage terminal. , And can be provided between the current terminal and the voltage terminal, respectively. As a result, the thermal resistance between the current terminal and the voltage terminal is increased by the heat transfer inhibiting means, the heat conduction from the current terminal to the voltage terminal is suppressed, and the occurrence of the temperature difference due to the thermoelectromotive force is suppressed. Detection error can be reduced.
また第2の側面に係るシャント抵抗によれば、前記伝熱阻害手段が、前記電圧端子を前記電流端子から物理的に離間させるよう、細長く延長されたブランチであり、前記ブランチの端部に電圧端子を設けることができる。これにより、簡易な構成で電流端子と電圧端子との間の熱抵抗を効果的に増大させることができる。 Further, according to the shunt resistor according to the second aspect, the heat transfer inhibiting means is an elongated branch extending so as to physically separate the voltage terminal from the current terminal, and a voltage is applied to an end of the branch. A terminal can be provided. Thereby, the thermal resistance between the current terminal and the voltage terminal can be effectively increased with a simple configuration.
さらに第3の側面に係るシャント抵抗によれば、前記伝熱阻害手段が、前記一対の電流端子同士を結ぶ線と略直交する方向に突出させることができる。これにより、伝熱阻害手段の構造を簡素化して容易に熱抵抗を高めることができる。 Furthermore, according to the shunt resistor according to the third aspect, the heat transfer inhibiting means can be protruded in a direction substantially orthogonal to a line connecting the pair of current terminals. Thereby, the structure of the heat transfer inhibiting means can be simplified and the thermal resistance can be easily increased.
さらにまた第4の側面に係るシャント抵抗によれば、前記伝熱阻害手段を、略U字状に折曲させることができる。これにより、伝熱阻害手段の経路長を限られたスペースで延長して、熱抵抗を効果的に増大できる。 Furthermore, according to the shunt resistance which concerns on a 4th side surface, the said heat-transfer inhibition means can be bent in substantially U shape. Thereby, the heat resistance can be effectively increased by extending the path length of the heat transfer inhibiting means in a limited space.
さらにまた第5の側面に係るシャント抵抗によれば、前記シャント抵抗を、左右略対称に形成することができる。これにより、伝熱阻害手段の構造を簡素化して製造コストを低減できる。 Furthermore, according to the shunt resistor according to the fifth aspect, the shunt resistor can be formed substantially symmetrically. Thereby, the structure of the heat transfer inhibiting means can be simplified and the manufacturing cost can be reduced.
さらにまた第4の側面に係るシャント抵抗によれば、前記伝熱阻害手段を、略U字状に折曲させることができる。これにより、伝熱阻害手段の経路長を限られたスペースで延長して、熱抵抗を効果的に増大できる。また、前記伝熱阻害手段を、相互の電圧端子側に接近させるように略U字状に折曲させることもできる。これにより、一対の伝熱阻害手段同士を物理的に接近させることで、輻射熱によって両者間の温度差を低減できる。 Furthermore, according to the shunt resistance which concerns on a 4th side surface, the said heat-transfer inhibition means can be bent in substantially U shape. Thereby, the heat resistance can be effectively increased by extending the path length of the heat transfer inhibiting means in a limited space. Further, the heat transfer inhibiting means can be bent in a substantially U shape so as to approach the voltage terminal sides of each other. Thereby, a temperature difference between both can be reduced by radiant heat by making a pair of heat-transfer inhibition means physically approach.
さらにまた第7の側面に係るシャント抵抗によれば、さらに前記一対の伝熱阻害手段同士を熱伝導状態に接続する絶縁性の伝熱シートを備えることができる。これにより、伝熱阻害手段同士の間で均熱効果を高め、電圧端子間の温度差の発生を低減して正確な電流検出が実現できる。 Furthermore, according to the shunt resistance which concerns on a 7th side surface, the insulating heat-transfer sheet | seat which connects a pair of said heat-transfer inhibition means to a heat conductive state can be further provided. As a result, it is possible to improve the soaking effect between the heat transfer inhibiting means and reduce the occurrence of a temperature difference between the voltage terminals, thereby realizing accurate current detection.
さらにまた第8の側面に係るシャント抵抗によれば、前記伝熱シートを、シリコーン製とできる。これにより、シリコーンなどの吸熱材で構成して、電圧端子間の温度差を抑制できる Furthermore, according to the shunt resistance according to the eighth aspect, the heat transfer sheet can be made of silicone. Thereby, it can comprise with heat absorbing materials, such as silicone, and can control the temperature difference between voltage terminals.
さらにまた第9の側面に係るシャント抵抗によれば、前記電圧端子と電流端子との間の抵抗値が、前記電流端子間の抵抗値よりも高くすることができる。これにより、電圧端子と電流端子との間の熱抵抗を高めて、電流端子の熱が電圧端子に及ぼす影響を効果的に低減できる。 Furthermore, according to the shunt resistor according to the ninth aspect, the resistance value between the voltage terminal and the current terminal can be made higher than the resistance value between the current terminals. Thereby, the thermal resistance between the voltage terminal and the current terminal can be increased, and the influence of the heat of the current terminal on the voltage terminal can be effectively reduced.
さらにまた第10の側面に係るシャント抵抗によれば、前記電流端子に接続される外部の接続端子を構成する金属とは異なる金属で、シャント抵抗を構成することができる。これにより、電流端子と接続端子とが異種金属接合により熱起電力が発生しても、これを効果的に抑制して正確な電流検出が実現できる。 Furthermore, according to the shunt resistor according to the tenth aspect, the shunt resistor can be made of a metal different from the metal constituting the external connection terminal connected to the current terminal. Thereby, even if a thermoelectromotive force is generated by dissimilar metal bonding between the current terminal and the connection terminal, this can be effectively suppressed and accurate current detection can be realized.
さらにまた第11の側面に係る車両用の電源装置によれば、車両を走行させるモータに電力を供給する電池と、前記電池と直列に接続してなるシャント抵抗と、前記シャント抵抗の両端に発生する電圧を検出して、前記電池の電流を検出する電流検出回路とを備える車両用の電源装置であって、前記シャント抵抗を、上記いずれかのシャント抵抗とすることができる。 Furthermore, according to the power supply device for a vehicle according to the eleventh aspect, a battery that supplies electric power to a motor that drives the vehicle, a shunt resistor connected in series with the battery, and generated at both ends of the shunt resistor And a current detection circuit that detects a current of the battery, and the shunt resistor can be any one of the above shunt resistors.
さらにまた第12の側面に係る車両によれば、上記車両用の電源装置を備えることができる。 Furthermore, according to the vehicle which concerns on a 12th side surface, the said power supply device for vehicles can be provided.
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのシャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両を例示するものであって、本発明はシャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両を以下のものに特定しない。また特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
(実施例1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a shunt resistor and a power supply device for a vehicle having a shunt resistor and a vehicle for embodying the technical idea of the present invention, and the present invention is a shunt resistor and a shunt resistor. The power supply device for vehicles provided with resistance and the vehicle are not specified as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
Example 1
実施例1に係るシャント抵抗の外観を図1に示す。この図に示すシャント抵抗10は、板状の金属板で構成され、本体部10Aを構成する略長方形の両端部に一対の電流端子11を設けている。また中間に、電流端子11間に通電される電流によって発生する電圧降下を検出する一対の電圧端子12を設けている。各端子11、12は、シャント抵抗10を構成する金属板に開口された貫通孔13、14を用いて、外部の接続端子19(図3参照)と固定される。
The appearance of the shunt resistor according to Example 1 is shown in FIG. The
シャント抵抗10は所定の電気抵抗を有する略一様な金属板で構成される。例えば銅や銅ニッケルの合金が好適に利用される。シャント抵抗10を構成する金属は、このシャント抵抗10の電流端子11と接続する接続端子19の金属と異なる。逆に言えば、異種金属の接合がない場合、例えば同種の金属同士を接続する場合は、熱起電力が生じない。よって本発明の構成は、異種金属を接続する場合であって、さらに熱起電力が大きい金属同士の組み合わせに対して有効となる。例えば、シャント抵抗10の電圧端子12が銅で構成され、ここに接続する接続端子19がニッケルで構成される場合は、シャント抵抗10と異種金属となるため、熱起電力が発生し、本発明の作用効果が発揮される。
(伝熱阻害手段21)
The
(Heat transfer inhibition means 21)
電流端子11と電圧端子12との間には、熱的影響を阻害するための伝熱阻害手段21が各々設けられる。図1の例では、伝熱阻害手段21は本体部10Aから垂直に突出された一対のブランチ22で構成される。ブランチ22は、細長く延長され、先端に電圧端子12を貫通孔14として開口している。ブランチ22の先端は、電圧端子12を開口するために若干大きく形成される。図1の例では、面取りした矩形状に形成される。一方本体部10Aも、両端の電流端子11を貫通孔13として設ける部分は一回り大きく形成しており、ブランチ22を突出させる部分は、矩形状に切り欠いて、本体部10A全体をコ字状に形成している。
Between the
以上の構成により、電圧端子12を電流端子11から物理的に離間させることができる。さらに細長い形状とすることで、断面積を小さく、かつ全長を長くしてこの部分の熱抵抗を向上でき、伝熱を阻害する効果も得られる。具体的には、電圧端子12と電流端子11との間の抵抗値が、電流端子11間の抵抗値よりも高くなるように構成することが好ましい。このブランチ22は本体部10Aと一体的に構成されており、容易にかつ安価に形成できる。各ブランチ22は直線状に延長されており、またブランチ22の突出方向は、一対の電流端子11同士を結ぶ線と略直交する方向としている。さらにシャント抵抗10は、左右略対称に形成しており、反対姿勢でも使用可能として組立時の作業能率向上に寄与できる。
With the above configuration, the
このようにして、電圧端子の検出ラインが電流端子の温度の影響を受け難くすることができ、電圧端子における検出誤差を低減してより正確な電流検出が可能となる。特に電流端子間に大電流を通電する場合は、接続端子との異種金属間で熱起電力が発生して、測定誤差を生じる。これに対して伝熱阻害手段を設けて電流端子から電圧端子への熱的な影響を阻害する。具体的には、物理的に両者間を離間させると共に、熱抵抗を増加させて伝熱を低減している。
(実施例2)
In this way, the detection line of the voltage terminal can be made less susceptible to the temperature of the current terminal, and the detection error at the voltage terminal can be reduced to enable more accurate current detection. In particular, when a large current is applied between the current terminals, a thermoelectromotive force is generated between the different types of metals from the connection terminals, resulting in measurement errors. On the other hand, a heat transfer inhibiting means is provided to inhibit the thermal influence from the current terminal to the voltage terminal. Specifically, the two are physically separated from each other and the heat resistance is increased to reduce heat transfer.
(Example 2)
伝熱阻害手段は以上の構成に限られず、電圧端子が電流端子の熱的影響を受け難くする構成が適宜利用できる。すなわち、両端子を物理的に離間させる他、両者間を断熱したり、電圧端子に放熱部材を設けたり、電圧端子間の温度差を低減する伝熱部材を設けたり、あるいはこれらを適宜組み合わせてもよい。図2に、実施例2に係るシャント抵抗20の外観を示す。この図に示すシャント抵抗20は、伝熱阻害手段21を構成するブランチ22Bの中間部分を、略U字状に折曲している。具体的には、図1の状態から、相互の電圧端子12側に接近させるように左右対称にブランチ22Bを折曲させている。このように一対の伝熱阻害手段21同士を物理的に接近させることで、輻射熱によって両者間の温度差を低減でき、熱起電力の抑制に貢献できる。またブランチを長くして熱伝導経路を延長することによる熱的影響の抑制効果を享受しつつ、U字状に折曲することでブランチを直線状に突出させることを防ぎ、シャント抵抗の大型化を回避できる。すなわち限られたスペースで伝熱阻害手段の経路長を延長して、熱抵抗を効果的に増大できる。
(伝熱シート23)
The heat transfer inhibiting means is not limited to the above configuration, and a configuration in which the voltage terminal is hardly affected by the thermal effect of the current terminal can be used as appropriate. In other words, in addition to physically separating both terminals, heat insulation between the two terminals, providing a heat radiating member on the voltage terminal, providing a heat transfer member that reduces the temperature difference between the voltage terminals, or appropriately combining these Also good. FIG. 2 shows an appearance of the
(Heat transfer sheet 23)
さらに図2のシャント抵抗20は、ブランチ22B間を熱伝導状態に接続する伝熱部材として、絶縁性の伝熱シート23を設けている。伝熱シート23は、電気絶縁性を有しつつ、熱伝導性に優れた材質が利用でき、シリコーン性シートや表面にシリコーンを被覆したプラスチックシート等が好適に利用できる。これにより、電圧端子間で熱均等性を高め、熱起電力による温度差を抑制して正確な電流検出が実現できる。伝熱シート23は、例えば2枚のシートでブランチ22Bの近接部分を表裏両面から挟み込むようにして、ブランチ22B同士を熱的に接続する。
Further, the
以上のようにして、伝熱阻害手段を各電流端子と電圧端子との間に介在させることで、特に通電により電圧端子間に発生する温度差の影響を低減できるので、正確な電圧検出、ひいては電流検出が図られる。このような対策を行うことで、例えば電気自動車の電流検出に利用する場合、シャント抵抗を用いたSOC積算の精度向上を図ることが可能となり、電池性能を最大限に引き出すことができる上、電池の長寿命化も実現される。
(車両用の電源装置)
As described above, by interposing the heat transfer inhibiting means between each current terminal and the voltage terminal, it is possible to reduce the influence of the temperature difference generated between the voltage terminals, particularly due to energization. Current detection is achieved. By taking such measures, for example, when used for current detection of an electric vehicle, it is possible to improve the accuracy of SOC integration using a shunt resistor, and the battery performance can be maximized. Longer service life is also realized.
(Power supply for vehicles)
以下、車載用の電源装置のSOC検出にシャント抵抗を利用する例を、図3のブロック図に基づいて説明する。図3は、ハイブリッドカーに搭載される車両用の電源装置100を示す。ただ、本発明の電源装置は、ハイブリッドカーのみでなく電気自動車に搭載することもできる。図に示す車両用の電源装置100は、車両を走行させるモータ3にDC/ACインバータ2を介して電力を供給する電池1と、この電池1と直列に接続しているシャント抵抗10と、このシャント抵抗10の両端に発生する電圧を検出して電池1の電流を検出する電流検出回路15とを備える。
Hereinafter, an example in which a shunt resistor is used for SOC detection of an in-vehicle power supply device will be described based on the block diagram of FIG. FIG. 3 shows a vehicle
電池1は、充電できる電池、例えばニッケル水素電池やリチウムイオン電池などを直列に接続して出力電圧を高く、例えば200Vないし300Vとしている。電池1は、過充電や過放電によって電気性能が低下しないように、また電池の寿命を長くするために、所定の残容量となるように充放電の電流が制御される。電池1の残容量は、電池1に流れる充電電流と放電電流の積算値から演算される。すなわち、充電電流の積算値を加算し、放電電流の積算値を減算して変動する電池1の残容量が演算される。 The battery 1 is connected to a rechargeable battery such as a nickel metal hydride battery or a lithium ion battery in series to increase the output voltage, for example, 200V to 300V. In the battery 1, the charge / discharge current is controlled so as to have a predetermined remaining capacity so that the electrical performance does not deteriorate due to overcharge or overdischarge and the life of the battery is extended. The remaining capacity of the battery 1 is calculated from the integrated value of the charging current and discharging current flowing through the battery 1. That is, the remaining capacity of the battery 1 is calculated by adding the integrated value of the charging current and subtracting the integrated value of the discharging current.
DC/ACインバータ2は、電池1から供給される直流を三相交流に変換してモータ3に供給し、また発電機4の交流電力を直流に変換して電池1を充電する。このDC/ACインバータ2は、制御回路5に制御されて、電池1からモータ3に電力を供給してモータ3で車両を走行または加速し、エンジンで発電機4を駆動し、あるいは回生制動で発電機4を駆動して、発電機4の電力を直流に変換して電池1を充電する。制御回路5は、DC/ACインバータ2を制御して、電池1からモータ3に供給する電力をコントロールし、また、発電機4から電池1を充電する電力をコントロールして、電池1を所定の残容量となるように制御する。
The DC /
電池1に流れる充放電の電流を検出するために、電池1と直列にシャント抵抗10を接続している。シャント抵抗10は所定の電気抵抗を有する金属板で、電池1の電流に比例して電圧降下を発生する。すなわち、シャント抵抗10に発生する電圧降下(E)は、シャント抵抗10の電気抵抗(R)と流れる電流(I)から以下の式で特定される。
E=R×I
In order to detect the charge / discharge current flowing in the battery 1, a
E = R × I
この式から、シャント抵抗10の電圧降下を検出して電池1の電流が検出される。シャント抵抗10の電気抵抗(R)は、できるかぎり小さく設定される。それは、シャント抵抗が消費する電力が、電気抵抗(R)と電流(I)の二乗の積に比例して大きくなるからである。また、消費電力が大きくなるシャント抵抗は発熱量も大きくなることから、電気抵抗(R)を小さく設定している。電気抵抗(R)の小さいシャント抵抗10は、電力損失は小さいが、電流に対する発生電圧も小さくなる。
From this equation, the voltage drop of the
シャント抵抗10の小さい発生電圧を増幅するために、電流検出回路15は、シャント抵抗10の電圧を増幅するアンプ16を入力側に設けている。アンプ16で増幅された信号は、演算部17に入力される。演算部17は、アンプ16から入力される信号をA/Dコンバータ18でデジタル信号に変換して、シャント抵抗10の電気抵抗とアンプ16の増幅率から電池1の電流を演算する。例えば、A/Dコンバータ18から出力される電圧をE、アンプ16の増幅率をA、シャント抵抗10の電気抵抗をR、とするとき、演算部17は以下の式で電流Iを演算する。
In order to amplify the small voltage generated by the
I=E/AR I = E / AR
さらに、演算部17は、A/Dコンバータ18から出力される電圧のプラスマイナスで放電電流と充電電流を識別する。
Further, the
電池1の電流を検出するシャント抵抗10は、電池1と車両側に接続される一対の電流端子11と、この電流端子11間に通電される電流によって発生する電圧降下を検出する一対の電圧端子12とを備える。一方の電流端子11は電池1に、他方の電流端子11は車両側に接続される。また一対の電圧端子12は電流検出回路15に接続される。電流端子11と電圧端子12は、リード線やリード板を接続する止ネジ(図示せず)を挿通する貫通孔13、14を開口している。電流端子11と電圧端子12は、貫通孔13、14に挿入される止ネジでもって、リード板やリード線を電気接続するように固定する。このようにして、シャント抵抗10を用いて電流値を高精度に検出でき、より正確なSOC積算が実現できる。
The
以上の電源装置は、車載用のバッテリシステムとして利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッドカーやプラグインハイブリッドカー、あるいはモータのみで走行する電気自動車などの電動車両が利用でき、これらの車両の電源として使用される。 The power supply device described above can be used as an in-vehicle battery system. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid car or a plug-in hybrid car that runs with both an engine and a motor, or an electric car that runs only with a motor can be used, and it is used as a power source for these vehicles. .
図4に、エンジンとモータの両方で走行するハイブリッドカーに電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン6及び走行用のモータ3と、モータ3に電力を供給するバッテリシステム100Bと、バッテリシステム100Bの電池を充電する発電機4とを備えている。バッテリシステム100Bは、DC/ACインバータ2を介してモータ3と発電機4に接続している。車両HVは、バッテリシステム100Bの電池を充放電しながらモータ3とエンジン6の両方で走行する。モータ3は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ3は、バッテリシステム100Bから電力が供給されて駆動する。発電機4は、エンジン6で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、バッテリシステム100Bの電池を充電する。
FIG. 4 shows an example in which a power supply device is mounted on a hybrid car that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an
また図5に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ3と、このモータ3に電力を供給するバッテリシステム100Cと、このバッテリシステム100Cの電池を充電する発電機4とを備えている。モータ3は、バッテリシステム100Cから電力が供給されて駆動する。発電機4は、車両EVを回生制動する時のエネルギーで駆動されて、バッテリシステム100Cの電池を充電する。
FIG. 5 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in this figure includes a traveling
本発明に係るシャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両は、電気自動車やハイブリッド自動車の車載用バッテリシステムとして好適に利用できる。また車載用以外の電源装置としても、好適に利用できる。 The power supply apparatus for vehicles provided with the shunt resistance and shunt resistance which concerns on this invention, and a vehicle can be utilized suitably as a vehicle-mounted battery system of an electric vehicle or a hybrid vehicle. Moreover, it can utilize suitably also as power supply devices other than vehicle-mounted.
100…電源装置
100B、100C…バッテリシステム
1…電池
2…DC/ACインバータ
3…モータ
4…発電機
5…制御回路
6…エンジン
10、20、30…シャント抵抗
10A…本体部
11、31…電流端子
12、32…電圧端子
13、14…貫通孔
15…電流検出回路
16…アンプ
17…演算部
18…A/Dコンバータ
19…接続端子
21…伝熱阻害手段
22、22B…ブランチ
23…伝熱シート
HV、EV…車両
DESCRIPTION OF
Claims (8)
前記一対の電流端子間に通電される電流によって発生する電圧降下を検出するための一対の電圧端子と、
を有し、
略一様な金属板で構成されたシャント抵抗であって、
各電流端子と電圧端子との間に設けられ、前記電圧端子を前記電流端子から物理的に離間させるよう、細長く延長された一対のブランチを備え、
前記各ブランチは、相互の電圧端子側に接近させるように略U字状に折曲されてなるU字折曲部を含むことを特徴とするシャント抵抗。 A pair of current terminals;
A pair of voltage terminals for detecting a voltage drop caused by a current passed between the pair of current terminals;
Have
A shunt resistor composed of a substantially uniform metal plate,
A pair of elongated branches provided between each current terminal and the voltage terminal , so as to physically separate the voltage terminal from the current terminal;
Each of the branches includes a U-shaped bent portion that is bent in a substantially U-shape so as to approach the voltage terminal sides of each other .
前記シャント抵抗は、左右略対称に形成されてなることを特徴とするシャント抵抗。 The shunt resistor according to claim 1 ,
The shunt resistor is formed substantially symmetrically in the left-right direction.
前記一対のブランチの少なくとも一方のブランチと熱伝導状態に接続された放熱部材を備えてなることを特徴とするシャント抵抗。 A shunt resistor according to claim 1 or 2, shunt resistors characterized by comprising further comprising a heat radiation member connected to at least one branch and heat conduction states of the pair of branches.
前記一対のブランチを熱伝導状態に接続する絶縁性の伝熱シートを備えてなることを特徴とするシャント抵抗。 The shunt resistor according to any one of claims 1 to 3 , further comprising an insulating heat transfer sheet that connects the pair of branches to a thermally conductive state.
前記伝熱シートが、シリコーン製であることを特徴とするシャント抵抗。 The shunt resistor according to claim 4,
The shunt resistor, wherein the heat transfer sheet is made of silicone.
前記電圧端子と電流端子との間の抵抗値が、前記電流端子間の抵抗値よりも高くされてなることを特徴とするシャント抵抗。 A shunt resistor according to any one of claims 1 to 5 ,
A shunt resistor, wherein a resistance value between the voltage terminal and the current terminal is higher than a resistance value between the current terminals.
前記電流端子に接続される外部の接続端子を構成する金属とは異なる金属で、シャント抵抗が構成されてなることを特徴とするシャント抵抗。 The shunt resistor according to any one of claims 1 to 6 ,
A shunt resistor comprising a shunt resistor made of a metal different from a metal constituting an external connection terminal connected to the current terminal.
前記電池と直列に接続してなるシャント抵抗と、
前記シャント抵抗の両端に発生する電圧を検出して、前記電池の電流を検出する電流検出回路と
を備える車両用の電源装置であって、
前記シャント抵抗が、請求項1から7のいずれか一に記載のシャント抵抗であることを特徴とする車両用の電源装置。
A battery for supplying power to a motor for running the vehicle;
A shunt resistor connected in series with the battery;
A power supply device for a vehicle including a current detection circuit that detects a voltage generated at both ends of the shunt resistor and detects a current of the battery;
The vehicle shunt resistor according to any one of claims 1 to 7 , wherein the shunt resistor is the shunt resistor according to any one of claims 1 to 7 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194858A JP5537867B2 (en) | 2009-08-25 | 2009-08-25 | Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194858A JP5537867B2 (en) | 2009-08-25 | 2009-08-25 | Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011047721A JP2011047721A (en) | 2011-03-10 |
JP5537867B2 true JP5537867B2 (en) | 2014-07-02 |
Family
ID=43834210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009194858A Expired - Fee Related JP5537867B2 (en) | 2009-08-25 | 2009-08-25 | Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5537867B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012217276A (en) * | 2011-03-31 | 2012-11-08 | Sanyo Electric Co Ltd | Power supply and vehicle having the same |
JP5926495B2 (en) * | 2011-04-05 | 2016-05-25 | 矢崎総業株式会社 | Shunt resistance type current sensor |
JP5760948B2 (en) * | 2011-10-27 | 2015-08-12 | 株式会社デンソー | Current measuring device |
JP6892339B2 (en) * | 2012-01-06 | 2021-06-23 | ローム株式会社 | Resistor |
JP2014062810A (en) * | 2012-09-21 | 2014-04-10 | Yazaki Corp | Shunt resistance type current sensor |
JP2014085245A (en) * | 2012-10-24 | 2014-05-12 | Yazaki Corp | Shunt resistor current sensor |
JP6709584B2 (en) * | 2014-08-06 | 2020-06-17 | Koa株式会社 | Conductive material for resistance value measurement, resistance value measuring device for conductive material, and current detecting device |
WO2016047010A1 (en) * | 2014-09-25 | 2016-03-31 | 三洋電機株式会社 | Electrical current detection device equipped with shunt resistor, and power supply device |
JP6795879B2 (en) * | 2015-06-15 | 2020-12-02 | Koa株式会社 | Resistor and its manufacturing method |
RU2683189C1 (en) | 2016-05-02 | 2019-03-26 | Конинклейке Филипс Н.В. | Steam iron with thermal bridge |
JP2018155626A (en) * | 2017-03-17 | 2018-10-04 | 矢崎総業株式会社 | Current sensor |
JP2018189384A (en) * | 2017-04-28 | 2018-11-29 | 株式会社Gsユアサ | Current detection device, management device, and battery for starting engine |
KR102258813B1 (en) * | 2018-11-20 | 2021-05-31 | 주식회사 엘지에너지솔루션 | Hybrid type current measuring device |
WO2020170964A1 (en) * | 2019-02-18 | 2020-08-27 | 株式会社Gsユアサ | Electricity storage device, and method for adjusting temperature of resistor |
JP7449050B2 (en) * | 2019-07-22 | 2024-03-13 | 株式会社デンソーテン | Monitoring device and method |
US20230170112A1 (en) * | 2020-04-27 | 2023-06-01 | Koa Corporation | Shunt resistor, method for manufacturing shunt resistor, and current detection device |
JP7348237B2 (en) * | 2021-02-26 | 2023-09-20 | 矢崎総業株式会社 | current sensor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3778821B2 (en) * | 2001-07-31 | 2006-05-24 | 三洋電機株式会社 | Power supply for automobile |
JP4029049B2 (en) * | 2003-01-10 | 2008-01-09 | 三菱電機株式会社 | Current detection resistor |
-
2009
- 2009-08-25 JP JP2009194858A patent/JP5537867B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011047721A (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5537867B2 (en) | Power supply device for vehicle having shunt resistance and shunt resistance, and vehicle | |
JP6656373B2 (en) | Interconnection member occupying less space in battery module and battery module including the same | |
JP6872549B2 (en) | Current measuring device using shunt resistor | |
US9024572B2 (en) | Battery module, battery system and electric vehicle | |
US9296310B2 (en) | Traction battery thermal management system | |
JP5976634B2 (en) | Power supply device and vehicle equipped with power supply device | |
CN105591176B (en) | Magnetically controlled traction battery hot plate | |
WO2011024477A1 (en) | Battery module, battery system and electrically driven vehicle | |
CN113711329B (en) | Circuit structure | |
WO2011105095A1 (en) | Battery module, battery system, electric vehicle, mobile body, power storage device, power supply device, and electric apparatus | |
US9196887B2 (en) | Assembled battery wiring member and assembled battery module | |
US8970143B2 (en) | Power source apparatus | |
JP2012523083A (en) | Voltage detection member and battery module including the same | |
CN103415956B (en) | There is the battery pack of stably measured unit | |
CN104868071A (en) | Onboard Battery | |
EP2685782B1 (en) | Heater module | |
JP2009204531A (en) | Shunt resistor, and power supply device for vehicle equipped with the shunt resistor | |
JP6696394B2 (en) | Power supply | |
US12154739B2 (en) | Power distribution device | |
JP5605335B2 (en) | Battery pack and vehicle | |
JP2017184522A (en) | Battery system | |
KR20170006008A (en) | Busbar with shunt resistance for inverter driving motor | |
JP7085555B2 (en) | Battery pack | |
JP2011119235A (en) | Battery system and electric vehicle comprising same | |
JP2012069281A (en) | Heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5537867 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140428 |
|
LAPS | Cancellation because of no payment of annual fees |