JP5518316B2 - Carbon black composite and method for producing the same - Google Patents
Carbon black composite and method for producing the same Download PDFInfo
- Publication number
- JP5518316B2 JP5518316B2 JP2008248761A JP2008248761A JP5518316B2 JP 5518316 B2 JP5518316 B2 JP 5518316B2 JP 2008248761 A JP2008248761 A JP 2008248761A JP 2008248761 A JP2008248761 A JP 2008248761A JP 5518316 B2 JP5518316 B2 JP 5518316B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- fibrous carbon
- carbon black
- mass
- fibrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、カーボンブラック複合体及びその製造方法に関する。 The present invention relates to a carbon black composite and a method for producing the same.
従来、ゴム、樹脂等にカーボンブラックを含有させ、導電性を付与させるということが行われている。特にアセチレンブラックは炭素粒子の連鎖構造を有するため、一般のカーボンブラックと比較して導電性の付与能力に優れている。 Conventionally, carbon black is contained in rubber, resin or the like to impart conductivity. In particular, since acetylene black has a chain structure of carbon particles, it has superior conductivity imparting ability compared to general carbon black.
しかしながら、近年、樹脂等の本来の特性を低下させずに高い導電性を付与することが出来る導電剤が求められており、この要求を満たすためには、導電付与効果が一段と優れたカーボンブラックを開発する必要がある。 However, in recent years, there has been a demand for a conductive agent capable of imparting high conductivity without deteriorating the original properties of resins and the like, and in order to satisfy this requirement, carbon black having a further excellent conductivity imparting effect is required. Need to develop.
このような問題に対して、導電剤にカーボンナノチューブを用いることが提案されているが、分散性が悪く、触媒除去や結晶性向上のための後処理を必要とするものが多く、非常に高価である。 In order to solve such problems, it has been proposed to use carbon nanotubes as a conductive agent, but the dispersibility is poor, and many post treatments are required for catalyst removal and crystallinity improvement, which is very expensive. It is.
これらの問題に対して、アセチレンブラックの反応場でカーボンナノチューブ生成するという提案がされているが(特許文献1)、カーボンナノチューブとアセチレンブラックの生成条件が異なり、一つの生成場での同時生成を行うことにより、品質が安定しないことがある。
本発明の目的は、導電性付与能力に優れたカーボンブラック複合体及び、その製造方法を提供することである。本発明のカーボンブラック複合体は、低充填量で樹脂等に高い導電性を付与することが出来る。 An object of the present invention is to provide a carbon black composite excellent in conductivity imparting ability and a method for producing the same. The carbon black composite of the present invention can impart high conductivity to a resin or the like with a low filling amount.
本発明は、上記課題を解決するために、以下の手段を採用する。
(1)アセチレンガスの流量を10m 3 /hで供給し、2000℃で熱分解してアセチレンブラックを製造する工程に、炭素源としてベンゼン、触媒としてフェロセン、助触媒としてチオフェンを質量比で90:8:2として300℃でガス化し、50〜100m/sで導入し、温度600〜1000℃で熱処理して生成した繊維状炭素を添加し、繊維状炭素とアセチレンブラックを複合化させた、繊維状炭素の含有率が30〜50質量%、繊維状炭素のラマン強度比(D/G値)が0.24以下、JIS K 1469で規定される灰分が0.01質量%以下であることを特徴とするカーボンブラック複合体。
(2)アセチレンガスの流量を10m3/hで供給し、2000℃で熱分解してアセチレンブラックを製造する工程に、炭素源としてベンゼン、触媒としてフェロセン、助触媒としてチオフェンを質量比で90:8:2として300℃でガス化し、50〜100m/sで導入し、温度600〜1000℃で熱処理して生成した繊維状炭素を添加し、繊維状炭素とアセチレンブラックを複合化させることを特徴とする、繊維状炭素の含有率が30〜50質量%、繊維状炭素のラマン強度比(D/G値)が0.24以下、JIS K 1469で規定される灰分が0.01質量%以下であるカーボンブラック複合体の製造方法。
(3)繊維状炭素の直径が90nm以下であることを特徴とする前記(2)に記載のカーボンブラック複合体の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) Supplying acetylene gas at a flow rate of 10 m 3 / h and thermally decomposing at 2000 ° C. to produce acetylene black, benzene as a carbon source, ferrocene as a catalyst, and thiophene as a co-catalyst at a mass ratio of 90: 8: 2 is a fiber that is gasified at 300 ° C., introduced at 50 to 100 m / s, and added with fibrous carbon produced by heat treatment at a temperature of 600 to 1000 ° C., and the fibrous carbon and acetylene black are combined. The carbon content is 30-50 % by mass, the fibrous carbon Raman intensity ratio (D / G value) is 0.24 or less, and the ash content defined by JIS K 1469 is 0.01% by mass or less. Characteristic carbon black composite.
(2) In the step of supplying acetylene gas at a flow rate of 10 m 3 / h and thermally decomposing at 2000 ° C. to produce acetylene black, benzene as a carbon source, ferrocene as a catalyst, and thiophene as a co-catalyst at a mass ratio of 90: 8: 2 gasified at 300 ° C., introduced at 50 to 100 m / s, added with fibrous carbon produced by heat treatment at 600 to 1000 ° C., and combined with fibrous carbon and acetylene black The fibrous carbon content is 30 to 50% by mass, the fibrous carbon Raman intensity ratio (D / G value) is 0.24 or less, and the ash content defined by JIS K 1469 is 0.01% by mass or less. A method for producing a carbon black composite.
(3) The method for producing a carbon black composite as described in (2) above, wherein the fibrous carbon has a diameter of 90 nm or less.
本発明のカーボンブラック複合体は、従来のカーボンブラックよりも導電性付与能力に優れている。 The carbon black composite of the present invention is more excellent in conductivity imparting ability than conventional carbon black.
本発明のカーボンブラック複合体は、繊維状炭素とカーボンブラックが連結しているものである。本発明のカーボンブラック複合体は、JIS K 1469で規定される灰分が1.0質量%以下であることが好ましい。灰分は主に繊維状炭素製造時の触媒や金属不純物(Fe、Ni、Co等)やその酸化物からなる。灰分が1.0質量%を超えると、例えばLiイオン二次電池とした場合、充電時に負極上への金属の析出が起こり易くなり、充放電容量の低下やセパレータを突き破り短絡して発火する危険性を生ずる恐れがある。 The carbon black composite of the present invention is one in which fibrous carbon and carbon black are linked. The carbon black composite of the present invention preferably has an ash content defined by JIS K 1469 of 1.0% by mass or less. The ash is mainly composed of a catalyst for producing fibrous carbon, metal impurities (Fe, Ni, Co, etc.) and oxides thereof. If the ash content exceeds 1.0% by mass, for example, in the case of a Li ion secondary battery, metal deposition on the negative electrode is likely to occur during charging, and the risk of ignition due to a decrease in charge / discharge capacity or a short circuit through the separator. May cause sex.
連結とは単なる接触ではなく、炭素質で物理的に融着していることを意味し、通常の機械的操作では容易に分離されることなく、連結された繊維状炭素とカーボンブラック間で接触抵抗なしで電子が自由に移動できるものである。そのため、樹脂等と混合した際もカーボンブラック複合体のまま存在し、良好な分散性が得られると同時に高導電性が保たれる。繊維状炭素単独では、樹脂等の他の材料と混合する場合、配向や繊維同士の絡み合いのため、良好な分散性を得ることが困難であり、導電性にバラツキが生じる。カーボンブラックと繊維状炭素を単純に混合した場合は形状が異なるため更にバラツキが大きくなるが、本発明のカーボンブラック複合体は導電性の安定性に優れていることが特長の一つである。ここで繊維状炭素は10〜50質量%であることが好ましい。繊維状炭素が10質量%未満であると、十分な導電性が得られず、50質量%を超えるとカーボンブラックとの連結が十分でなくなると同時に、繊維状炭素の凝集などのため分散性が著しく低下する。 Coupling is not just contact, it means that it is physically fused with carbonaceous matter, and it is not easily separated by normal mechanical operations, but between the connected fibrous carbon and carbon black. Electrons can move freely without resistance. Therefore, even when mixed with a resin or the like, the carbon black composite remains as it is, and good dispersibility can be obtained and high conductivity can be maintained. When the fibrous carbon alone is mixed with other materials such as a resin, it is difficult to obtain good dispersibility due to orientation and entanglement between fibers, resulting in variations in conductivity. When carbon black and fibrous carbon are simply mixed, the shape is different and the variation further increases. However, one feature of the carbon black composite of the present invention is that it has excellent conductivity stability. Here, the fibrous carbon is preferably 10 to 50% by mass. When the fibrous carbon is less than 10% by mass, sufficient conductivity cannot be obtained, and when it exceeds 50% by mass, the connection with the carbon black is not sufficient, and at the same time, the dispersibility is due to aggregation of the fibrous carbon. It drops significantly.
本発明のカーボンブラック複合体で使用される繊維状炭素とは、炭素繊維(カーボンファイバー)、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノファイバー等である。本発明においては繊維状炭素を適宜選択可能であるが、繊維状炭素は直径が200nm以下であることが好ましい。 The fibrous carbon used in the carbon black composite of the present invention is carbon fiber (carbon fiber), vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanofiber, or the like. In the present invention, fibrous carbon can be appropriately selected, but the fibrous carbon preferably has a diameter of 200 nm or less.
本発明のカーボンブラック複合体に用いられる繊維状炭素は、通常の市販品のすべてを使用できる。また、ラマン強度比(D/G値)が高く、結晶性が低いものでも、炭化水素の熱分解中に導入し複合化することにより、ラマン強度比(D/G値)を0.30以下にすることが出来るため、使用することが可能である。 As the fibrous carbon used in the carbon black composite of the present invention, all ordinary commercial products can be used. In addition, even when the Raman intensity ratio (D / G value) is high and the crystallinity is low, the Raman intensity ratio (D / G value) is 0.30 or less by introducing it into the hydrocarbon during the pyrolysis and combining it. Can be used.
本発明のカーボンブラック複合体は、繊維状炭素を炭化水素の熱分解中に導入する方法で製造される。この製造方法を用いることでカーボンブラック複合体のJIS K 1469に規定される灰分を1.0質量%以下にすることが出来る。 The carbon black composite of the present invention is produced by a method in which fibrous carbon is introduced during the thermal decomposition of hydrocarbons. By using this production method, the ash content defined in JIS K 1469 of the carbon black composite can be reduced to 1.0% by mass or less.
本発明のカーボンブラック複合体に用いる繊維状炭素は、炭化水素の熱分解温度以上の高温場に供給し、熱処理することにより生成することができる。炭化水素の熱分解温度は、特に600〜1000℃であることが好ましい。炭化水素として、例えばメタン、エタン、プロパン、ブタン等の飽和炭化水素、例えばエチレン、プロピレン、ブテン、ブタジエン等の2重結合を有する不飽和炭化水素、アセチレン、プロピン、ブチン等の3重結合を有する不飽和炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることが出来る。中でも、芳香族炭化水素は常温で液体であり、繊維状炭素化触媒と事前に混合調整しやすいので特に好ましい。また、炭化水素の供給速度は5〜100m/sが好ましい。 Fibrous carbon used in the carbon black composite of the present invention can be produced by supplying heat to a high temperature field that is equal to or higher than the thermal decomposition temperature of the hydrocarbon and heat treating it. The thermal decomposition temperature of the hydrocarbon is particularly preferably 600 to 1000 ° C. As hydrocarbons, for example, saturated hydrocarbons such as methane, ethane, propane, butane, etc., unsaturated hydrocarbons having double bonds such as ethylene, propylene, butene, butadiene, etc., and triple bonds such as acetylene, propyne, butyne, etc. Unsaturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene can be used. Among these, aromatic hydrocarbons are particularly preferable because they are liquid at room temperature and can be easily mixed and adjusted in advance with the fibrous carbonization catalyst. The hydrocarbon feed rate is preferably 5 to 100 m / s.
繊維状炭素化触媒、助触媒としては、Co,Ni,Fe,Mo,S,V,Cr等の微粒子を用いることが出来る。中でも、フェロセンやチオフェン等の有機物質はベンゼン等の芳香族炭化水素に可溶のため、取り扱いが容易で、しかも化合物中に含まれる元素が原子サイズのため、反応場中では触媒として有効に作用するため特に好ましい。 As the fibrous carbonization catalyst and the cocatalyst, fine particles such as Co, Ni, Fe, Mo, S, V, and Cr can be used. In particular, organic substances such as ferrocene and thiophene are soluble in aromatic hydrocarbons such as benzene, so they are easy to handle, and because the elements contained in the compound are atomic in size, they effectively act as catalysts in the reaction field. Therefore, it is particularly preferable.
本発明のカーボンブラック複合体における繊維状炭素を製造するときの炭化水素と触媒、助触媒の混合比は、質量比で80:20〜99:1が好ましく、特に90:10〜95:5が好ましい。 The mixing ratio of the hydrocarbon, the catalyst and the cocatalyst when producing fibrous carbon in the carbon black composite of the present invention is preferably 80:20 to 99: 1, and particularly 90:10 to 95: 5, in mass ratio. preferable.
本発明のカーボンブラック複合体におけるカーボンブラックは、炭化水素の熱分解温度以上の高温場で生成することが好ましく、特に1800〜2200℃で生成することが好ましい。炭化水素として、例えばメタン、エタン、プロパン、ブタン等の飽和炭化水素、例えばエチレン、プロピレン、ブテン、ブタジエン等の2重結合を有する不飽和炭化水素、アセチレン、プロピン、ブチン等の3重結合を有する不飽和炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることが出来る。中でもエチレン、アセチレン、ブタジエンは、自己発熱分解反応であるため、反応炉の中心部分でも高温を維持できるため好ましく、特にアセチレンが好ましい。また、炭化水素の供給量は5〜20m3/hであることが好ましく、特に10〜15m3/hであることが好ましい。 The carbon black in the carbon black composite of the present invention is preferably generated in a high temperature field equal to or higher than the thermal decomposition temperature of the hydrocarbon, and particularly preferably generated at 1800 to 2200 ° C. As hydrocarbons, for example, saturated hydrocarbons such as methane, ethane, propane, butane, etc., unsaturated hydrocarbons having double bonds such as ethylene, propylene, butene, butadiene, etc., and triple bonds such as acetylene, propyne, butyne, etc. Unsaturated hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene can be used. Among these, ethylene, acetylene, and butadiene are preferable because they are self-exothermic decomposition reactions and can maintain high temperatures even in the central portion of the reaction furnace, and acetylene is particularly preferable. It is preferable that the supply amount of the hydrocarbon is 5 to 20 m 3 / h, it is particularly preferably 10 to 15 m 3 / h.
本発明のカーボンブラック複合体における繊維状炭素は、カーボンブラックの生成場に導入、複合化されることにより焼成され、ラマン強度比(D/G値)0.30以下になっていることが好ましい。 It is preferable that the fibrous carbon in the carbon black composite of the present invention is fired by being introduced into the carbon black production field and composited to have a Raman intensity ratio (D / G value) of 0.30 or less. .
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。 EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1〜3)
繊維状炭素は以下の方法で作製した。炭素源としてベンゼン(関東化学社製試薬、99%)、触媒としてフェロセン(関東化学社製試薬、98%)、助触媒としてチオフェン(関東化学社製試薬、98%)を質量比で90:8:2として300℃でガス化したものを、縦型管状炉の上方に設置されたノズルから水素ガスと共に噴霧し、流速50m/s、温度600,800,1000℃で繊維状炭素を生成した。このときのラマン強度比(D/G値)は表1に示す。また、各温度における繊維状炭素の直径は表1に示す。次に、反応炉(炉長6m、炉直径1m)の炉頂に設置された2本のノズルの一方からはアセチレンガス(純度99%)を流量10m3/hで供給し、2000℃で熱分解してカーボンブラックを生成し、もう一方からは600,800,1000℃で製造した繊維状炭素を、30質量%になるように導入し複合化を行った。そのカーボンブラック複合体は炉下部に直結されたバグフィルターから捕集した。このときの繊維状炭素のラマン強度比(D/G値)は表1に示す。それらについての評価を行い、結果を表1に示す。
(1)繊維状炭素の直径については透過型電子顕微鏡(TEM)により、倍率3万倍で100本測定し、その平均径を求めた。
(2)ラマン強度比測定については励起レーザー波長532nm、露光時間1.0秒、露光回数30回でカーボンの固有ピークGバンド、Dバンドを測定した。
(3)灰分についてはJIS K 1469に従い測定した。
(4)粉体抵抗についてはJIS K 1469に従い測定した。
(5)コンパウンド体積固有抵抗値測定による導電性評価
実施例1〜3と比較例1のカーボンブラック複合体10質量部をPS樹脂(東洋スチレン社製、商品名「H700」)90質量部に配合し、混練機(東洋精機製作所社製、商品名「ラボプラストミル」)を用いて、ブレード回転数30rpm、温度220℃で10分間混練した。この混練物を200℃に加熱し、9.8×106Paの圧力で加圧成形して2×2×70mmの試験片を作製し、デジタルマルチメーター(横河電機社、商品名「デジタルマルチメータ 7562」)を用い、SRI2301に準じて体積固有抵抗を測定した。
(Examples 1-3)
Fibrous carbon was produced by the following method. Benzene (reagent manufactured by Kanto Chemical Co., 99%) as a carbon source, ferrocene (reagent manufactured by Kanto Chemical Co., 98%) as a catalyst, and thiophene (reagent manufactured by Kanto Chemical Co., 98%) as a co-catalyst in a mass ratio of 90: 8 : 2 gasified at 300 ° C. was sprayed with hydrogen gas from a nozzle installed above the vertical tubular furnace to produce fibrous carbon at a flow rate of 50 m / s and temperatures of 600, 800, 1000 ° C. The Raman intensity ratio (D / G value) at this time is shown in Table 1. Moreover, the diameter of the fibrous carbon at each temperature is shown in Table 1. Next, acetylene gas (purity 99%) was supplied at a flow rate of 10 m3 / h from one of the two nozzles installed at the top of the reactor (furnace length 6 m, furnace diameter 1 m) and pyrolyzed at 2000 ° C. Thus, carbon black was produced, and fibrous carbon produced at 600, 800, and 1000 ° C. was introduced from the other side so as to be 30% by mass, and composited. The carbon black composite was collected from a bag filter directly connected to the lower part of the furnace. The Raman intensity ratio (D / G value) of the fibrous carbon at this time is shown in Table 1. These were evaluated and the results are shown in Table 1.
(1) About the diameter of fibrous carbon, 100 pieces were measured with the transmission electron microscope (TEM) by the magnification of 30,000 times, and the average diameter was calculated | required.
(2) For the Raman intensity ratio measurement, the intrinsic peak G band and D band of carbon were measured at an excitation laser wavelength of 532 nm, an exposure time of 1.0 second, and an exposure frequency of 30 times.
(3) Ashes were measured according to JIS K 1469.
(4) The powder resistance was measured according to JIS K 1469.
(5) Conductivity Evaluation by Measuring Compound Volume Specific Resistance Value 10 parts by mass of the carbon black composites of Examples 1 to 3 and Comparative Example 1 are blended with 90 parts by mass of PS resin (trade name “H700” manufactured by Toyo Styrene Co., Ltd.). Then, the mixture was kneaded for 10 minutes using a kneader (manufactured by Toyo Seiki Seisakusho, trade name “Laboplast Mill”) at a blade rotation speed of 30 rpm and a temperature of 220 ° C. The kneaded product was heated to 200 ° C. and pressure-molded at a pressure of 9.8 × 10 6 Pa to prepare a 2 × 2 × 70 mm test piece. A digital multimeter (Yokogawa Electric Corporation, trade name “Digital” Using a multimeter 7562 "), the volume resistivity was measured according to SRI2301.
実施例4,5として、実施例1に記載の製法で繊維状炭素の炭素源ガスを5,100m/sにして繊維状炭素を製造し、実施例1のアセチレンガス反応炉に導入しカーボンブラック複合体を製造した。また、実施例6,7は、実施例1に記載の繊維状炭素の炭素源ガスを3,120m/sにして繊維状炭素を製造し、実施例1のアセチレンガス反応炉に導入しカーボンブラック複合体を製造した。 As Examples 4 and 5, fibrous carbon was produced by the production method described in Example 1 with the carbon source gas of fibrous carbon set to 5,100 m / s, and introduced into the acetylene gas reactor of Example 1 to obtain carbon black. A composite was produced. In Examples 6 and 7, fibrous carbon was produced by setting the carbon source gas of the fibrous carbon described in Example 1 to 3,120 m / s, and introduced into the acetylene gas reactor of Example 1 to obtain carbon black. A composite was produced.
実施例8,9では、実施例1に記載の製法で繊維状炭素の含有量を10%、50%、実施例10,11は実施例1に記載の製法で繊維状炭素の含有量を5%、60%になるように、繊維状炭素を導入した。 In Examples 8 and 9, the content of fibrous carbon was 10% and 50% in the production method described in Example 1, and in Examples 10 and 11, the content of fibrous carbon was 5 in the production method described in Example 1. % And 60% were introduced into the fibrous carbon.
比較例1については、実施例1に記載された方法で繊維状炭素とカーボンブラックを別々に製造し、それぞれ質量比30:70でボールミルにて200rpm、60minで混合し、カーボンブラック複合体を製造した。 For Comparative Example 1, fibrous carbon and carbon black were produced separately by the method described in Example 1, and mixed at 200 rpm and 60 min in a ball mill at a mass ratio of 30:70, respectively, to produce a carbon black composite. did.
比較例2については、WO/2007/013678に基づき、反応炉(炉長6m、炉直径1m)の上方に設置されたノズルからアセチレンガスを15m3/hで供給し、アセチレンガスを2000℃で熱分解してカーボンブラックを生成しつつ、更に上方の1000℃の部分からベンゼン(関東化学社製試薬、99%、3.7kg/h)、触媒としてフェロセン(関東化学社製試薬、98%、0.3kg/h)、助触媒としてチオフェン(関東化学社製試薬、98%、0.05kg/h)の混合ガスを供給し繊維状炭素を生成し、繊維状炭素が30質量%になるようにカーボンブラック複合体を製造した。 For Comparative Example 2, acetylene gas was supplied at 15 m 3 / h from a nozzle installed above a reactor (furnace length 6 m, furnace diameter 1 m) based on WO / 2007/013678, and acetylene gas was heated at 2000 ° C. While producing carbon black by decomposition, benzene (Kanto Chemicals reagent, 99%, 3.7 kg / h) from the upper portion of 1000 ° C. and ferrocene as a catalyst (Kanto Chemicals reagent, 98%, 0) .3 kg / h), and a mixed gas of thiophene (reagent manufactured by Kanto Chemical Co., 98%, 0.05 kg / h) is supplied as a co-catalyst to produce fibrous carbon, so that the fibrous carbon becomes 30% by mass. A carbon black composite was produced.
表1から、本発明の実施例又は参考例によって得られたカーボンブラック複合体は、比較例1,2によって得られたカーボンブラック複合体と比べて粉体抵抗、コンパウンド抵抗が低く、従来のカーボンブラック複合体より優れた導電性付与効果を発揮した。 From Table 1, the carbon black composites obtained by Examples or Reference Examples of the present invention have lower powder resistance and compound resistance than the carbon black composites obtained by Comparative Examples 1 and 2, and the conventional carbon. Excellent conductivity imparting effect than the black composite.
本発明のカーボンブラック複合体は樹脂、ゴムへの導電性付与剤の他に、一次電池、二次電池、燃料電池、キャパシタ等の電池用導電剤等として利用することが出来る。
The carbon black composite of the present invention can be used as a conductive agent for batteries such as a primary battery, a secondary battery, a fuel cell, and a capacitor in addition to a conductivity imparting agent for resin and rubber.
Claims (3)
The method for producing a carbon black composite according to claim 2, wherein the diameter of the fibrous carbon is 90 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008248761A JP5518316B2 (en) | 2008-09-26 | 2008-09-26 | Carbon black composite and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008248761A JP5518316B2 (en) | 2008-09-26 | 2008-09-26 | Carbon black composite and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010077313A JP2010077313A (en) | 2010-04-08 |
JP5518316B2 true JP5518316B2 (en) | 2014-06-11 |
Family
ID=42208113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008248761A Active JP5518316B2 (en) | 2008-09-26 | 2008-09-26 | Carbon black composite and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5518316B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010248397A (en) * | 2009-04-17 | 2010-11-04 | Denki Kagaku Kogyo Kk | Method for producing carbon black composite |
WO2012141308A1 (en) * | 2011-04-15 | 2012-10-18 | 電気化学工業株式会社 | Carbon black composite and lithium-ion secondary battery using same |
JP6666088B2 (en) * | 2014-08-07 | 2020-03-13 | 帝人株式会社 | Composites suitable for non-aqueous electrolyte secondary batteries |
KR101937900B1 (en) | 2018-02-07 | 2019-01-14 | 주식회사 엘지화학 | Novel conductive material, electrode comprising the conductive material, secondary battery comprising the electrode, and method for preparing the conductive material |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038472A (en) * | 1983-08-12 | 1985-02-28 | Denki Kagaku Kogyo Kk | Composite-structure carbon black and production thereof |
JPS6295351A (en) * | 1985-10-22 | 1987-05-01 | Denki Kagaku Kogyo Kk | Manufacturing method for carbon black with composite structure |
EP0785239B1 (en) * | 1996-01-19 | 2001-03-07 | Denki Kagaku Kogyo Kabushiki Kaisha | Granulated acetylene black, process for its production and its application |
KR100350535B1 (en) * | 1999-12-10 | 2002-08-28 | 삼성에스디아이 주식회사 | Negative active material for lithium secondary battery and method of preparing same |
JP2004250275A (en) * | 2003-02-19 | 2004-09-09 | Mitsui Mining Co Ltd | Graphite-carbon composite material |
SG129313A1 (en) * | 2005-07-27 | 2007-02-26 | Denka Singapore Private Ltd | Carbon black, method for producing the same, and its use |
JP2007165299A (en) * | 2005-11-16 | 2007-06-28 | Mitsubishi Chemicals Corp | Lithium secondary battery |
JP2008235156A (en) * | 2007-03-23 | 2008-10-02 | Matsushita Electric Ind Co Ltd | Electrode catalyst layer for fuel cell, and fuel cell using it |
JP5518317B2 (en) * | 2008-07-02 | 2014-06-11 | 電気化学工業株式会社 | Carbon black composite and its use |
-
2008
- 2008-09-26 JP JP2008248761A patent/JP5518316B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010077313A (en) | 2010-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231224B2 (en) | Carbon black, its production method and use | |
US12030776B2 (en) | Systems and methods for particle generation | |
EP3676901B1 (en) | Particle systems and methods | |
KR20190138862A (en) | Particle Systems and Methods | |
CN102084045B (en) | Carbon fiber and composite material | |
JP5960059B2 (en) | Carbon nanofiber manufacturing method, carbon composite, and manufacturing method thereof | |
CN101297378A (en) | Conductive sheet | |
JP5518316B2 (en) | Carbon black composite and method for producing the same | |
JP2010248397A (en) | Method for producing carbon black composite | |
CN116457428A (en) | Carbon black, slurry and lithium ion secondary battery | |
US20240417567A1 (en) | Systems and Methods for Producing Carbon Solids | |
TWI487819B (en) | Vapor grown graphite fiber composition and mixture containing the same and applications thereof | |
JP6045860B2 (en) | Carbon material and non-aqueous secondary battery using the same | |
JP2013064049A (en) | Method for manufacturing carbon black composite | |
JP2025029481A (en) | Carbon nanotubes and carbon nanotube resin composition | |
CN116390998A (en) | Carbon black, slurry and lithium ion secondary battery | |
WO2023122202A1 (en) | Systems and methods for producing carbon solids | |
Choudhary et al. | Effect of commercial and synthesized multiwalled carbon nanotubes on the electrical and thermal properties of polystyrene | |
Vander Wal | Flame synthesis of carbon nanotubes: premixed and diffusion flame configurations illustrating roles of gas composition and catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5518316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |