JP5530077B2 - Photocatalytic member and air purification device - Google Patents
Photocatalytic member and air purification device Download PDFInfo
- Publication number
- JP5530077B2 JP5530077B2 JP2008155798A JP2008155798A JP5530077B2 JP 5530077 B2 JP5530077 B2 JP 5530077B2 JP 2008155798 A JP2008155798 A JP 2008155798A JP 2008155798 A JP2008155798 A JP 2008155798A JP 5530077 B2 JP5530077 B2 JP 5530077B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- photocatalytic
- photocatalytic member
- fluorine
- oxide photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、光触媒性部材及び空質浄化装置に関する。 The present invention relates to a photocatalytic member and an air purification device.
光触媒による有機物の分解作用は約30年前に見いだされた。酸化チタンなどのある種の半導体に光を照射すると、電子及び正孔が生成され、生成した電子及び正孔が半導体表面でスーパーオキサイドアニオンラジカルやヒドロキシラジカルを生成する。そして、スーパーオキサイドアニオンラジカルやヒドロキシラジカルは有機分子を攻撃することによって有機物が分解される。このような作用を有する半導体材料のことを光触媒材料といわれている。光触媒として使用される材料は二酸化チタンが最も多く、光触媒といえば酸化チタンを意味するといっても過言ではない。 The decomposition of organic substances by photocatalyst was found about 30 years ago. When a certain type of semiconductor such as titanium oxide is irradiated with light, electrons and holes are generated, and the generated electrons and holes generate superoxide anion radicals and hydroxy radicals on the semiconductor surface. Superoxide anion radicals and hydroxy radicals attack organic molecules to decompose organic substances. A semiconductor material having such an action is called a photocatalytic material. The material used as the photocatalyst is most often titanium dioxide, and it is no exaggeration to say that the photocatalyst means titanium oxide.
今までに、光触媒による有機分解作用を利用した製品やデバイスが数多く提案されている。中でも、空気中の臭気(有機ガス)成分を光触媒作用で分解するデバイスやフィルターの開発が盛んに行われている。例えば、光触媒を吸着材と組み合わせることによって脱臭速度を向上させること(例えば、特許文献1)や、光触媒とハイシリカゼオライトとを組み合わせることによってエチレン等の特定のガスに対する分解速度を向上させること(例えば、特許文献2)等が提案されている。その他には、光触媒膜を担持する基材として光透過性を有する長繊維により形成された基材等を使用し、光触媒モジュールの処理効率を向上させること等が提案されている(例えば、特許文献3)。
しかしながら、従来の浄化デバイスの脱臭速度では不十分であり、より高い脱臭性能を有する光触媒性部材が求められている。そこで、本発明は、脱臭性能が向上した光触媒性部材を提供する。 However, the deodorization speed of the conventional purification device is insufficient, and a photocatalytic member having higher deodorization performance is required. Therefore, the present invention provides a photocatalytic member having improved deodorization performance.
本発明の光触媒性部材は、フィルター基材に光触媒性材料が担持された光触媒性部材であって、前記フィルター基材は、繊維布帛であり、前記光触媒性材料は、酸化チタン光触媒と吸着剤とを含み、前記フィルター基材における単位面積当たりの前記酸化チタン光触媒及び前記吸着剤の合計担持量が10〜50mg/cm2である。 The photocatalytic member of the present invention is a photocatalytic member in which a photocatalytic material is supported on a filter base material, the filter base material is a fiber fabric, and the photocatalytic material includes a titanium oxide photocatalyst, an adsorbent, and the like. The total loading of the titanium oxide photocatalyst and the adsorbent per unit area in the filter substrate is 10 to 50 mg / cm 2 .
また、その他の態様として、本発明の光触媒性部材は、フィルター基材に光触媒性材料が担持された光触媒性部材であって、前記光触媒性材料が、アナタース型酸化チタン及びフッ素を含む酸化チタン光触媒とゼオライトとを含み、前記フィルター基材が、ガラス繊維布帛であり、光触媒性部材に含まれるTi、Si及びFの質量の合計に対するFの割合が、0.38質量%以上である。 As another aspect, the photocatalytic member of the present invention is a photocatalytic member in which a photocatalytic material is supported on a filter base material, and the photocatalytic material contains anatase-type titanium oxide and fluorine-containing titanium oxide photocatalyst. And zeolite, the filter substrate is a glass fiber fabric, and the ratio of F to the total mass of Ti, Si and F contained in the photocatalytic member is 0.38% by mass or more.
本発明によれば、脱臭性能が向上した光触媒性部材を提供できる。 According to the present invention, a photocatalytic member having improved deodorizing performance can be provided.
本発明において「脱臭」とは、気相中の臭気成分や有機物等を吸着及び/又は分解することをいう。好適には気相中の臭気成分や有機物の濃度を低減させることをいい、より好適には、吸着剤の吸着作用によって気相中の臭気成分や有機物等を吸着し、酸化チタン光触媒に紫外光を照射して臭気成分等を分解して、臭気成分や有機物の濃度を低減させることをいう。臭気成分としては、例えば、アセトアルデヒド、酢酸、アンモニア、硫黄化合物ガス(硫化水素、メチルメルカプタン等)等が挙げられ、中でも本発明の光触媒性部材はアセトアルデヒドの脱臭に適している。 In the present invention, “deodorization” refers to adsorption and / or decomposition of odor components and organic substances in the gas phase. Preferably, the concentration of odorous components and organic substances in the gas phase is reduced. More preferably, the odorous components and organic substances in the gas phase are adsorbed by the adsorption action of the adsorbent, and the titanium oxide photocatalyst is irradiated with ultraviolet light. Is used to decompose odor components and the like to reduce the concentration of odor components and organic substances. Examples of the odor component include acetaldehyde, acetic acid, ammonia, sulfur compound gas (hydrogen sulfide, methyl mercaptan, etc.), etc. Among them, the photocatalytic member of the present invention is suitable for deodorization of acetaldehyde.
[第1の光触媒性部材]
第1の光触媒性部材は、フィルター基材に光触媒性材料が担持された光触媒性部材であって、前記フィルター基材は、繊維布帛であり、前記光触媒性材料は、酸化チタン光触媒と吸着剤とを含み、前記フィルター基材における単位面積当たりの前記酸化チタン光触媒及び前記吸着剤の合計担持量が(以下、「触媒担持量」という)が、10〜50mg/cm2である。
[First photocatalytic member]
The first photocatalytic member is a photocatalytic member in which a photocatalytic material is supported on a filter base material, the filter base material is a fiber fabric, and the photocatalytic material includes a titanium oxide photocatalyst, an adsorbent, and the like. The total loading of the titanium oxide photocatalyst and the adsorbent per unit area in the filter base material (hereinafter referred to as “catalyst loading”) is 10 to 50 mg / cm 2 .
従来、フィルター基材に多量の光触媒や吸着剤を担持させると、圧損が大幅に大きくなるため十分な脱臭性能が得られないと考えられていた。これに対し、本発明の第1の光触媒性部材は、フィルター基材における単位面積当たりの触媒担持量が10〜50mg/cm2であれば、圧損を増加させることなく光触媒性材料をフィルター基材に担持させることができ、さらには脱臭性能を向上できるという知見に基づく。第1の光触媒性部材によれば、触媒担持量が10〜50mg/cm2であるため、脱臭速度を向上させることができ、また、フィルターの寿命を大きく延長させることができる。さらに、第1の光触媒性部材によれば、フィルター基材が繊維布帛であることから、例えば、フィルター基材が多孔質セラミックや発泡ポリウレタン等の多孔質フィルターの場合と比較して、フィルター基材内部の酸化チタン光触媒に光を十分照射することができ、光照射時の脱臭速度を向上できる。第1の光触媒性部材によれば、光触媒性材料が酸化チタン光触媒及び吸着剤を含むため、例えば、光照射時及び消灯時の双方において脱臭性能を発揮することができ、省エネルギー効果に優れる。 Conventionally, when a large amount of a photocatalyst or an adsorbent is supported on a filter base material, it has been thought that sufficient deodorization performance cannot be obtained because pressure loss is greatly increased. On the other hand, the first photocatalytic member of the present invention allows the photocatalytic material to be added to the filter base material without increasing pressure loss if the amount of catalyst supported per unit area in the filter base material is 10 to 50 mg / cm 2. It is based on the knowledge that it can be made to carry | support to a deodorizing performance further. According to the first photocatalytic member, the catalyst loading is 10 to 50 mg / cm 2 , so that the deodorization rate can be improved and the life of the filter can be greatly extended. Furthermore, according to the first photocatalytic member, since the filter base material is a fiber fabric, for example, the filter base material is compared with the case of a porous filter such as porous ceramic or foamed polyurethane. The internal titanium oxide photocatalyst can be sufficiently irradiated with light, and the deodorization speed during light irradiation can be improved. According to the first photocatalytic member, since the photocatalytic material includes a titanium oxide photocatalyst and an adsorbent, for example, the deodorizing performance can be exhibited both during light irradiation and during light extinction, and the energy saving effect is excellent.
第1の光触媒性部材において、触媒担持量は、10〜50mg/cm2である。触媒担持量が10mg/cm2以上であれば脱臭速度を十分向上させることができ、50mg/cm2以下であれば剥離することなく光触媒性材料をフィルター基材に担持させることができる。触媒担持量は、脱臭性能及びコストの点から、10〜40mg/cm2が好ましい。触媒担持量(mg/cm2)は、例えば、200cm2の光触媒性部材に担持された酸化チタン光触媒及び吸着剤の重量を測定し、酸化チタン光触媒と吸着剤との合計重量を面積(200cm2)で除することによって算出できる。 In the first photocatalytic member, the catalyst loading is 10 to 50 mg / cm 2 . If the amount of the catalyst supported is 10 mg / cm 2 or more, the deodorization rate can be sufficiently improved, and if it is 50 mg / cm 2 or less, the photocatalytic material can be supported on the filter substrate without peeling. The amount of catalyst supported is preferably 10 to 40 mg / cm 2 from the viewpoint of deodorization performance and cost. The catalyst loading (mg / cm 2 ) is measured, for example, by measuring the weight of the titanium oxide photocatalyst and the adsorbent supported on a 200 cm 2 photocatalytic member, and calculating the total weight of the titanium oxide photocatalyst and the adsorbent in the area (200 cm 2 ) Can be calculated.
第1の光触媒性部材における光触媒性材料の厚みは、フィルター基材の開孔率等に応じて適宜決定できるが、例えば、180μm以上であり、好ましくは180〜1000μm、より好ましくは200〜800μm、さらに好ましくは200〜620μmである。本発明において光触媒性材料の厚みとは、フィルター基材を構成する繊維に担持された光触媒性材料の厚みのことをいい、例えば、光触媒性部材の厚みとフィルター基材の厚みとを用いて下記式より算出できる。
光触媒性材料の厚み={(光触媒性材料の厚み)−(フィルター基材の厚み)}/2
The thickness of the photocatalytic material in the first photocatalytic member can be appropriately determined according to the aperture ratio of the filter base material, but is, for example, 180 μm or more, preferably 180 to 1000 μm, more preferably 200 to 800 μm, More preferably, it is 200-620 micrometers. In the present invention, the thickness of the photocatalytic material refers to the thickness of the photocatalytic material carried on the fibers constituting the filter base material. For example, the thickness of the photocatalytic member and the thickness of the filter base material are used as follows. It can be calculated from the formula.
Photocatalytic material thickness = {(photocatalytic material thickness) − (filter substrate thickness)} / 2
第1の光触媒性部材において光触媒性材料は、酸化チタン光触媒及び吸着剤を含む。 In the first photocatalytic member, the photocatalytic material includes a titanium oxide photocatalyst and an adsorbent.
[酸化チタン光触媒]
酸化チタンとしては、例えば、アナタース型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタンが挙げられ、高い光触媒活性を有することから、アナタース型酸化チタンが好ましい。本発明において「アナタース型酸化チタン」とは、粉末X線回折スペクトル測定において(使用電極:銅電極)、回折角度2θ=25.5度付近に回折ピークが現れる酸化チタンのことをいう。
[Titanium oxide photocatalyst]
Examples of the titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide. Anatase-type titanium oxide is preferable because it has high photocatalytic activity. In the present invention, “anatase-type titanium oxide” refers to titanium oxide in which a diffraction peak appears in the vicinity of a diffraction angle 2θ = 25.5 degrees in powder X-ray diffraction spectrum measurement (use electrode: copper electrode).
酸化チタン光触媒としては、脱臭速度の向上の点から、アナタース型酸化チタンとフッ素とを含み、酸化チタン光触媒中のフッ素の含有量が2.5〜3.5重量%であり、フッ素の90重量%以上が酸化チタンと化学結合している酸化チタン光触媒が好ましい。フッ素含有量が2.5重量%以上であれば、例えば、電気陰性度の大きなフッ素が酸化チタン表面に位置するようになる。このフッ素の電子吸引作用によって、近接する水酸基が活性化され水酸ラジカルが生じ易くなる。その結果、光触媒反応が促進され、脱臭速度を向上できると考えられるからである。また、フッ素含有量が3.5重量%以下であれば、例えば、酸化チタン表面における光触媒反応に必要な水酸基の数を確保でき、脱臭速度を維持できると考えられるからである。 The titanium oxide photocatalyst includes anatase-type titanium oxide and fluorine from the viewpoint of improving the deodorization rate, the fluorine content in the titanium oxide photocatalyst is 2.5 to 3.5% by weight, and 90% by weight of fluorine. A titanium oxide photocatalyst in which at least% is chemically bonded to titanium oxide is preferred. If the fluorine content is 2.5% by weight or more, for example, fluorine having a high electronegativity is located on the titanium oxide surface. Due to the electron withdrawing action of fluorine, adjacent hydroxyl groups are activated and hydroxyl radicals are easily generated. As a result, it is considered that the photocatalytic reaction is promoted and the deodorization rate can be improved. Moreover, if the fluorine content is 3.5% by weight or less, for example, it is considered that the number of hydroxyl groups necessary for the photocatalytic reaction on the titanium oxide surface can be secured and the deodorization rate can be maintained.
酸化チタン光触媒におけるフッ素含有量は、元素量にて2.7重量%〜3.3重量%が好ましく、より好ましくは2.9重量%〜3.1重量%である。フッ素の含有量は、例えば、吸光光度分析法(JIS K 0102)を用いて求めることができる。 The fluorine content in the titanium oxide photocatalyst is preferably 2.7 wt% to 3.3 wt%, more preferably 2.9 wt% to 3.1 wt% in terms of elemental amount. The fluorine content can be determined, for example, using an absorptiometric analysis method (JIS K 0102).
酸化チタンと化学結合しているフッ素は、光触媒活性及び脱臭速度の向上の観点から、酸化チタン光触媒における全てのフッ素のうち90重量%以上であることが好ましく、より好ましくは95重量%以上、さらに好ましくは100重量%、すなわち酸化チタン光触媒に含まれるフッ素の全量が酸化チタンと化学結合していることである。酸化チタン光触媒において、酸化チタンと化学結合しているフッ素の含有量は、例えば、2.35重量%〜3.5重量%であり、好ましくは2.5重量%〜3.5重量%、より好ましくは2.5重量%〜3.3重量%である。 From the viewpoint of improving photocatalytic activity and deodorization rate, the fluorine chemically bonded to titanium oxide is preferably 90% by weight or more of all fluorine in the titanium oxide photocatalyst, more preferably 95% by weight or more, and Preferably, 100% by weight, that is, the total amount of fluorine contained in the titanium oxide photocatalyst is chemically bonded to titanium oxide. In the titanium oxide photocatalyst, the content of fluorine chemically bonded to titanium oxide is, for example, 2.35 wt% to 3.5 wt%, preferably 2.5 wt% to 3.5 wt%. Preferably it is 2.5 weight%-3.3 weight%.
本発明において「酸化チタンとフッ素との化学結合」とは、酸化チタンとフッ素とが化学的に結合していることをいう。好適には担持や混合ではなく酸化チタンとフッ素とが原子レベルで結びついている状態のことをいい、より好適には酸化チタンとフッ素とがイオン結合していることをいう。本発明において「化学結合しているフッ素」とは、例えば、酸化チタン光触媒に含有されているフッ素のうち水に溶出しないフッ素のこという。酸化チタンと化学結合しているフッ素の量は、酸化チタン光触媒を水中に分散させ、pH調整剤(例えば、塩酸、アンモニア水)でpH=3以下又はpH=10以上に保持し、水中へのフッ素イオンの溶出量を比色滴定等により測定し、酸化チタン光触媒に含有するフッ素の総量から上記溶出量を差し引くことにより算出できる。フッ素イオンの溶出量は、後述する実施例のようにして測定することができる。本発明において「酸化チタンとフッ素とがイオン結合している」とは、酸化チタン光触媒を光電子分光分析装置で分析した際に、フッ素の1s軌道(F1s)のピークトップが683eV〜686eVの範囲となる場合をいう。これは、フッ素とチタンとがイオン結合したフッ化チタンのピークトップの値が上記範囲内であることに由来する。 In the present invention, “chemical bond between titanium oxide and fluorine” means that titanium oxide and fluorine are chemically bonded. Preferably, it refers to a state in which titanium oxide and fluorine are bonded at the atomic level, not supported or mixed, and more preferably it means that titanium oxide and fluorine are ionically bonded. In the present invention, “chemically bonded fluorine” means, for example, fluorine that does not elute into water among fluorine contained in the titanium oxide photocatalyst. The amount of fluorine chemically bonded to titanium oxide is determined by dispersing the titanium oxide photocatalyst in water and maintaining pH = 3 or lower or pH = 10 or higher with a pH adjusting agent (for example, hydrochloric acid or aqueous ammonia). It can be calculated by measuring the elution amount of fluorine ions by colorimetric titration or the like and subtracting the elution amount from the total amount of fluorine contained in the titanium oxide photocatalyst. The elution amount of fluorine ions can be measured as in Examples described later. In the present invention, “titanium oxide and fluorine are ionically bonded” means that when the titanium oxide photocatalyst is analyzed with a photoelectron spectrometer, the peak top of the fluorine 1s orbital (F 1s ) is in the range of 683 eV to 686 eV. This is the case. This is because the value of the peak top of titanium fluoride in which fluorine and titanium are ion-bonded is within the above range.
酸化チタン光触媒は、ナトリウムを含んでもよいが、光触媒活性及び脱臭速度の向上の点から、ナトリウムを含まないことが好ましい。ナトリウムを含む場合、酸化チタン光触媒全体に占めるナトリウムの含有量(A重量%)と、酸化チタン光触媒全体に占めるフッ素の含有量(B重量%)との比(A/B)は、光触媒活性及び脱臭速度の向上の点から、0.01以下であることが好ましく、より好ましくは0.005以下、さらに好ましくは0.001以下である。 The titanium oxide photocatalyst may contain sodium, but it is preferable not to contain sodium from the viewpoint of improving the photocatalytic activity and the deodorization rate. When sodium is included, the ratio (A / B) of the sodium content (A wt%) in the total titanium oxide photocatalyst to the fluorine content (B wt%) in the total titanium oxide photocatalyst is determined by the photocatalytic activity and From the viewpoint of improving the deodorization rate, it is preferably 0.01 or less, more preferably 0.005 or less, and still more preferably 0.001 or less.
酸化チタン光触媒の比表面積は、光触媒と臭気成分との接触面の増加、また、光触媒反応効率の向上の点から、200〜350m2/gが好ましく、より好ましくは250〜350m2/gである。ここで、本発明において比表面積とは、BET法(窒素の吸着・脱離方式)により測定した、酸化チタン光触媒の粉末1g当たりの表面積値のことをいう。比表面積が200m2/g以上の場合、分解する対象物との接触面積を大きくすることができる。 The specific surface area of the titanium oxide photocatalyst, increase in contact surface between the photocatalyst and odorous components, also from the viewpoint of improvement of the photocatalytic reaction efficiency, 200~350m 2 / g is preferably, more preferably 250 to 350 2 / g . Here, in the present invention, the specific surface area means a surface area value per 1 g of the titanium oxide photocatalyst powder measured by the BET method (nitrogen adsorption / desorption method). When the specific surface area is 200 m 2 / g or more, the contact area with the object to be decomposed can be increased.
[吸着剤]
吸着剤としては、例えば、アルミノケイ酸塩及びシリカゲル等が挙げられる。中でも、アルミノケイ酸塩が好ましく、アルミノケイ酸塩としては、例えば、ゼオライトが挙げられる。ゼオライトの中でも、紫外光の透過性及び脱臭性能の点から、ハイシリカゼオライトが好ましく、臭気成分の吸着力の点から、ZSM−5型ゼオライトがより好ましい。ゼオライトにおけるシリカとアルミナのモル成分比(シリカ/アルミナ)は、例えば、10以上であり、好ましくは1500以上である。
[Adsorbent]
Examples of the adsorbent include aluminosilicate and silica gel. Of these, aluminosilicate is preferable, and examples of the aluminosilicate include zeolite. Among the zeolites, high silica zeolite is preferable from the viewpoint of ultraviolet light permeability and deodorizing performance, and ZSM-5 type zeolite is more preferable from the viewpoint of adsorption of odor components. The molar component ratio of silica and alumina in the zeolite (silica / alumina) is, for example, 10 or more, preferably 1500 or more.
ゼオライトは、市販品を使用しても良い。市販品としては、例えば、HSZ−890HOA(東ソー株式会社製、ZSM−5型、シリカ/アルミナ比:1500〜2000(平均:1890)、平均粒径8〜14μm、カチオンタイプ:H、比表面積(BET):280〜330m2/g)、HiSiv(TM)−3000(ユニオン昭和株式会社製、平均粒径:12.7μm、カチオンタイプ:Na、細孔径:6Å以下、比表面積(BET):400m2/g以上)等が挙げられる。 As the zeolite, a commercially available product may be used. Examples of commercially available products include HSZ-890HOA (manufactured by Tosoh Corporation, ZSM-5 type, silica / alumina ratio: 1500 to 2000 (average: 1890), average particle size of 8 to 14 μm, cation type: H, specific surface area ( BET): 280-330 m 2 / g), HiSiv (TM) -3000 (manufactured by Union Showa Co., Ltd., average particle size: 12.7 μm, cation type: Na, pore size: 6 mm or less, specific surface area (BET): 400 m 2 / g or more).
光触媒性材料における酸化チタン光触媒の含有量は、光照射時の脱臭性能の点から、20〜90重量%が好ましく、より好ましくは60〜80重量%である。また、光触媒性材料における吸着剤の含有量は、脱臭性能の点から、10〜80重量%が好ましく、より好ましくは20〜30重量%である。 The content of the titanium oxide photocatalyst in the photocatalytic material is preferably 20 to 90% by weight, more preferably 60 to 80% by weight from the viewpoint of deodorizing performance during light irradiation. In addition, the content of the adsorbent in the photocatalytic material is preferably 10 to 80% by weight, more preferably 20 to 30% by weight, from the viewpoint of deodorizing performance.
光触媒性材料における酸化チタン光触媒と吸着剤との重量比(酸化チタン光触媒の重量:吸着剤の重量)は、例えば、9:1〜1:9であり、脱臭性能の点から8:2〜5:5が好ましく、より好ましくは7:3である。 The weight ratio of the titanium oxide photocatalyst to the adsorbent in the photocatalytic material (weight of the titanium oxide photocatalyst: weight of the adsorbent) is, for example, 9: 1 to 1: 9, and 8: 2 to 5 in terms of deodorizing performance. : 5 is preferable, and 7: 3 is more preferable.
光触媒性材料は、酸化チタン及び/又は吸着剤とフィルター基材との接着性の向上の点から、その他の成分として、バインダーを含んでも良い。バインダーとしては、例えば、コロイダルシリカ、コロイダルアルミナ、モンモリロナイト及びカオリン等が挙げられる。光触媒性材料におけるバインダーの含有量は、光照射時の脱臭性能の点から、20〜30重量%が好ましい。光触媒性材料におけるバインダーの割合は、バインダーの種類及び結着力等に応じて適宜決定できるが、脱臭性能向上の点から、少ないことが好ましい。バインダーがコロイダルシリカである場合、光触媒性材料における酸化チタン光触媒及び吸着剤の合計とバインダーとの重量比(酸化チタン光触媒及び吸着剤の合計重量:バインダーの重量)は、例えば、10:0〜5:5であり、好ましくは9:1〜7:3である。 The photocatalytic material may contain a binder as another component from the viewpoint of improving the adhesion between the titanium oxide and / or the adsorbent and the filter substrate. Examples of the binder include colloidal silica, colloidal alumina, montmorillonite, and kaolin. The content of the binder in the photocatalytic material is preferably 20 to 30% by weight from the viewpoint of deodorizing performance during light irradiation. The ratio of the binder in the photocatalytic material can be appropriately determined according to the kind of binder and the binding force, but it is preferably small from the viewpoint of improving the deodorizing performance. When the binder is colloidal silica, the weight ratio of the total of titanium oxide photocatalyst and adsorbent to the binder in the photocatalytic material (total weight of titanium oxide photocatalyst and adsorbent: weight of binder) is, for example, 10: 0 to 5 : 5, preferably 9: 1 to 7: 3.
[フィルター基材]
第1の光触媒性部材においてフィルター基材は、繊維布帛である。繊維布帛としては、編物、織物及び不織布が挙げられる。中でも、圧損の点から、編物及び織物が好ましく、より好ましくは織物である。布帛に使用される繊維としては、例えば、ポリアミド系繊維、ポリエステル系繊維、ポリアルキレンパラオキシベンゾエート系繊維、ポリウレタン系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリアクリロニトリル系繊維、ポリオレフィン系繊維、フェノール系繊維などの合成繊維;ガラス繊維、金属繊維、アルミナ繊維、活性炭素繊維などの無機繊維;木材パルプ、麻パルプ、コットンリンターパルプなどの天然繊維;再生繊維等が挙げられ、中でも、光透過性の点からガラス繊維が好ましい。フィルター基材として、ガラス繊維織布を使用することが好ましい。
[Filter base material]
In the first photocatalytic member, the filter substrate is a fiber fabric. Examples of the fiber fabric include a knitted fabric, a woven fabric, and a non-woven fabric. Among these, a knitted fabric and a woven fabric are preferable from the viewpoint of pressure loss, and a woven fabric is more preferable. Examples of fibers used in the fabric include polyamide fibers, polyester fibers, polyalkylene paraoxybenzoate fibers, polyurethane fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyacrylonitrile fibers. Synthetic fibers such as fibers, polyolefin fibers and phenol fibers; inorganic fibers such as glass fibers, metal fibers, alumina fibers and activated carbon fibers; natural fibers such as wood pulp, hemp pulp and cotton linter pulp; and recycled fibers Among them, glass fiber is preferable from the viewpoint of light transmittance. A glass fiber woven fabric is preferably used as the filter substrate.
フィルター基材の開孔率は、圧損の点から10%以上が好ましく、基材の強度及び脱臭速度の維持の点から50%以下が好ましく、より好ましくは25%以下である。したがって、フィルター基材の開孔率は、10〜50%が好ましく、より好ましくは10〜25%である。フィルター基材の開孔率は、例えば、フィルター基材の面積と開口部の面積とを用いて下記式より算出できる。
開孔率(%)={(開口部の面積)/(フィルター基材の面積)}×100
The porosity of the filter substrate is preferably 10% or more from the viewpoint of pressure loss, preferably 50% or less, more preferably 25% or less, from the viewpoint of maintaining the strength and deodorization rate of the substrate. Therefore, the porosity of the filter substrate is preferably 10 to 50%, more preferably 10 to 25%. The aperture ratio of the filter substrate can be calculated from the following formula using, for example, the area of the filter substrate and the area of the opening.
Opening ratio (%) = {(area of opening) / (area of filter substrate)} × 100
[第2の光触媒性部材]
第2の光触媒性部材は、上述の通り、フィルター基材に光触媒性材料が担持された光触媒性部材であって、前記光触媒性材料が、アナタース型酸化チタン及びフッ素を含む酸化チタン光触媒とゼオライトとを含み、前記フィルター基材が、ガラス繊維布帛であり、光触媒性部材に含まれるTi(チタン)、Si(シリコン)及びF(フッ素)の質量の合計に対するFの割合(F質量/(Ti、Si及びFの質量の合計)×100)が、0.38質量%以上である。
[Second photocatalytic member]
As described above, the second photocatalytic member is a photocatalytic member in which a photocatalytic material is supported on a filter base material, and the photocatalytic material includes an anatase-type titanium oxide and a fluorine-containing titanium oxide photocatalyst, zeolite, The filter base material is a glass fiber fabric, and the ratio of F to the total mass of Ti (titanium), Si (silicon) and F (fluorine) contained in the photocatalytic member (F mass / (Ti, The sum of the masses of Si and F) × 100) is 0.38% by mass or more.
第2の光触媒性部材は、Fの割合が0.38質量%以上であるので、例えば、脱臭速度を向上させることができる。また、第2の光触媒性部材によれば、光触媒性材料が酸化チタン光触媒及び吸着剤を含むため、例えば、光照射時及び消灯時の双方において脱臭性能を発揮することができる。このため、第2の光触媒性部材によれば、例えば、省エネルギー効果に優れる。Ti、Si及びFの質量は、例えば、イオンクロマトグラフを用いて求めることができる。 Since the ratio of F is 0.38 mass% or more, the 2nd photocatalytic member can improve a deodorizing speed, for example. Further, according to the second photocatalytic member, since the photocatalytic material includes a titanium oxide photocatalyst and an adsorbent, for example, deodorizing performance can be exhibited both during light irradiation and during extinguishing. For this reason, according to the 2nd photocatalytic member, it is excellent in the energy-saving effect, for example. The masses of Ti, Si, and F can be determined using, for example, an ion chromatograph.
第2の光触媒性部材における光触媒性材料は、アナタース型酸化チタン及びフッ素を含む酸化チタン光触媒とゼオライトとを含む。アナタース型酸化チタン及びフッ素を含む酸化チタン光触媒は、脱臭速度向上の点から、上記第1の光触媒性材料で例示したアナタース型酸化チタン及びフッ素を含み、酸化チタン光触媒中のフッ素の含有量が、2.5〜3.5重量%であり、フッ素の90重量%以上が、酸化チタンと化学結合している酸化チタン光触媒が好ましい。 The photocatalytic material in the second photocatalytic member contains anatase-type titanium oxide and a titanium oxide photocatalyst containing fluorine and zeolite. The titanium oxide photocatalyst containing anatase-type titanium oxide and fluorine contains anatase-type titanium oxide and fluorine exemplified in the first photocatalytic material from the viewpoint of improving the deodorization rate, and the content of fluorine in the titanium oxide photocatalyst is The titanium oxide photocatalyst is preferably 2.5 to 3.5% by weight, and 90% by weight or more of fluorine is chemically bonded to titanium oxide.
吸着剤は、第1の光触媒性部材で例示した吸着剤と同様のものが使用できる。第2の光触媒性部材の光触媒性材料は、酸化チタン及び/又は吸着剤とフィルター基材との接着性の向上の点から、その他の成分として、バインダーを含んでも良い。バインダーとしては、例えば、コロイダルシリカ、コロイダルアルミナ、モンモリロナイト及びカオリン等が挙げられる。光触媒性材料におけるバインダーの含有量は、光照射時の脱臭性能の点から、20〜30重量%が好ましい。 As the adsorbent, the same adsorbent as exemplified in the first photocatalytic member can be used. The photocatalytic material of the second photocatalytic member may contain a binder as another component from the viewpoint of improving the adhesion between titanium oxide and / or the adsorbent and the filter base material. Examples of the binder include colloidal silica, colloidal alumina, montmorillonite, and kaolin. The content of the binder in the photocatalytic material is preferably 20 to 30% by weight from the viewpoint of deodorizing performance during light irradiation.
第2の光触媒性部材は、シート状(平板)で使用しても良いし、例えばプリーツ加工や、コルゲート加工によりハニカムに成形して使用しても良い。 The second photocatalytic member may be used in the form of a sheet (flat plate), or may be used after being formed into a honeycomb by, for example, pleating or corrugating.
[光触媒性部材の製造方法]
第1及び第2の光触媒性部材は、例えば、上述した酸化チタン光触媒とゼオライトとを含む光触媒性材料をフィルター基材に塗布等することにより製造できる。光触媒性材料を溶媒等に分散させた後、フィルター基材に塗布しても良く、溶媒としては、例えば、水およびエチルアルコール等が使用できる。また、光触媒性材料とバインダーとを混合し、その混合物をフィルター基材に塗布しても良いし、予めバインダーをフィルター基材に塗布し、その後光触媒性材料を塗布しても良い。塗布法としては、例えば、スラリー塗布、スピンコート、吹き付け塗布、キャスティング塗工等が挙げられる。
[Method for producing photocatalytic member]
The first and second photocatalytic members can be produced, for example, by applying a photocatalytic material containing the above-described titanium oxide photocatalyst and zeolite to a filter substrate. After the photocatalytic material is dispersed in a solvent or the like, the photocatalytic material may be applied to a filter substrate. As the solvent, for example, water and ethyl alcohol can be used. Further, the photocatalytic material and the binder may be mixed, and the mixture may be applied to the filter base material, or the binder may be applied to the filter base material in advance, and then the photocatalytic material may be applied. Examples of the coating method include slurry coating, spin coating, spray coating, casting coating, and the like.
上記フッ素を含有する酸化チタン光触媒は、例えば、n−ブチルアミンの吸着量が8μmol/g以下であるアナタース型酸化チタンの水分散液とフッ素化合物とを混合し、混合液のpHが3を超える場合は酸を用いてpHを3以下に調整することによって、混合液中で酸化チタンとフッ素化合物とを反応させることにより製造できる。n−ブチルアミンの吸着量が8μmol/g以下であるアナタース型酸化チタンとしては、例えば、堺化学工業株式会社製SSP−25等が使用できる。その水分散液としては、例えば、堺化学工業株式会社製CSB−M等が使用できる。フッ素化合物としては、例えば、フッ化アンモニウム、フッ化カリウム、フッ化ナトリウム、フッ化水素酸等が挙げられる。 The fluorine-containing titanium oxide photocatalyst, for example, is a mixture of an anatase-type titanium oxide aqueous dispersion in which the adsorption amount of n-butylamine is 8 μmol / g or less and a fluorine compound, and the pH of the mixture exceeds 3 Can be produced by reacting titanium oxide with a fluorine compound in a mixed solution by adjusting the pH to 3 or less using an acid. As the anatase type titanium oxide whose n-butylamine adsorption amount is 8 μmol / g or less, for example, SSP-25 manufactured by Sakai Chemical Industry Co., Ltd. can be used. As the aqueous dispersion, for example, CSB-M manufactured by Sakai Chemical Industry Co., Ltd. can be used. Examples of the fluorine compound include ammonium fluoride, potassium fluoride, sodium fluoride, hydrofluoric acid, and the like.
[空質浄化装置]
本発明は、その他の態様として、本発明の光触媒性部材を備える空質浄化装置を含む。空質浄化装置は、さらに、紫外線光源を備えることが好ましく、より好ましくは400nm以下の波長の光を照射する光源を備えることである。本発明の空質浄化装置によれば、例えば臭気成分の分解性能及び分解速度を向上させることができる。また、本発明の空質浄化装置は、臭気成分の脱臭速度向上の点から、光触媒性部材へ有機物を含む気体を導入する送気手段をさらに備えていても良い。送気手段としては、例えばシロッコファン等の送風機が使用できる。
[Air quality purification equipment]
As another aspect, the present invention includes an air purification device including the photocatalytic member of the present invention. The air purification apparatus preferably further includes an ultraviolet light source, and more preferably includes a light source that emits light having a wavelength of 400 nm or less. According to the air purification apparatus of the present invention, for example, the decomposition performance and decomposition rate of odor components can be improved. The air purification apparatus of the present invention may further include an air supply means for introducing a gas containing an organic substance into the photocatalytic member from the viewpoint of improving the deodorization speed of the odor component. As the air supply means, for example, a blower such as a sirocco fan can be used.
以下、本発明の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定されるものではない。 Examples of the present invention will be described below together with comparative examples. In addition, this invention is not limited to the following Example.
(フィルター基材の開孔率と圧力損失との関係)
開孔率の異なる4種類のフィルター基材(ガラス繊維織布、商品名:V375H、V385H、ユニチカ株式会社製)について、面風速1m/sでの圧力損失(単位:Pa)を圧力計(マノメーター)で測定した。得られた圧力損失を開孔率とあわせて下記表1に示す。下記表1に示すように、開孔率が5%未満になると、最大風量時の圧力損失が35Paを超えることが分かった。
(Relationship between filter substrate hole area ratio and pressure loss)
Pressure loss (unit: Pa) at a surface wind speed of 1 m / s was measured with a pressure gauge (manometer) for four types of filter base materials (glass fiber woven fabrics, product names: V375H, V385H, manufactured by Unitika Ltd.) with different open areas. ). The obtained pressure loss is shown in Table 1 below together with the hole area ratio. As shown in Table 1 below, it was found that when the hole area ratio was less than 5%, the pressure loss at the maximum air volume exceeded 35 Pa.
[フィルター基材の開孔率]
フィルター基材の開孔率は、フィルター基材の面積及び開口部の面積をそれぞれものさしを用いて計測し、それらを用いて下記式より算出した。
開孔率(%)={(開口部の面積)/(フィルター基材の面積)}×100
[Aperture rate of filter substrate]
The aperture ratio of the filter base material was obtained by measuring the area of the filter base material and the area of the opening using a ruler and calculating from the following formula using them.
Opening ratio (%) = {(area of opening) / (area of filter substrate)} × 100
(実施例1〜17)
1.酸化チタン光触媒の調製
酸化チタン(商品名:SSP−25、堺化学工業株式会社製、アナタース型、粒径:5〜10nm、比表面積:270m2/g以上)の濃度が150g/Lとなるように酸化チタンに純水を加え、これを撹拌して、酸化チタン分散液を調製した。この酸化チタン分散液に、酸化チタンに対してフッ素(元素)に換算して5.0重量%に相当するフッ化水素酸(和光純薬社製、特級)を添加し、pH3に保持しながら25℃で60分間反応させた。得られた反応物を水洗した。水洗は、反応物を濾過して回収される濾液の電気伝導度が1mS/cm以下となるまで行った。そして、これを空気中において130℃で5時間乾燥させて酸化チタン光触媒を調製した。
(Examples 1-17)
1. Preparation of titanium oxide photocatalyst The concentration of titanium oxide (trade name: SSP-25, manufactured by Sakai Chemical Industry Co., Ltd., anatase type, particle size: 5-10 nm, specific surface area: 270 m 2 / g or more) is 150 g / L. Pure water was added to titanium oxide, and this was stirred to prepare a titanium oxide dispersion. To this titanium oxide dispersion, hydrofluoric acid (made by Wako Pure Chemical Industries, special grade) corresponding to 5.0% by weight in terms of fluorine (element) is added to titanium oxide while maintaining the pH at 3. The reaction was performed at 25 ° C. for 60 minutes. The resulting reaction product was washed with water. The washing with water was performed until the electric conductivity of the filtrate collected by filtering the reaction product was 1 mS / cm or less. And this was dried in air at 130 degreeC for 5 hours, and the titanium oxide photocatalyst was prepared.
[フッ素含有量]
吸光光度分析法(JIS K 0102)により酸化チタン光触媒中のフッ素含有量を求めたところ、3.3重量%であった。
[Fluorine content]
When the fluorine content in the titanium oxide photocatalyst was determined by absorptiometric analysis (JIS K 0102), it was 3.3% by weight.
[フッ素と酸化チタンとの結合の確認]
酸化チタン光触媒を光電子分光分析装置で分析したところ、F1sのピークトップが683eV〜686eVの範囲となるスペクトルを示した。つまり、得られた酸化チタン光触媒において、酸化チタンとフッ素とがイオン結合していることが確認できた。
[Confirmation of bond between fluorine and titanium oxide]
When the titanium oxide photocatalyst was analyzed with a photoelectron spectrometer, it showed a spectrum in which the peak top of F 1s was in the range of 683 eV to 686 eV. That is, it was confirmed that titanium oxide and fluorine were ionically bonded in the obtained titanium oxide photocatalyst.
[アナタース型の確認]
酸化チタン光触媒を粉末X線回折装置(使用電極:銅電極)で分析したところ、回折角度2θ=25.5度において回折ピークが現れた。つまり、得られた酸化チタン光触媒はアナタース型酸化チタンであった。
[Confirmation of anatase type]
When the titanium oxide photocatalyst was analyzed by a powder X-ray diffractometer (electrode used: copper electrode), a diffraction peak appeared at a diffraction angle 2θ = 25.5 degrees. That is, the obtained titanium oxide photocatalyst was anatase type titanium oxide.
2.光触媒性部材の作製
得られた酸化チタン光触媒490gと、ゼオライト(商品名:HSZ−890HOA、東ソー製、シリカ/アルミナ比(モル比):1950)210gとを乳鉢により1分間乾式混合した。酸化チタン光触媒とゼオライトとの混合物700gをコロイダルシリカ、スノーテックスO、日産化学製に分散させてペースト状にし、開孔率の異なる3種類のフィルター基材(ガラスクロス、商品名:V375H、V385H、ユニチカ製、200cm2(100mm×200mm))に添着して下記表2から4に示す実施例1〜17及び比較例1〜6の光触媒性部材を作製した。なお、開孔率が50%のフィルター基材は、商品名V375Hのガラス繊維不織布(ユニチカ株式会社製)から開孔率が50%となるように一部の繊維を抜くことにより作製した。
2. Production of Photocatalytic Member 490 g of the obtained titanium oxide photocatalyst and 210 g of zeolite (trade name: HSZ-890HOA, manufactured by Tosoh Corporation, silica / alumina ratio (molar ratio): 1950) were dry-mixed for 1 minute using a mortar. 700 g of a mixture of titanium oxide photocatalyst and zeolite is dispersed in colloidal silica, Snowtex O, manufactured by Nissan Chemical Co., Ltd., and pasted into three types of filter base materials (glass cloth, trade names: V375H, V385H, The photocatalytic members of Examples 1 to 17 and Comparative Examples 1 to 6 shown in Tables 2 to 4 below were prepared by attaching to Unitika, 200 cm 2 (100 mm × 200 mm)). In addition, the filter base material with a porosity of 50% was produced by removing some fibers from a glass fiber nonwoven fabric (manufactured by Unitika Ltd.) having a trade name of V375H so that the porosity was 50%.
[触媒担持量]
フィルター基材に添着した酸化チタン光触媒及びゼオライトの合計重量をフィルター基材の面積(200cm2)で除することにより触媒担持量を算出した。
[Catalyst loading]
The amount of catalyst supported was calculated by dividing the total weight of the titanium oxide photocatalyst and zeolite adhering to the filter substrate by the area of the filter substrate (200 cm 2 ).
[光触媒性材料の厚み]
光触媒性部材をガラス板2枚で挟み、その厚みをマイクロメータで測定した。測定値、ガラス板の厚み及びフィルター基材の厚みを用いて、下記式より光触媒性材料の厚みを算出した。
光触媒性材料の厚み=[測定値−(ガラス板の厚み)×2−(フィルター基材の厚み)]/2
[Thickness of photocatalytic material]
The photocatalytic member was sandwiched between two glass plates, and the thickness was measured with a micrometer. Using the measured value, the thickness of the glass plate, and the thickness of the filter substrate, the thickness of the photocatalytic material was calculated from the following formula.
Photocatalytic material thickness = [Measured value− (Glass plate thickness) × 2- (Filter substrate thickness)] / 2
[光触媒性部材に含まれるTi、Si及びFの質量の合計に対するFの割合]
光触媒性部材におけるTi、Si及びFの質量をイオンクロマトグラフを用いて測定した。得られた質量を用いて下記式よりTi、Si及びFの質量の合計に対するFの割合を算出した。
Fの割合={F質量/(Ti質量+Si質量+F質量)}×100
[Ratio of F to the total mass of Ti, Si and F contained in the photocatalytic member]
The masses of Ti, Si and F in the photocatalytic member were measured using an ion chromatograph. Using the obtained mass, the ratio of F to the total mass of Ti, Si and F was calculated from the following formula.
F ratio = {F mass / (Ti mass + Si mass + F mass)} × 100
3.測定装置
測定装置は、図1に示す構成の測定装置を使用した。図1の測定装置101は、アクリル製ボックス(内容積:100L)105と、その中に配置された脱臭ユニット103及び攪拌用ファン102を含む。アクリル製ボックス105は、臭気成分を導入する導入口108と、アクリル製ボックス105内の空気をサンプリング可能な排出口109を備える。排出口109には、3分毎の自動サンプリング装置を備えるガスクロマトグラフ(商品名:GC−14B、島津製作所製)を接続し(図示せず)、ガスクロマトグラフのカラムは、GASCHROPACK56(商品名、GLサイエンス製)を使用した。
3. Measuring device As the measuring device, a measuring device having the configuration shown in FIG. 1 was used. The measuring
脱臭ユニット103は、ブラックライト104、光触媒性部材(100mm×200mm)103及び送風機107がこの順で配置されており、送風機107により光触媒性部材106の面に直交する方向にガスを導入可能である。ブラックライト104は、ブラックライトブルー蛍光灯(品番:FL6BL−B、松下電器製、最大波長:352nm、定格ランプ電力:6W、紫外放射出力:0.6W)を使用した。ブラックライト104は、光触媒性部材106に照射される紫外線(365nm)の照度が1.0mW/cm2となるように配置した。照度は、紫外線積算光量計(商品名:UVD−S365、ウシオ電機製)を用いて測定した。
In the
4.評価方法
攪拌用ファン102を回転させながら、光触媒性部材106を配置した図1の測定装置101内の空気を乾燥空気で置換した。ついで、窒素で希釈した標準ガス(アセトアルデヒド:524ppm)を1.80L導入し、アクリル製ボックス105内のアセトアルデヒド濃度を10ppmとした。アセトアルデヒドを導入した直後に、ブラックライトを点灯し、送風機107を回転させて光触媒性部材106による脱臭を開始した。脱臭開始後から3分毎にガスクロマトグラフを用いてアセトアルデヒド濃度を測定した。
4). Evaluation Method While rotating the stirring
脱臭開始後3分後から15分後のアセトアルデヒド濃度の時間変化を対数近似し、その傾きの絶対値を脱臭速度係数とした。得られた脱臭速度係数(絶対値及び相対値)を下記表2から4に示す。表2はフィルター基材の開孔率が10%の光触媒性部材、表3はフィルター基材の開孔率が25%の光触媒性部材、表4はフィルター基材の開孔率が50%の光触媒性部材の結果をそれぞれ示す。また、得られた脱臭速度係数から、フィルターの開孔率の応じて下記基準に基づき判定し、その判定結果をあわせて表2から4に示す。なお、比較例3については、フィルター基材からの光触媒性材料の剥離が著しく測定を行うことができなかった。
○:脱臭速度係数が定常状態(最大値に達した後に、ほぼ一定となった状態)に達している
×:定常状態に満たない又は測定不可
また、実施例1、4及び5の光触媒性部材については上述の測定方法により圧力損失を測定した。その結果を表2に示す。
The time change of the acetaldehyde concentration from 3 minutes to 15 minutes after the start of deodorization was approximated logarithmically, and the absolute value of the slope was taken as the deodorization rate coefficient. The obtained deodorization rate coefficients (absolute values and relative values) are shown in Tables 2 to 4 below. Table 2 shows a photocatalytic member having a filter substrate with a 10% porosity, Table 3 shows a photocatalytic member with a 25% filter substrate, and Table 4 shows a filter substrate with a 50% porosity. The result of a photocatalytic member is shown, respectively. Moreover, it determined based on the following reference | standard according to the aperture ratio of a filter from the obtained deodorizing rate coefficient, and the determination result is combined with Tables 2-4. In Comparative Example 3, peeling of the photocatalytic material from the filter base material could not be measured significantly.
○: Deodorization rate coefficient has reached a steady state (a state in which the deodorization rate coefficient has become almost constant after reaching the maximum value). X: The steady state is not reached or measurement is not possible. In addition, the photocatalytic members of Examples 1, 4 and 5 About, the pressure loss was measured by the above-mentioned measuring method. The results are shown in Table 2.
上記表2に示すように、触媒担持量が10〜50mg/cm2である実施例1〜8の光触媒性部材は、いずれも触媒担持量が10mg/cm2未満の比較例1〜3の光触媒性部材よりも脱臭速度係数が高かった。また、触媒担持量がそれぞれ10.7、22.8及び25.9mg/cm2である実施例1、4及び5の光触媒性部材はいずれも圧力損失は25Pa以下であり、光触媒性材料の担持前の圧力損失(20Pa)と同程度であった。つまり、光触媒性材料の担持による大幅な圧力損失の増加はなく、また、担持後の光触媒性部材の圧力損失はフィルター効率に優れる圧力損失であるといえる。 As shown in Table 2 above, the photocatalytic members of Examples 1 to 8 having a catalyst loading amount of 10 to 50 mg / cm 2 are all the photocatalysts of Comparative Examples 1 to 3 having a catalyst loading amount of less than 10 mg / cm 2. The deodorization rate coefficient was higher than that of the sex member. In addition, the photocatalytic members of Examples 1, 4, and 5 having catalyst loadings of 10.7, 22.8, and 25.9 mg / cm 2 , respectively, had a pressure loss of 25 Pa or less, and supported the photocatalytic material. It was almost the same as the previous pressure loss (20 Pa). That is, there is no significant increase in pressure loss due to the loading of the photocatalytic material, and the pressure loss of the photocatalytic member after loading is a pressure loss with excellent filter efficiency.
また、上記表3及び4に示すように、触媒担持量が10〜50mg/cm2である実施例9〜14の光触媒性部材(開孔率:25%)は、いずれも触媒担持量が10mg/cm2未満の比較例4及び5の光触媒性部材よりも脱臭速度係数が高く、実施例15〜17の光触媒性部材(開孔率:50%)は比較例6の光触媒性部材よりも脱臭速度係数が高かった。 As shown in Tables 3 and 4 above, the photocatalytic members (opening ratio: 25%) of Examples 9 to 14 having a catalyst loading amount of 10 to 50 mg / cm 2 both have a catalyst loading amount of 10 mg. The deodorization rate coefficient is higher than that of the photocatalytic members of Comparative Examples 4 and 5 less than / cm 2, and the photocatalytic members of Examples 15 to 17 (opening rate: 50%) are more deodorized than the photocatalytic member of Comparative Example 6. The speed coefficient was high.
(実施例18)
コロイダルシリカ溶液(30重量%、溶媒:水)を塗布したフィルター基材に光触媒性材料を添着したこと、触媒担持量を約20mg/cm2とした以外は実施例1と同様に実施例18の光触媒性部材を作製した。得られた光触媒性部材におけるTi、Si及びFの質量の合計に対するFの割合は、0.62質量%であった。
(Example 18)
Example 18 is the same as Example 1 except that a photocatalytic material is attached to a filter substrate coated with a colloidal silica solution (30% by weight, solvent: water), and the amount of catalyst supported is about 20 mg / cm 2 . A photocatalytic member was prepared. The ratio of F to the total mass of Ti, Si and F in the obtained photocatalytic member was 0.62% by mass.
(実施例19)
酸化チタン光触媒として、SSP−25(商品名、堺化学工業株式会社製、アナタース型、粒径:5〜10nm、比表面積:270m2/g以上)を使用した以外は、実施例18と同様に実施例19の光触媒性部材を作製した。
(Example 19)
As in Example 18, except that SSP-25 (trade name, manufactured by Sakai Chemical Industry Co., Ltd., anatase type, particle size: 5 to 10 nm, specific surface area: 270 m 2 / g or more) was used as the titanium oxide photocatalyst. The photocatalytic member of Example 19 was produced.
実施例18及び19の光触媒性部材を用いて実施例1と同様にアセトアルデヒドの脱臭評価を行い、脱臭速度係数(絶対値)を求めた。その結果、実施例18の光触媒性部材の脱臭速度係数は0.248、実施例19の光触媒性部材の脱臭速度係数は0.098であった。酸化チタン光触媒として、アナタース型酸化チタン及びフッ素を含み、酸化チタン光触媒中のフッ素の含有量が、2.5〜3.5重量%であり、フッ素の90重量%以上が、酸化チタンと化学結合している酸化チタンを使用することにより、脱臭速度を向上できることが確認できた。 Acetaldehyde deodorization was evaluated in the same manner as in Example 1 using the photocatalytic members of Examples 18 and 19, and the deodorization rate coefficient (absolute value) was determined. As a result, the deodorization rate coefficient of the photocatalytic member of Example 18 was 0.248, and the deodorization rate coefficient of the photocatalytic member of Example 19 was 0.098. The titanium oxide photocatalyst contains anatase-type titanium oxide and fluorine, the fluorine content in the titanium oxide photocatalyst is 2.5 to 3.5% by weight, and 90% by weight or more of the fluorine is chemically bonded to titanium oxide. It was confirmed that the deodorization rate can be improved by using the titanium oxide.
(実施例20)
触媒担持量を約20mg/cm2とした以外は実施例9と同様に実施例20の光触媒性部材(フィルター基材の開孔率:25%)を作製した。得られた光触媒性部材を図2に示す筐体203に挿入した。図2の筐体203は、光触媒性部材201と光触媒性部材201との間にブラックライト冷却極管202が配置されており、光触媒性部材201に照射される紫外線(365nm)の照度が平均1.0mW/cm2となるように調節した。この筐体203を空気清浄機(商品名:エアーリッチ、松下電器製)の脱臭フィルター部に組み込み、ステンレス製の環境試験室(内容積:23.2m3)に配置した。ついで、アセトアルデヒドの水希釈液を蒸気拡散させ、室内のアセトアルデヒド濃度を10ppmとした。その後、脱臭開始から30分後、60分後及び90分後に環境試験質内の臭気を採取した。採取した臭気(3L)をDNPH(ジニトロフェニル)で濃縮し、液体クロマトグラフィーを用いてアセトアルデヒド濃度を測定した。得られた結果を図3に示す。
(Example 20)
A photocatalytic member of Example 20 (perforation rate of filter base: 25%) was prepared in the same manner as in Example 9 except that the amount of the catalyst supported was about 20 mg / cm 2 . The obtained photocatalytic member was inserted into the
図3より、実施例20の光触媒性部材によれば、脱臭開始後60分で90%以上のアセトアルデヒドを脱臭できた。 From FIG. 3, according to the photocatalytic member of Example 20, 90% or more of acetaldehyde could be deodorized 60 minutes after the start of deodorization.
本発明は、例えば脱臭、消臭、空気浄化等の目的で使用される浄化デバイスに有用である。 The present invention is useful for purification devices used for the purpose of deodorization, deodorization, air purification, and the like.
101・・・測定装置
102・・・攪拌用ファン
103・・・脱臭ユニット
104・・・ブラックライト
105・・・アクリル製ボックス
106・・・光触媒性部材
107・・・送風機
108・・・導入口
109・・・排出口
201・・・光触媒性部材
202・・・ブラックライト冷却極管
203・・・筐体
DESCRIPTION OF
Claims (11)
前記フィルター基材は、繊維布帛であり、
前記光触媒性材料は、酸化チタン光触媒と吸着剤とを含み、
前記酸化チタン光触媒が、アナタース型酸化チタン及びフッ素を含み、
前記酸化チタン光触媒におけるフッ素の含有量が、2.5〜3.5重量%であり、
前記フッ素の90重量%以上が、前記酸化チタンと化学結合している酸化チタン光触媒であり、
前記フィルター基材における単位面積当たりの前記酸化チタン光触媒及び前記吸着剤の合計担持量が、10〜50mg/cm2である光触媒性部材。 A photocatalytic member having a photocatalytic material supported on a filter substrate,
The filter substrate is a fiber fabric,
The photocatalytic material includes a titanium oxide photocatalyst and an adsorbent,
The titanium oxide photocatalyst contains anatase type titanium oxide and fluorine,
The fluorine content in the titanium oxide photocatalyst is 2.5 to 3.5% by weight,
90% by weight or more of the fluorine is a titanium oxide photocatalyst chemically bonded to the titanium oxide,
The photocatalytic member whose total loading of the said titanium oxide photocatalyst per said unit area in the said filter base material and the said adsorption agent is 10-50 mg / cm < 2 >.
光触媒性部材。 The supported amount is 10 to 40 mg / cm 2, the photocatalytic member according to any one of claims 1 to 4.
前記光触媒性材料が、酸化チタン光触媒とゼオライトとを含み、
前記酸化チタン光触媒が、アナタース型酸化チタン及びフッ素を含み、
前記酸化チタン光触媒におけるフッ素の含有量が、2.5〜3.5重量%であり、
前記フッ素の90重量%以上が、前記酸化チタンと化学結合している酸化チタン光触媒であり、
前記フィルター基材が、ガラス繊維布帛であり、
光触媒性部材に含まれるTi、Si及びFの質量の合計に対するFの割合が、0.38質量%以上である、光触媒性部材。 A photocatalytic member having a photocatalytic material supported on a filter substrate,
The photocatalytic material comprises a titanium oxide photocatalyst and zeolite,
The titanium oxide photocatalyst contains anatase type titanium oxide and fluorine,
The fluorine content in the titanium oxide photocatalyst is 2.5 to 3.5% by weight,
90% by weight or more of the fluorine is a titanium oxide photocatalyst chemically bonded to the titanium oxide,
The filter base material is a glass fiber fabric;
The photocatalytic member whose ratio of F with respect to the sum total of the mass of Ti, Si, and F contained in a photocatalytic member is 0.38 mass% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008155798A JP5530077B2 (en) | 2008-06-13 | 2008-06-13 | Photocatalytic member and air purification device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008155798A JP5530077B2 (en) | 2008-06-13 | 2008-06-13 | Photocatalytic member and air purification device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009297664A JP2009297664A (en) | 2009-12-24 |
JP5530077B2 true JP5530077B2 (en) | 2014-06-25 |
Family
ID=41545121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008155798A Expired - Fee Related JP5530077B2 (en) | 2008-06-13 | 2008-06-13 | Photocatalytic member and air purification device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5530077B2 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3517257B2 (en) * | 1993-06-30 | 2004-04-12 | 日揮ユニバーサル株式会社 | Ethylene cracking catalyst |
JP2909403B2 (en) * | 1994-02-07 | 1999-06-23 | 石原産業株式会社 | Titanium oxide for photocatalyst and method for producing the same |
JPH09308833A (en) * | 1996-05-21 | 1997-12-02 | Matsushita Electric Works Ltd | Manufacture of fiber composite containing photocatalyst |
JP3725933B2 (en) * | 1996-03-11 | 2005-12-14 | 日板パッケージ株式会社 | Gas processing element and gas processing device |
JP2002028494A (en) * | 1997-04-02 | 2002-01-29 | Nippon Sheet Glass Co Ltd | Photocatalyst carrier, and producing method thereof |
JPH11188703A (en) * | 1997-12-26 | 1999-07-13 | Showa Denko Kk | Porous article treated product and its manufacture |
JPH11342310A (en) * | 1998-03-31 | 1999-12-14 | Mitsubishi Paper Mills Ltd | Functional electret filter, method for producing the same, and air cleaning device |
JP2000007941A (en) * | 1998-04-22 | 2000-01-11 | Showa Denko Kk | Uniformly fluorinated particulate metal oxide, its preparation and application thereof |
JP2000042366A (en) * | 1998-08-03 | 2000-02-15 | Nisshin Steel Co Ltd | Nox and sox decomposing and removing material, and its production |
JP2000300651A (en) * | 1999-04-23 | 2000-10-31 | Mitsubishi Paper Mills Ltd | Photocatalytic deodorizing filter |
JP2003226554A (en) * | 2002-02-05 | 2003-08-12 | Central Glass Co Ltd | Method for continuous formation of titanium oxide photocatalyst film |
JP4142303B2 (en) * | 2002-02-14 | 2008-09-03 | 独立行政法人科学技術振興機構 | Photocatalyst containing titanium fluoronitride for water decomposition by irradiation with visible light and method for producing the same |
JP2004148305A (en) * | 2002-10-11 | 2004-05-27 | Osaka Gas Co Ltd | Photocatalyst and air cleaner using the same |
JP4505614B2 (en) * | 2003-03-26 | 2010-07-21 | 住友化学株式会社 | Method for producing titanium oxide |
-
2008
- 2008-06-13 JP JP2008155798A patent/JP5530077B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009297664A (en) | 2009-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8367050B2 (en) | Photocatalytic material and photocatalytic member and purification device using the photocatalytic material | |
JP5156009B2 (en) | Titanium oxide photocatalyst and method for producing the same | |
US20180021613A1 (en) | Catalyst for disinfection, sterilization and purification of air, and preparation method thereof | |
KR20190016447A (en) | Method of manufacturing photocatalyst for air cleaning and photocatalytic filter for air cleaning | |
KR100811095B1 (en) | Rotor air purifier using photocatalytic zeolite filter | |
JP4878141B2 (en) | Composite photocatalyst | |
JP4806108B2 (en) | Deodorizing device | |
JP5530077B2 (en) | Photocatalytic member and air purification device | |
JPH11221442A (en) | Composite deodorizing and dust collecting filter | |
WO2010052848A1 (en) | Air purification device | |
JP2000225349A (en) | Filter | |
JP6575993B2 (en) | Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter | |
JP2000210534A (en) | Photocatalytic deodorizing filter | |
RU2465046C1 (en) | Composite adsorption-catalytic material for photocatalytic oxidation | |
JPH09239277A (en) | Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them | |
JP2010131512A (en) | Light source unit for photocatalyst and air purification apparatus using the same | |
JPH11137656A (en) | Deodorant catalyst element and its production | |
JP2002263449A (en) | Activated carbon filter | |
RU2482912C1 (en) | Method of producing filtering-sorbing material with photo catalytic properties | |
JP2000153131A (en) | Dust removal and deodorization filter using photocatalyst | |
JP2001025668A (en) | Photocatalytic corrugated filter | |
KR100463883B1 (en) | Air cleaner | |
JP2000126609A (en) | Photocatalytic corrugated structure, photocatalytic deodorizing member using the same, and photocatalytic deodorizing device | |
JP2003126234A (en) | Deodorizer for indoor space | |
JPH11244708A (en) | Photocatalyst member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140418 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5530077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |