JP5513028B2 - Method for evaluating or selecting skin photodamage prevention or healing agent - Google Patents
Method for evaluating or selecting skin photodamage prevention or healing agent Download PDFInfo
- Publication number
- JP5513028B2 JP5513028B2 JP2009165260A JP2009165260A JP5513028B2 JP 5513028 B2 JP5513028 B2 JP 5513028B2 JP 2009165260 A JP2009165260 A JP 2009165260A JP 2009165260 A JP2009165260 A JP 2009165260A JP 5513028 B2 JP5513028 B2 JP 5513028B2
- Authority
- JP
- Japan
- Prior art keywords
- timp
- skin
- protein
- gene
- photodamage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Cosmetics (AREA)
- Medicines Containing Plant Substances (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
本発明は、皮膚光損傷予防又は治癒剤の評価又は選択方法に関する。 The present invention relates to a method for evaluating or selecting a skin photodamage prevention or healing agent.
皮膚光損傷は、表皮と真皮の両方における量的・質的変化をもたらすことが知られているが、真皮で起こる変化が広く知られている。すなわち、真皮の線維を作る細胞は、慢性的な太陽光線への露出とともに小さく且つ少なくなり、特にコラーゲン線維が大きく失われ、真皮の退化、皮下脂肪組織の減少等により皮膚の弾力性が失われたり、皮膚が弛緩したり、皮膚の表面が粗くなったりするなどの形状の変化が起こる。
斯かる光損傷皮膚のメカニズムを解明したり、光損傷に起因する皮膚トラブルの予防・治癒に有用な医薬品等を評価したりするためには、ヒトの光損傷皮膚をより忠実に反映できる系が有用である。
Skin photodamage is known to cause quantitative and qualitative changes in both the epidermis and dermis, but the changes that occur in the dermis are widely known. That is, the cells that make up the dermis fibers become smaller and fewer with chronic exposure to sunlight, especially the collagen fibers are greatly lost, and the elasticity of the skin is lost due to degeneration of the dermis, reduction of subcutaneous fat tissue, etc. Changes in shape, such as the skin becoming loose or the surface of the skin becoming rough.
In order to elucidate the mechanism of such photodamaged skin and to evaluate pharmaceuticals useful for the prevention and healing of skin troubles caused by photodamage, there is a system that can more accurately reflect human photodamaged skin. Useful.
光老化は光損傷の結果もたらされるものであるが、そのモデル皮膚やモデル動物としては、紫外線へ暴露する系が最も汎用され、例えば、ヘアレスマウス背部皮膚やラットの足底の皮膚に紫外線を毎日、数週間連続照射する方法(非特許文献1,2)が知られている。しかし、皮下組織での動態も反映されるヒト皮膚そのものを用いるか、移植されたヒト皮膚を用いるのがより望ましいと考えられている。 Photoaging is the result of photodamage, but as a model skin or model animal, a system that is exposed to ultraviolet rays is most commonly used. For example, UV rays are applied daily to hairless mouse dorsal skin and rat sole skin. There are known methods for continuous irradiation for several weeks (Non-Patent Documents 1 and 2). However, it is considered more desirable to use human skin itself that reflects the dynamics in the subcutaneous tissue or transplanted human skin.
ヒト皮膚を利用したモデルとしては、ヒト皮膚が移植されたヌードマウス(SCIDマウス)に単回の紫外線照射を行う方法が知られている(非特許文献3)が、これは毎日、数週間紫外線を連続照射するモデル系ではなく、短期間での紫外線照射のため、UVB長期照射によるヒト皮膚の光損傷状態を十分に観察することはできない。そこで、特定量のUVBを特定時間連続照射することにより、光損傷に極めて近いヒト光損傷皮膚を備えたモデル動物が作成されている(非特許文献4)。 As a model using human skin, there is known a method in which a nude mouse (SCID mouse) into which human skin is transplanted is subjected to a single ultraviolet irradiation (Non-patent Document 3). Because of UV irradiation in a short period rather than a model system that continuously irradiates UV, it is not possible to sufficiently observe the photodamaged state of human skin due to UVB long-term irradiation. Therefore, a model animal having human photodamaged skin that is very close to photodamage has been created by continuously irradiating a specific amount of UVB for a specific time (Non-Patent Document 4).
一方、マトリックスメタロプロテアーゼ(matrix metalloproteinase:MMP)は、コラーゲン、エラスチン、プロテオグリカン等細胞外マトリックスを分解する酵素であり、光損傷への関与が報告されている。光損傷皮膚においては、MMP−1の不均衡が、プロコラーゲンの合成低下によるコラーゲンI、IIIの減少と、真皮でのコラーゲン分解を同時に引き起こすことが報告されている(非特許文献5)。また、光損傷が目立つ皮膚では表皮真皮接合部のコラーゲンVII、IVの減少が認められ、ヘアレスマウスを用いた実験において、UVBの反復的な照射がMMP−2及びMMP−9の産生を誘導し、コラーゲンVII、IVの分解を増大させることが報告されている(非特許文献6)。 On the other hand, matrix metalloproteinase (MMP) is an enzyme that degrades extracellular matrix such as collagen, elastin, and proteoglycan, and has been reported to be involved in photodamage. In light-damaged skin, it has been reported that an imbalance of MMP-1 simultaneously causes a decrease in collagen I and III due to a decrease in procollagen synthesis and a degradation of collagen in the dermis (Non-patent Document 5). Moreover, in the skin where photodamage is conspicuous, decrease in collagen VII and IV at the epidermal dermis junction was observed, and in experiments using hairless mice, repeated UVB irradiation induced the production of MMP-2 and MMP-9. It has been reported that the degradation of collagen VII and IV is increased (Non-patent Document 6).
MMPの活性は、TIMP(tissue inhibitor of metalloproteinases)により阻害されることが知られており、TIMPは、活性型MMPと1:1で複合体を形成することにより阻害作用を発揮する。そのため、MMP活性とTIMP活性のバランスを正常化することが皮膚老化防止に有用であると考えられ、これまでに例えば、ムラサキ培養細胞抽出エキス、コーヒー酸重合体にMMP阻害作用があることが見出されている(特許文献1)。現在、TIMPのタイプとしてはTIMP−1、TIMP−2、TIMP−3およびTIMP−4が知られており、前記特許文献では、リソスペルミン酸にTIMP−2活性増強作用を見出している。
また、特許文献2では、レチノールとシトステロールを組み合わせることにより、内在的老化に関連するMMP−1及びMMP−3の含有量を低下させること、及びTIMP−1の含有量を増大させることが記載されているが、その実施例に示すデータでは、前記組み合わせにより必ずしもMMP−1及びMMP−3の含有量は低下しておらず、また同様に、TIMP−1の含有量も増大していない。また、当該特許文献2は、光損傷に関するものでもない。
It is known that the activity of MMP is inhibited by TIMP (tissue inhibitor of metalloproteinases), and TIMP exerts an inhibitory action by forming a complex with active MMP at a ratio of 1: 1. Therefore, normalizing the balance between MMP activity and TIMP activity is thought to be useful for preventing skin aging, and so far, for example, Murasaki cultured cell extract and caffeic acid polymer have been found to have MMP inhibitory activity. (Patent Document 1). Currently, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 are known as TIMP types. In the above-mentioned patent documents, TIMP-2 activity enhancing action is found in lysospermic acid.
Patent Document 2 describes that by combining retinol and sitosterol, the contents of MMP-1 and MMP-3 related to intrinsic aging are reduced, and the content of TIMP-1 is increased. However, in the data shown in the examples, the contents of MMP-1 and MMP-3 are not necessarily decreased by the combination, and similarly, the content of TIMP-1 is not increased. Further, Patent Document 2 is not related to optical damage.
TIMP−1に関しては、さらに、UVBの単回照射によりTIMP−1のmRNA発現量が上昇すること(非特許文献7)、一方で、UVBの単回照射ではTIMP−1のタンパク発現量は変化しないことが報告されている(非特許文献8)。
しかしながら、これまでにUVBの長期照射がTIMP−1へ与える影響については全く知られていなく、皮膚光損傷とTIMP−1との関連性についても知られていない。
Regarding TIMP-1, further, the expression level of TIMP-1 mRNA is increased by a single irradiation of UVB (Non-patent Document 7). On the other hand, the expression level of TIMP-1 protein is changed by a single irradiation of UVB. Not reported (Non-Patent Document 8).
However, the influence of long-term UVB irradiation on TIMP-1 has not been known so far, and the relationship between skin photodamage and TIMP-1 has not been known.
本発明は、皮膚光損傷を予防又は治癒する物質の評価又は選択方法を提供することに関する。 The present invention relates to providing a method for evaluating or selecting a substance that prevents or cures skin photodamage.
本発明者らは、紫外線への暴露が少ない上腕内側部皮膚では、TIMPsのうちTIMP−2の発現が少なかったのに対し、ヒト移植皮膚に長期UVB照射を行って光損傷を誘導した皮膚では、TIMP−2及びTIMP−3の発現には変化が認められず、TIMP−1の発現のみが顕著に減少することを見出した。さらに、ヒト移植皮膚にUVBを照射した直後にTIMP−1中和抗体を皮内投与すると、ヒト移植皮膚の表面粗さが増すことを見出した。これらのことから、TIMP−1が光損傷における表面形状変化の予防ならびに治癒等に関与しており、当該TIMP−1の産生増加作用を指標とすれば、皮膚の光損傷を予防又は治癒できる物質をより正確に評価又は選択できることを見出した。 The present inventors showed that TIMP-2 expression of TIMPs was low in the inner skin of the upper arm where the exposure to ultraviolet rays was low, whereas in the skin where long-term UVB irradiation was performed on human transplanted skin, photodamage was induced. No changes were observed in the expression of TIMP-2 and TIMP-3, and only the expression of TIMP-1 was found to be significantly reduced. Furthermore, it was found that the surface roughness of the human transplanted skin increases when the TIMP-1 neutralizing antibody is intradermally administered immediately after UVB is irradiated to the human transplanted skin. Therefore, TIMP-1 is involved in the prevention and healing of surface shape change in photodamage, and a substance that can prevent or cure photodamage of skin by using the TIMP-1 production increasing action as an index Has been found to be more accurately evaluated or selected.
