[go: up one dir, main page]

JP5505555B1 - Ferritic stainless steel sheet - Google Patents

Ferritic stainless steel sheet Download PDF

Info

Publication number
JP5505555B1
JP5505555B1 JP2013268685A JP2013268685A JP5505555B1 JP 5505555 B1 JP5505555 B1 JP 5505555B1 JP 2013268685 A JP2013268685 A JP 2013268685A JP 2013268685 A JP2013268685 A JP 2013268685A JP 5505555 B1 JP5505555 B1 JP 5505555B1
Authority
JP
Japan
Prior art keywords
content
rolled
less
steel sheet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013268685A
Other languages
Japanese (ja)
Other versions
JP2014181403A (en
Inventor
孝 寒川
伸 石川
裕樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013268685A priority Critical patent/JP5505555B1/en
Application granted granted Critical
Publication of JP5505555B1 publication Critical patent/JP5505555B1/en
Publication of JP2014181403A publication Critical patent/JP2014181403A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】
成形加工性および耐食性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】
質量%で、C:0.003〜0.013%、Si:0.01〜0.95%、Mn:0.01〜0.40%、P:0.020〜0.040%、S:0.010%以下、Al:0.01〜0.45%、Cr:14.5〜21.5%、Ni:0.01〜0.60%、N:0.005〜0.012%を含有し、V:0.010〜0.040%、B:0.0001〜0.0010%を、V/B≧15.0を満足する範囲で含有し、さらに、Ti:0.20〜0.40%を含有するか、Nb:0.40〜0.60%を含有するか、又はTiとNbの合計量:0.40〜0.70%を満たす範囲でTi及びNbを含有し、残部がFeおよび不可避不純物からなることを特徴とするフェライト系ステンレス鋼板。
【選択図】なし
【Task】
A ferritic stainless steel sheet having excellent formability and corrosion resistance is provided.
[Solution]
In mass%, C: 0.003-0.013%, Si: 0.01-0.95%, Mn: 0.01-0.40%, P: 0.020-0.040%, S: 0.010% or less, Al: 0.01 to 0.45%, Cr: 14.5 to 21.5%, Ni: 0.01 to 0.60%, N: 0.005 to 0.012% V: 0.010-0.040%, B: 0.0001-0.0010% is contained in the range which satisfies V / B> = 15.0, and also Ti: 0.20-0 .40% or Nb: 0.40 to 0.60%, or Ti and Nb in a range satisfying the total amount of Ti and Nb: 0.40 to 0.70%, A ferritic stainless steel sheet characterized in that the balance consists of Fe and inevitable impurities.
[Selection figure] None

Description

本発明は、自動車部品、家庭用品、厨房器具、電化製品等といった様々な用途に好ましく適用可能であり、成形加工性と耐食性に優れたフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel sheet that can be preferably applied to various uses such as automobile parts, household goods, kitchen appliances, electrical appliances, etc., and is excellent in formability and corrosion resistance.

フェライト系ステンレス鋼は、耐食性に優れた材料として、自動車部品、家庭用品を始めとする様々な分野において、広く利用されている。一般に、このフェライト系ステンレス鋼は、Niを多量に含むオーステナイト系ステンレス鋼に比べ安価であるが、成形性に劣っている。例えば、フェライト系ステンレス鋼は、深絞り加工した場合に成形部材の縁にイヤリングと呼ばれる凹凸が発生するという問題点がある。このため、耐食性と深絞り加工などの成形加工性を両立したフェライト系ステンレス鋼が求められている。   Ferritic stainless steel is widely used as a material having excellent corrosion resistance in various fields including automobile parts and household goods. In general, this ferritic stainless steel is cheaper than austenitic stainless steel containing a large amount of Ni, but is inferior in formability. For example, ferritic stainless steel has a problem that irregularities called earrings occur at the edge of a molded member when deep drawing is performed. For this reason, ferritic stainless steel that has both corrosion resistance and formability such as deep drawing is required.

フェライト系ステンレス鋼の成形加工性を改善する技術として、例えば、特許文献1には、C:0.03質量%以下、Si:2.0質量%以下、Mn:0.8質量%以下、S:0.03質量%以下、Cr:6〜25質量%、N:0.03質量%以下、Al:0.3質量%以下、Ti:0.4質量%以下、V:0.02〜0.4質量%、B:0.0002〜0.0050質量%を、式:Ti/48>N/14+C/12、V/B>10を満足する範囲で含有し、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス熱延鋼板が開示されている。このフェライト系ステンレス熱延鋼板は、成形加工後の耐肌あれ性および高温疲労特性に優れるとされている。   As a technique for improving the formability of ferritic stainless steel, for example, in Patent Document 1, C: 0.03 mass% or less, Si: 2.0 mass% or less, Mn: 0.8 mass% or less, S : 0.03 mass% or less, Cr: 6 to 25 mass%, N: 0.03 mass% or less, Al: 0.3 mass% or less, Ti: 0.4 mass% or less, V: 0.02 to 0 .4% by mass, B: 0.0002 to 0.0050% by mass in a range satisfying the formulas: Ti / 48> N / 14 + C / 12, V / B> 10, the balance being Fe and inevitable impurities A ferritic stainless hot-rolled steel sheet characterized by comprising: This ferritic stainless steel hot-rolled steel sheet is said to have excellent skin resistance after forming and high temperature fatigue properties.

また、特許文献2には、C:0.03〜0.08質量%、Si:1.0質量%以下、Mn:1.0質量%以下、P:0.05質量%以下、S:0.015質量%以下、Al:0.10質量%以下、N:0.02質量%以下、Cr:5〜60質量%、Ti:4×(Cの含有量+Nの含有量)〜0.5質量%、Nb:0.003〜0.020質量%、B:0.0002〜0.005質量%を含有し、残部がFeおよび不可避的不純物からなり、Δrが0.3以下であることを特徴とする、クロム鋼板が開示されている。このクロム鋼板は、深絞り成形性と耐二次加工脆性に優れる、とされている。   In Patent Document 2, C: 0.03 to 0.08 mass%, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, P: 0.05 mass% or less, S: 0 .015 mass% or less, Al: 0.10 mass% or less, N: 0.02 mass% or less, Cr: 5 to 60 mass%, Ti: 4 × (C content + N content) to 0.5 It contains that mass%, Nb: 0.003 to 0.020 mass%, B: 0.0002 to 0.005 mass%, the balance is made of Fe and inevitable impurities, and Δr is 0.3 or less. A featured chromium steel sheet is disclosed. This chromium steel sheet is said to be excellent in deep drawability and secondary work brittleness resistance.

特開平09-3606号公報Japanese Patent Laid-Open No. 09-3606 特開平08-20843号公報Japanese Patent Laid-Open No. 08-20843

しかし、上記特許文献に記載の技術には、それぞれ以下に述べるような問題点がある。特許文献1に記載の技術では、塑性歪比(以下、単にr値と略記する)の面内異方性(以下、単にΔrと略記する)が十分には改善されていない。その結果、特許文献1に記載の技術は、深絞り加工した場合に成形部材の縁にイヤリングが発生するという問題点がある。また、特許文献1に記載の技術では、Bを添加することによる耐食性への影響についての検討がなされておらず、フェライト系ステンレス熱延鋼板の耐食性が低下する場合もある。一方、特許文献2に開示の技術では、r値およびΔrの改善がなされるものの、Bを添加することによる耐食性への影響についての検討がなされておらず、クロム鋼板の耐食性が低下する場合がある。   However, the techniques described in the above patent documents have the following problems. In the technique described in Patent Document 1, the in-plane anisotropy (hereinafter simply referred to as Δr) of the plastic strain ratio (hereinafter simply referred to as r value) is not sufficiently improved. As a result, the technique described in Patent Document 1 has a problem that earrings are generated at the edge of the molded member when deep drawing is performed. In addition, in the technique described in Patent Document 1, the influence on the corrosion resistance due to the addition of B has not been studied, and the corrosion resistance of the ferritic stainless steel hot rolled steel sheet may be lowered. On the other hand, in the technique disclosed in Patent Document 2, although the r value and Δr are improved, the influence on the corrosion resistance by adding B has not been studied, and the corrosion resistance of the chromium steel sheet may be lowered. is there.

このように上記した特許文献1、2に記載の技術により、深絞り加工などの成形加工性と耐食性がともに優れるフェライト系ステンレス鋼を得ることはできない。   As described above, by the techniques described in Patent Documents 1 and 2 described above, it is not possible to obtain a ferritic stainless steel excellent in both formability such as deep drawing and corrosion resistance.

本発明は、上記した従来技術の問題を解決し、成形加工性および耐食性に優れたフェライト系ステンレス鋼板を提供することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and to provide a ferritic stainless steel sheet having excellent formability and corrosion resistance.

本発明者らは、上記した課題を達成するべく、種々検討を重ねた。その結果、V含有量とB含有量を適正範囲に調整するとともにV/Bを15.0以上に調整することにより、深絞り加工などの成形加工性と耐食性を兼備するフェライト系ステンレス鋼板が得られることを見出し、本発明を完成するに至った。   The present inventors have made various studies in order to achieve the above-described problems. As a result, a ferritic stainless steel sheet having both formability such as deep drawing and corrosion resistance can be obtained by adjusting the V content and B content to appropriate ranges and adjusting V / B to 15.0 or more. As a result, the present invention has been completed.

以下、本発明の基礎となった実験結果について説明する。なお、成分の含有量を表す「%」は「質量%」を意味する。   Hereinafter, the experimental results on which the present invention is based will be described. “%” Representing the content of the component means “mass%”.

(実験1)
表1に示す(0.009〜0.012)%C[Cの含有量が0.009〜0.012質量%の範囲にあることを意味する。以下同様である。]、(0.08〜0.12)%Si、(0.19〜0.23)%Mn、(0.033〜0.037)%P、(0.001〜0.002)%S、(17.2〜17.5)%Cr、(0.02〜0.03)%Al、(0.009〜0.012)%N、(0.08〜0.12)%Ni、(0.25〜0.27)%Ti、(0.010〜0.016)%V、(0.0002〜0.0010)%Bで、V/B比を変化させ、残部がFe及び不可避的不純物からなるステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1100℃に加熱後、熱間圧延を施して4.0mmの熱延板とした。次いで、上記熱延板を930℃×60secの焼鈍を施した後、ショットブラストを行い、弗酸と硝酸の混合酸で酸洗し、冷間圧延により板厚0.7mmの冷延板とした。得られた冷延板に対し、880℃×40secの仕上焼鈍を施して、冷延焼鈍板とした。得られた冷延焼鈍板から60mm×80mmの試験片を切り出し、表面を#600番手で研磨したのち、複合サイクル腐食試験による耐食性評価を行った。複合サイクル腐食試験は、JASO M 609−91に準拠し、塩水噴霧(5%NaCl、35℃、2h)→乾燥(60℃、相対湿度20〜30%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとする腐食試験サイクルを30サイクル行った。複合サイクル腐食試験では、発銹面積率20%以上を不合格、20%未満を合格と判定した。得られた結果を表1に合わせて示す。表1から、V/B比を15.0以上とすることにより、耐食性が改善されることがわかる。
(Experiment 1)
(0.009 to 0.012)% C [C content in Table 1 means in the range of 0.009 to 0.012 mass%. The same applies hereinafter. ], (0.08-0.12)% Si, (0.19-0.23)% Mn, (0.033-0.037)% P, (0.001-0.002)% S, (17.2 to 17.5)% Cr, (0.02 to 0.03)% Al, (0.009 to 0.012)% N, (0.08 to 0.12)% Ni, (0 .25 to 0.27)% Ti, (0.010 to 0.016)% V, and (0.0002 to 0.0010)% B, changing the V / B ratio with the balance being Fe and inevitable impurities Stainless steel made of was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated to 1100 ° C. and then hot rolled to form 4.0 mm hot rolled sheets. Next, the hot-rolled sheet was annealed at 930 ° C. × 60 sec, then shot blasted, pickled with a mixed acid of hydrofluoric acid and nitric acid, and cold rolled into a cold-rolled sheet having a thickness of 0.7 mm. . The obtained cold-rolled sheet was subjected to finish annealing at 880 ° C. × 40 sec to obtain a cold-rolled annealed sheet. A test piece of 60 mm × 80 mm was cut out from the obtained cold-rolled annealed plate, the surface was polished with # 600 count, and corrosion resistance was evaluated by a combined cycle corrosion test. The combined cycle corrosion test is based on JASO M 609-91, salt spray (5% NaCl, 35 ° C., 2 h) → dry (60 ° C., relative humidity 20-30%) → wet (50 ° C., 2 h, relative humidity) 30 cycles of corrosion test with 1 cycle of ≧ 95%) were performed. In the combined cycle corrosion test, an area ratio of 20% or more was determined to be unacceptable and less than 20% was determined to be acceptable. The obtained results are shown in Table 1. From Table 1, it can be seen that the corrosion resistance is improved by setting the V / B ratio to 15.0 or more.

Figure 0005505555
Figure 0005505555

(実験2)
表2に示す(0.009〜0.012)%C、(0.82〜0.89)%Si、(0.35〜0.40)%Mn、(0.024〜0.027)%P、(0.001〜0.003)%S、(14.5〜14.9)%Cr、(0.01〜0.02)%Al、(0.009〜0.012)%N、(0.15〜0.20)%Ni、(0.40〜0.43)%Nb、(0.011〜0.017)%V、(0.0002〜0.0010)%Bで、V/B比を変化させ、残部がFe及び不可避的不純物からなるステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1100℃に加熱後、熱間圧延を施して4.0mmの熱延板とした。次いで、上記熱延板を1020℃×60secの焼鈍を施した後、ショットブラストを行い、弗酸と硝酸の混合酸で酸洗し、冷間圧延により板厚0.7mmの冷延板とした。得られた冷延板に対し、980℃×40secの仕上焼鈍を施して、冷延焼鈍板とした。得られた冷延焼鈍板から60mm×80mmの試験片を切り出し、表面を#600番手で研磨したのち、複合サイクル腐食試験による耐食性評価を行った。複合サイクル腐食試験は、上記腐食試験サイクルを、30サイクル行った。複合サイクル腐食試験では、発銹面積率20%以上を不合格、20%未満を合格と判定した。得られた結果を表2に合わせて示す。表2から、V/B比を15.0以上とすることにより、耐食性が改善されることがわかる。
(Experiment 2)
(0.009 to 0.012)% C, (0.82 to 0.89)% Si, (0.35 to 0.40)% Mn, (0.024 to 0.027)% shown in Table 2 P, (0.001-0.003)% S, (14.5-14.9)% Cr, (0.01-0.02)% Al, (0.009-0.012)% N, (0.15-0.20)% Ni, (0.40-0.43)% Nb, (0.011-0.017)% V, (0.0002-0.0010)% B, V The stainless steel consisting of Fe and inevitable impurities was melted in a 50 kg small vacuum melting furnace while changing the / B ratio. These steel ingots were heated to 1100 ° C. and then hot rolled to form 4.0 mm hot rolled sheets. Next, the hot-rolled sheet was annealed at 1020 ° C. × 60 sec, then shot blasted, pickled with a mixed acid of hydrofluoric acid and nitric acid, and cold rolled into a cold-rolled sheet having a thickness of 0.7 mm. . The obtained cold-rolled sheet was subjected to finish annealing at 980 ° C. × 40 sec to obtain a cold-rolled annealed sheet. A test piece of 60 mm × 80 mm was cut out from the obtained cold-rolled annealed plate, the surface was polished with # 600 count, and corrosion resistance was evaluated by a combined cycle corrosion test. In the combined cycle corrosion test, the above corrosion test cycle was performed 30 times. In the combined cycle corrosion test, an area ratio of 20% or more was determined to be unacceptable and less than 20% was determined to be acceptable. The obtained results are shown in Table 2. From Table 2, it can be seen that the corrosion resistance is improved by setting the V / B ratio to 15.0 or more.

Figure 0005505555
Figure 0005505555

実験1、実験2のV/B比が15.0未満の場合、CrBが粒界に析出して粒界近傍のCr濃度が低下し、鋭敏化により耐食性が低下したと推定される。また、このような鋭敏化現象は、V/B比を15.0以上に制御することにより、抑止可能となる。 When the V / B ratio in Experiment 1 and Experiment 2 is less than 15.0, it is presumed that Cr 2 B precipitates at the grain boundary, the Cr concentration in the vicinity of the grain boundary decreases, and the corrosion resistance decreases due to sensitization. Moreover, such a sensitization phenomenon can be suppressed by controlling the V / B ratio to 15.0 or more.

次に、V/B比の成形加工性(伸び、r値、Δr)に対する影響について検討した。   Next, the influence of the V / B ratio on the moldability (elongation, r value, Δr) was examined.

(0.009〜0.011)%C、(0.08〜0.13)%Si、(0.19〜0.22)%Mn、(0.035〜0.038)%P、(0.001〜0.003)%S、(17.2〜17.5)%Cr、(0.02〜0.03)%Al、(0.007〜0.011)%N、(0.11〜0.13)%Ni、(0.26〜0.30)%Ti、(0.010〜0.024)%V、(0.0002〜0.0009)%Bで、V/B比を変化させ、残部がFe及び不可避的不純物からなる鋼を50kg小型真空溶解炉にて溶製し、スラブを1100℃に加熱したのち、仕上温度が850℃となる熱間圧延を行い、板厚4.0mmの熱延板とした。これら熱延板に930℃×60secの熱延板焼鈍を施したのち、酸洗し、ついで冷間圧延を施し、板厚0.7mmの冷延板とした。さらに、これら冷延板に880℃×40secの仕上焼鈍を施した後、酸洗し、冷延焼鈍酸洗板とした。得られた冷延焼鈍酸洗板について、引張試験(JIS Z 2201)を行い、伸び、r値、Δrを求めた。成形加工性は、伸び30.0%以上、r値1.50以上、Δr0.30以下を合格と判定した。また、冷延焼鈍酸洗板から切り出した試験片の表面を#600番手で研磨し、複合サイクル腐食試験による耐食性評価を行った。複合サイクル腐食試験は、上記腐食試験サイクルを、30サイクル行った。複合サイクル腐食試験では、発銹面積率20%以上を不合格、20%未満を合格と判定した。   (0.009 to 0.011)% C, (0.08 to 0.13)% Si, (0.19 to 0.22)% Mn, (0.035 to 0.038)% P, (0 0.001 to 0.003)% S, (17.2 to 17.5)% Cr, (0.02 to 0.03)% Al, (0.007 to 0.011)% N, (0.11 -0.13)% Ni, (0.26-0.30)% Ti, (0.010-0.024)% V, (0.0002-0.0009)% B, the V / B ratio is The steel with the balance being Fe and inevitable impurities is melted in a 50 kg small vacuum melting furnace, the slab is heated to 1100 ° C., and then hot-rolling to a finishing temperature of 850 ° C. is performed. A hot-rolled sheet having a thickness of 0.0 mm was used. These hot-rolled sheets were subjected to hot-rolled sheet annealing at 930 ° C. × 60 sec, then pickled, and then cold-rolled to obtain cold-rolled sheets having a thickness of 0.7 mm. Further, these cold-rolled plates were subjected to finish annealing at 880 ° C. × 40 sec, and then pickled to obtain cold-rolled annealed pickled plates. About the obtained cold-rolled annealed pickling board, the tension test (JIS Z 2201) was done and elongation, r value, and (DELTA) r were calculated | required. Regarding the molding processability, an elongation of 30.0% or more, an r value of 1.50 or more, and Δr of 0.30 or less were determined to be acceptable. Moreover, the surface of the test piece cut out from the cold rolled annealed pickling plate was polished with # 600 count, and the corrosion resistance was evaluated by a combined cycle corrosion test. In the combined cycle corrosion test, the above corrosion test cycle was performed 30 times. In the combined cycle corrosion test, an area ratio of 20% or more was determined to be unacceptable and less than 20% was determined to be acceptable.

図1に、V/Bと冷延焼鈍酸洗板の成形加工性(伸び、r値、Δr)と耐食性評価結果の関係を示す。図1から、V/B≧15.0を満たすことにより、El、r値、Δr、耐食性評価のいずれも判定基準を満足することがわかった。特に、V/B≧30.0で、r値、Δrが優れることがわかった。   FIG. 1 shows the relationship between V / B, cold-rolled annealed pickling plate forming processability (elongation, r value, Δr) and corrosion resistance evaluation results. From FIG. 1, it was found that by satisfying V / B ≧ 15.0, all of El, r value, Δr, and corrosion resistance evaluation satisfy the determination criteria. In particular, it was found that r value and Δr were excellent when V / B ≧ 30.0.

より具体的には本発明は以下のものを提供する。   More specifically, the present invention provides the following.

(1)質量%で、C:0.003〜0.013%、Si:0.01〜0.95%、Mn:0.01〜0.40%、P:0.020〜0.040%、S:0.010%以下、Al:0.01〜0.45%、Cr:14.5〜21.5%、Ni:0.01〜0.60%、N:0.005〜0.012%を含有し、V:0.010〜0.040%、B:0.0001〜0.0010%を、Vの含有量とBの含有量の比(V/B)≧15.0を満足する範囲で含有し、更に、Ti:0.20%以上0.40%以下、Ti%+Nb%≦0.70を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、およびNb:0.40%以上0.60%以下、Ti%+Nb%≦0.70を満足する範囲でNbを含有又はNb及びTiを含有する場合の少なくとも一方を満足し、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼板。   (1) By mass%, C: 0.003 to 0.013%, Si: 0.01 to 0.95%, Mn: 0.01 to 0.40%, P: 0.020 to 0.040% , S: 0.010% or less, Al: 0.01-0.45%, Cr: 14.5-21.5%, Ni: 0.01-0.60%, N: 0.005-0. 012%, V: 0.010-0.040%, B: 0.0001-0.0010%, ratio of V content to B content (V / B) ≧ 15.0 When it is contained within a range satisfying Ti: 0.20% or more and 0.40% or less and Ti% + Nb% ≦ 0.70, Ti is contained or Ti and Nb are contained, and Nb : 0.40% or more and 0.60% or less, Nb contained within a range satisfying Ti% + Nb% ≦ 0.70, or a small amount when Nb and Ti are contained Ferritic stainless steel sheet, characterized in that consisting of also satisfying one, balance Fe and unavoidable impurities.

(2)V/B≧30.0を満足して含有することを特徴とする(1)に記載のフェライト系ステンレス鋼板。   (2) The ferritic stainless steel sheet according to (1), wherein V / B ≧ 30.0 is satisfied.

(3)質量%で、さらに、Cu:0.01〜1.40%、Mo:0.01〜1.62%の1種または2種を含有することを特徴とする(1)または(2)に記載のフェライト系ステンレス鋼板。   (3) By mass%, and further containing one or two of Cu: 0.01 to 1.40% and Mo: 0.01 to 1.62% (1) or (2 ) Ferritic stainless steel sheet.

(4)質量%で、さらに、Zr:0.01〜0.20%、REM:0.001〜0.100%、W:0.01〜0.20%、Co:0.01〜0.20%、Mg:0.0001〜0.0010%、Ca:0.0003〜0.0030%のうちから選ばれる1種または2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載のフェライト系ステンレス鋼板。   (4) By mass%, Zr: 0.01-0.20%, REM: 0.001-1.00%, W: 0.01-0.20%, Co: 0.01-0. (1) to (3) characterized by containing one or more selected from 20%, Mg: 0.0001 to 0.0010%, Ca: 0.0003 to 0.0030% The ferritic stainless steel sheet according to any one of the above.

本発明のフェライト系ステンレス鋼板は、優れた成形加工性(成形性)を有するとともに、優れた耐食性を有する。具体的には、本発明のフェライト系ステンレス鋼板は、伸び30.0%以上、r値1.50以上、Δr0.30以下を満たす成形加工性を有し、且つ、#600番手で研磨面した鋼板表面のJASO M 609−91に準拠した複合サイクル腐食試験(30サイクル)にて、発銹面積率20%未満を満足する耐食性を有する。   The ferritic stainless steel sheet of the present invention has excellent moldability (formability) and excellent corrosion resistance. Specifically, the ferritic stainless steel sheet of the present invention has a formability satisfying an elongation of 30.0% or more, an r value of 1.50 or more, and Δr of 0.30 or less, and was polished by # 600. In the combined cycle corrosion test (30 cycles) based on JASO M 609-91 on the surface of the steel sheet, the steel sheet has corrosion resistance satisfying a cracking area ratio of less than 20%.

冷延焼鈍板の成形加工性(伸び、r値、Δr)、耐食性(発銹面積率)とV/Bの関係を示すグラフであり、(a)は伸び(El)とV/Bとの関係を示すグラフ、(b)はr値とV/Bとの関係を示すグラフ、(c)はΔrとV/Bとの関係を示すグラフ、(d)は耐食性試験における発銹面積率とV/Bとの関係を示すグラフである。It is a graph which shows the relationship between V / B and the moldability (elongation, r value, Δr), corrosion resistance (spreading area ratio), and V / B of a cold-rolled annealed sheet. (B) is a graph showing the relationship between the r value and V / B, (c) is a graph showing the relationship between Δr and V / B, and (d) is the ratio of the glazing area in the corrosion resistance test. It is a graph which shows the relationship with V / B.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

まず、本発明のフェライト系ステンレス鋼板の成分限定理由を説明する。なお、成分の含有量を表す「%」は「質量%」を意味する。   First, the reasons for limiting the components of the ferritic stainless steel sheet of the present invention will be described. “%” Representing the content of the component means “mass%”.

C:0.003〜0.013%
Cの含有量は、耐食性および成形性の観点から低いほど好ましい。しかし、Cの含有量を0.003%未満にするには精錬を長時間行う必要がある。所望の生産性を確保する観点から、Cの含有量の下限は0.003%である。一方、Cの含有量が0.013%を超えると、フェライト系ステンレス鋼板の成形性および耐食性の低下が顕著になる。よって、Cの含有量は0.003〜0.013%の範囲とする。より好ましくは0.004〜0.011%である。
C: 0.003 to 0.013%
The lower the C content, the better from the viewpoint of corrosion resistance and moldability. However, it is necessary to perform refining for a long time in order to make the C content less than 0.003%. From the viewpoint of securing desired productivity, the lower limit of the C content is 0.003%. On the other hand, when the content of C exceeds 0.013%, the formability and corrosion resistance of the ferritic stainless steel sheet are significantly lowered. Therefore, the C content is in the range of 0.003 to 0.013%. More preferably, it is 0.004 to 0.011%.

Si:0.01〜0.95%
Siは、鋼の脱酸剤として有用な元素である。この効果を得るためには、Siの含有量は0.01%以上である。しかし、Siの含有量が0.95%を超えると、熱間圧延工程において圧延荷重が増大するとともに、スケールが非常に生成しやすくなる。また、焼鈍工程においては鋼板表層でのSiが濃化したスケールの形成による酸洗性の低下も生じる。このため、Siの含有量が0.95%を超えると、表面欠陥が増加したり、製造コストが上昇したりするため好ましくない。よって、Siの含有量は0.01〜0.95%の範囲とする。より好ましくは、0.05〜0.50%である。特に後述するTiの含有量が0.25%以上の場合には、Siによる酸洗性の低下が顕著になるので、この場合Siの含有量の好ましい範囲は、0.05〜0.20%である。
Si: 0.01-0.95%
Si is an element useful as a deoxidizer for steel. In order to obtain this effect, the Si content is 0.01% or more. However, if the Si content exceeds 0.95%, the rolling load increases in the hot rolling process, and a scale is very easily generated. Moreover, in the annealing process, the pickling property is lowered due to the formation of a scale in which Si is concentrated on the surface layer of the steel sheet. For this reason, it is not preferable that the Si content exceeds 0.95% because surface defects increase or manufacturing costs increase. Therefore, the Si content is in the range of 0.01 to 0.95%. More preferably, it is 0.05 to 0.50%. In particular, when the Ti content to be described later is 0.25% or more, the pickling property is significantly reduced by Si. In this case, the preferable range of the Si content is 0.05 to 0.20%. It is.

Mn:0.01〜0.40%
Mnは、鋼中に存在するSと結合して、MnSを形成し、耐食性を低下させる。よって、Mnの含有量は0.40%以下とする。一方、必要以上に、Mnの含有量を低下させようとすると、精錬コストが増大する。このため、Mnの含有量は0.01%以上が好ましい。なお、精錬コストを抑えつつ、特に高い耐食性を実現するためには、Mnの含有量の好ましい範囲は0.05〜0.35%である。
Mn: 0.01-0.40%
Mn combines with S present in the steel to form MnS and lowers the corrosion resistance. Therefore, the Mn content is set to 0.40% or less. On the other hand, if the content of Mn is decreased more than necessary, the refining cost increases. For this reason, the Mn content is preferably 0.01% or more. In addition, in order to implement | achieve especially high corrosion resistance, suppressing refining cost, the preferable range of content of Mn is 0.05 to 0.35%.

P:0.020〜0.040%
Pは、鋼に不可避的に含まれる元素である。Pは耐食性および成形性に対して有害な元素であるため、Pの含有量は低いことが好ましい。特に、Pの含有量が0.040%を超えると固溶強化により鋼板の成形性が低下する。このためPの含有量は0.040%以下である。一方、Pの含有量を0.020%未満にするためには、時間を掛けて精錬を行う必要があり、Pの含有量を0.020%未満にすることは製造上好ましくない。よって、Pの含有量は0.020〜0.040%の範囲とする。好ましくは、0.025〜0.035%の範囲である。
P: 0.020-0.040%
P is an element inevitably contained in steel. Since P is an element harmful to corrosion resistance and moldability, the P content is preferably low. In particular, if the P content exceeds 0.040%, the formability of the steel sheet decreases due to solid solution strengthening. For this reason, content of P is 0.040% or less. On the other hand, in order to make the P content less than 0.020%, it is necessary to perform refining over time, and making the P content less than 0.020% is not preferable in production. Therefore, the P content is in the range of 0.020 to 0.040%. Preferably, it is 0.025 to 0.035% of range.

S:0.010%以下
SはMnと結合しMnSを形成する。MnSは熱間圧延等により展伸し、フェライト粒界等に析出物(介在物)として存在する。このような硫化物系析出物(介在物)は、鋼板の伸びを低下させ、特に鋼板の曲げ加工時において鋼板に亀裂を発生させる場合がある。このためSの含有量はできるだけ低減することが望ましく、許容できるSの含有量は0.010%までである。なお、好ましいSの含有量は0.005%以下である。
S: 0.010% or less S combines with Mn to form MnS. MnS expands by hot rolling or the like and exists as precipitates (inclusions) at ferrite grain boundaries and the like. Such sulfide-based precipitates (inclusions) reduce the elongation of the steel sheet, and sometimes cause cracks in the steel sheet during bending of the steel sheet. For this reason, it is desirable to reduce the S content as much as possible, and the allowable S content is up to 0.010%. A preferable S content is 0.005% or less.

Al:0.01〜0.45%
Alは、鋼の脱酸剤として有用な元素である。この効果を得るためには、Alの含有量を0.01%以上にする必要がある。しかし、Alの含有量が多くなり過ぎると、Al系介在物の増加により、表面疵を招く原因となる。以上よりAlの含有量の範囲は0.01〜0.45%とする。また、Alの含有量の好ましい範囲は、0.01〜0.10%である。さらに好ましい範囲は、0.02〜0.04%である。
Al: 0.01 to 0.45%
Al is an element useful as a deoxidizer for steel. In order to obtain this effect, the Al content needs to be 0.01% or more. However, if the Al content is excessively large, an increase in Al-based inclusions causes surface defects. Accordingly, the range of Al content is set to 0.01 to 0.45%. Moreover, the preferable range of content of Al is 0.01 to 0.10%. A more preferable range is 0.02 to 0.04%.

Cr:14.5〜21.5%
Crは耐食性向上に寄与する元素であり、ステンレス鋼板に必須元素として含まれる元素である。しかし、Crの含有量が14.5%未満では、十分な耐食性を持つ鋼板が得られない。一方、Crの含有量が21.5%を超えると、鋼板の靭性が低下することに加えて、鋼が硬質化しすぎて鋼板の伸びも顕著に低下する。よって、Crの含有量の範囲は14.5〜21.5%とする。さらに、耐食性と製造性の観点から、Crの含有量の好ましい範囲は16.0〜21.5%である。
Cr: 14.5-21.5%
Cr is an element that contributes to improving corrosion resistance, and is an element included as an essential element in a stainless steel plate. However, if the Cr content is less than 14.5%, a steel sheet having sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content exceeds 21.5%, in addition to the toughness of the steel sheet being lowered, the steel is too hard and the elongation of the steel sheet is also significantly reduced. Therefore, the range of Cr content is 14.5 to 21.5%. Furthermore, from the viewpoint of corrosion resistance and manufacturability, the preferable range of the Cr content is 16.0 to 21.5%.

Ni:0.01〜0.60%
Niは、隙間腐食を低減させる効果を有する。この効果を得るためには、Niの含有量を0.01%以上にすることが必要である。しかし、Niは高価な元素であることに加え、0.60%を超えるNiを含有しても、上記効果は飽和し、熱間加工性を低下させる。よって、Niの含有量の範囲は0.01〜0.60%とする。また、Niの含有量の好ましい範囲は、0.10〜0.40%である。
Ni: 0.01-0.60%
Ni has an effect of reducing crevice corrosion. In order to obtain this effect, the Ni content must be 0.01% or more. However, in addition to Ni being an expensive element, even if Ni exceeds 0.60%, the above effect is saturated and the hot workability is reduced. Therefore, the range of Ni content is set to 0.01 to 0.60%. Moreover, the preferable range of Ni content is 0.10 to 0.40%.

N:0.005〜0.012%
Nは、Vと結合して、窒化物や炭窒化物を形成し、最終的な製品板の結晶粒を微細化して、r値特性向上に寄与する。しかし、Nの含有量が0.005%未満では、V(C、N)の炭窒化物の微細析出による結晶粒の微細化効果が得られない。一方、Nの含有量が0.012%を超える場合、Cr窒化物量、あるいはCr炭窒化物量が増加して、鋼板が硬質化し伸びが低下する。よって、Nの含有量の範囲は0.005〜0.012%とする。また、Nの含有量の好ましい範囲は、0.006〜0.010%である。
N: 0.005 to 0.012%
N combines with V to form nitrides or carbonitrides, refines the crystal grains of the final product plate, and contributes to the improvement of the r-value characteristics. However, if the N content is less than 0.005%, the effect of refining crystal grains due to fine precipitation of V (C, N) carbonitride cannot be obtained. On the other hand, when the N content exceeds 0.012%, the Cr nitride amount or the Cr carbonitride amount increases, the steel plate becomes hard and the elongation decreases. Therefore, the range of N content is set to 0.005 to 0.012%. Moreover, the preferable range of N content is 0.006 to 0.010%.

V:0.010〜0.040%、B:0.0001〜0.0010%、V/B:15.0以上
VおよびBは、本発明において極めて重要な元素である。Vは、Nと結びついて、VNやV(C、N)といった窒化物や炭窒化物を形成し、熱延焼鈍板の結晶粒の粗大化を抑制する効果がある。また、Bはフェライト粒界に濃化し、粒界移動を遅れさせることにより、粒成長抑制を補助する効果がある。これらのVとBの複合効果により、熱延焼鈍板の結晶粒が微細化する。この結果、冷延焼鈍後の{111}再結晶方位粒の優先核生成サイトである粒界の面積が増加することにより、{111}方位が高集積化することで、r値が向上するとともにΔr値が低減するものと考えられる。
V: 0.010-0.040%, B: 0.0001-0.0010%, V / B: 15.0 or more V and B are extremely important elements in the present invention. V is combined with N to form nitrides and carbonitrides such as VN and V (C, N), and has an effect of suppressing coarsening of crystal grains of the hot-rolled annealing plate. Further, B has an effect of assisting the grain growth suppression by concentrating on the ferrite grain boundary and delaying the grain boundary movement. Due to the combined effect of V and B, the crystal grains of the hot-rolled annealing plate are refined. As a result, the area of the grain boundary, which is the preferential nucleation site of {111} recrystallized orientation grains after cold rolling annealing, increases the {111} orientation, thereby improving the r value. It is considered that the Δr value decreases.

Vの含有量が0.010%未満では、VNあるいはV(C、N)の微細析出による結晶粒の微細化効果が得られない。Bの含有量が0.0001%未満では、粒成長を抑制する効果がない。Vの含有量が0.040%を超える場合やBの含有量が0.0010%を超える場合には、焼鈍中の結晶粒の微細化および成長抑制、成形加工性改善の効果が飽和するだけでなく、逆に材質が硬化し延性が低下して、鋼板の成形加工性が劣化する。よって、Vの含有量の範囲は0.010〜0.040%、Bの含有量の範囲は0.0001〜0.0010%とする。また、VとBの含有比(V/B)は、フェライト結晶粒径とフェライト粒界面積のバランスおよび粒界へのCrBの析出挙動に影響し、成形加工性および耐食性に影響するものと考えられる。前述の表1、表2および図1に記載の通り、V/B比が15.0未満の場合は、BがCrと結合して粒界にCrBとして析出する。このことにより、粒成長を抑制する効果が少なくなり、r値の向上が不十分となる。さらに、粒界近傍のCr濃度が低下して鋼板の耐食性が劣化する。よって、(V/B)を15.0以上とする。なお、高い成形加工性を確保する観点から、V/Bの好ましい範囲は30.0以上である。 If the V content is less than 0.010%, the effect of refining crystal grains due to fine precipitation of VN or V (C, N) cannot be obtained. When the B content is less than 0.0001%, there is no effect of suppressing grain growth. When the V content exceeds 0.040% or the B content exceeds 0.0010%, the effect of refinement of crystal grains during growth and suppression of growth and improvement of moldability are only saturated. On the contrary, the material is hardened, the ductility is lowered, and the formability of the steel sheet is deteriorated. Therefore, the range of the V content is 0.010 to 0.040%, and the range of the B content is 0.0001 to 0.0010%. The content ratio of V and B (V / B) affects the balance between the ferrite crystal grain size and the ferrite grain interfacial area and the precipitation behavior of Cr 2 B at the grain boundaries, and affects the moldability and corrosion resistance. it is conceivable that. As described in Tables 1 and 2 and FIG. 1, when the V / B ratio is less than 15.0, B combines with Cr and precipitates as Cr 2 B at the grain boundary. As a result, the effect of suppressing grain growth is reduced, and the r value is insufficiently improved. Furthermore, the Cr concentration in the vicinity of the grain boundary decreases, and the corrosion resistance of the steel sheet deteriorates. Therefore, (V / B) is set to 15.0 or more. In addition, from a viewpoint of ensuring high moldability, the preferable range of V / B is 30.0 or more.

Ti:0.20%以上0.40%以下、Ti%+Nb%≦0.70を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、およびNb:0.40%以上0.60%以下、Ti%+Nb%≦0.70を満足する範囲でNbを含有又はNb及びTiを含有する場合
Ti、Nbはいずれも、固溶C、Nを化合物として固定することにより、鋼板の耐食性や成形性を向上させる効果を有している。このため、Ti、Nbのいずれかを単独で使用するか、Ti及びNbの両方を使用することが必要である。具体的には上記効果を得るために、Ti:0.20%以上を含有するか、Nb:0.40%以上を含有する必要がある。好ましくは、Ti:0.25%以上を含有するか、Nb:0.45%以上を含有する場合である。一方、Tiの含有量、Nbの含有量、TiとNbの合計量が多過ぎる場合には、表面品質の低下や再結晶温度の上昇による製造性の低下を招き好ましくない。このため、Ti量は0.40%以下、Nb量は0.60%以下、及びTi%+Nb%≦0.70とする(本発明においては、Ti量、Nb量、Ti%+Nb%の全てが上限値以下でなければならない)。好ましくは、Ti量は0.35%以下、Nb量は0.55%以下、及びTi%+Nb%≦0.65の場合である。
Ti: 0.20% or more and 0.40% or less, Ti in a range satisfying Ti% + Nb% ≦ 0.70, or Ti and Nb, and Nb: 0.40% or more and 0.60 % Or less, when Nb is contained in a range satisfying Ti% + Nb% ≦ 0.70, or Nb and Ti are contained Ti and Nb are both solid solution C and N are fixed as a compound to fix the corrosion resistance of the steel sheet. And has the effect of improving moldability. For this reason, it is necessary to use either Ti or Nb alone or to use both Ti and Nb. Specifically, in order to acquire the said effect, it is necessary to contain Ti: 0.20% or more or Nb: 0.40% or more. Preferably, it contains Ti: 0.25% or more, or Nb: 0.45% or more. On the other hand, when the Ti content, the Nb content, and the total amount of Ti and Nb are too large, it is not preferable because the surface quality is lowered and the productivity is lowered due to the increase in the recrystallization temperature. Therefore, the Ti amount is 0.40% or less, the Nb amount is 0.60% or less, and Ti% + Nb% ≦ 0.70 (in the present invention, all of Ti amount, Nb amount, Ti% + Nb% Must be less than or equal to the upper limit). Preferably, the Ti content is 0.35% or less, the Nb content is 0.55% or less, and Ti% + Nb% ≦ 0.65.

以上より、本発明のフェライト系ステンレス鋼板は、上記必須成分を含有し、残部がFeおよび不可避的不純物からなる。本発明のフェライト系ステンレス鋼板は、さらに、必要に応じて、Cu、Moの1種または2種、Zr、REM、W、Co、Mg、Caのうちから選ばれる1種または2種以上を、下記の範囲で含有してもよい。   As described above, the ferritic stainless steel sheet of the present invention contains the essential components, with the balance being Fe and inevitable impurities. The ferritic stainless steel sheet of the present invention further includes one or more selected from one or two of Cu and Mo, Zr, REM, W, Co, Mg, and Ca, if necessary. You may contain in the following range.

Cu:0.01〜1.40%
Cuは、耐食性を向上させる元素であり、具体的には、鋼板が水溶液中にある場合や弱酸性の水滴が鋼板に付着した場合に耐食性を向上させるのに特に有効な元素である。この効果は、Cuを0.01%以上含有させることにより得られ、Cuの含有量が多いほど高くなる。しかし、Cuの含有量が1.40%を超えると、熱間加工性が低下するとともに、熱間圧延時に赤スケールと呼ばれるCu起因の酸化物が熱延スラブ上に生成し、表面欠陥を生じるため好ましくない。さらには、Cuの含有量が1.40%を超えると、焼鈍後の脱スケールが困難となるため製造上好ましくない。そのため、Cuを含有する場合、その含有量の範囲は0.01〜1.40%であることが好ましい。また、Cu含有量のより好ましい範囲は0.10〜1.00%であり、最も好ましい範囲は0.30〜0.50%である。
Cu: 0.01 to 1.40%
Cu is an element that improves the corrosion resistance. Specifically, Cu is an element that is particularly effective for improving the corrosion resistance when the steel sheet is in an aqueous solution or when weakly acidic water droplets adhere to the steel sheet. This effect is obtained by containing 0.01% or more of Cu, and increases as the Cu content increases. However, when the Cu content exceeds 1.40%, the hot workability deteriorates and Cu-derived oxide called red scale is generated on the hot-rolled slab during hot rolling, resulting in surface defects. Therefore, it is not preferable. Furthermore, if the Cu content exceeds 1.40%, descaling after annealing becomes difficult, which is not preferable for production. Therefore, when it contains Cu, it is preferable that the range of the content is 0.01 to 1.40%. Moreover, the more preferable range of Cu content is 0.10 to 1.00%, and the most preferable range is 0.30 to 0.50%.

Mo:0.01〜1.62%
Moはステンレス鋼板の耐食性を顕著に向上させる元素である。この効果は、鋼板にMoを0.01%以上含有させることによって得られ、その効果はMoの含有量が多いほど向上する。しかし、Mo含有量が1.62%を超えると、熱間加工性が低下して熱間圧延時に表面欠陥が多発するようになる。また、Moは高価な元素であることから、Mo含有量の増加は製造コストを増大させる。そのため、Moを含有する場合は、その含有量の範囲を0.01〜1.62%とすることが好ましい。より好ましい含有量の範囲は0.30〜1.62%であり、最も好ましくは0.40〜1.20%である。特に熱延板靭性が低下するTi含有鋼ではMoの添加によりさらに靭性が低下して、良好な熱延板焼鈍を得ることが困難になるので、Tiを0.15%以上含有している場合にはMoの含有量を0.30〜1.40%にするのが好ましい。より好ましくは0.40〜1.00%の範囲である。
Mo: 0.01 to 1.62%
Mo is an element that significantly improves the corrosion resistance of the stainless steel plate. This effect is obtained by adding 0.01% or more of Mo to the steel sheet, and the effect improves as the Mo content increases. However, if the Mo content exceeds 1.62%, the hot workability deteriorates and surface defects frequently occur during hot rolling. Moreover, since Mo is an expensive element, an increase in the Mo content increases the manufacturing cost. Therefore, when it contains Mo, it is preferable to make the range of the content into 0.01 to 1.62%. The range of more preferable content is 0.30 to 1.62%, and most preferably 0.40 to 1.20%. Especially in Ti-containing steels where hot-rolled sheet toughness decreases, addition of Mo further reduces toughness, making it difficult to obtain good hot-rolled sheet annealing, so when containing Ti 0.15% or more It is preferable to make the Mo content 0.30 to 1.40%. More preferably, it is 0.40 to 1.00% of range.

続いて、Zr、REM、W、Co、Mg、Caのうちから選ばれる1種または2種以上を含む場合の、上記成分について説明する。   Then, the said component in the case of including the 1 type (s) or 2 or more types chosen from Zr, REM, W, Co, Mg, Ca is demonstrated.

Zr:0.01〜0.20%
ZrはCやNと結合して鋭敏化を抑制する効果がある。この効果はZrの含有量が0.01%以上で得られる。一方、Zrの含有量が0.20%を超えると鋼板の加工性が低下する。また、Zrは高価な元素であるため、Zr含有量の増加は製造コストを増大させる。そのため、Zrを含有する場合は、その含有量の範囲を0.01〜0.20%とすることが好ましい。
Zr: 0.01-0.20%
Zr binds to C and N and has the effect of suppressing sensitization. This effect is obtained when the Zr content is 0.01% or more. On the other hand, if the content of Zr exceeds 0.20%, the workability of the steel sheet decreases. Further, since Zr is an expensive element, an increase in the Zr content increases the manufacturing cost. Therefore, when it contains Zr, it is preferable to make the content range into 0.01 to 0.20%.

REM:0.001〜0.100%
REMは耐酸化性を向上させる効果がある。この効果は、REMを0.001%以上含有させることによって得られる。一方、0.100%を超える量のREMを含有させると熱間圧延性が低下して表面欠陥が多発するので好ましくない。そのため、含有する場合は、REMの含有量の範囲を0.001〜0.100%とするのが好ましく、より好ましくは、0.001〜0.050%である。
REM: 0.001 to 0.100%
REM has the effect of improving oxidation resistance. This effect is obtained by containing REM 0.001% or more. On the other hand, if REM is contained in an amount exceeding 0.100%, hot rollability is lowered and surface defects frequently occur, which is not preferable. Therefore, when it contains, it is preferable to make the range of content of REM 0.001 to 0.100%, More preferably, it is 0.001 to 0.050%.

W:0.01〜0.20%
Wは、Moと同様に耐食性を向上させる効果がある。この効果はWの含有量が0.01%以上で得られる。一方、0.20%を超える量のWを含有させると強度が上昇し、圧延荷重増大等により製造性が低下する。そのため、Wの含有量の範囲は、0.01〜0.20%とすることが好ましく、より好ましくは、0.01〜0.10%である。
W: 0.01-0.20%
W has the effect of improving the corrosion resistance like Mo. This effect is obtained when the W content is 0.01% or more. On the other hand, when the amount of W exceeds 0.20%, the strength increases, and the productivity decreases due to an increase in rolling load or the like. Therefore, the range of the W content is preferably 0.01 to 0.20%, and more preferably 0.01 to 0.10%.

Co:0.01〜0.20%
Coは、Moと同様に耐食性を向上させる効果がある。この効果はCoの含有量が0.01%以上で得られる。一方、0.20%を超える量のCoを含有させると成形性が低下する。そのため、Coの含有量の範囲は、0.01〜0.20%とすることが好ましく、より好ましくは、0.01〜0.10%である。
Co: 0.01-0.20%
Co, like Mo, has the effect of improving the corrosion resistance. This effect is obtained when the Co content is 0.01% or more. On the other hand, if an amount of Co exceeding 0.20% is contained, moldability is lowered. Therefore, the content range of Co is preferably 0.01 to 0.20%, and more preferably 0.01 to 0.10%.

Mg:0.0001〜0.0010%
Mgはスラブの等軸晶率を向上させ、成形性や靭性の向上に有効な元素である。この効果は、Mgの含有量が0.0001%以上で得られる。一方、Mg含有量が0.0010%を超えるとMg系介在物が増加し、表面性状を悪化させる。そのため、Mgの含有量の範囲は、0.0001〜0.0010%とすることが好ましく、より好ましくは0.0002〜0.0004%である。
Mg: 0.0001 to 0.0010%
Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving formability and toughness. This effect is obtained when the Mg content is 0.0001% or more. On the other hand, if the Mg content exceeds 0.0010%, Mg-based inclusions increase and the surface properties are deteriorated. Therefore, the content range of Mg is preferably 0.0001 to 0.0010%, and more preferably 0.0002 to 0.0004%.

Ca:0.0003〜0.0030%
Caは、連続鋳造の際に発生しやすいTi系介在物の析出によるノズルの閉塞を防止するのに有効な成分である。その効果はCaの含有量が0.0003%以上で得られる。しかし、Ca含有量が0.0030%を超えた場合、CaSの生成により、耐食性が低下する。そのため、Caの好ましい含有量の範囲は、0.0003〜0.0030%であり、より好ましくは0.0005〜0.0020%であり、最も好ましくは、0.0005〜0.0015%である。
Ca: 0.0003 to 0.0030%
Ca is an effective component for preventing nozzle clogging due to precipitation of Ti-based inclusions that are likely to occur during continuous casting. The effect is obtained when the Ca content is 0.0003% or more. However, when the Ca content exceeds 0.0030%, the corrosion resistance decreases due to the generation of CaS. Therefore, the preferable range of the content of Ca is 0.0003 to 0.0030%, more preferably 0.0005 to 0.0020%, and most preferably 0.0005 to 0.0015%. .

つぎに、本発明のフェライト系ステンレス鋼の製造方法について説明する。なお、本発明のフェライト系ステンレス鋼の製造方法は以下の実施形態に限定されない。上記した組成の溶鋼を、通常公知の転炉または電気炉で溶製し、真空脱ガス(RH)、VOD、AOD等でさらに精錬したのち、好ましくは連続鋳造法で鋳造し、圧延素材(スラブ等)とする。ついで、圧延素材を加熱し熱間圧延することにより、熱延板とする。熱間圧延のスラブ加熱温度は、1050℃〜1250℃の温度範囲とするのが好ましく、また、熱間圧延の仕上温度は、製造性の観点から750〜900℃とするのが好ましい。熱延板は、必要に応じて、熱延板焼鈍を行うことができる。熱延板焼鈍を行う場合は、850〜1150℃の温度範囲での短時間の連続焼鈍をすることが好適である。なお、熱延板は、脱スケール処理を行って、そのまま製品とすることも、また、冷間圧延用素材とすることもできる。冷間圧延用素材の熱延板は、冷延圧下率:30%以上の冷間圧延を施し、冷延板とする。冷延圧下率は、50〜95%が好適である。また、冷延板のさらなる成形性の付与のために、800〜1100℃の再結晶焼鈍(仕上焼鈍)を行うことができる。また、冷延−焼鈍を2回以上繰り返し行ってもよい。さらに、光沢性が要求される場合には、スキンパス(圧延)等を施してもよい。冷延板の仕上は、Japanese industrial Standard(JIS) G4305で規定された2D、2B、BAおよび各種研磨が可能である。   Below, the manufacturing method of the ferritic stainless steel of this invention is demonstrated. In addition, the manufacturing method of the ferritic stainless steel of this invention is not limited to the following embodiment. The molten steel having the above composition is melted in a generally known converter or electric furnace, further refined by vacuum degassing (RH), VOD, AOD, etc., and then preferably cast by a continuous casting method to obtain a rolled material (slab Etc.). Next, the rolled material is heated and hot rolled to obtain a hot rolled sheet. The slab heating temperature for hot rolling is preferably in the temperature range of 1050 ° C. to 1250 ° C., and the finishing temperature for hot rolling is preferably 750 to 900 ° C. from the viewpoint of manufacturability. A hot-rolled sheet can perform hot-rolled sheet annealing as needed. When hot-rolled sheet annealing is performed, it is preferable to perform short-term continuous annealing in a temperature range of 850 to 1150 ° C. In addition, a hot-rolled sheet can be descaled and used as a product as it is, or can be used as a material for cold rolling. The hot-rolled sheet of the material for cold rolling is subjected to cold rolling at a cold rolling reduction ratio of 30% or more to obtain a cold-rolled sheet. The cold rolling reduction ratio is preferably 50 to 95%. Moreover, in order to provide further formability of the cold-rolled sheet, recrystallization annealing (finish annealing) at 800 to 1100 ° C. can be performed. Moreover, you may perform cold rolling-annealing twice or more. Furthermore, when glossiness is required, skin pass (rolling) or the like may be performed. The finish of the cold-rolled sheet can be 2D, 2B, BA, and various types of polishing specified by the Japan industrial Standard (JIS) G4305.

なお、本発明でいう鋼板は、鋼帯、箔材を含むものとする。   In addition, the steel plate as used in this invention shall contain a steel strip and foil material.

[実施例1]
表3に示す組成(残部はFe)の溶鋼を転炉および2次精錬(VOD)で溶製し、連続鋳造法によりスラブとした。これらスラブを1120℃に加熱した後、仕上温度が800℃となる熱間圧延を行い、板厚4.0mmの熱延板とした。これら熱延板に、940℃×60secの熱延板焼鈍を施した後、酸洗、冷間圧延を施し、冷延板とした。次いで、これらの冷延板に900℃×40secの仕上焼鈍を施した後、酸洗し、板厚0.7mmの冷延焼鈍酸洗板とした。得られた冷延焼鈍酸洗板について、成形加工性と耐食性評価を行った。
[評価]
以下に、成形加工性と耐食性の評価方法を示す。
[Example 1]
Molten steel having the composition shown in Table 3 (the balance being Fe) was melted by a converter and secondary refining (VOD), and a slab was formed by a continuous casting method. After these slabs were heated to 1120 ° C., hot rolling was performed at a finishing temperature of 800 ° C. to obtain hot rolled sheets having a thickness of 4.0 mm. These hot-rolled sheets were subjected to hot-rolled sheet annealing at 940 ° C. × 60 sec, and then pickled and cold-rolled to obtain cold-rolled sheets. Next, these cold-rolled plates were subjected to finish annealing at 900 ° C. × 40 sec, and then pickled to obtain cold-rolled annealed pickled plates having a thickness of 0.7 mm. About the obtained cold-rolled annealing pickling board, forming processability and corrosion resistance evaluation were performed.
[Evaluation]
The evaluation methods for molding processability and corrosion resistance are shown below.

(1)伸び
冷延焼鈍酸洗板の各方向[圧延方向(L方向)、圧延直角方向(C方向)および圧延方向から45°方向(D方向)]からJIS13号B試験片を採取した。これら引張試験片を用いて引張試験(JIS Z 2201)を実施し、各方向の伸びを測定した。各方向の伸び値を用いて、次式より伸び(El)の平均値を求めた。Elが30.0%以上を合格とした。
El=(ElL+2×ElD+ElC)/4
ここで、ElL、ElD、ElCは、それぞれL方向、D方向、C方向の伸びを表す。
(1) Elongation A JIS No. 13 B specimen was collected from each direction [rolling direction (L direction), rolling perpendicular direction (C direction), and 45 ° direction (D direction)] from the cold-rolled annealed pickled sheet. Using these tensile test pieces, a tensile test (JIS Z 2201) was performed, and the elongation in each direction was measured. Using the elongation value in each direction, the average value of elongation (El) was obtained from the following equation. El passed 30.0% or more.
El = (ElL + 2 × ElD + ElC) / 4
Here, ElL, ElD, and ElC represent elongations in the L direction, the D direction, and the C direction, respectively.

(2)r値
冷延焼鈍酸洗板の各方向[圧延方向(L方向)、圧延直角方向(C方向)および圧延方向から45°方向(D方向)]からJIS13号B試験片を採取した。これらの試験片に、15%の単軸引張予歪を与えた時の幅歪と板厚歪の比から、各方向のr値(ランクフォード値)を測定し、次式により平均r値、Δrを求めた。r値が1.50以上、Δrが0.30以下を合格とした。
r=(rL+2×rD+rC)/4
Δr=(rL−2×rD+rC)/2
ここで、rL、rD、rCは、それぞれL方向、D方向、C方向のr値を表す。
(2) r value JIS No. 13 B test specimens were collected from each direction [rolling direction (L direction), rolling perpendicular direction (C direction) and 45 ° direction (D direction)] from the cold-rolled annealed pickled sheet. . From these specimens, the r value (Rankford value) in each direction was measured from the ratio of the width strain and the plate thickness strain when uniaxial tensile pre-strain of 15% was applied. Δr was determined. An r value of 1.50 or more and Δr of 0.30 or less were accepted.
r = (rL + 2 × rD + rC) / 4
Δr = (rL−2 × rD + rC) / 2
Here, rL, rD, and rC represent r values in the L direction, the D direction, and the C direction, respectively.

(3)耐食性
得られた冷延焼鈍板から60mm×80mmの試験片を切り出し、表面を#600番手で研磨し、耐食性評価用試験片を作製し、複合サイクル腐食試験による耐食性評価を行った。複合サイクル腐食試験は、上記腐食試験サイクルを、30サイクル行い、発銹面積率20%以上を不合格、20%未満を合格と判定した。
(3) Corrosion resistance A test piece of 60 mm x 80 mm was cut out from the obtained cold-rolled annealed plate, the surface was polished with # 600 count, a test piece for corrosion resistance evaluation was produced, and corrosion resistance evaluation was performed by a combined cycle corrosion test. In the combined cycle corrosion test, the above-described corrosion test cycle was performed 30 times, and an area ratio of 20% or more was rejected, and less than 20% was determined to be acceptable.

Figure 0005505555
Figure 0005505555

[実施例2]
表4に示す組成の溶鋼を転炉および2次精錬(VOD)で溶製し、連続鋳造法によりスラブとした。これらスラブを1120℃に加熱した後、仕上温度が800℃となる熱間圧延を行い、板厚4.0mmの熱延板とした。これら熱延板に、1020℃×60secの熱延板焼鈍を施したのち、酸洗、冷間圧延を施し、冷延板とした。ついで、これらの冷延板に1000℃×40secの仕上焼鈍を施した後、酸洗し、板厚0.7mmの冷延焼鈍酸洗板とした。得られた冷延焼鈍酸洗板について、成形加工性と耐食性評価を行った。評価方法は下記の通りである。
[Example 2]
Molten steel having the composition shown in Table 4 was melted by a converter and secondary refining (VOD) to obtain a slab by a continuous casting method. After these slabs were heated to 1120 ° C., hot rolling was performed at a finishing temperature of 800 ° C. to obtain hot rolled sheets having a thickness of 4.0 mm. These hot-rolled sheets were subjected to hot-rolled sheet annealing at 1020 ° C. × 60 sec, followed by pickling and cold rolling to obtain cold-rolled sheets. Subsequently, these cold-rolled plates were subjected to finish annealing at 1000 ° C. × 40 sec, and then pickled to obtain cold-rolled annealed pickled plates having a thickness of 0.7 mm. About the obtained cold-rolled annealing pickling board, forming processability and corrosion resistance evaluation were performed. The evaluation method is as follows.

Figure 0005505555
Figure 0005505555

実施例1と同様の方法で同様の評価を行った。   A similar evaluation was performed in the same manner as in Example 1.

Figure 0005505555
Figure 0005505555

Figure 0005505555
Figure 0005505555

実施例1で得られた結果を表5、実施例2で得られた結果を表6に示す。   The results obtained in Example 1 are shown in Table 5, and the results obtained in Example 2 are shown in Table 6.

いずれの発明例も、伸びが30.0%以上、r値が1.50以上、Δrが0.30以下の優れた成形加工性と30サイクルの複合サイクル腐食試験における発銹面積率20%未満の優れた耐食性を有している。これに対し、比較例では、伸び、r値、Δr、耐食性のいずれかを満足しなかった。   In any of the invention examples, excellent moldability with an elongation of 30.0% or more, an r value of 1.50 or more, and an Δr of 0.30 or less, and an area ratio of less than 20% in a 30-cycle combined cycle corrosion test It has excellent corrosion resistance. In contrast, the comparative example did not satisfy any of elongation, r value, Δr, and corrosion resistance.

また、伸びが30.0%以上、r値が1.50以上、Δrが0.30以下の優れた成形加工性を有するため、問題なく深絞り加工を施すことができる。   Further, since it has excellent moldability with an elongation of 30.0% or more, an r value of 1.50 or more, and Δr of 0.30 or less, deep drawing can be performed without any problem.

本発明によれば、成分組成、特にV,B含有量を適正化することにより、成形加工性および耐食性に優れたフェライト系ステンレス鋼板を製造でき、産業上格段の効果を奏する。   According to the present invention, a ferritic stainless steel sheet excellent in forming processability and corrosion resistance can be produced by optimizing the component composition, particularly the V and B contents, and there is a remarkable industrial effect.

Claims (2)

質量%で、C:0.003〜0.013%、Si:0.01〜0.95%、Mn:0.01〜0.40%、P:0.020〜0.040%、S:0.010%以下、Al:0.01〜0.45%、Cr:14.5〜21.5%、Ni:0.01〜0.60%、N:0.005〜0.012%、Mo:0.01〜1.62%を含有し、
V:0.010〜0.040%、B:0.0001〜0.0010%を、Vの含有量とBの含有量の比(V/B)≧30.0を満足する範囲で含有し、
更に、Ti:0.20%以上0.40%以下、Ti%+Nb%≦0.70を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、およびNb:0.40%以上0.60%以下、Ti%+Nb%≦0.70を満足する範囲でNbを含有又はNb及びTiを含有する場合の少なくとも一方を満足し、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼板。
In mass%, C: 0.003-0.013%, Si: 0.01-0.95%, Mn: 0.01-0.40%, P: 0.020-0.040%, S: 0.010% or less, Al: 0.01 to 0.45%, Cr: 14.5 to 21.5%, Ni: 0.01 to 0.60%, N: 0.005 to 0.012%, Mo: contains 0.01 to 1.62%,
V: 0.010-0.040%, B: 0.0001-0.0010% are contained in the range which satisfies ratio (V / B)> = 30.0 of V content and B content. ,
Further, when Ti is contained or Ti and Nb are contained within a range satisfying Ti: 0.20% or more and 0.40% or less and Ti% + Nb% ≦ 0.70, and Nb: 0.40% or more and 0 .. 60% or less, satisfying at least one of Nb and Ti containing Nb and Ti within a range satisfying Ti% + Nb% ≦ 0.70, the balance being made of Fe and inevitable impurities Ferritic stainless steel sheet.
質量%で、さらに、REM:0.001〜0.100%、W:0.01〜0.20%、Co:0.01〜0.20%、Mg:0.0001〜0.0010%、Ca:0.0003〜0.0030%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載のフェライト系ステンレス鋼板。   % By mass, REM: 0.001 to 0.100%, W: 0.01 to 0.20%, Co: 0.01 to 0.20%, Mg: 0.0001 to 0.0010%, The ferritic stainless steel sheet according to any one of claims 1 to 3, comprising one or more selected from Ca: 0.0003 to 0.0030%.
JP2013268685A 2013-12-26 2013-12-26 Ferritic stainless steel sheet Active JP5505555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268685A JP5505555B1 (en) 2013-12-26 2013-12-26 Ferritic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268685A JP5505555B1 (en) 2013-12-26 2013-12-26 Ferritic stainless steel sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013553688A Division JP5505575B1 (en) 2013-03-18 2013-03-18 Ferritic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP5505555B1 true JP5505555B1 (en) 2014-05-28
JP2014181403A JP2014181403A (en) 2014-09-29

Family

ID=50941864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268685A Active JP5505555B1 (en) 2013-12-26 2013-12-26 Ferritic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP5505555B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968499B2 (en) * 2014-12-11 2021-04-06 Jfe Steel Corporation Ferritic stainless steel and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080314A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241738A (en) * 1996-03-07 1997-09-16 Kawasaki Steel Corp Production of ferritic stainless steel excellent in corrosion resistance and workability
JPH1017999A (en) * 1996-06-27 1998-01-20 Kawasaki Steel Corp Hot rolled ferritic stainless steel plate excellent in corrosion resistance, formability, and uniformity of material, and its production
JP2001192735A (en) * 1999-11-02 2001-07-17 Kawasaki Steel Corp FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2003213376A (en) * 2002-01-15 2003-07-30 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241738A (en) * 1996-03-07 1997-09-16 Kawasaki Steel Corp Production of ferritic stainless steel excellent in corrosion resistance and workability
JPH1017999A (en) * 1996-06-27 1998-01-20 Kawasaki Steel Corp Hot rolled ferritic stainless steel plate excellent in corrosion resistance, formability, and uniformity of material, and its production
JP2001192735A (en) * 1999-11-02 2001-07-17 Kawasaki Steel Corp FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2003213376A (en) * 2002-01-15 2003-07-30 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968499B2 (en) * 2014-12-11 2021-04-06 Jfe Steel Corporation Ferritic stainless steel and process for producing same

Also Published As

Publication number Publication date
JP2014181403A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP5206244B2 (en) Cold rolled steel sheet
JP5505575B1 (en) Ferritic stainless steel sheet
JP5534119B1 (en) Ferritic stainless steel
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
KR101705135B1 (en) Ferritic stainless steel sheet
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
JPH11106875A (en) Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and its production
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
KR101850231B1 (en) Ferritic stainless steel and method for producing same
CN107002199B (en) Stainless steel and method for producing same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
KR20150038601A (en) Easily worked ferrite stainless-steel sheet
JP5505555B1 (en) Ferritic stainless steel sheet
KR101940427B1 (en) Ferritic stainless steel sheet
JP5359925B2 (en) Manufacturing method of energy absorbing member having strength difference in member
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JPH08260106A (en) Chromium steel sheet excellent in formability
JP2001003144A (en) High-purity ferritic stainless steel sheet with excellent secondary work brittleness after deep drawing
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
JP3420375B2 (en) Ferritic stainless steel sheet with excellent formability and secondary work brittleness resistance
JPH10298720A (en) High-purity chromium steel sheet with excellent secondary work brittleness after deep drawing
JPH08134601A (en) Ferritic stainless steel sheet excellent in press formability
JP2021123751A (en) Ferritic stainless steel material for roll molding
JPWO2016092713A1 (en) Stainless steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250