[go: up one dir, main page]

JP5532624B2 - High strength galvannealed steel sheet - Google Patents

High strength galvannealed steel sheet Download PDF

Info

Publication number
JP5532624B2
JP5532624B2 JP2009040239A JP2009040239A JP5532624B2 JP 5532624 B2 JP5532624 B2 JP 5532624B2 JP 2009040239 A JP2009040239 A JP 2009040239A JP 2009040239 A JP2009040239 A JP 2009040239A JP 5532624 B2 JP5532624 B2 JP 5532624B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
plating
less
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040239A
Other languages
Japanese (ja)
Other versions
JP2010138480A (en
Inventor
崇史 河野
洋一 牧水
久雄 安原
正泰 名越
善継 鈴木
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009040239A priority Critical patent/JP5532624B2/en
Publication of JP2010138480A publication Critical patent/JP2010138480A/en
Application granted granted Critical
Publication of JP5532624B2 publication Critical patent/JP5532624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は自動車、建材および家電等の分野において好適に用いることができる合金化溶融亜鉛めっき鋼板に関し、特にSi、Mn、Al、Crの1種以上を含有する鋼板を下地鋼板とした、美麗な表面外観と良好なめっき密着性を有する高強度合金化溶融亜鉛めっき鋼板に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet that can be suitably used in the fields of automobiles, building materials, home appliances, and the like, and in particular, a beautiful steel sheet using a steel sheet containing one or more of Si, Mn, Al, and Cr as a base steel sheet. The present invention relates to a high-strength galvannealed steel sheet having a surface appearance and good plating adhesion.

近年、自動車等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた合金化溶融亜鉛めっき鋼板が多く使用されている。   2. Description of the Related Art In recent years, in the field of automobiles and the like, many surface-treated steel sheets provided with rust preventive properties, particularly alloyed hot-dip galvanized steel sheets that can be manufactured at low cost and have excellent rust preventive properties are used.

一般的に、合金化溶融亜鉛めっき鋼板は、スラブを熱間圧延した後に冷間圧延あるいは熱処理が施された薄鋼板を下地として用い、この下地鋼板の表面を前処理工程にて脱脂および/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で下地鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中または還元性雰囲気中にて再結晶焼鈍を施し、次いで非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却してから、大気に触れることなく微量Al(0.1〜0.2質量%程度)を添加した溶融亜鉛浴中に浸漬した後、引き続いて合金化炉内で熱処理することによって製造される。   Generally, an alloyed hot-dip galvanized steel sheet uses a thin steel sheet that has been cold-rolled or heat-treated after hot-rolling a slab as a base, and the surface of the base steel sheet is degreased and / or pre-processed. Wash by pickling, or omit the pretreatment step and burn off the oil on the surface of the underlying steel plate in the preheating furnace, then perform recrystallization annealing in a non-oxidizing atmosphere or reducing atmosphere, In a molten zinc bath in which a small amount of Al (about 0.1-0.2% by mass) is added without cooling to the air after cooling the steel sheet to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere Then, it is manufactured by subsequently heat-treating in an alloying furnace.

近年、下地鋼板の高強度化が求められており、かような下地鋼板に溶融亜鉛めっきを施して防錆性を兼備させた高強度合金化溶融亜鉛めっき鋼板の使用量が増加している。鋼板の機械特性を確保するために、Si、Mn、Al、Cr等の合金元素の添加が行われているが、これらを多く含有する高強度鋼板を下地とする合金化溶融亜鉛めっき鋼板には、以下のような問題がある。   In recent years, there has been a demand for higher strength of the base steel sheet, and the amount of high-strength alloyed hot-dip galvanized steel sheet obtained by applying hot-dip galvanization to such base steel sheet to have rust prevention properties is increasing. Alloy elements such as Si, Mn, Al, and Cr have been added to ensure the mechanical properties of the steel sheet, but the alloyed hot-dip galvanized steel sheet based on a high-strength steel sheet containing a large amount of these elements is used. There are the following problems.

上述したように、合金化溶融亜鉛めっき鋼板は、還元性雰囲気中にて600〜900℃程度の温度で焼鈍を行った後に、溶融亜鉛めっきされ、さらにめっき層が合金化される。しかしながら、上記の添加元素は、溶融亜鉛めっきに先立って行う鋼板の焼鈍において一般的に用いられる還元性雰囲気中でも選択的に酸化して表面に濃化し、表面で酸化物を形成する。かような酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるため、下地鋼板と溶融亜鉛との濡れ性が急激に低下して不めっきが多発するようになる。また、不めっきに至らなかった場合でも、めっき密着性が悪いという問題がある。   As described above, the galvannealed steel sheet is annealed at a temperature of about 600 to 900 ° C. in a reducing atmosphere, and then galvanized, and the plated layer is further alloyed. However, the above additive elements are selectively oxidized and concentrated on the surface even in a reducing atmosphere generally used in annealing of a steel sheet prior to hot dip galvanizing to form an oxide on the surface. Since such oxides reduce the wettability with molten zinc during plating and cause non-plating, so that the wettability between the base steel plate and molten zinc decreases rapidly and non-plating occurs frequently. Become. In addition, even when non-plating is not achieved, there is a problem that plating adhesion is poor.

さらに、鋼中の易酸化元素が選択的に酸化して表面に濃化すると、Zn−Fe合金化反応を阻害するため、溶融亜鉛めっき後の合金化過程において合金化が著しく遅延する。その結果、生産性が著しく阻害される。また、生産性を確保するために、より高温で合金化処理を行うと、過合金化に起因した耐パウダリング性の劣化という問題が生じ、高い生産性と良好な耐パウダリング性を両立させることは困難であった。   Furthermore, when the easily oxidizable elements in the steel are selectively oxidized and concentrated on the surface, the Zn—Fe alloying reaction is inhibited, so that alloying is significantly delayed in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. In addition, if alloying treatment is performed at a higher temperature to ensure productivity, a problem of powdering resistance deterioration due to overalloying occurs, and both high productivity and good powdering resistance are achieved. It was difficult.

このような問題に対して、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち還元焼鈍を行うか、事前の酸化なしに高露点で還元焼鈍することにより、鋼中の易酸化元素を内部酸化させることでめっき性を向上させる技術が公知となっている。   For such problems, the steel sheet is heated in an oxidizing atmosphere in advance to form iron oxide on the surface and then subjected to reduction annealing, or by reduction annealing at a high dew point without prior oxidation. A technique for improving the plating property by internally oxidizing an easily oxidizable element is known.

例えば、特許文献1〜3には、上記の手法により焼鈍時に生成した鋼中元素の酸化物がめっき層中および下地鋼板表層に残存することが述べられている。   For example, Patent Documents 1 to 3 describe that oxides of elements in steel generated during annealing by the above technique remain in the plating layer and the surface layer of the underlying steel sheet.

特許第3887308号公報Japanese Patent No. 3887308 特開2004−315960号公報JP 2004-315960 A 特開2006―233333号公報JP 2006-233333 A

従来技術は、焼鈍時に鋼中の易酸化元素を内部酸化させることでめっき性を向上させるものであり、生成する酸化物量を制御することが重要であるとされている。しかしながら、特許文献1〜3では、ある程度のめっき品質は得られるものの、めっき密着性などの特性が大きくばらつくため、良好な特性を安定して得ることができない。   The prior art improves plating properties by internally oxidizing easily oxidizable elements in steel during annealing, and it is considered important to control the amount of oxide produced. However, in Patent Documents 1 to 3, although a certain level of plating quality can be obtained, characteristics such as plating adhesion vary widely, so that good characteristics cannot be stably obtained.

本発明の課題は、Si、Mn、Al、Crの1種以上を含有する鋼板を下地鋼板として、不めっきのない美麗な外観を有し、めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板を得ることである。   An object of the present invention is to use a steel sheet containing one or more of Si, Mn, Al, and Cr as a base steel sheet, having a beautiful appearance without unplating, and high strength alloyed hot dip galvanizing with excellent plating adhesion It is to obtain a steel plate.

発明者等は、焼鈍後に鋼板表面に存在する酸化物について、めっき層の合金化後における、それらの分布と合金化条件の関係について詳細に調査した。その結果、上記課題を解決するには、適正な合金化条件のもとで、めっき層中に存在する酸化物量と下地鋼板表層に残存する酸化物量のバランスを制御することが重要であると知見した。   The inventors investigated in detail the relationship between the distribution and alloying conditions of the oxides present on the steel sheet surface after annealing after alloying of the plating layer. As a result, in order to solve the above problems, it is known that it is important to control the balance between the amount of oxide present in the plating layer and the amount of oxide remaining in the surface layer of the underlying steel sheet under appropriate alloying conditions. did.

本発明の要旨は次のとおりである。   The gist of the present invention is as follows.

(1)Si、Mn、Al、Crの1種以上を含有する鋼板を下地鋼板とする高強度合金化溶融亜鉛めっき鋼板であって、めっき層中及び下地鋼板表層に、酸化物が存在し、めっき層中及び下地鋼板表層の酸化物の総量が0.25g/m以上で、かつそのうち下地鋼板側に存在する酸化物の割合が全酸化物量に対して質量比で40%以下であり、めっき層中に含まれるFeの割合が、質量比で13.0%以下であることを特徴とする高強度合金化溶融亜鉛めっき鋼板。 (1) A high-strength galvannealed steel sheet having a steel sheet containing one or more of Si, Mn, Al, and Cr as a base steel sheet, and an oxide is present in the plating layer and in the base steel sheet surface layer, The total amount of oxide in the plating layer and the surface layer of the underlying steel sheet is 0.25 g / m 2 or more, and the ratio of the oxide present on the underlying steel sheet side is 40% or less by mass ratio with respect to the total oxide amount, A high-strength galvannealed steel sheet characterized in that the proportion of Fe contained in the plating layer is 13.0% or less in terms of mass ratio.

(2)めっき層中に含まれるFeの割合が、質量比で8.0%以上13.0%以下であることを特徴とする(1)に記載の高強度合金化溶融亜鉛めっき鋼板。   (2) The high-strength galvannealed steel sheet according to (1), wherein the ratio of Fe contained in the plating layer is 8.0% to 13.0% by mass ratio.

本発明の高強度合金化溶融亜鉛めっき鋼板は、下地鋼板がSi、Mn、Al、Crの1種以上を含有する鋼板であるにもかかわらず、不めっきのない美麗な表面外観を有し、さらにめっき密着性にも優れている。   The high-strength galvannealed steel sheet of the present invention has a beautiful surface appearance without unplating, despite the underlying steel sheet containing one or more of Si, Mn, Al, and Cr, Furthermore, the plating adhesion is also excellent.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

先ず、本発明の鋼板成分について説明する。   First, the steel plate component of the present invention will be described.

本発明の課題は、Si、Mn、Al、Crの1種以上の元素を含有する鋼板を下地鋼板とした高強度合金化溶融亜鉛めっき鋼板におけるめっき性阻害を解決することである。そのため、本発明では、下地鋼板を、Si、Mn、Al、Crの1種以上の元素を含有する鋼板に限定した。   An object of the present invention is to solve an impediment to plating in a high-strength galvannealed steel sheet using a steel sheet containing one or more elements of Si, Mn, Al, and Cr as a base steel sheet. Therefore, in this invention, the base steel plate was limited to the steel plate containing 1 or more types of elements of Si, Mn, Al, and Cr.

Si:3.0質量%以下
Siは、3.0質量%を超えて含有すると鋼板自体が硬くなりすぎるため3.0質量%以下が好ましい。また、Siは1.0質量%以上含有される場合に、本発明の効果を顕著に得ることができる。
Si: 3.0% by mass or less If Si is contained in an amount exceeding 3.0% by mass, the steel sheet itself becomes too hard, and therefore 3.0% by mass or less is preferable. Moreover, the effect of this invention can be acquired notably when Si is contained 1.0 mass% or more.

Mn:5.0質量%以下
Mnは、5.0質量%を超えて含有すると溶接性や強度延性バランス(TS(Tensile strength)×El(Elongation))の確保に悪影響を及ぼすため、5.0質量%以下が好ましい。また、0.5質量%以上含有される場合に、本発明の効果を顕著に得ることができる。
Mn: 5.0% by mass or less When Mn exceeds 5.0% by mass, it adversely affects the securing of weldability and strength ductility balance (TS (Tensile strength) × El (Elongation)). The mass% or less is preferable. Moreover, the effect of this invention can be acquired notably when it contains 0.5 mass% or more.

Al:0.010質量%以上5.0質量%以下
Alは、製鋼中およびスラブ中の酸素を固定し、スラブ割れ等の欠陥発生を抑制する。その効果は0.010質量%の添加で認められる。しかし、Al含有量は、5.0質量%を超えると、鋼中の介在物量を増加させる点で好ましくないが、それ以下であれば本発明を阻害するものではない。
Al: 0.010 mass% or more and 5.0 mass% or less Al fixes oxygen in steelmaking and slab, and suppresses generation | occurrence | production of defects, such as a slab crack. The effect is recognized by the addition of 0.010% by mass. However, if the Al content exceeds 5.0% by mass, it is not preferable in terms of increasing the amount of inclusions in the steel, but if it is less than that, the present invention is not inhibited.

Cr:0.005質量%以上2.0質量%以下
Crは、0.005質量%以上含有することで、焼鈍温度からの冷却時にパーライトの生成を抑制して伸びを向上させたり、炭化物や析出物をより均一に析出させることで強度の向上に効果がある。しかし、2.0質量%を超えるとその効果は飽和し、コストアップの要因となるため、2.0質量%以下が好ましい。
Cr: 0.005% by mass or more and 2.0% by mass or less Cr is contained by 0.005% by mass or more, thereby suppressing the generation of pearlite during cooling from the annealing temperature and improving elongation, and carbide and precipitation. It is effective in improving strength by precipitating the material more uniformly. However, if it exceeds 2.0 mass%, the effect is saturated and causes an increase in cost, so 2.0 mass% or less is preferable.

なお、本発明では、Si、Mn、Al、Cr以外の元素については特に限定されることはなく、従来から公知の成分系を利用することができる。   In the present invention, elements other than Si, Mn, Al, and Cr are not particularly limited, and conventionally known component systems can be used.

C:0.01質量%以上2.0質量%以下
Cは、鋼板の高強度化に有効な元素であり、さらに残留オーステナイトや低温変態相の生成に効果があり、強度延性バランスの向上を確保するために有効な元素である。しかし、C含有量が0.01質量%未満では所望の強度延性バランスを得がたい。一方、2.0質量%を超えると、溶接性の劣化を招く。以上より、Cは0.01質量%以上2.0質量%以下の範囲が好ましい。
C: 0.01% by mass or more and 2.0% by mass or less C is an element effective for increasing the strength of a steel sheet, and further has an effect on generation of retained austenite and a low-temperature transformation phase, ensuring an improvement in strength ductility balance. It is an effective element to do. However, when the C content is less than 0.01% by mass, it is difficult to obtain a desired strength ductility balance. On the other hand, when it exceeds 2.0 mass%, deterioration of weldability is caused. From the above, C is preferably in the range of 0.01% by mass to 2.0% by mass.

P:0.1質量%以下
Pは、鋼の強化に有効な元素であるが、0.1質量%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。また0.1質量%を超えると合金化速度を大幅に遅延させる。従って、P量を0.1質量%以下とする。
P: 0.1% by mass or less P is an element effective for strengthening steel, but if added in excess of 0.1% by mass, embrittlement is caused by grain boundary segregation and impact resistance is deteriorated. . On the other hand, if it exceeds 0.1% by mass, the alloying rate is significantly delayed. Therefore, the P content is 0.1% by mass or less.

S:0.07質量%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面から0.07質量%以下とする。
S: 0.07% by mass or less S is an inclusion such as MnS, which causes deterioration in impact resistance and cracks along the metal flow of the weld. 0.07 mass% or less from the surface.

N:0.008質量%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素であり、少ないほどよく、0.008質量%を超えると耐時効性の劣化が顕著となる。従って、N量を0.008質量%以下とする。
N: 0.008% by mass or less N is an element that most deteriorates the aging resistance of steel. The smaller the amount, the better. If it exceeds 0.008% by mass, deterioration of aging resistance becomes remarkable. Therefore, the N content is 0.008% by mass or less.

また、上記に加え、さらにTi、Nb、V、Mo、Cu、Ni、B、Ca、およびSbから選ばれる1種または2種以上を、合計含有量が3質量%以下の範囲であれば含有されていてもよい。残部はFeおよび不可避的不純物である。   Further, in addition to the above, one or more selected from Ti, Nb, V, Mo, Cu, Ni, B, Ca, and Sb are contained if the total content is in the range of 3% by mass or less. May be. The balance is Fe and inevitable impurities.

次に、めっき層中及び下地鋼板表層に存在する酸化物、めっき層Fe%について説明する。   Next, the oxide and plating layer Fe% present in the plating layer and in the surface layer of the underlying steel plate will be described.

すでに前述したように、Si、Mn、Al、Crの1種以上を含有する鋼板の焼鈍工程において、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち還元焼鈍を行うか、事前の酸化処理なしに高露点で還元焼鈍することにより、鋼中の易酸化元素を内部酸化させることができ、鋼板表層にSi、Mn、Al、Crの1種以上よりなる酸化物を主体とする酸化物が形成される。この焼鈍後に溶融めっきして合金化処理すると、焼鈍後に原板表層に存在していた酸化物は、一部はめっき層中に取り込まれ、残りは地鉄中に残存する。この合金化処理後のめっき層中に取り込まれた酸化物と地鉄中に残存した酸化物の総量は、焼鈍後に鋼板表層に形成された酸化物の総量と殆ど変化しない。   As already mentioned above, in the annealing step for a steel sheet containing one or more of Si, Mn, Al, and Cr, is the steel sheet heated in an oxidizing atmosphere in advance to form iron oxide on the surface and then reduced annealing is performed? In addition, by performing reduction annealing at a high dew point without prior oxidation treatment, it is possible to internally oxidize easily oxidizable elements in steel, and the steel sheet surface layer is mainly composed of oxides of one or more of Si, Mn, Al, and Cr. Is formed. When the alloying treatment is performed by hot-dip plating after the annealing, a part of the oxide present in the surface layer of the original sheet after the annealing is taken into the plating layer and the rest remains in the base iron. The total amount of oxides incorporated in the plated layer after the alloying treatment and oxides remaining in the base iron hardly change from the total amount of oxides formed on the steel sheet surface layer after annealing.

めっき層中及び下地鋼板表層に存在する酸化物の総量が、0.25g/m未満になると、不めっきのない美麗なめっき外観が安定して得られなくなる。また、めっき後の合金化反応も抑制されるため、所望の合金化度を得るためには合金化温度を高くするか、保持時間を長くしなければならず、経済的にも好ましくない。そのため、めっき層中及び下地鋼板表層に存在する酸化物の総量を0.25g/m以上に規定する。酸化物の総量の上限は特に規定しないが、酸化物量そのものが多い場合、めっき界面の酸化物が密着性を劣化させたり、下地鋼板に残存した酸化物が、鋼の機械特性を劣化させることがあるため、酸化物の総量は、1.0g/m以下とするのが好ましい。 When the total amount of oxides present in the plating layer and the surface layer of the underlying steel sheet is less than 0.25 g / m 2 , a beautiful plating appearance without non-plating cannot be obtained stably. Further, since the alloying reaction after plating is also suppressed, in order to obtain a desired degree of alloying, the alloying temperature must be increased or the holding time must be lengthened, which is not economically preferable. Therefore, the total amount of oxides present in the plating layer and the surface layer of the underlying steel sheet is specified to be 0.25 g / m 2 or more. The upper limit of the total amount of oxide is not specified, but when the amount of oxide itself is large, the oxide at the plating interface may deteriorate the adhesion, or the oxide remaining on the base steel plate may deteriorate the mechanical properties of the steel. For this reason, the total amount of oxide is preferably 1.0 g / m 2 or less.

良好なめっき性を得るには、焼鈍後に原板表層に存在していた酸化物総量と、酸化物のうち、どの程度が合金化処理によってめっき層中へ取り込まれるかが重要である。めっき層の合金化後、地鉄に残存している酸化物の割合を、全酸化物量に対して質量比で40%以下とすることで、良好なめっき密着性が得られる。酸化物が40%を超えて地鉄に残存することは、界面近傍にも酸化物が多いことを意味し、めっき密着性に悪影響を及ぼす。   In order to obtain good plating properties, it is important that the total amount of oxides present on the surface layer of the original sheet after annealing and how much of the oxides are taken into the plating layer by alloying treatment. After the plating layer is alloyed, good plating adhesion can be obtained by setting the ratio of oxide remaining in the base iron to 40% or less by mass ratio with respect to the total amount of oxide. If the oxide exceeds 40% and remains in the base iron, it means that there is a large amount of oxide in the vicinity of the interface, which adversely affects the plating adhesion.

また、溶融亜鉛系めっきでは、一般的に、めっき浴に添加されていたAlにより、めっき後のめっき表面に厚さ10nm以下程度の酸化膜が形成される。本発明では、前記したように焼鈍後に下地鋼板表層に存在する酸化物を対象とするため、めっき表面のAl系酸化物は、除外して考える。   In hot-dip galvanizing, generally, an oxide film having a thickness of about 10 nm or less is formed on the plated surface after plating by Al added to the plating bath. In the present invention, as described above, oxides present in the surface layer of the underlying steel sheet after annealing are targeted, and therefore, Al-based oxides on the plating surface are excluded.

合金化後、めっき層中のFe濃度が質量比で13.0%以下となるようにする。13.0%超では、めっき/地鉄界面にFe濃度の高い脆い相が形成されるため、パウダリング性などに悪影響が出る。また、Fe濃度は質量比で8.0%以上とすることが好ましい。8.0%未満であれば、Fe濃度の低い低融点の相が表層に残存し、プレス成型時の摺動性が劣化する。   After alloying, the Fe concentration in the plating layer is adjusted to 13.0% or less by mass ratio. If it exceeds 13.0%, a brittle phase having a high Fe concentration is formed at the plating / base metal interface, which adversely affects powdering properties and the like. Moreover, it is preferable that Fe concentration shall be 8.0% or more by mass ratio. If it is less than 8.0%, a low melting point phase having a low Fe concentration remains on the surface layer, and the slidability during press molding deteriorates.

次に本発明の高強度合金化溶融亜鉛めっき鋼板の製造方法について説明する。   Next, the manufacturing method of the high-strength galvannealed steel sheet of this invention is demonstrated.

上記組成を有する鋼スラブを熱間圧延し、酸洗工程で熱延板表層のスケールを除去し、またはさらに冷間圧延を行い、めっき原板となる鋼板を作製する。鋼スラブの作製から冷間圧延までの各工程の条件は特に限定されない。常法でよい。   A steel slab having the above composition is hot-rolled, the scale of the hot-rolled sheet surface layer is removed in a pickling process, or further cold-rolled to produce a steel sheet that is a plating original sheet. The conditions of each process from production of the steel slab to cold rolling are not particularly limited. Ordinary methods are acceptable.

作製した鋼板を、連続溶融亜鉛めっき設備に装入し、焼鈍し、その後溶融亜鉛めっきし、さらにめっき層の合金化処理を行う。   The produced steel sheet is charged into a continuous hot dip galvanizing facility, annealed, hot dip galvanized, and further subjected to alloying treatment of the plated layer.

焼鈍工程では、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち還元焼鈍を行うか、事前の酸化処理なしに高露点で還元焼鈍することにより、鋼中の易酸化元素を内部酸化させ、鋼板表層に酸化物を総量で0.25g/m以上形成する。 In the annealing process, the steel plate is heated in an oxidizing atmosphere in advance to form iron oxide on the surface, and then reduction annealing is performed, or reduction annealing is performed at a high dew point without prior oxidation treatment, thereby easily oxidizing elements in steel. Is internally oxidized to form a total amount of oxide of 0.25 g / m 2 or more on the steel sheet surface layer.

還元焼鈍後、溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきし、めっき浴から引き上げてガスワイパーで付着量調整し、その後めっき層の合金化を行う。溶融亜鉛めっき、ガスワイパーの工程は特に限定されず、常法でよい。合金化処理により、還元焼鈍後に鋼板表面に形成していた酸化物が、めっき中に移動するが、酸化物の総量に対する下地鋼板側に存在する酸化物の割合を質量比で40%以下になるように制御することが必要である。制御する方法は特に限定するものではないが、例えば、事前の酸化処理や高露点での還元焼鈍の条件や原板組成に応じて、合金化温度や合金化時間を調整すればよい。生産ラインで、合金化時間の変更が困難な場合は、合金化時間を一定とし、合金化温度を適宜選択すればよい。   After reductive annealing, it is immersed in a hot dip galvanizing bath and hot dip galvanized, pulled up from the plating bath, adjusted in amount of adhesion with a gas wiper, and then alloyed with a plating layer. The steps of hot dip galvanization and gas wiper are not particularly limited, and may be a conventional method. By the alloying treatment, the oxide formed on the surface of the steel sheet after reduction annealing moves during plating, but the ratio of the oxide present on the base steel sheet side to the total amount of oxide is 40% or less by mass ratio. It is necessary to control as follows. Although the method to control is not specifically limited, For example, the alloying temperature and the alloying time may be adjusted according to the conditions of the prior oxidation treatment or the reduction annealing at a high dew point and the original plate composition. If it is difficult to change the alloying time on the production line, the alloying time may be kept constant and the alloying temperature may be appropriately selected.

具体的には、例えば、還元工程が、事前の酸化処理で鋼板を加熱して表面に酸化鉄を形成したのち還元焼鈍を行う場合、事前酸化処理の鋼板温度To(℃)と原板Si濃度Csi(質量%)を用いて、合金化温度Ta(℃)が下式;
Ta<a×To+b×Csi+c
を満足する範囲内の温度で、さらにFe%が13.0%以下の範囲になる温度を選んで合金化することで、酸化物の総量に対する下地鋼板側に存在する酸化物の割合を質量比で40%以下になるように制御することができる。ここで、係数a〜cは、ライン/装置毎にあらかじめ求めておけばよく、例えば、直火バーナーを利用した事前酸化処理を行った場合では、a=0.4、b=−40、c=280といった値が得られている。この関係式の意味するところは、合金化温度が高いと下地鋼板に酸化物が残存する割合が高くなるため、適正な合金化温度に上限があるということである。
Specifically, for example, in the case where the reduction process is performed by reduction annealing after heating the steel plate by forming the iron oxide on the surface by prior oxidation treatment, the steel plate temperature To (° C.) and the original plate Si concentration Csi of the preliminary oxidation treatment. (Mass%), the alloying temperature Ta (° C.) is the following formula:
Ta <a × To + b × Csi + c
The ratio of the oxides present on the base steel plate side to the total amount of oxides is selected by alloying at a temperature within the range satisfying Can be controlled to be 40% or less. Here, the coefficients a to c may be obtained in advance for each line / apparatus. For example, when pre-oxidation processing using a direct fire burner is performed, a = 0.4, b = −40, c A value of = 280 is obtained. The meaning of this relational expression is that when the alloying temperature is high, the proportion of oxide remaining in the underlying steel sheet increases, so that there is an upper limit to the appropriate alloying temperature.

また、上式に鋼中Si濃度の項が含まれるのは、事前酸化処理における酸化のし易さが鋼中Si濃度の影響を受け、事前酸化処理の鋼板温度の効果が変わることによるためである。   In addition, the term “Si concentration in steel” is included in the above equation because the ease of oxidation in the pre-oxidation treatment is affected by the Si concentration in the steel, and the effect of the steel plate temperature in the pre-oxidation treatment changes. is there.

ただし、ここまで述べてきたとおり、本発明では、製造された高強度合金化溶融亜鉛めっき鋼板において、めっき層中及び下地鋼板表層の酸化物の総量が0.25g/m以上、かつ下地鋼板側に存在する該酸化物の割合が40%以下であることが重要なのであり、そのためのプロセス条件や制御方法の違いは本質ではない。 However, as described so far, in the present invention, in the manufactured high-strength galvannealed steel sheet, the total amount of oxides in the plating layer and the surface layer of the base steel sheet is 0.25 g / m 2 or more, and the base steel sheet It is important that the ratio of the oxide present on the side is 40% or less, and the difference in process conditions and control method for that is not essential.

表1に示すA〜Eの鋼組成の冷延鋼板を供試材として、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成する酸化処理後、還元焼鈍を行い、さらに溶融亜鉛めっき、合金化処理を施した。   Using cold-rolled steel sheets having a steel composition of A to E shown in Table 1 as test materials, the steel sheet is heated in an oxidizing atmosphere in advance to form iron oxide on the surface, followed by reduction annealing, and further molten zinc Plating and alloying treatment were performed.

Figure 0005532624
Figure 0005532624

酸化処理は、直火バーナーを使用し、空燃比を1以上の条件とすることで酸化条件とし、直火バーナーの出力を制御することで最高到達温度(酸化温度)を変化させた。還元焼鈍は、5vol%水素+窒素雰囲気中(露点:−35℃)で板温:830℃、保持時間:30〜60秒の条件で行った。めっき条件は、Alを0.14質量%含む(Fe飽和)460℃の亜鉛めっき浴を用い、侵入板温:460℃および浸漬時間:1秒であり、めっき後、窒素ガスワイパーで付着量を片面45g/mに調整した。 In the oxidation treatment, a direct fire burner was used, the oxidation condition was set by setting the air-fuel ratio to 1 or more, and the maximum reached temperature (oxidation temperature) was changed by controlling the output of the direct fire burner. The reduction annealing was performed in a 5 vol% hydrogen + nitrogen atmosphere (dew point: −35 ° C.) under the conditions of plate temperature: 830 ° C. and holding time: 30-60 seconds. The plating conditions are as follows: a 460 ° C. zinc plating bath containing 0.14% by mass of Al (Fe saturation), an intrusion plate temperature: 460 ° C., and an immersion time: 1 second. One side was adjusted to 45 g / m 2 .

得られた溶融亜鉛めっき鋼板は、インダクション加熱炉にて合金化温度と合金化時間を変化させた、めっき層Fe%(質量%)を評価した。   The obtained hot-dip galvanized steel sheet was evaluated for the plating layer Fe% (mass%) in which the alloying temperature and the alloying time were changed in an induction heating furnace.

各評価方法および判定基準は以下の通りである。   Each evaluation method and criteria are as follows.

<めっき層中/下地鋼板中の酸化物の定量評価>
供試材をアルカリ溶液に浸漬し、めっき表層のAl系酸化膜を除去した。その後、めっき層を溶解して酸化物を採取し重量を測定した後、地鉄部分に対して同様に溶解して酸化物を採取し重量を測定した。なお、めっき層および地鉄部分の溶解にはそれぞれアルカリ(NaOH)および酸(HCl)を用いた。両者の合計を合計酸化量とし、それに対する地鉄中の残存物量の割合を算出した。なお、採取した酸化物が、Si、Mn、Al、Crの1種以上を含む酸化物が主体であることは、エネルギー分散X線分析(EDS)及びX線回折(XRD)で確認した。
<Quantitative evaluation of oxide in plating layer / underlying steel plate>
The test material was immersed in an alkaline solution to remove the Al-based oxide film on the plating surface layer. Then, after dissolving the plating layer and collecting the oxide and measuring the weight, the oxide was collected by dissolving in the same manner as the base iron portion and the weight was measured. Note that alkali (NaOH) and acid (HCl) were used for dissolution of the plating layer and the base iron portion, respectively. The total amount of both was regarded as the total oxidation amount, and the ratio of the amount of the residue in the ground iron was calculated. It was confirmed by energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) that the collected oxide was mainly an oxide containing one or more of Si, Mn, Al, and Cr.

<めっき密着性(パウダリング性)評価>
合金化溶融亜鉛めっき鋼板から幅:25mm、長さ:40mmの試験片を切出し、セロハンテープ(ニチバン製、幅:24mm)を長さ:20mmの位置に貼り、テープ面を90°内側に曲げた後、曲げ戻しを行ってセロハンテープを剥がした時に付着したZn量を蛍光X線によりカウント数として測定した。測定したZnカウント数を試験片幅:単位長さ(1m)当りのカウント数に補正して、以下の基準で評価した。
○:良好(カウント数:0〜5000)
×:不良(カウント数:5000超)
<めっき外観>
得られた合金化溶融亜鉛めっき鋼板を用いて目視および10倍のルーペにて外観観察を行い、不めっきが全くない場合を不めっき無しとし、10倍のルーペにて観察可能な微小の不めっきがある場合を微小不めっき有りとし、目視にて不めっきが観察できる場合を不めっき有りとした。
○:不めっき無し
△:微小不めっき有り
×:不めっき有り
これらの評価結果を、処理条件と共に表2に示す。
<Evaluation of plating adhesion (powdering)>
A test piece having a width of 25 mm and a length of 40 mm was cut out from the galvannealed steel sheet, and a cellophane tape (manufactured by Nichiban, width: 24 mm) was applied to the position of the length: 20 mm, and the tape surface was bent 90 ° inward. Then, the amount of Zn adhering when the cellophane tape was peeled off by bending back was measured as a count by fluorescent X-rays. The measured Zn count number was corrected to the count number per specimen width: unit length (1 m) and evaluated according to the following criteria.
○: Good (Count: 0 to 5000)
X: Defect (count number: over 5000)
<Plating appearance>
Using the obtained alloyed hot-dip galvanized steel sheet, visually and visually observing with a magnifying glass of 10X In the case where there is a fine unplating, the case where the unplating can be visually observed is considered as non-plating.
○: No plating is present Δ: Fine plating is not present ×: Non-plating is present These evaluation results are shown in Table 2 together with the processing conditions.

Figure 0005532624
Figure 0005532624

表2から、本発明例のめっき鋼板は、高Si、Mn、Al、Cr含有鋼板を下地とする場合であっても、不めっきが無くめっき密着性に優れた、合金化溶融亜鉛めっき鋼板を得られていることがわかる。   From Table 2, the galvanized steel sheet of the present invention is an alloyed hot-dip galvanized steel sheet that has no plating and excellent plating adhesion even when it is based on a steel sheet containing high Si, Mn, Al, Cr. It turns out that it is obtained.

表1に示すFの鋼組成の冷延鋼板を供試材として、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成する酸化処理後、還元焼鈍を行い、さらに溶融亜鉛めっき、合金化処理を施した。   A cold-rolled steel sheet having a steel composition of F shown in Table 1 is used as a test material. After oxidation treatment in which the steel sheet is heated in an oxidizing atmosphere in advance to form iron oxide on the surface, reduction annealing is performed, and further hot dip galvanizing, Alloying treatment was performed.

酸化処理は、赤外加熱炉を用いて酸素+窒素雰囲気中(露点:+20℃)で、酸素濃度と最高到達温度(酸化温度)を変化させることで酸化状態を変化させ、最高到達温度に達したら保持することなく窒素ガス冷却した。その後、還元焼鈍は、赤外加熱炉を用いて10vol%水素+窒素雰囲気中(露点:−35℃)で板温:850℃、保持時間:30秒の条件で行った。めっき条件は、Alを0.14質量%含む(Fe飽和)460℃の亜鉛めっき浴を用い、侵入板温:460℃および浸漬時間:1秒であり、めっき後、窒素ガスワイパーで付着量を片面45g/mに調整した。 Oxidation treatment uses an infrared heating furnace in an oxygen + nitrogen atmosphere (dew point: + 20 ° C) to change the oxidation state by changing the oxygen concentration and the maximum temperature (oxidation temperature), and reach the maximum temperature. Then, nitrogen gas was cooled without holding. Thereafter, reduction annealing was performed using an infrared heating furnace in a 10 vol% hydrogen + nitrogen atmosphere (dew point: −35 ° C.) under conditions of a plate temperature of 850 ° C. and a holding time of 30 seconds. The plating conditions are as follows: a 460 ° C. zinc plating bath containing 0.14% by mass of Al (Fe saturation), an intrusion plate temperature: 460 ° C., and an immersion time: 1 second. One side was adjusted to 45 g / m 2 .

得られた溶融亜鉛めっき鋼板は、通電加熱炉にて580℃の合金化温度で15秒間保持することで合金化処理を実施し、めっき層Fe%(質量%)を評価した。   The obtained hot-dip galvanized steel sheet was subjected to alloying treatment by being held at an alloying temperature of 580 ° C. for 15 seconds in an electric heating furnace, and the plating layer Fe% (mass%) was evaluated.

各評価方法および判定基準は以下の通りである。   Each evaluation method and criteria are as follows.

<めっき層中/下地鋼板中の酸化物の定量評価>
得られためっき鋼板について、AA系電解液中で亜鉛めっき層を定電位電解によってめっき層を選択的に溶解させた。本実施例で用いたAA系電解液は10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノールであり、電解電位は地鉄が溶解せずにめっき層だけが溶解する電位に設定した。更に、めっき層を溶解させた後に、同様のAA系電解液中で表層5μmが溶解する電気量にて、地鉄表層を定電流電解によって溶解させた。それぞれの電気化学的処理によって得られた残渣を50nmの径を有するニュークリポアフィルターでろ過した後に、フィルターに捕捉された残渣をアルカリ融解後にICP分析によって、SiおよびMnの定量を行った。本実施例では、これらの定量値からSi量をSiO量、Mn量をMnO量に換算することで、酸化物量とした。なお、本実施例に用いた供試材の鋼組成では、AlおよびCrの含有量は小さいために、SiおよびMn量から求められる換算値を酸化量とした。また、本実施例では、採取した酸化物がSiおよび/またはMnの酸化物が主体であることを、エネルギー分散X線分析(EDS)及びX線回折(XRD)で確認した。
<Quantitative evaluation of oxide in plating layer / underlying steel plate>
About the obtained plated steel plate, the plating layer was selectively dissolved by constant potential electrolysis in the AA electrolyte solution. The AA electrolyte used in this example was 10% acetylacetone-1% tetramethylammonium chloride-methanol, and the electrolytic potential was set to a potential at which only the plating layer was dissolved without dissolving the ground iron. Furthermore, after dissolving the plating layer, the ground metal surface layer was dissolved by constant current electrolysis with an electric quantity at which the surface layer of 5 μm was dissolved in the same AA electrolyte solution. After the residue obtained by each electrochemical treatment was filtered with a Nuclepore filter having a diameter of 50 nm, the residue captured on the filter was subjected to alkali melting and then subjected to ICP analysis to determine the amount of Si and Mn. In this example, the amount of oxide was determined by converting the amount of Si into the amount of SiO 2 and the amount of Mn into the amount of MnO from these quantitative values. In addition, in the steel composition of the test material used for the present Example, since the content of Al and Cr is small, the conversion value calculated | required from the amount of Si and Mn was made into the oxidation amount. In this example, it was confirmed by energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) that the collected oxide was mainly an oxide of Si and / or Mn.

<めっき密着性(パウダリング性)評価>と<めっき外観>は、実施例1と同様にして評価した。   <Evaluation of plating adhesion (powdering property)> and <plating appearance> were evaluated in the same manner as in Example 1.

これらの評価結果を、処理条件と共に表3に示す。   These evaluation results are shown in Table 3 together with the processing conditions.

Figure 0005532624
Figure 0005532624

表3から、本発明例のめっき鋼板は、高Si、Mn含有鋼板を下地とする場合であっても、不めっきが無くめっき密着性に優れた、合金化溶融亜鉛めっき鋼板を得られていることがわかる。また、本発明の範囲から外れた比較例では合金化反応が抑制されて、所望のFe%が得にくいことも分かる。   From Table 3, even when the plated steel sheet of the present invention example is based on a high-Si, Mn-containing steel sheet, an galvannealed steel sheet having no plating and excellent plating adhesion has been obtained. I understand that. It can also be seen that in the comparative example outside the scope of the present invention, the alloying reaction is suppressed and it is difficult to obtain the desired Fe%.

本発明の高強度合金化溶融亜鉛めっき鋼板は、不めっきが無く美麗な外観を有し、めっき密着性にも優れる。本発明の高強度合金化溶融亜鉛めっき鋼板は、自動車、建材および家電等の分野において好適に使用することができる。   The high-strength galvannealed steel sheet of the present invention has a beautiful appearance with no unplating, and is excellent in plating adhesion. The high-strength galvannealed steel sheet of the present invention can be suitably used in the fields of automobiles, building materials, home appliances and the like.

Claims (3)

Si:1.0質量%以上3.0質量%以下、Mn:0.5質量%以上5.0質量%以下、Al:0.010質量%以上5.0質量%以下、C:0.01質量%以上2.0質量%以下、P:0.1質量%以下、S:0.07質量%以下を含有し、残部がFeおよび不可避的不純物である鋼板を下地鋼板とする高強度合金化溶融亜鉛めっき鋼板であって、めっき層中及び下地鋼板表層に、酸化物が存在し、めっき層中及び下地鋼板表層の酸化物の総量が0.25g/m以上で、かつそのうち下地鋼板側に存在する酸化物の割合が全酸化物量に対して質量比で40%以下であり、めっき層中に含まれるFeの割合が、質量比で13.0%以下であることを特徴とする高強度合金化溶融亜鉛めっき鋼板。 Si : 1.0 to 3.0% by mass , Mn : 0.5 to 5.0% by mass , Al : 0.010 to 5.0% by mass, C: 0.01 more mass% 2.0 mass% or less, P: 0.1 wt% or less, S: contains 0.07 mass% or less, high-strength alloy and the balance base steel sheet to Fe and unavoidable impurities der Ru steel A hot dip galvanized steel sheet, in which an oxide is present in the plating layer and the surface layer of the underlying steel sheet, and the total amount of oxides in the plating layer and the surface layer of the underlying steel sheet is 0.25 g / m 2 or more, of which the underlying steel sheet The ratio of the oxide present on the side is 40% or less by mass ratio with respect to the total oxide amount, and the ratio of Fe contained in the plating layer is 13.0% or less by mass ratio High strength galvannealed steel sheet. 前記鋼板が、さらに、Cr:0.005質量%以上2.0質量%以下を含有することを特徴とする請求項1に記載の高強度合金化溶融亜鉛めっき鋼板。The high-strength galvannealed steel sheet according to claim 1, wherein the steel sheet further contains Cr: 0.005 mass% or more and 2.0 mass% or less. めっき層中に含まれるFeの割合が、質量比で8.0%以上13.0%以下であることを特徴とする請求項1または2に記載の高強度合金化溶融亜鉛めっき鋼板。 The high-strength galvannealed steel sheet according to claim 1 or 2 , wherein the ratio of Fe contained in the plating layer is 8.0% or more and 13.0% or less by mass ratio.
JP2009040239A 2008-11-11 2009-02-24 High strength galvannealed steel sheet Active JP5532624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040239A JP5532624B2 (en) 2008-11-11 2009-02-24 High strength galvannealed steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008288317 2008-11-11
JP2008288317 2008-11-11
JP2009040239A JP5532624B2 (en) 2008-11-11 2009-02-24 High strength galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2010138480A JP2010138480A (en) 2010-06-24
JP5532624B2 true JP5532624B2 (en) 2014-06-25

Family

ID=42348849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040239A Active JP5532624B2 (en) 2008-11-11 2009-02-24 High strength galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5532624B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631241B2 (en) * 2001-09-21 2011-02-16 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet and high-tensile alloyed hot-dip galvanized steel sheet with excellent strength ductility balance, plating adhesion and corrosion resistance
JP3997931B2 (en) * 2003-03-04 2007-10-24 Jfeスチール株式会社 Method for producing high-tensile hot-dip galvanized steel sheet
JP4741376B2 (en) * 2005-01-31 2011-08-03 新日本製鐵株式会社 High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof
JP4589880B2 (en) * 2006-02-08 2010-12-01 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP4790525B2 (en) * 2006-07-19 2011-10-12 新日本製鐵株式会社 High-strength galvannealed steel plate with excellent chipping resistance

Also Published As

Publication number Publication date
JP2010138480A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
KR101692129B1 (en) Method for manufacturing high strength galvanized steel sheet and high strength galvanized steel sheet
KR101719947B1 (en) Method for manufacturing high-strength galvannealed steel sheet
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
US10023933B2 (en) Galvannealed steel sheet and method for producing the same
KR101752077B1 (en) High-strength galvanized steel sheet and production method therefor
KR20140007489A (en) High-strength hot-dipped galvanized steel sheet having excellent plating adhesion, and method for producing same
JPWO2015022778A1 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4882446B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP5907263B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance
JP2019173157A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP5626324B2 (en) Method for producing hot-dip galvanized steel sheet
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6518949B2 (en) Method of manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP5532624B2 (en) High strength galvannealed steel sheet
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JP2011026674A (en) High-strength hot-dip galvanized steel sheet having excellent plating peeling resistance
WO2019188235A1 (en) Alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production method
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250