すなわち、本発明は、以下の工程(A)〜(D):
(A)TIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞に、被検物質を接触させる工程、
(B)当該細胞におけるTIMP−1遺伝子又はTIMP−1タンパク質の発現量を測定する工程、
(C)上記(B)で算出された発現量を、被検物質をTIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞に接触させない対照群におけるTIMP−1遺伝子又はTIMP−1タンパク質の発現量と比較する工程、
(D)上記(C)の結果に基づいて、TIMP−1遺伝子又はTIMP−1タンパク質の発現量を増加させる被検物質を皮膚の光損傷予防又は治癒剤として評価又は選択する工程、
を含む、皮膚光損傷の予防又は治癒剤の評価又は選択方法を提供するものである。
That is, the present invention includes the following steps (A) to (D):
(A) a step of bringing a test substance into contact with a cell capable of expressing a TIMP-1 gene or TIMP-1 protein;
(B) a step of measuring the expression level of TIMP-1 gene or TIMP-1 protein in the cell,
(C) Expression of TIMP-1 gene or TIMP-1 protein in a control group in which the expression level calculated in (B) above is not brought into contact with a cell capable of expressing TIMP-1 gene or TIMP-1 protein. Process to compare with the quantity,
(D) A step of evaluating or selecting a test substance that increases the expression level of the TIMP-1 gene or TIMP-1 protein as a preventive or healing agent for skin photodamage based on the result of (C) above,
A method for evaluating or selecting a preventive or healing agent for skin photodamage, comprising:
本発明によれば、各種物質の、表面形状変化を代表とする皮膚光損傷に対する予防又は治癒効果を、より正確に且つ簡便に評価することができ、当該予防又は改善効果を有する物質をより正確に選択することが可能となる。 According to the present invention, it is possible to more accurately and simply evaluate the prevention or healing effect of various substances on skin photodamage represented by surface shape change, and more accurately determine substances having the prevention or improvement effect. It becomes possible to select.
本発明において用いられるTIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞としては、哺乳動物の皮膚線維芽細胞、肺線維芽細胞、歯肉線維芽細胞等の線維芽細胞、軟骨滑膜細胞等が挙げられる。哺乳動物としては、例えば、ヒト、マウス、ラット、ウサギ等が挙げられる。これらの細胞は、初代培養のものでも継代を繰り返したあとのin vitro老化させた細胞であってもよく、また、胎児由来のものであっても老齢者由来のものであってもよい。また、これらの細胞は組織より公知の方法により採取して用いてもよく、又は市販品を購入して用いてもよい。このうち、ヒト由来の線維芽細胞が好ましく、ヒト由来の皮膚線維芽細胞がより好ましい。 Examples of cells capable of expressing the TIMP-1 gene or TIMP-1 protein used in the present invention include mammalian skin fibroblasts, lung fibroblasts, fibroblasts such as gingival fibroblasts, cartilage synovial cells, and the like. Is mentioned. Examples of mammals include humans, mice, rats, and rabbits. These cells may be primary culture cells or in vitro aged cells after repeated passages, and may be fetal or aged. In addition, these cells may be collected from a tissue by a known method and used, or commercially available products may be purchased. Among these, human-derived fibroblasts are preferable, and human-derived skin fibroblasts are more preferable.
当該細胞と被検物質との接触は、例えば被検物質を所定の濃度になるように予め培養液中に添加した後、細胞を培養液に載置すること、或いは、細胞が載置された培養液に、被検物質を所定の濃度になるように添加することにより行うことができる。
ここで、TIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞の播種時の細胞濃度は、24wellプレートを使用した場合、0.5×103〜1.0×105cells/wellとするのが好ましく、特に1.0×103〜3.5×104 cells/wellとするのが好ましい。また、被物質の添加濃度は、0.00001〜10質量%(固形残分)とするのが好ましく、特に0.0001〜3質量%(固形残分)とするのが好ましい。
For the contact between the cell and the test substance, for example, after adding the test substance to the culture solution in advance to a predetermined concentration, the cell is placed in the culture solution, or the cell is placed. It can be performed by adding the test substance to the culture solution so as to have a predetermined concentration.
Here, the cell concentration at the time of seeding of cells capable of expressing the TIMP-1 gene or TIMP-1 protein is preferably 0.5 × 10 3 to 1.0 × 10 5 cells / well when a 24-well plate is used. In particular, it is preferably 1.0 × 10 3 to 3.5 × 10 4 cells / well. Further, the concentration of the substance to be added is preferably 0.00001 to 10% by mass (solid residue), and particularly preferably 0.0001 to 3% by mass (solid residue).
被検物質としては、直接的又は間接的に皮膚の光損傷に影響を与え得ることが予想される物質である限り、特に限定されない。例えば動植物抽出物、化合物、化学物質等を用いることができる。 The test substance is not particularly limited as long as it is expected to directly or indirectly affect the photodamage of the skin. For example, animal and plant extracts, compounds, chemical substances and the like can be used.
TIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞を培養する培地は、当該細胞を培養できる常用の培地を用いることができ、例えば10%FBS含有Dulbecco’s Modified Eagle’s Medium等が挙げられる。細胞継代、増殖時にはこれらの培地に、増殖因子、抗菌剤、インスリン、ハイドロコーチゾン等の増殖添加剤を添加することが好ましい。次いで、培養上清を回収してTIMP−1遺伝子又はTIMP−1タンパク質の発現量を測定する。 As a medium for culturing cells capable of expressing the TIMP-1 gene or TIMP-1 protein, a conventional medium capable of culturing the cells can be used, and examples thereof include 10% FBS-containing Dulbecco's Modified Eagle's Medium. It is preferable to add growth additives such as growth factors, antibacterial agents, insulin, and hydrocortisone to these media during cell passage and growth. Next, the culture supernatant is collected and the expression level of the TIMP-1 gene or TIMP-1 protein is measured.
TIMP−1遺伝子の発現量の測定は、mRNAレベルで検出する場合は、例えば細胞からtotal RNAを抽出して、リアルタイムRT−PCR法、RNA分解酵素プロテクションアッセイ法、或いはノーザンブロット解析法等を利用して、TIMP−1遺伝子から転写されたmRNAを検出定量すればよい。 When measuring the expression level of TIMP-1 gene at the mRNA level, for example, extract total RNA from cells and use real-time RT-PCR, RNase protection assay, Northern blot analysis, etc. Then, the mRNA transcribed from the TIMP-1 gene may be detected and quantified.
また、TIMP−1タンパク質の発現量の測定は、通常の免疫測定法により行うことができ、例えばRIA法、EIA法、ELISA、バイオアッセイ法、ウェスタンブロット等により行うことができるが、ウェスタンブロットが安価・簡便で望ましい。 Further, the expression level of TIMP-1 protein can be measured by an ordinary immunoassay, for example, RIA, EIA, ELISA, bioassay, Western blot, etc. Inexpensive, simple and desirable.
皮膚光損傷の予防又は治癒剤の評価は、被検物質と接触させたTIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞におけるTIMP−1遺伝子又はTIMP−1タンパク質の発現量を、被検物質に接触させない対照群(対照細胞)における発現量と比較し、その発現量が増加した場合、被検物質には皮膚光損傷の予防又は治癒効果があると評価でき、斯かる物質を選択することができる。このようにして評価又は選択された物質は、例えば、皮膚の弾力性喪失、皮膚の弛緩、皮膚の表面粗さなどの表面形状変化に代表される皮膚光損傷を予防又は治癒するための医薬品等となり得る。 Evaluation of prevention or healing agent for skin photodamage is performed by measuring the expression level of TIMP-1 gene or TIMP-1 protein in cells capable of expressing TIMP-1 gene or TIMP-1 protein in contact with the test substance. When the expression level increases compared to the expression level in the control group (control cells) not contacted with the substance, the test substance can be evaluated as having a skin photodamage prevention or healing effect, and the substance is selected. be able to. Substances evaluated or selected in this way include, for example, pharmaceuticals for preventing or curing skin photodamage represented by surface shape changes such as loss of skin elasticity, skin relaxation, and skin surface roughness. Can be.
試験例1 TIMP−1中和抗体の皮内投与による移植皮膚の表面形状変化の検討
(1)severe combined immunodeficient(SCID)マウスへの腹部皮膚の移植
Cincinnati大学病院(Cincinnati、OH)におけるabdominoplasty手術由来の白人(Caucasian、41歳)女性の腹部皮膚を適当な大きさ(約2.0 cm×2.0 cm〜約3.0 cm×3.0 cm)にトリミングし、Phosphate Buffered Saline(PBS)で洗浄後、L-glutamineとantibiotic/antimycotic(Invitrogen)を含むDulbecco’s Modified Eagle’s Medium(DMEM)中に浸漬させて移植まで保存した。約1週間馴化した4〜6週齢の雌のSCIDマウス(Taconic、NY)の背部をCincinnati子供病院の動物施設(Children's Hospital Research Foundation、Cincinnati、OH)にて剃毛後、isofluorane/oxygen(3%/0.8 liter)を含む箱の中で麻酔した。その後isofluorane/oxygen(2%/0.7 liter)を吸引させながらマウス背部皮膚を切除し(直径約2−3cm)、ヒト腹部皮膚をマウス皮膚に縫合した。移植した腹部皮膚とマウス皮膚の境界にはsensorcaineを添加し、感覚脱失の処理を施した。移植後、マウスは1時間もしくは麻酔から覚めるまで37℃にて維持した。
Test Example 1 Examination of surface shape change of transplanted skin by intradermal administration of TIMP-1 neutralizing antibody (1) Abdominal skin transplantation to severe combined immunodeficient (SCID) mice
A white (Caucasian, 41 year old) female abdominal skin from an abdominoplasty operation at Cincinnati University Hospital (Cincinnati, OH) is trimmed to an appropriate size (approx. 2.0 cm x 2.0 cm to approx. 3.0 cm x 3.0 cm) and Phosphate Buffered After washing with Saline (PBS), it was immersed in Dulbecco's Modified Eagle's Medium (DMEM) containing L-glutamine and antibiotic / antimycotic (Invitrogen) and stored until transplantation. After shaving the back of a 4-6 week old female SCID mouse (Taconic, NY) acclimatized for about 1 week at the Cincinnati Children's Hospital Animal Facility (Children's Hospital Research Foundation, Cincinnati, OH), isofluorane / oxygen (3 % / 0.8 liter). Thereafter, the mouse back skin was excised (diameter: about 2 to 3 cm) while aspirating isofluorane / oxygen (2% / 0.7 liter), and the human abdominal skin was sutured to the mouse skin. Sensorcaine was added to the boundary between the transplanted abdominal skin and mouse skin to treat sensory loss. After transplantation, the mice were maintained at 37 ° C. for 1 hour or until they woke up from anesthesia.
(2)ヒト移植腹部皮膚への慢性的UVB照射による光損傷の誘導並びにTIMP−1中和抗体の皮内投与
移植腹部皮膚が完全に癒合した移植後10週間が経過した時点で、Hachiyaらが示す方法(Hachiya A, et al., Am J Pathol, 174, 401 (2009))でヒト移植皮膚に光損傷を誘導した。すなわち、302 nm をピークとするUVBが照射されるフィルターがついたUVBランプ(34-0044-01 lamps、UVB、Upland、CA)を使用しての照射を開始した。UVBのエネルギー量はUV LIGHT METER、UV-340 MSR7000(Lutron Electronic Enterprise Co. ltd、 Taiwan)を用いて測定した。フィルターから移植皮膚表面までの距離は約30 cmを確保し、最初の1週間は1 minimal erythema dose(MED)に相当する40 mJ/cm2のUVBを照射した。3週目まで10 mJ/cm2ずつ照射量を増加し、その後6週目まで60 mJ/cm2の量を維持した。週に5日間照射したため、totalで1.65 J/cm2のUVBを照射したことになる。UVBを照射する間は、底面積約100 cm2の透明容器内をマウスが自由に動けるようにした。また、1日おきにUVBを照射した直後にTIMP−1中和抗体の皮内投与を行った。投与濃度は、Reed MJ, et al., Microvasc Res, 65, 9 (2003)で用いられていた濃度の4倍量に相当する20μg/mLに設定した。
(2) Induction of photodamage to human transplanted abdominal skin by chronic UVB irradiation and intradermal administration of TIMP-1 neutralizing antibody When 10 weeks have passed since transplanted abdominal skin was completely healed, Photodamage was induced in human transplanted skin by the method shown (Hachiya A, et al., Am J Pathol, 174, 401 (2009)). That is, irradiation was started using a UVB lamp (34-0044-01 lamps, UVB, Upland, CA) with a filter irradiated with UVB having a peak at 302 nm. The amount of UVB energy was measured using a UV LIGHT METER, UV-340 MSR7000 (Lutron Electronic Enterprise Co. ltd, Taiwan). The distance from the filter to the surface of the transplanted skin was about 30 cm, and 40 mJ / cm 2 of UVB corresponding to 1 minimal erythema dose (MED) was irradiated for the first week. The dose was increased by 10 mJ / cm 2 until the third week, and then maintained at 60 mJ / cm 2 until the sixth week. Since it was irradiated for 5 days a week, it means that a total of 1.65 J / cm 2 of UVB was irradiated. During UVB irradiation, the mouse was allowed to move freely in a transparent container having a bottom area of about 100 cm 2 . Moreover, the TIMP-1 neutralizing antibody was intradermally administered immediately after UVB irradiation every other day. The administration concentration was set to 20 μg / mL corresponding to 4 times the concentration used in Reed MJ, et al., Microvasc Res, 65, 9 (2003).
(3)結果
UVB照射により移植腹部皮膚上に誘導される形状の変化を視覚的に観察した。UVBを照射せずに非特異的なIgGを皮内投与した群(Figure1上段)においては、見た目上大きな変化は認められなかったのに対し、UVBを連続照射しながら非特異的なIgGを皮内投与した群では、4週間が経過した時点で皮膚の表面に粗い構造が観察され始め、6週間連続照射した時点ではそれが明瞭に形成されていた(Figure1中段)。一方、UVBを連続照射しながらTIMP−1中和抗体を皮内投与した群(Figure1下段)では、UVBを連続照射しながら非特異的なIgGを皮内投与した群よりも早く、4週間連続照射した時点で、皮膚の表面が明らかに粗くなっていることが確認された。また、表面粗さと同様に顕著な落屑も観察された。
(3) Results
The shape change induced on the transplanted abdominal skin by UVB irradiation was visually observed. In the group that received nonspecific IgG intracutaneously without UVB irradiation (the upper part of Figure 1), there was no significant change in appearance, whereas nonspecific IgG was peeled while continuously irradiating UVB. In the internally administered group, a rough structure began to be observed on the surface of the skin after 4 weeks, and it was clearly formed after 6 weeks of continuous irradiation (middle of FIG. 1). On the other hand, in the group in which TIMP-1 neutralizing antibody was intradermally administered while continuously irradiating UVB (lower part of Figure 1), it was continuous for 4 weeks earlier than the group in which nonspecific IgG was intradermally administered while continuously irradiating UVB At the time of irradiation, it was confirmed that the surface of the skin was clearly rough. Moreover, remarkable desquamation as well as the surface roughness was observed.
試験例2 皮膚におけるTIMPsのmRNAの発現量の検討
(1)紫外線非照射皮膚の各TIMPsの発現
DallasのコントラクトラボラトリーであるStephens &Associates, Inc.(Carrollton, TX,)に依頼して、20代と50代の白人(Caucasian)女性の上腕内側部皮膚をパンチバイオプシーにより採取し、その一部から常法に従いTotal RNAを抽出した。cDNAを作製してから特異的なprobe及び7300 Real Time PCR System(Applied Biosystems)を用いて定量的なTIMP-1、TIMP-2及びTIMP-3の遺伝子発現解析を行った。遺伝子発現解析の内部標準として、RPLP0の発現を用いた。
Test Example 2 Examination of mRNA expression level of TIMPs in skin (1) Expression of each TIMPs in non-ultraviolet irradiated skin
We asked the Dallas contract laboratory, Stephens & Associates, Inc. (Carrollton, TX), to collect the inner skin of the upper arm of Caucasian women in their 20s and 50s with a punch biopsy, and always use a portion of the skin. Total RNA was extracted according to the method. After preparing cDNA, quantitative gene expression analysis of TIMP-1, TIMP-2 and TIMP-3 was performed using specific probe and 7300 Real Time PCR System (Applied Biosystems). RPLP0 expression was used as an internal standard for gene expression analysis.
(2)紫外線照射後の各TIMPsの発現
上記(1)で採取したヒト皮膚に対して6週間の連続照射(40〜60 mJ/cm2)を行ったが、その最終照射から24時間後にTotal RNAを抽出し、cDNAを作成してから特異的なprobe及び7300 Real Time PCR System(Applied Biosystems)を用いて定量的なTIMP-1、TIMP-2及びTIMP-3の遺伝子発現解析を行った。なお、内部標準には上記と同様にRPLP0の発現を用いた。
(2) Expression of each TIMPs after ultraviolet irradiation The human skin collected in (1) above was subjected to continuous irradiation (40-60 mJ / cm 2 ) for 6 weeks. RNA was extracted, cDNA was prepared, and quantitative gene expression analysis of TIMP-1, TIMP-2 and TIMP-3 was performed using a specific probe and 7300 Real Time PCR System (Applied Biosystems). As an internal standard, the expression of RPLP0 was used as described above.
(3)結果
上腕内側部皮膚由来のTotal RNAを用いてTIMP-1、TIMP-2及びTIMP-3の相対的発現量を解析したところ、その発現比率は5:1:5(1:0.2:1)であった(Figure2A)
また、光損傷モデル皮膚とUVB未照射の移植皮膚におけるTIMP-1、TIMP-2、TIMP-3の遺伝子発現量を比較したところ、TIMP-1の発現は慢性的なUVB照射による光損傷において顕著に減少するのに対し、TIMP-2、TIMP-3の発現は光損傷時においても変化は認められなかった(Figure2B)。
以上の結果から、TIMPsの中でもTIMP-1の顕著な発現減少がとりわけ光損傷の亢進に寄与しているものと考えられた。
(3) Results When the relative expression levels of TIMP-1, TIMP-2 and TIMP-3 were analyzed using total RNA derived from the inner skin of the upper arm, the expression ratio was 5: 1: 5 (1: 0.2: 1) (Figure 2A)
In addition, the expression levels of TIMP-1, TIMP-2, and TIMP-3 in photodamaged model skin and UVB-unimplanted skin were compared. TIMP-1 expression was prominent in chronic UVB-irradiated photodamage. On the other hand, the expression of TIMP-2 and TIMP-3 did not change even during photodamage (Figure 2B).
From the above results, it was considered that among TIMPs, a marked decrease in the expression of TIMP-1 particularly contributes to the enhancement of photodamage.
試験例3 皮膚光損傷の予防又は治癒剤のスクリーニング
(1)方法
本スクリーニング方法の概要をFigure3に示した。すなわち、正常ヒト皮膚線維芽細胞を2×104 cells/wellの細胞密度で24wellプレートに播種し、0.5mLの10%FBS含有DMEM(Sigma)を用いて培養を開始した。その24時間後に0.5mLの血清不含培地に交換し、同時に被検物質として各種植物エキス(50% EtOH抽出品)を添加した。エキスの添加濃度は0.001%(固形残分濃度)とし、コントロールとして、等量の50% EtOHを添加したものを用いた。エキス添加から48時間後に、測定サンプルとして培地および細胞をそれぞれ回収した。培地は各wellよりそのまま回収後、12,000 rpmで2分間遠心し、その上清中のTIMP-1のタンパク質量をhuman TIMP-1 assay system(GEヘルスケア バイオサイエンス(株))を用いて測定した。
また、各wellより培地を回収後、細胞を0.5 mLのPBSで2回洗浄し、0.1 N NaOHを125μL添加して5分程度室温で細胞を溶解させたものを細胞溶解液として回収した。この細胞溶解液のタンパク質量をBCA Protein Assay Kit (Pierce)を用いて測定することで、添加した各種植物エキスの毒性を評価した。
Test Example 3 Screening for Preventing or Curing Skin Photodamage (1) Method The outline of this screening method is shown in FIG. That is, normal human skin fibroblasts were seeded on a 24-well plate at a cell density of 2 × 10 4 cells / well, and culture was started using 0.5 mL of 10% FBS-containing DMEM (Sigma). After 24 hours, the medium was replaced with 0.5 mL of serum-free medium, and at the same time, various plant extracts (50% EtOH extract) were added as test substances. The extract concentration was 0.001% (solid residue concentration), and an equivalent amount of 50% EtOH was used as a control. Forty-eight hours after the addition of the extract, the medium and cells were collected as measurement samples. The medium was collected as it was from each well, centrifuged at 12,000 rpm for 2 minutes, and the amount of TIMP-1 protein in the supernatant was measured using a human TIMP-1 assay system (GE Healthcare Biosciences). .
Further, after recovering the medium from each well, the cells were washed twice with 0.5 mL of PBS, and 125 μL of 0.1 N NaOH was added and the cells were lysed at room temperature for about 5 minutes, and recovered as a cell lysate. The amount of protein in this cell lysate was measured using BCA Protein Assay Kit (Pierce) to evaluate the toxicity of various plant extracts added.
(2)結果
各種植物エキス(抽出溶媒50% EtOH)のTIMP-1産生に対する効果について評価を行ったところ、シソエキス及びセイヨウハッカにおいて、TIMP−1タンパク質量がコントロール(対照群)に対する相対値で2.0倍以上増加していた(表1)。なお、コントロール(50% EtOH添加)に対してタンパク質量比が0.5以下になるものは排除した。また、いずれの植物エキスにも細胞毒性はみられなかった。
シソエキスは、光老化防御剤として既に知られており(特開2002-104924号公報)、また、セイヨウハッカエキス(ペパーミント)は、コラゲナーゼ(MMP-1)阻害剤として知られている(特開2000-159631号公報)。
これらの結果から、TIMP−1の産生増加作用を指標として、皮膚の光損傷に対する予防又は治癒効果を有する物質を評価又は選択できることが確認された。
(2) Results When the effects of various plant extracts (extraction solvent 50% EtOH) on TIMP-1 production were evaluated, the amount of TIMP-1 protein was 2.0 relative to the control (control group) in perilla extract and mint. More than doubled (Table 1). In addition, proteins with a protein amount ratio of 0.5 or less with respect to the control (50% EtOH addition) were excluded. In addition, no cytotoxicity was observed in any plant extract.
Perilla extract is already known as a photoaging protection agent (JP 2002-104924 A), and mint extract (peppermint) is known as a collagenase (MMP-1) inhibitor (JP 2000-2000 A). -159631).
From these results, it was confirmed that a substance having a preventive or healing effect against photodamage of the skin can be evaluated or selected using the TIMP-1 production increasing action as an index.
Claims (3)
(A)TIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞に、被検物質を接触させる工程、
(B)当該細胞におけるTIMP−1遺伝子又はTIMP−1タンパク質の発現量を測定する工程、
(C)上記(B)で算出された発現量を、被検物質をTIMP−1遺伝子又はTIMP−1タンパク質が発現可能な細胞に接触させない対照群におけるTIMP−1遺伝子又はTIMP−1タンパク質の発現量と比較する工程、
(D)上記(C)の結果に基づいて、TIMP−1遺伝子又はTIMP−1タンパク質の発現量を増加させる被検物質を皮膚光損傷の予防又は治癒剤として評価又は選択する工程、
を含む、皮膚光損傷の予防又は治癒剤の評価又は選択方法。 The following steps (A) to (D):
(A) a step of bringing a test substance into contact with a cell capable of expressing a TIMP-1 gene or TIMP-1 protein;
(B) a step of measuring the expression level of TIMP-1 gene or TIMP-1 protein in the cell,
(C) Expression of TIMP-1 gene or TIMP-1 protein in a control group in which the expression level calculated in (B) above is not brought into contact with a cell capable of expressing TIMP-1 gene or TIMP-1 protein. Process to compare with the quantity,
(D) A step of evaluating or selecting a test substance that increases the expression level of TIMP-1 gene or TIMP-1 protein as a preventive or curative agent for skin photodamage based on the result of (C) above,
A method for evaluating or selecting a prophylactic or healing agent for skin photodamage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009165260A JP5513028B2 (en) | 2009-07-14 | 2009-07-14 | Method for evaluating or selecting skin photodamage prevention or healing agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009165260A JP5513028B2 (en) | 2009-07-14 | 2009-07-14 | Method for evaluating or selecting skin photodamage prevention or healing agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011019414A JP2011019414A (en) | 2011-02-03 |
JP5513028B2 true JP5513028B2 (en) | 2014-06-04 |
Family
ID=43630067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009165260A Expired - Fee Related JP5513028B2 (en) | 2009-07-14 | 2009-07-14 | Method for evaluating or selecting skin photodamage prevention or healing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5513028B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10072293B2 (en) | 2011-03-31 | 2018-09-11 | The Procter And Gamble Company | Systems, models and methods for identifying and evaluating skin-active agents effective for treating dandruff/seborrheic dermatitis |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120283112A1 (en) | 2011-02-22 | 2012-11-08 | The Procter & Gamble Company | Systems and Methods for Identifying Cosmetic Agents for Skin Care Compositions |
JP2015527630A (en) | 2012-06-06 | 2015-09-17 | ザ プロクター アンド ギャンブルカンパニー | Cosmetic identification system and method for hair / scalp care composition |
BR112015007102A2 (en) * | 2012-10-01 | 2017-07-04 | Natura Cosmeticos Sa | composition of vegetable lipids for the modulation of keratin material functions, method for modulating said functions and use of said vegetable lipids |
-
2009
- 2009-07-14 JP JP2009165260A patent/JP5513028B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10072293B2 (en) | 2011-03-31 | 2018-09-11 | The Procter And Gamble Company | Systems, models and methods for identifying and evaluating skin-active agents effective for treating dandruff/seborrheic dermatitis |
Also Published As
Publication number | Publication date |
---|---|
JP2011019414A (en) | 2011-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | UV modulation of subcutaneous fat metabolism | |
JP5027528B2 (en) | Test method for skin aging | |
Kwon et al. | Conditioned medium from human bone marrow‐derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB‐irradiated SKH‐1 hairless mice | |
JP7564568B2 (en) | Skin Composition | |
Fossati et al. | Octopus arm regeneration: role of acetylcholinesterase during morphological modification | |
KR20100138918A (en) | Skin whitening method and screening method of skin ulceration inhibition and / or removal factor | |
JP5513028B2 (en) | Method for evaluating or selecting skin photodamage prevention or healing agent | |
Zauner et al. | Differential regulation of msx genes in the development of the gonopodium, an intromittent organ, and of the “sword,” a sexually selected trait of swordtail fishes (Xiphophorus) | |
JP2012235921A (en) | Method for manufacturing three-dimensional skin model | |
Zhao et al. | The effect of γ-aminobutyric acid intake on UVB-induced skin damage in hairless mice | |
US11193941B2 (en) | Method for evaluating condition of skin dryness | |
Cocetta et al. | Further assessment of Salvia haenkei as an innovative strategy to counteract skin photo-aging and restore the barrier integrity | |
Kim et al. | Effects of poly-L-lactic acid on adipogenesis and collagen gene expression in cultured adipocytes irradiated with ultraviolet B rays | |
Pan et al. | Polystyrene microplastics facilitate renal fibrosis through accelerating tubular epithelial cell senescence | |
JP2004536781A (en) | Methods and compositions for protecting and restoring skin using selective MMP inhibitors | |
CN111321111A (en) | Method for promoting skin injury repair by using adipose-derived stem cell extracellular vesicles | |
Riaz et al. | Anti-hypertrophic effect of Na+/H+ exchanger-1 inhibition is mediated by reduced cathepsin B | |
Petrov et al. | Age-related changes in mast cells and eosinophils of human dermis | |
US8187841B2 (en) | Method for evaluating or selecting agent for preventing or curing photodamage of skin | |
Gehring et al. | A protocol for the isolation and cultivation of brown bear (Ursus arctos) adipocytes | |
JP5858601B2 (en) | Spot-related genes | |
Elsherif et al. | Histopathological Evaluation of Cancer Tendency in the Buccal Mucosa of Aged Albino Rats (Histological and Immunohistochemical Study) | |
CN109771648A (en) | Application of inhibitor of deubiquitinase USP11 in preparation of drug for preventing or treating uric acid renal disease | |
US20220323536A1 (en) | Use of beta-l-aspartyl-l-arginine on senescent skin | |
US20170152556A1 (en) | Methods for identifying circadian rhythm-dependent cosmetic agents for skin care compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140327 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5513028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |