JP5515075B2 - Fine particle formulation - Google Patents
Fine particle formulation Download PDFInfo
- Publication number
- JP5515075B2 JP5515075B2 JP2008554089A JP2008554089A JP5515075B2 JP 5515075 B2 JP5515075 B2 JP 5515075B2 JP 2008554089 A JP2008554089 A JP 2008554089A JP 2008554089 A JP2008554089 A JP 2008554089A JP 5515075 B2 JP5515075 B2 JP 5515075B2
- Authority
- JP
- Japan
- Prior art keywords
- ascorbic acid
- fine particle
- mol
- drug
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/20—Hypnotics; Sedatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/10—Antioedematous agents; Diuretics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/12—Antidiuretics, e.g. drugs for diabetes insipidus
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Obesity (AREA)
- Dermatology (AREA)
- Nutrition Science (AREA)
- Rheumatology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Anesthesiology (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本発明は、ナノレベルの微粒子とした有効成分である薬剤を包含することができる微粒子から成る微粒子製剤、及び微粒子の安定化法等に関する。 The present invention relates to a fine particle formulation comprising fine particles that can contain a drug that is an active ingredient as nano-level fine particles, a method for stabilizing fine particles, and the like.
本発明の微粒子製剤は、例えば静脈への注射用薬として有用である。 The microparticle preparation of the present invention is useful as, for example, a drug for intravenous injection.
従来の技術として、例えば下記非特許文献1に、抗真菌薬であるアムホテリシンB(以下「AMPH−B」という。)とポリエチレングリコールのリン脂質誘導体とを用いて調製したリポソーム微粒子を血清成分存在下で安定化させようとする試みが記載されている。 As a conventional technique, for example, Non-Patent Document 1 below discloses liposome microparticles prepared using amphotericin B (hereinafter referred to as “AMPH-B”), which is an antifungal agent, and a phospholipid derivative of polyethylene glycol in the presence of serum components. Attempts to stabilize with are described.
AMPH−Bとポリエチレングリコールのリン脂質誘導体からなるミセル形微粒子も微粒子製剤として応用が可能であるが、水中での安定性が悪く、すぐ凝集してしまうという欠点が存在する。 Micellar microparticles made of phospholipid derivatives of AMPH-B and polyethylene glycol can also be applied as a microparticle formulation, but have the disadvantage of poor stability in water and aggregation immediately.
そこで、本発明は、上記課題に鑑み、薬剤をより安定にミセル型微粒子として存在させることのできる微粒子製剤、及び、微粒子又は微粒子製剤の安定化法等を提供することを目的とする。 Then, in view of the said subject, this invention aims at providing the fine particle formulation which can make a chemical | medical agent exist as a micelle type microparticle more stably, the stabilization method of a microparticle, or a microparticle formulation.
本発明者らは、上記課題について鋭意検討を行ったところ、リン脂質誘導体等の界面活性剤と薬剤にアスコルビン酸誘導体を加えることで安定な微粒子を得ることができることを発見し、本発明を完成させるに至った。 As a result of diligent studies on the above problems, the present inventors have discovered that stable fine particles can be obtained by adding an ascorbic acid derivative to a surfactant and a drug such as a phospholipid derivative, and the present invention has been completed. I came to let you.
即ち、上記課題を解決する一手段として、本発明はアスコルビン酸誘導体、界面活性剤、及び、薬剤を含む微粒子製剤を提供する。 That is, as one means for solving the above-described problems, the present invention provides a fine particle preparation containing an ascorbic acid derivative, a surfactant, and a drug.
更に、本発明は、界面活性剤からなる微粒子又は該微粒子に薬剤を含む微粒子製剤に、更にアスコルビン酸誘導体を含有させることから成る、該微粒子又は該微粒子製剤の安定化法に係る。 Furthermore, the present invention relates to a method for stabilizing the fine particles or the fine particle preparation, further comprising adding an ascorbic acid derivative to fine particles comprising a surfactant or a fine particle preparation containing the drug in the fine particles.
本発明によると、薬剤をより安定に微粒子として存在させることのできる微粒子製剤を提供することができる。本微粒子製剤は、薬剤が溶媒中において微粒子として安定に存在し、薬剤として極めて優れた効能を発揮することができる。また本微粒子製剤は、表面にポリエチレングルコールをはじめとする水溶性の高分子が存在するミセル型のナノ微粒子となっていると考えられるため、血中でも長時間安定に存在することが期待できる。薬剤は微粒子の内部に存在するため、薬剤による副作用の軽減といった効果も期待される。 ADVANTAGE OF THE INVENTION According to this invention, the microparticle formulation which can make a chemical | medical agent exist as a microparticle more stably can be provided. In the present fine particle preparation, the drug is stably present as fine particles in a solvent, and can exhibit extremely excellent efficacy as a drug. Further, since the present fine particle preparation is considered to be a micelle-type nano fine particle having a water-soluble polymer such as polyethylene glycol on its surface, it can be expected to exist stably in blood for a long time. Since the drug is present inside the fine particles, an effect of reducing side effects due to the drug is also expected.
以下、本発明の実施形態について、詳細に説明するが、本発明は多くの異なる形態による実施が可能であり、以下に説明する実施形態、実施例に限定されるものではないことは
いうまでもない。Hereinafter, embodiments of the present invention will be described in detail. However, it should be understood that the present invention can be implemented in many different forms and is not limited to the embodiments and examples described below. Absent.
本発明に係る微粒子製剤は、アスコルビン酸誘導体、界面活性剤、及び、薬剤を含むことを特徴の一つとする。本発明に係る微粒子製剤は、これらを含有することにより使用の際、溶媒中で安定なミセル状のナノ微粒子として存在することができる。この結果、血中でも長時間安定に存在することが期待でき、薬剤は微粒子の内部に存在するため、薬剤による副作用の軽減といった効果が期待できる。 One feature of the fine particle formulation according to the present invention is that it contains an ascorbic acid derivative, a surfactant, and a drug. The fine particle formulation according to the present invention can exist as micelle-like nano fine particles which are stable in a solvent when used by containing them. As a result, it can be expected to exist stably in blood for a long time, and since the drug is present inside the fine particles, an effect of reducing side effects due to the drug can be expected.
ここで「アスコルビン酸誘導体」とは、アスコルビン酸を出発物質とし、アスコルビン酸の分子構造の一部を変換して得られる化合物をいう。なお、本発明に係るアスコルビン酸誘導体については、限定されるわけではないが、例えば下記式(1)で示されるものであることが好ましい。 Here, the “ascorbic acid derivative” refers to a compound obtained by converting a part of the molecular structure of ascorbic acid using ascorbic acid as a starting material. In addition, although it does not necessarily limit about the ascorbic acid derivative which concerns on this invention, For example, it is preferable that it is what is shown by following formula (1).
(上記式中、R1及びR2は炭素数8以上20以下の側鎖を有していてもよいアシル鎖である。またR1とR2は同じであっても異なっていてもよい。)(In the above formula, R 1 and R 2 are acyl chains which may have a side chain having 8 to 20 carbon atoms. R 1 and R 2 may be the same or different. )
上記式(1)で示されるアスコルビン酸誘導体の具体例として、下記式(3)で示されるL−アスコルビン酸2,6−ジパルミテート(ASC−DP)、L−アスコルビン酸2,6−ジブチレート(ASC−DB)、L−アスコルビン酸6−モノパルミテート(ASC−P)、及び、L−アスコルビン酸6−モノステアレート(ASC−S)を挙げることが出来る。この中でも、微粒子製剤の安定化という点では、ASC−DPが特に好ましい。 Specific examples of the ascorbic acid derivative represented by the above formula (1) include L-ascorbic acid 2,6-dipalmitate (ASC-DP) represented by the following formula (3), L-ascorbic acid 2,6-dibutyrate ( ASC-DB), L-ascorbic acid 6-monopalmitate (ASC-P), and L-ascorbic acid 6-monostearate (ASC-S). Among these, ASC-DP is particularly preferable in terms of stabilization of the fine particle preparation.
本発明に係る微粒子又は微粒子製剤中のアスコルビン酸誘導体の含有量としては、限定されるわけではないが、界面活性剤1molに対して、好ましくは3mol以下、より好ましくは1mol以上2mol以下の範囲内である。 The content of the ascorbic acid derivative in the microparticles or microparticle preparation according to the present invention is not limited, but preferably 3 mol or less, more preferably 1 mol or more and 2 mol or less, relative to 1 mol of the surfactant. It is.
またここで「界面活性剤」とは、当業者に公知の任意の物質をいう。その例として、界面活性剤の代表例として、本明細書中の実施例に記載された各種のリン脂質誘導体及びコレステロール誘導体等を挙げることが出来る。 Here, the “surfactant” refers to any substance known to those skilled in the art. For example, as a representative example of the surfactant, various phospholipid derivatives and cholesterol derivatives described in Examples in the present specification can be mentioned.
ここで、「リン脂質誘導体」とは、上記のとおり、ジアシルグリセロールリン酸を出発物質とし、リン酸基と結合する極性基の分子構造の一部を変換して得られる化合物をいう。又、「コレステロール誘導体」とは、コレステロールの極性基の分子構造の一部を、例えば、ポリエチレングリコール等の基に変換して得られる化合物をいう。リン脂質誘導体の例としては、限定されるわけではないが、下記式(2)で示される化合物であることが好ましい。 Here, as described above, the “phospholipid derivative” refers to a compound obtained by converting a part of the molecular structure of a polar group that binds to a phosphate group using diacylglycerol phosphate as a starting material. The “cholesterol derivative” refers to a compound obtained by converting a part of the molecular structure of the polar group of cholesterol into a group such as polyethylene glycol. Although it does not necessarily limit as an example of a phospholipid derivative, It is preferable that it is a compound shown by following formula (2).
(上記式中、R1及びR2は炭素数8以上20以下の側鎖を有していてもよいアルキル鎖である。またR1とR2は同じであっても異なっていてもよい。R3はポリエチレングルコール、ポリプロピレングルコール又はポリグリセリン鎖であり、リン酸基に直接又はスペーサーを介して結合している。又、上記式中のスペーサーとしては、当業者に公知の任意の基、例えば、−CH2CH2NHCO−及び−CH2CH2NHCO−CH2CH2CO−といった構造を有する基であり得る。又、上記誘導体に含まれるポリエチレングリコールの分子量は任意であるが、1000〜5000の範囲が好ましい。)(In the above formula, R 1 and R 2 are alkyl chains which may have a side chain having 8 to 20 carbon atoms. R 1 and R 2 may be the same or different. R 3 is a polyethylene glycol, polypropylene glycol or polyglycerin chain and is bonded to the phosphate group directly or via a spacer, and the spacer in the above formula is any group known to those skilled in the art. For example, it may be a group having a structure such as —CH 2 CH 2 NHCO— and —CH 2 CH 2 NHCO—CH 2 CH 2 CO—, and the molecular weight of polyethylene glycol contained in the derivative is arbitrary, A range of 1000 to 5000 is preferred.)
更に、上記リン脂質誘導体の具体例として、以下に式(4)で示されるジステアロイルフォスファチジルエタノールアミンポリエチレングリコール(DSPE−PEG)、及び、上記コレステロール誘導体の具体例として、CHOL-PEG1000及びCHOL-PEG2000等に代表されるコレステロール‐PEG(CHOL−PEG)を挙げることが出来る。 Furthermore, as specific examples of the phospholipid derivative, distearoylphosphatidylethanolamine polyethylene glycol (DSPE-PEG) represented by the following formula (4), and as specific examples of the cholesterol derivative, CHOL-PEG1000 and CHOL -Cholesterol-PEG (CHOL-PEG) represented by PEG2000 and the like can be mentioned.
また本発明に係る薬剤とは、限定されるわけではないが、抗真菌薬、糖尿病薬、抗癌薬、抗てんかん薬、催眠剤、利尿剤、解熱鎮痛薬、抗リウマチ薬、又はビタミン類等の少なくともいずれか一種を含有することが好ましい。 The drug according to the present invention is not limited, but includes antifungal drugs, diabetes drugs, anticancer drugs, antiepileptic drugs, hypnotics, diuretics, antipyretic analgesics, antirheumatic drugs, vitamins, etc. It is preferable to contain at least one of these.
抗真菌薬の場合、限定されるわけではないが、例えばアムホテリシンB(以下「AMPH−B」という。)、ナイスタチン、ピマリシン等を挙げることができる。なおアムホテリシンBは、その両親媒性により感受性細胞の形質膜に障害を及ぼすことにより抗菌活性を発揮する、より具体的には、細胞膜に豊富に含まれるステロール、特にエルゴステロールとの特異的相互作用を行なうことによって膜透過性を変化させることから深在性真菌の治療に好適である。 In the case of an antifungal agent, examples include, but are not limited to, amphotericin B (hereinafter referred to as “AMPH-B”), nystatin, pimaricin and the like. Amphotericin B exerts antibacterial activity by damaging the plasma membrane of sensitive cells due to its amphipathicity, more specifically, specific interaction with sterols, particularly ergosterol, abundantly contained in cell membranes It is suitable for the treatment of deep fungus because the membrane permeability is changed by
また限定されるわけではないが糖尿病薬の場合は、例えばグリベンクラミド、グリクラシド挙げることができる。 Moreover, although it is not necessarily limited, in the case of an antidiabetic drug, for example, glibenclamide and gliculaside can be mentioned.
また限定されるわけではないが抗癌薬の場合は、例えばスピカマイシン挙げることができる。 Moreover, although not necessarily limited, in the case of an anticancer drug, a spicamycin can be mentioned, for example.
また限定されるわけではないが抗てんかん薬の場合は、例えばフェニトイン挙げることができる。 Moreover, although not necessarily limited, in the case of an antiepileptic drug, for example, phenytoin can be mentioned.
また限定されるわけではないが催眠薬の場合は、例えばニトラゼパム挙げることができる。 Moreover, although not necessarily limited, in the case of a hypnotic, for example, nitrazepam can be mentioned.
また限定されるわけではないが利尿剤の場合は、例えばスピロノラクトン挙げることができる。 Moreover, although not necessarily limited, in the case of a diuretic, spironolactone can be mentioned, for example.
また本発明に係る微粒子製剤中の薬剤の含有量としては、限定されるわけではないが、上記用いる界面活性剤1molに対して0.1mol以上0.2mol以下の範囲内で含有してなることが好ましい。 Further, the content of the drug in the fine particle preparation according to the present invention is not limited, but it is contained within a range of 0.1 mol or more and 0.2 mol or less with respect to 1 mol of the surfactant used. Is preferred.
尚、本微粒子製剤に含まれるアスコルビン酸誘導体、界面活性剤、及び、薬剤は、夫々、一種又は数種の混合物であっても良い。 In addition, the ascorbic acid derivative, the surfactant, and the drug contained in the present fine particle formulation may each be one kind or a mixture of several kinds.
また、本発明に係る微粒子製剤は、上記各成分のほか、製剤として許容される公知成分を適宜加えることができる。限定されるわけではないが、例えば安定化剤、pH調整剤、二糖類の少なくともいずれかを適宜含有することができる。 In addition to the above-mentioned components, the fine particle formulation according to the present invention may appropriately contain known components that are acceptable as a formulation. Although not necessarily limited, for example, at least one of a stabilizer, a pH adjuster, and a disaccharide can be appropriately contained.
本発明に係る微粒子製剤は当業者に公知の任意の方法で製造することが可能である。 The fine particle formulation according to the present invention can be produced by any method known to those skilled in the art.
例えば、本発明に係る微粒子製剤は、有機溶媒にアスコルビン酸、リン酸脂質誘導体、薬剤を加えて攪拌し、その後溶媒を蒸発させ、水等の溶媒に改めて溶解させ、その後、超音波処理等を施すことで得ることができる。なおこの微粒子製剤は、保存において水等の溶媒を蒸発させ、使用の際、改めて溶媒に溶解、分散させて注射により投与することができる。なお、有機溶媒としては、アスコルビン酸誘導体、界面活性剤、薬剤を加えて攪拌し、ミセルを形成させることができる限りにおいて限定されるわけではないが、例えば、クロロホルム、メタノール、ジエチルエーテル等の有機溶媒を挙げることができる。なお、アスコルビン酸誘導体、界面活性剤、薬剤は別々の有機溶媒で溶解し、その後混合することも好ましい態様である。その結果、本発明に係る微粒子製剤の粒子径は、通常、40〜300nm程度の範囲となる。 For example, the fine particle preparation according to the present invention is prepared by adding ascorbic acid, a phospholipid derivative, and a drug to an organic solvent and stirring, then evaporating the solvent, re-dissolving in a solvent such as water, and then performing ultrasonic treatment and the like. It can be obtained by applying. In addition, this fine particle formulation can be administered by injection after evaporating a solvent such as water during storage, and again dissolving and dispersing in the solvent during use. The organic solvent is not limited as long as an ascorbic acid derivative, a surfactant and a drug can be added and stirred to form micelles. For example, organic solvents such as chloroform, methanol, and diethyl ether can be used. Mention may be made of solvents. In addition, it is also a preferable aspect that the ascorbic acid derivative, the surfactant, and the drug are dissolved in separate organic solvents and then mixed. As a result, the particle size of the fine particle formulation according to the present invention is usually in the range of about 40 to 300 nm.
本発明に係る微粒子製剤の投与経路は特に限定されるわけではないが、使用の際、溶媒に溶解、分散させて注射により投与することが好ましい態様である。この使用の際に使用する溶媒としては、ミセルを形成させることができる限りにおいて限定されるわけではないが、人体への安全性の観点から、水であることが好ましい。なお、本発明に係る微粒子製剤としては、投与対象者の年齢、体重、性別、病状によって適宜調製可能であり、特に限定されることはない。 The administration route of the microparticle preparation according to the present invention is not particularly limited, but it is a preferred embodiment that, when used, it is dissolved and dispersed in a solvent and administered by injection. The solvent used in this use is not limited as long as micelles can be formed, but water is preferable from the viewpoint of safety to the human body. The fine particle preparation according to the present invention can be appropriately prepared depending on the age, weight, sex, and medical condition of the administration subject, and is not particularly limited.
以上、本発明により、薬剤がより安定的に微粒子として存在する微粒子製剤を提供することができる。 As described above, according to the present invention, it is possible to provide a fine particle formulation in which a drug is present more stably as fine particles.
以下、実際に本発明の微粒子製剤を製造し、その効果を確認した。尚、以下の実施例では、アスコルビン酸誘導体としてL−アスコルビン酸2,6−ジパルミテート(以下「ASC−DP」という。)を、リン脂質誘導体としてジステアロイルフォスファチジルエタノールアミンポリエチレングリコール(DSPE−PEG(具体的には「DSPE-PEG2000」)を、薬剤としてAMPH−Bを用いた例で説明する。なお、本実施例で用いるASC−DPを下記式(3)に、DSPE−PEGを下記式(4)に、AMPH‐Bを下記式(5)にそれぞれ示す。 Hereinafter, the fine particle formulation of the present invention was actually produced and the effect was confirmed. In the following examples, L-ascorbic acid 2,6-dipalmitate (hereinafter referred to as “ASC-DP”) is used as the ascorbic acid derivative, and distearoylphosphatidylethanolamine polyethylene glycol (DSPE-PEG) is used as the phospholipid derivative. (Specifically, “DSPE-PEG2000”) will be described using an example in which AMPH-B is used as a drug, wherein ASC-DP used in this example is represented by the following formula (3), and DSPE-PEG is represented by the following formula. In (4), AMPH-B is shown in the following formula (5).
(上記式中、nは20〜120、好ましくは40〜50の整数である。) (In the above formula, n is an integer of 20 to 120, preferably 40 to 50.)
まず、クロロホルム(4ml)に、ASC−DP及びDSPE−PEGを溶解させ、ほぼ透明な溶液を得た。一方、AMPH−Bをメタノールに溶解させ、このメタノール溶液を上記のASC−DP及びDSPE−PEGを溶解させたクロロホルム溶液と混合させた。そして、この混合溶液を60℃で真空に引きつつ蒸発させ、黄色の薄膜を得た。 First, ASC-DP and DSPE-PEG were dissolved in chloroform (4 ml) to obtain a substantially transparent solution. On the other hand, AMPH-B was dissolved in methanol, and this methanol solution was mixed with the chloroform solution in which the above ASC-DP and DSPE-PEG were dissolved. And this mixed solution was evaporated, drawing a vacuum at 60 degreeC, and the yellow thin film was obtained.
次に、この蒸発の結果得た上記薄膜を9%のスクロース水溶液に溶解させ、3分間超音波を用いて分散させて各試料溶液を得た(試料番号1乃至3)。なお本実施例では、ASC−DP、DSPE−PEG及びAMPH−Bの量を変化させることで、微粒子及びその安定性について評価も行なった。ASC−DP、DSPE−PEG、AMPH−Bの量及びその比について下記表1に示す。 Next, the thin film obtained as a result of this evaporation was dissolved in a 9% sucrose aqueous solution and dispersed using ultrasonic waves for 3 minutes to obtain each sample solution (sample numbers 1 to 3). In this example, the fine particles and their stability were also evaluated by changing the amounts of ASC-DP, DSPE-PEG and AMPH-B. The amounts of ASC-DP, DSPE-PEG, and AMPH-B and their ratios are shown in Table 1 below.
図1に、上記試料1乃至3に対し、調製直後に行なったマイクロトラック粒度分布測定(MICROTRACUltrafine Particle Analyzer、日機装株式会社製)(以下「UPA測定」という。)の結果を示す(図1(a)は試料1、(b)は試料2、(c)は試料3における結果をそれぞれ示す)。この結果、上記各試料溶液においては、粒子径が120nm〜250nmの範囲にあることが確認でき、十分小さな微粒子となっていることが確認できた。 FIG. 1 shows the results of microtrack particle size distribution measurement (MICROTRAC Ultrafine Particle Analyzer, manufactured by Nikkiso Co., Ltd.) (hereinafter referred to as “UPA measurement”) performed on samples 1 to 3 immediately after preparation (FIG. 1 (a). ) Shows sample 1, (b) shows sample 2, and (c) shows sample 3)). As a result, in each of the sample solutions, it was confirmed that the particle diameter was in the range of 120 nm to 250 nm, and it was confirmed that the particles were sufficiently small.
次に、上記各試料における微粒子の安定性について確認を行った。この確認は、各試料容器を25℃の暗室に配置して遮光し、その粒子径の経時変化を測定することによって行なった(粒子径の測定については上記UPA測定で行なった)。この結果を図2に示す。この結果、試料1乃至3では、大きな粒子径の変動なく7日以上安定的に存在することが確認できた。一方、ASC−DPを加えていない試料4の溶液においては、調製直後は粒子径が5nm程度であったものの、1日後には129nm、7日後には2157nmと、急激に大きくなっており、安定性に欠けていた(図2及び図3参照。図3は、試料4に対するUPA測定の結果を示す図である。図3(a)は調製直後、(b)は1日後、(c)は7日後を示す)。また、試料4において、調製後7日後にはAMPH−Bの結晶も析出してしまっていた。 Next, the stability of the fine particles in each sample was confirmed. This confirmation was performed by placing each sample container in a dark room at 25 ° C. to shield it from light, and measuring the change in the particle diameter over time (the particle diameter was measured by the UPA measurement). The result is shown in FIG. As a result, it was confirmed that Samples 1 to 3 existed stably for 7 days or more without large particle size fluctuations. On the other hand, in the sample 4 solution to which ASC-DP was not added, the particle diameter was about 5 nm immediately after preparation, but it increased rapidly to 129 nm after 1 day and 2157 nm after 7 days. (See FIGS. 2 and 3. FIG. 3 is a diagram showing the results of UPA measurement on sample 4. FIG. 3 (a) is immediately after preparation, (b) is one day later, (c) is 7 days later). In Sample 4, AMPH-B crystals were also precipitated 7 days after preparation.
更に、上記各試料の生体成分中の安定性についても確認を行った。この確認は、試料2又は試料4に血清成分(FBS10%含有PBS溶液)を加えて遮光し、37℃水浴中でインキュベーションし、粒子径の経時変化を測定することによって行なった。この結果を図4に示す。この結果、試料2では15時間以上安定に存在することが確認でき、生体成分中においても十分に安定して存在することが確認できた。この結果、溶液中に安定的に保持されていることが確認でき、本発明の効果を確認した。なお、試料4においては、測定開始後30分にも満たない時間で数百μmから数mm程度の大きな固まりとなってしまい、やはり安定性に欠けていた。 Furthermore, the stability of each sample in the biological components was also confirmed. This confirmation was performed by adding a serum component (PBS solution containing 10% FBS) to Sample 2 or Sample 4, shielding the light, and incubating in a 37 ° C. water bath, and measuring the change in particle diameter over time. The result is shown in FIG. As a result, it was confirmed that the sample 2 was stably present for 15 hours or more, and was confirmed to be sufficiently stable even in the biological component. As a result, it was confirmed that it was stably held in the solution, and the effect of the present invention was confirmed. In Sample 4, it became a large mass of several hundred μm to several mm in less than 30 minutes after the start of measurement, and it was still lacking in stability.
更に、リン脂質誘導体であるジステアロイルフォスファチジルエタノールアミンポリエチレングリコール2000(DSPE−PEG2000)に対してL−アスコルビン酸2,6−ジパルミテート(ASC−DP)を各種モル比で混合して微粒子を作成し、それらの安定性を評価した。 Furthermore, microparticles were prepared by mixing L-ascorbic acid 2,6-dipalmitate (ASC-DP) in various molar ratios with distearoylphosphatidylethanolamine polyethylene glycol 2000 (DSPE-PEG2000), a phospholipid derivative. And their stability was evaluated.
試料の調製は、ASC−DPとDSPE−PEG2000をモル比0.5:1、1:1、2.0:1、2.1:1、2.3:1、2.5:1、3.0:1で秤量後、なすフラスコに入れてクロロホルムに溶解し、ロータリーエバポレーターで溶媒を留去した。得られた薄膜を精製水で水和し、超音波発生処理(Sonics Vibra Cell VC130 、SONICS & MATERIAL ,Inc.)して水中に均一に分散したものについて、UPA測定を行った。得られた粒度分布の値をもとに安定性の結果を表2に示す。 Samples were prepared by weighing ASC-DP and DSPE-PEG2000 in molar ratios of 0.5: 1, 1: 1, 2.0: 1, 2.1: 1, 2.3: 1, 2.5: 1, 3.0: 1 and then placed in an eggplant flask. Was dissolved in chloroform, and the solvent was distilled off with a rotary evaporator. The obtained thin film was hydrated with purified water, subjected to ultrasonic generation treatment (Sonics Vibra Cell VC130, SONICS & MATERIAL, Inc.), and was dispersed uniformly in water, and UPA measurement was performed. Table 2 shows the stability results based on the obtained particle size distribution values.
DSPE-PEG2000のみのミセルの粒子径は4-10nm程度の値となる。ASC−DPとDSPE-PEG2000を各種モル比で用いて調製した微粒子の粒子径はASC−DPの添加量の増加とともに増加する。その結果、両者のモル比が1:1〜2:1の範囲では平均粒子径が100nm以下のナノ微粒子として存在することがわかった。これに対して、モル比3:1の場合、平均粒子径は521nmとなり、数μmの粒子の存在が認められた。更に、モル比4:1では明らかに眼で観察できる程度の粒子が存在した。マイクロトラック粒度分布測定の測定可能範囲が最大7μmであることを考えると、4:1は粒子径評価が困難な領域でナノ微粒子といえる粒子は殆ど存在していないと考えられた。従って、モル比が2:1以上になると平均粒子径が400nm以上に急激に増大し数μmの粒子も存在したことからナノ微粒子形成は困難となると考えられた。一方、両者のモル比が0.5:1以下のような、DSPE-PEG に対してASC-DPの添加量がわずかの場合には、ナノ微粒子の粒度分布に加えてDSPE-PEGミセルの分布が現れた。以上の結果を図5に示す。以上の結果から、ASC−DPがDSPE-PEG2000を安定化するのに適したモル比は3:1以下、特に1:1〜2:1の範囲が好ましいと推察された。 The particle size of the micelle of DSPE-PEG2000 alone is about 4-10 nm. The particle diameter of the fine particles prepared using ASC-DP and DSPE-PEG2000 in various molar ratios increases as the amount of ASC-DP added increases. As a result, it was found that when the molar ratio of the two was in the range of 1: 1 to 2: 1, the fine particles existed as nanoparticles having an average particle diameter of 100 nm or less. On the other hand, when the molar ratio was 3: 1, the average particle diameter was 521 nm, and the presence of several μm particles was observed. Furthermore, there were particles that were clearly observable with eyes at a molar ratio of 4: 1. Considering that the measurable range of the microtrack particle size distribution measurement is 7 μm at the maximum, it was considered that 4: 1 is a region in which the particle diameter evaluation is difficult and there are almost no particles that can be regarded as nano-fine particles. Therefore, when the molar ratio was 2: 1 or more, the average particle diameter rapidly increased to 400 nm or more, and there were particles of several μm, so it was considered that nanoparticle formation would be difficult. On the other hand, when the addition ratio of ASC-DP to DSPE-PEG is small, such as the molar ratio of 0.5: 1 or less, the distribution of DSPE-PEG micelles in addition to the nanoparticle size distribution Appeared. The above results are shown in FIG. From the above results, it was speculated that the molar ratio suitable for ASC-DP to stabilize DSPE-PEG2000 was 3: 1 or less, particularly preferably in the range of 1: 1 to 2: 1.
更に、上記の微粒子を水に分散し24時間後に同様にマイクロトラック粒度分布測定を行った。その結果、上記のモル比1:1の微粒子の粒子径は78nmから71nmに変化し、モル比0.5:1の微粒子の粒子径は44nmから38nmに変化した。分布があることを考えると、これらの粒子径殆ど変化しないかあるいはわずかに減少している、とみなすことができる。 Further, the above microparticles were dispersed in water, and after 24 hours, the microtrack particle size distribution was measured in the same manner. As a result, the particle diameter of the fine particles having the molar ratio of 1: 1 was changed from 78 nm to 71 nm, and the particle diameter of the fine particles having the molar ratio of 0.5: 1 was changed from 44 nm to 38 nm. Considering that there is a distribution, it can be considered that these particle diameters hardly change or slightly decrease.
DSPE-PEG2000と各種アスコルビン酸誘導体とを用いて微粒子を製造し、その安定性を評価した。アスコルビン酸誘導体としてL−アスコルビン酸2,6−ジパルミテート(ASC−DP)、L−アスコルビン酸2,6−ジブチレート(ASC−DB)、L−アスコルビン酸6−モノパルミテート(ASC−P)、L−アスコルビン酸6−モノステアレート(ASC−S)を、リン脂質誘導体としてジステアロイルフォスファチジルエタノールアミンポリエチレングリコール2000(DSPE−PEG2000)を用いた。 Fine particles were produced using DSPE-PEG2000 and various ascorbic acid derivatives, and their stability was evaluated. As an ascorbic acid derivative, L-ascorbic acid 2,6-dipalmitate (ASC-DP), L-ascorbic acid 2,6-dibutyrate (ASC-DB), L-ascorbic acid 6-monopalmitate (ASC-P), L-ascorbic acid 6-monostearate (ASC-S) and distearoylphosphatidylethanolamine polyethylene glycol 2000 (DSPE-PEG2000) were used as a phospholipid derivative.
試料の調製は、アスコルビン酸誘導体とDSPE−PEG2000をモル比1:1で秤量後、なすフラスコに入れてクロロホルムに溶解し、ロータリーエバポレーターで溶媒を留去した。得られた薄膜を精製水で水和し、超音波発生処理(Sonics Vibra Cell VC130 、SONICS & MATERIAL ,Inc.)して水中に均一に分散したものについてUPA測定を行った。得られた粒度分布の値をもとに安定性の結果を表3に示す。 The sample was prepared by weighing an ascorbic acid derivative and DSPE-PEG2000 at a molar ratio of 1: 1, placing them in an eggplant flask, dissolving in chloroform, and removing the solvent with a rotary evaporator. The obtained thin film was hydrated with purified water, subjected to ultrasonic generation treatment (Sonics Vibra Cell VC130, SONICS & MATERIAL, Inc.), and UPA measurement was performed on the thin film uniformly dispersed in water. Table 3 shows the stability results based on the obtained particle size distribution values.
その結果、ASC−DPを用いた場合には、水に分散することで100nm程度の安定なナノ微粒子が形成し、1週間保存したあとでも粒子径はほぼ同じであった。ASC−P、ASC−Sを用いた場合には、水に分散後DSPE−PEG2000に可溶化され溶液はほぼ透明であった。しかし、経時的に徐々に粒子径の増大が観察され1日後には1μm以上の粒子の存在が確認された。ASC−DBを用いた場合にも、DSPE−PEG2000への可溶化が観察され1日後でも同じ状態を維持していたが、3日後には1μm以上の粒子の存在が確認された。以上の結果から、DSPE−PEG2000ミセルを安定化させるためには、ASC−DPを用いるのがもっとも有用であることがわかった。 As a result, when ASC-DP was used, stable nano-particles of about 100 nm were formed by dispersing in water, and the particle size was almost the same even after storage for 1 week. When ASC-P and ASC-S were used, they were solubilized in DSPE-PEG2000 after being dispersed in water, and the solution was almost transparent. However, a gradual increase in particle diameter was observed over time, and the presence of particles of 1 μm or more was confirmed after 1 day. Even when ASC-DB was used, solubilization in DSPE-PEG2000 was observed and the same state was maintained even after 1 day, but the presence of particles of 1 μm or more was confirmed after 3 days. From the above results, it was found that ASC-DP is most useful for stabilizing DSPE-PEG2000 micelles.
アスコルビン酸誘導体(ASC−DP)と各種界面活性剤とを用いて微粒子を製造し、その安定性を評価した。界面活性剤としてジステアロイルフォスファチジルエタノールアミンポリエチレングリコール2000(DSPE−PEG2000)、ジステアロイルフォスファチジルエタノールアミンポリエチレングリコール5000(DSPE−PEG5000)、ジステアロイルグリセロール2000、コレステロール‐PEG1000(CHOL−PEG1000)、コレステロール‐PEG2000(CHOL−PEG2000)、ラウロマクロゴール、臭化セチルトリメチルアンモニウム(CTAB)、ラウリル硫酸ナトリウム(SDS)、ジアシルグリセロール5000、ポリビニルアルコール(PVA)、ポリエチレングリコール6000(PEG6000)、デカエチレングリコールモノドデシルエーテル(Brij78)を用いた。 Fine particles were produced using ascorbic acid derivatives (ASC-DP) and various surfactants, and their stability was evaluated. As a surfactant, distearoylphosphatidylethanolamine polyethylene glycol 2000 (DSPE-PEG2000), distearoylphosphatidylethanolamine polyethylene glycol 5000 (DSPE-PEG5000), distearoylglycerol 2000, cholesterol-PEG1000 (CHOL-PEG1000), Cholesterol-PEG2000 (CHOL-PEG2000), Lauromacrogol, Cetyltrimethylammonium bromide (CTAB), Sodium lauryl sulfate (SDS), Diacylglycerol 5000, Polyvinyl alcohol (PVA), Polyethylene glycol 6000 (PEG6000), Decaethylene glycol mono Dodecyl ether (Brij 78) was used.
試料の調製は、ASC−DPと界面活性剤をモル比1:1で秤量後ナスフラスコに入れてクロロホルムに溶解し、ロータリーエバポレーターで溶媒を留去した。得られた薄膜を精製水で水和し、超音波発生処理(Sonics Vibra Cell VC130 、SONICS & MATERIAL ,Inc.)して水中に均一に分散したものについてUPA測定を行った。得られた粒度分布の値をもとに安定性の結果を表4に示す。 The sample was prepared by weighing ASC-DP and a surfactant at a molar ratio of 1: 1, placing them in an eggplant flask, dissolving them in chloroform, and distilling off the solvent with a rotary evaporator. The obtained thin film was hydrated with purified water, subjected to ultrasonic generation treatment (Sonics Vibra Cell VC130, SONICS & MATERIAL, Inc.), and UPA measurement was performed on the thin film uniformly dispersed in water. Table 4 shows the stability results based on the obtained particle size distribution values.
その結果、DSPE−PEG2000を用いた場合には、水に分散することで100nm程度の安定なナノ微粒子が形成し、1週間保存したあとでも粒子径はほぼ同じであった。DSPE−PEG5000を用いた場合にも水に分散後ナノ微粒子が観測され1日後でも同じ状態を維持していた。しかしさらに保存時間を延長すると粒子径の増大が観察され7日後には沈殿物が確認された。ジアシルグリセロール2000を用いた場合には、水に分散後マイクロサイズの微粒子が観察され1日後でも同じ状態を維持していたが、7日後には沈殿物が確認された。CHOL−PEG1000、CHOL−PEG2000ラウロマクロゴールを用いた場合には、水に分散後ナノ微粒子が観察された。しかし、経時的に徐々に粒子径の増大が観察され1日後には1μm以上の粒子の存在が確認され、一週間の保存により沈殿物が観察された。CTAB、SDSを用いた場合には、水に分散後マイクロ微粒子が観察された。しかし、経時的に徐々に粒子径の増大が観察され1日後には沈殿物が観察された。ジアシルグリセロール5000、PVA、PEG6000、Brij78を用いた場合には、水に分散後微粒子の存在は観察されず、沈殿が観察された。以上の結果から、ASC−DPによるミセル安定化作用はDSPE−PEG2000ミセルにおいてもっとも有用であることがわかった。 As a result, when DSPE-PEG2000 was used, stable nano-particles of about 100 nm were formed by dispersing in water, and the particle diameter was almost the same even after storage for 1 week. Even when DSPE-PEG5000 was used, nanoparticles were observed after dispersion in water, and the same state was maintained even after one day. However, when the storage time was further extended, an increase in the particle size was observed, and a precipitate was confirmed after 7 days. When diacylglycerol 2000 was used, micro-sized fine particles were observed after dispersion in water, and the same state was maintained even after 1 day, but a precipitate was confirmed after 7 days. When CHOLO-PEG1000 and CHOL-PEG2000 Lauromacrogol were used, nanoparticles were observed after dispersion in water. However, a gradual increase in particle diameter was observed over time, and the presence of particles of 1 μm or more was confirmed after 1 day, and precipitates were observed after storage for 1 week. When CTAB and SDS were used, microparticles were observed after dispersion in water. However, a gradual increase in particle size was observed over time, and a precipitate was observed after 1 day. When diacylglycerol 5000, PVA, PEG6000, or Brij78 was used, the presence of fine particles was not observed after dispersion in water, and precipitation was observed. From the above results, it was found that the micelle stabilization effect by ASC-DP is most useful in DSPE-PEG2000 micelles.
薬剤が封入された本発明の微粒子製剤を製造し、その安定性を評価した。即ち、アスコルビン酸誘導体(ASC−DP)、リン脂質誘導体(DSPE−PEG2000)、及び、薬剤としてアムホテリシンB、クラリスロマイシン、フルコナゾール、アセトヘキサミド、ナイスタチン、ニトラゼパム、フェニトイン、ピロキシカム、スピロノラクトン、イブプロフェン、グリメピリド、ビタミンAパルミテート、α―トコフェロール、α―リポ酸、ビタミンK、ビタミンD、CoQ10を用いた。 The fine particle formulation of the present invention in which a drug was encapsulated was produced and its stability was evaluated. That is, ascorbic acid derivative (ASC-DP), phospholipid derivative (DSPE-PEG2000), and amphotericin B, clarithromycin, fluconazole, acetohexamide, nystatin, nitrazepam, phenytoin, piroxicam, spironolactone, ibuprofen, glimepiride Vitamin A palmitate, α-tocopherol, α-lipoic acid, vitamin K, vitamin D, and CoQ10 were used.
試料の調製は、三成分試料として、ASC−DP、DSPE−PEG2000、薬剤をモル比1:1:0.1で、二成分試料として、DSPE−PEG2000、封入薬剤をモル比1:0.1でフラスコに入れてクロロホルムに溶解し、ロータリーエバポレーターで溶媒を留去した。得られた薄膜を精製水で水和し、超音波発生処理(Sonics Vibra Cell VC130 、SONICS & MATERIAL ,Inc.)して水中に均一に分散したものについてUPA測定を行った。得られた粒度分布の値をもとに安定性の結果を表5に示す。 Samples were prepared as ternary samples, ASC-DP, DSPE-PEG2000, drug in molar ratio 1: 1: 0.1, and as binary samples, DSPE-PEG2000, encapsulated drug in molar ratio 1: 0.1. Was dissolved in chloroform, and the solvent was distilled off with a rotary evaporator. The obtained thin film was hydrated with purified water, subjected to ultrasonic generation treatment (Sonics Vibra Cell VC130, SONICS & MATERIAL, Inc.), and UPA measurement was performed on the thin film uniformly dispersed in water. The stability results are shown in Table 5 based on the obtained particle size distribution values.
その結果、アムホテリシンB、クラリスロマイシン、フルコナゾール、アセトヘキサミドを封入した場合、3成分試料においては水に分散することで100nm程度の安定なナノ微粒子が形成し、1日後でも同じ粒子径を維持していた。アムホテリシンBを含む微粒子製剤の様子を原子間力顕微鏡(AFM)測定した結果を図6に示す。一方、2成分試料においては、調製直後に凝集が認められた。ナイスタチンを封入した場合、3成分試料においては水に分散することで100nm程度の安定なナノ微粒子が形成し、1日後でも同じ粒子径を維持していた。一方2成分試料においては、調製直後100nm程度のナノ微粒子が形成したものの一日後には1μm以上の粒子の存在が確認された。ニトラゼパム、フェニトインを封入した場合、3成分試料においては、水に分散することで100nm程度の安定なナノ微粒子が形成し、1日後でも同じ粒子径を維持していた。また二成分試料においても、100nm程度のナノ微粒子が形成した。ピロキシカムを封入した場合、三成分試料においては、水に分散することで100nm程度の安定なナノ微粒子が形成した。しかし、経時的に徐々に粒子径の増大が観察され1日後には1μm以上の粒子の存在が確認された。スピロノラクトン、イブプロフェン、グリメピリドを封入した場合には、3成分試料および2成分試料において微粒子の形成は見られなかった。
以上の結果から、ASC−DPにより安定化したDSPE−PEG2000ミセルにはアムホテリシンB等の難水溶性薬剤を安定に封入し、それらを含む微粒子製剤を安定化できることがわかった。As a result, when amphotericin B, clarithromycin, fluconazole, and acetohexamide are encapsulated, three-component samples disperse in water to form stable nano-particles of about 100 nm and maintain the same particle size even after one day. Was. FIG. 6 shows the result of atomic force microscope (AFM) measurement of the state of the fine particle preparation containing amphotericin B. On the other hand, in the two-component sample, aggregation was observed immediately after preparation. When nystatin was encapsulated, stable nano-particles of about 100 nm were formed by dispersing in water in the three-component sample, and the same particle size was maintained even after one day. On the other hand, in the two-component sample, although nanoparticles of about 100 nm were formed immediately after preparation, the presence of particles of 1 μm or more was confirmed one day later. When nitrazepam and phenytoin were encapsulated, in the three-component sample, stable nanoparticles having a size of about 100 nm were formed by dispersing in water, and the same particle size was maintained even after one day. In the two-component sample, nanoparticles of about 100 nm were formed. When piroxicam was encapsulated, stable nano-particles of about 100 nm were formed in the three-component sample by dispersing in water. However, a gradual increase in particle diameter was observed over time, and the presence of particles of 1 μm or more was confirmed after 1 day. When spironolactone, ibuprofen, and glimepiride were encapsulated, formation of fine particles was not observed in the three-component sample and the two-component sample.
From the above results, it was found that DSPE-PEG2000 micelles stabilized by ASC-DP can stably encapsulate poorly water-soluble drugs such as amphotericin B and can stabilize a fine particle formulation containing them.
アンホテリシンBをDSPE-PEG2000に対しモル比で0.1添加した微粒子を調製し、毒性試験を行った。アンホテリシンBをデオキシコール酸ナトリウムで可溶化した市販製剤のFungizone、アンホテリシンB/DSPE-PEG2000=0.1/1mol/mol、アンホテリシンB/DSPE-PEG2000/ASC-DP=0.1/1/1mol/molをマウスに微静脈投与した。投与はマウス体重あたりのアンホテリシンB量として換算し、1mg、2mg、4mg、6mg、以下2mgずつ増加させ、それぞれ3匹に投与した。投与後マウスが全匹死亡する濃度を最大耐用量(MTD)とした。表6に示された各種微粒子製剤の毒性試験の結果、アンホテリシンB/DSPE-PEG2000/ASC-DP微粒子の毒性は市販の微粒子製剤Fungizoneと比較して明らかに減少したことがわかった。 Microparticles were prepared by adding 0.1 in a molar ratio of amphotericin B to DSPE-PEG2000, and a toxicity test was performed. Fungizone of amphotericin B solubilized with sodium deoxycholate, amphotericin B / DSPE-PEG2000 = 0.1 / 1mol / mol, amphotericin B / DSPE-PEG2000 / ASC-DP = 0.1 / 1 / 1mol / mol in mice Microvenous administration was performed. Administration was converted to the amount of amphotericin B per mouse body weight and increased to 1 mg, 2 mg, 4 mg, 6 mg, and thereafter 2 mg each, and each was administered to 3 mice. The concentration at which all mice die after administration was defined as the maximum tolerated dose (MTD). As a result of the toxicity test of various microparticle preparations shown in Table 6, it was found that the toxicity of amphotericin B / DSPE-PEG2000 / ASC-DP microparticles was clearly reduced as compared with the commercial microparticle preparation Fungizone.
本発明は、安定した微粒子製剤として、例えば静脈への注射用薬としての応用が可能であり、産業上の利用可能性を有する。 The present invention can be applied as a stable fine particle preparation, for example, as an intravenous injection, and has industrial applicability.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008554089A JP5515075B2 (en) | 2007-01-18 | 2008-01-18 | Fine particle formulation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007008620 | 2007-01-18 | ||
JP2007008620 | 2007-01-18 | ||
PCT/JP2008/050600 WO2008088037A1 (en) | 2007-01-18 | 2008-01-18 | Finely particulate medicinal preparation |
JP2008554089A JP5515075B2 (en) | 2007-01-18 | 2008-01-18 | Fine particle formulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2008088037A1 JPWO2008088037A1 (en) | 2010-05-13 |
JP5515075B2 true JP5515075B2 (en) | 2014-06-11 |
Family
ID=39636037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008554089A Expired - Fee Related JP5515075B2 (en) | 2007-01-18 | 2008-01-18 | Fine particle formulation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5515075B2 (en) |
WO (1) | WO2008088037A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60231608A (en) * | 1984-04-28 | 1985-11-18 | Terumo Corp | Liposome having reinforced membrane structure |
JPH09328419A (en) * | 1996-03-11 | 1997-12-22 | Basf Ag | Stable oil-in-water type emulsion and its production |
JP2003500368A (en) * | 1999-05-24 | 2003-01-07 | ソーナス ファーマシューティカルス,インコーポレイテッド | Emulsion vehicle for poorly soluble drugs |
WO2005107712A1 (en) * | 2004-05-03 | 2005-11-17 | Hermes Biosciences, Inc. | Liposomes useful for drug delivery |
WO2005123078A1 (en) * | 2004-06-18 | 2005-12-29 | Terumo Kabushiki Kaisha | Liposome preparation containing slightly water-soluble camptothecin |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2087902C (en) * | 1992-02-05 | 2006-10-17 | Narendra Raghunathji Desai | Liposome compositions of porphyrin photosensitizers |
JP3551267B2 (en) * | 1994-02-21 | 2004-08-04 | 日本油脂株式会社 | Method for producing edible emulsion composition |
US5707608A (en) * | 1995-08-02 | 1998-01-13 | Qlt Phototherapeutics, Inc. | Methods of making liposomes containing hydro-monobenzoporphyrin photosensitizer |
DE19630789A1 (en) * | 1996-07-31 | 1998-02-05 | Basf Ag | Physiologically effective amounts of beta-carotene-containing clear aqueous-alcoholic multivitamin solution |
US6458373B1 (en) * | 1997-01-07 | 2002-10-01 | Sonus Pharmaceuticals, Inc. | Emulsion vehicle for poorly soluble drugs |
ATE277527T1 (en) * | 1999-07-06 | 2004-10-15 | Dsm Ip Assets Bv | COMPOSITION CONTAINING FAT SOLUBLE SUBSTANCES IN A CARBOHYDRATE MATRIX |
US20020102280A1 (en) * | 2000-11-29 | 2002-08-01 | Anderson David M. | Solvent systems for pharmaceutical agents |
US6984395B2 (en) * | 2001-04-11 | 2006-01-10 | Qlt, Inc. | Drug delivery system for hydrophobic drugs |
JP4429590B2 (en) * | 2002-02-08 | 2010-03-10 | 株式会社協和ウェルネス | Ubiquinone-containing water-soluble composition |
CA2528001A1 (en) * | 2003-04-04 | 2004-10-21 | The University Of Tokyo | Lipid membrane structure containing anti-mt-mmp monoclonal antibody |
US20050048109A1 (en) * | 2003-08-26 | 2005-03-03 | Ceramoptec Industries, Inc. | Non-polar photosensitizer formulations for photodynamic therapy |
JP4866607B2 (en) * | 2005-12-09 | 2012-02-01 | 株式会社アイ・ティー・オー | Emulsified composition |
-
2008
- 2008-01-18 JP JP2008554089A patent/JP5515075B2/en not_active Expired - Fee Related
- 2008-01-18 WO PCT/JP2008/050600 patent/WO2008088037A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60231608A (en) * | 1984-04-28 | 1985-11-18 | Terumo Corp | Liposome having reinforced membrane structure |
JPH09328419A (en) * | 1996-03-11 | 1997-12-22 | Basf Ag | Stable oil-in-water type emulsion and its production |
JP2003500368A (en) * | 1999-05-24 | 2003-01-07 | ソーナス ファーマシューティカルス,インコーポレイテッド | Emulsion vehicle for poorly soluble drugs |
WO2005107712A1 (en) * | 2004-05-03 | 2005-11-17 | Hermes Biosciences, Inc. | Liposomes useful for drug delivery |
JP2007536247A (en) * | 2004-05-03 | 2007-12-13 | ヘルメス バイオサイエンシズ インコーポレーティッド | Liposomes useful for drug delivery |
WO2005123078A1 (en) * | 2004-06-18 | 2005-12-29 | Terumo Kabushiki Kaisha | Liposome preparation containing slightly water-soluble camptothecin |
Also Published As
Publication number | Publication date |
---|---|
WO2008088037A1 (en) | 2008-07-24 |
JPWO2008088037A1 (en) | 2010-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sivadasan et al. | Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications | |
Zhang et al. | Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential | |
Chen et al. | Preparation of Coenzyme Q10 nanostructured lipid carriers for epidermal targeting with high-pressure microfluidics technique | |
Maestrelli et al. | New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics | |
Liu et al. | Chitosan-coated nanoliposome as vitamin E carrier | |
Chang et al. | Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin | |
Das et al. | Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? | |
Jung et al. | Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics | |
Kajbafvala et al. | Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application | |
JP2020158542A (en) | Liposomal compositions and pharmaceutical compositions | |
Lewińska et al. | Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system | |
Chen et al. | Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles | |
Salerno et al. | Lipid-based microtubes for topical delivery of Amphotericin B | |
Simon et al. | Polyoxazolines based mixed micelles as PEG free formulations for an effective quercetin antioxidant topical delivery | |
Khudair et al. | Letrozole-loaded nonionic surfactant vesicles prepared via a slurry-based proniosome technology: Formulation development and characterization | |
Wang et al. | Physicochemical characterization, identification and improved photo-stability of alpha-lipoic acid-loaded nanostructured lipid carrier | |
Moribe et al. | Drug nanoparticle formulation using ascorbic acid derivatives | |
Xia et al. | In vitro evaluation of α-lipoic acid-loaded lipid nanocapsules for topical delivery | |
Shafaat et al. | Novel nanoemulsion as vehicles for transdermal delivery of Clozapine: In vitro and in vivo studies | |
Nishiura et al. | A novel nano-capsule of α-lipoic acid as a template of core-shell structure constructed by self-assembly | |
Tajvar et al. | Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects | |
Goyard et al. | Expedient synthesis of functional single-component glycoliposomes using thiol–yne chemistry | |
Qiu et al. | Barbigerone-in-hydroxypropyl-β-cyclodextrin-liposomal nanoparticle: preparation, characterization and anti-cancer activities | |
Jangam et al. | A review: proniosomes as a novel drug delivery system | |
Patra et al. | Retracted article: Creation of ultrasound and temperature-triggered bubble liposomes from economical precursors to enhance the therapeutic efficacy of curcumin in cancer cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110118 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20130617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5515075 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |