JP5498611B2 - LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE - Google Patents
LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE Download PDFInfo
- Publication number
- JP5498611B2 JP5498611B2 JP2013115654A JP2013115654A JP5498611B2 JP 5498611 B2 JP5498611 B2 JP 5498611B2 JP 2013115654 A JP2013115654 A JP 2013115654A JP 2013115654 A JP2013115654 A JP 2013115654A JP 5498611 B2 JP5498611 B2 JP 5498611B2
- Authority
- JP
- Japan
- Prior art keywords
- emitting element
- light emitting
- substrate
- optical lens
- adhesive resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Liquid Crystal (AREA)
- Led Device Packages (AREA)
Description
本発明は、発光素子を搭載した発光素子モジュール及びその製造方法、並びに、当該発光素子モジュールを用いた液晶テレビ、液晶モニター等の液晶表示装置に用いるバックライト装置に関する。 The present invention relates to a light emitting element module having a light emitting element mounted thereon, a manufacturing method thereof, and a backlight device used in a liquid crystal display device such as a liquid crystal television and a liquid crystal monitor using the light emitting element module.
液晶テレビや液晶モニター等の液晶表示装置では、液晶それ自体が発光するわけではないので、表示のために背面から照射する光源を必要とする。当該光源として、蛍光管やLED(Light Emitting Diode)等の固体発光素子が用いられ、何れの場合においても、表示エリア内で均一な光を得るための工夫が必要となる。 In a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor, since the liquid crystal itself does not emit light, a light source that irradiates from the back surface is required for display. As the light source, a solid light-emitting element such as a fluorescent tube or an LED (Light Emitting Diode) is used. In any case, a device for obtaining uniform light in the display area is required.
従来用いられている発光素子を搭載した基板(発光素子モジュール)の構成を図6に示す。特許文献1に示されているように、基板11上にLED5を直接設け、ワイヤ8で基板11とLED5とを接続し、更に基板上のLED5とワイヤ8を保護するために、レンズ部41aとリフレクタ部41bを一体に成型したキャップ41を接着樹脂32を用いて接着し、更に、キャップ41内部に封止用の透明樹脂42を注入し、熱硬化させることで完成する。 FIG. 6 shows a configuration of a substrate (light emitting element module) on which a conventionally used light emitting element is mounted. As shown in Patent Document 1, the LED 5 is directly provided on the substrate 11, the substrate 11 and the LED 5 are connected by the wire 8, and the lens unit 41 a is connected to protect the LED 5 and the wire 8 on the substrate. The cap 41 formed integrally with the reflector portion 41b is bonded using the adhesive resin 32, and the transparent resin 42 for sealing is injected into the cap 41, followed by thermosetting.
ところが、上記の従来技術の場合、温度変化が発生すると、キャップ41と基板11の接着部分において、キャップと基板との熱膨張係数の差により(熱膨張・収縮の度合いの差により)応力が生じることとなり、温度変化が繰り返し発生すると、基板11とキャップ41間の接着樹脂部分32にクラックや剥がれが発生する不具合が生じる。 However, in the case of the above-described prior art, when a temperature change occurs, stress is generated in the bonded portion between the cap 41 and the substrate 11 due to a difference in thermal expansion coefficient between the cap and the substrate (due to a difference in the degree of thermal expansion / contraction). In other words, when the temperature change is repeatedly generated, there is a problem that the adhesive resin portion 32 between the substrate 11 and the cap 41 is cracked or peeled off.
更に、レンズ部41aとリフレクタ部41bからなるキャップを一体成型する際、2色成型の境界部分の精度の問題があり、歩留まりに影響を与える。更に、基板上でLED5の搭載を行い、ワイヤ8により接続後、液状の透明樹脂42を注入することで樹脂封止を行うため、液状の透明樹脂42をキャップ41内に注入し、熱硬化させる際に気泡の巻き込みや発泡などの不具合が生じ、発光素子モジュールの歩留まりが非常に悪くなってしまう。 Further, when the cap formed by the lens portion 41a and the reflector portion 41b is integrally molded, there is a problem of the accuracy of the boundary portion of the two-color molding, which affects the yield. Further, the LED 5 is mounted on the substrate, and after being connected by the wire 8, the liquid transparent resin 42 is injected to inject the resin, so that the liquid transparent resin 42 is injected into the cap 41 and thermally cured. At this time, defects such as entrainment of bubbles and foaming occur, and the yield of the light emitting element module is extremely deteriorated.
本発明は上記従来技術に係る課題を鑑みてなされたものであり、熱膨張による基板とレンズとの接着部のクラックや剥がれを抑制し、歩留まりの良い発光素子モジュールを提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a light-emitting element module having a high yield by suppressing cracks and peeling of the bonded portion between the substrate and the lens due to thermal expansion. .
上記課題を解決するための本発明に係る発光素子モジュールは、
発光素子を搭載した発光素子部品と、前記発光素子からの光を分散させる光学レンズとを基板上に設置してなる発光素子モジュールであって、
前記光学レンズは、外周部から前記基板方向に突出する3以上の支柱部を有し、
前記光学レンズと前記基板の間に空気が移動できる層を有する状態で、且つ、引っ張り破断伸びが50%以上の接着樹脂により前記支柱部が前記基板上に接着されることにより前記光学レンズが前記基板上に固定され、
前記支柱部の少なくとも2本は、前記接着樹脂により前記基板上に固定される一方、前記支柱部の少なくとも1本が、前記基板上に固定されていないことを第1の特徴とする。
The light emitting device module according to the present invention for solving the above problems is
A light-emitting element module comprising a light-emitting element component mounted with a light-emitting element and an optical lens for dispersing light from the light-emitting element on a substrate,
The optical lens has three or more struts projecting from the outer periphery toward the substrate,
The optical lens is bonded to the substrate by an adhesive resin having a layer in which air can move between the optical lens and the substrate and having a tensile breaking elongation of 50% or more. Fixed on the board,
The first feature is that at least two of the support portions are fixed on the substrate by the adhesive resin, and at least one of the support portions is not fixed on the substrate.
更に、本発明に係る発光素子モジュールは、上記第1の特徴に加えて、前記支柱部の形状が、棒状であることを第2の特徴とする。 Furthermore, in addition to the first feature, the light emitting element module according to the present invention has a second feature that the shape of the support column is a rod shape.
更に、本発明に係る発光素子モジュールは、上記第2の特徴に加えて、前記支柱部の前記基板に水平な方向の断面形状が、円または正方形であることを第3の特徴とする。 Furthermore, in addition to the second feature described above, the light emitting element module according to the present invention has a third feature in that a cross-sectional shape in a direction horizontal to the substrate of the support column is a circle or a square.
更に、本発明に係る発光素子モジュールは、上記第1乃至第3の何れかの特徴に加えて、前記基板と前記光学レンズとの熱膨張係数の不整合により前記接着樹脂に加わる応力を前記支柱部が分散させることを第4の特徴とする。 Furthermore, the light emitting element module according to the present invention, in addition to any one of the first to third features, applies stress applied to the adhesive resin due to mismatch of thermal expansion coefficients of the substrate and the optical lens. The fourth feature is that the parts are dispersed.
また、本発明に係る発光素子モジュールは、上記第1乃至第4の何れかの特徴に加えて、前記接着樹脂は、エポキシ系の熱硬化性樹脂、又は、シリコーン系、アクリル変成シリコーン系若しくはウレタン系の湿度硬化性の樹脂の何れかであることを第5の特徴とする。 Further, in the light emitting element module according to the present invention, in addition to any of the first to fourth features, the adhesive resin may be an epoxy thermosetting resin, or a silicone, acrylic modified silicone, or urethane. The fifth characteristic is that it is one of the moisture curable resins of the system.
また、本発明に係る発光素子モジュールは、上記第1乃至第5の何れかの特徴に加えて、前記発光素子部品は、前記発光素子が透明樹脂で封止されて構成されていることを第6の特徴とする。 In addition to the first to fifth features, the light-emitting element module according to the present invention includes the light-emitting element component in which the light-emitting element is sealed with a transparent resin. Six features.
本発明に係るバックライト装置は、上記第1乃至第6の何れかの特徴の発光素子モジュールを用いる、液晶表示装置用のバックライト装置である。 A backlight device according to the present invention is a backlight device for a liquid crystal display device using the light emitting element module having any one of the first to sixth characteristics.
本発明に係る発光素子モジュールの製造方法は、上記第1乃至第6の何れかの特徴の発光素子モジュールを製造する方法であって、
発光素子を透明樹脂で封止した発光素子部品を準備する工程と、
基板上に配線及び前記発光素子部品を設置するためのランドが形成された前記基板を準備する工程と、
外周部から前記基板方向に突出する3以上の支柱部を有する光学レンズを準備する工程と、
前記基板の前記ランド上に前記発光素子部品を設置する工程と、
引っ張り破断伸びが50%以上の接着樹脂を用いて前記発光素子部品毎に前記光学レンズの前記支柱部の底面を前記基板上に接着し、前記光学レンズを前記基板上に固定するレンズ固定工程を含むことを第1の特徴とする。
A method of manufacturing a light emitting element module according to the present invention is a method of manufacturing a light emitting element module having any one of the first to sixth features,
A step of preparing a light emitting element component in which the light emitting element is sealed with a transparent resin;
Preparing the substrate on which a land for installing wiring and the light emitting element component is formed on the substrate;
Preparing an optical lens having three or more struts projecting from the outer periphery toward the substrate;
Installing the light emitting element component on the land of the substrate;
A lens fixing step of bonding the bottom surface of the support column of the optical lens to the substrate for each light emitting element component using an adhesive resin having a tensile elongation at break of 50% or more, and fixing the optical lens on the substrate. Inclusion is a first feature.
また、本発明に係る発光素子モジュールの製造方法は、上記第1の特徴に加えて、前記レンズ固定工程において、硬化温度が90℃以下の熱硬化性の前記接着樹脂を用いて、前記光学レンズの固定を行うことを第2の特徴とする。 In addition to the first feature, the method for manufacturing a light-emitting element module according to the present invention uses the thermosetting adhesive resin having a curing temperature of 90 ° C. or lower in the lens fixing step. The second feature is to perform fixing.
また、本発明に係る発光素子モジュールの製造方法は、上記第1の特徴に加えて、前記レンズ固定工程において、湿度硬化性の前記接着樹脂を用いて、前記光学レンズの固定を行うことを第3の特徴とする。 In addition to the first feature, the method for manufacturing a light-emitting element module according to the present invention includes the step of fixing the optical lens using the humidity-curable adhesive resin in the lens fixing step. Three features.
本発明では、発光素子を搭載した発光素子部品と、発光素子からの光を分散させる光学レンズとを基板上に配置してなる発光素子モジュールにおいて、基板への光学レンズの固定を引っ張り破断伸びが50%以上の接着樹脂を用いて行うことにより、基板と光学レンズとの熱膨張係数の不整合により生じる応力が基板と光学レンズの接着部において吸収され、基板と光学レンズの接着部のクラックや剥がれを防止することができる。これにより歩留まりの良い発光素子モジュールを提供することができる。 In the present invention, in a light-emitting element module in which a light-emitting element component on which a light-emitting element is mounted and an optical lens that disperses light from the light-emitting element are arranged on a substrate, the optical lens is fixed to the substrate and the elongation at break is pulled. By using 50% or more of the adhesive resin, the stress caused by the mismatch of the thermal expansion coefficient between the substrate and the optical lens is absorbed in the bonded portion between the substrate and the optical lens, and cracks in the bonded portion between the substrate and the optical lens Peeling can be prevented. Accordingly, a light-emitting element module with a high yield can be provided.
当該引っ張り破断伸び特性を有する接着樹脂として、例えば、エポキシ系の熱硬化性樹脂、又は、シリコーン系、アクリル変成シリコーン系若しくはウレタン系の湿度硬化性の樹脂を用いることができる。このうち、熱硬化性の接着樹脂を用いる場合、より低温で硬化させることが熱硬化後の冷却後に加わる応力をより小さくすることができるので好ましい。特に、光学レンズの材料としてアクリル系樹脂を用いる場合は、90℃以上の加熱処理は光学レンズが熱による変形を受ける虞があるため望ましくなく、硬化温度が90℃以下の熱硬化性樹脂を用いて、90℃以下での加熱により基板とレンズとの固定を行うことが望ましい。一方、湿度硬化性の接着樹脂を用いる場合は、40℃〜60℃の低温で、或いは、ある程度長時間の硬化処理が許される場合は室温で硬化させることが可能であり、更に接着樹脂に加わる応力を低減することができる。 As the adhesive resin having tensile elongation at break, for example, an epoxy thermosetting resin, or a silicone, acrylic modified silicone, or urethane humidity curable resin can be used. Among these, when using a thermosetting adhesive resin, curing at a lower temperature is preferable because the stress applied after cooling after thermosetting can be further reduced. In particular, when an acrylic resin is used as the material of the optical lens, heat treatment at 90 ° C. or higher is not desirable because the optical lens may be deformed by heat, and a thermosetting resin having a curing temperature of 90 ° C. or lower is used. Thus, it is desirable to fix the substrate and the lens by heating at 90 ° C. or lower. On the other hand, when a humidity curable adhesive resin is used, it can be cured at a low temperature of 40 ° C. to 60 ° C., or at room temperature when a long-time curing treatment is allowed, and is further added to the adhesive resin. Stress can be reduced.
更に、光学レンズが複数の支柱部を有する構造とし、当該支柱部を介して光学レンズが基板上に固定されることにより、基板と光学レンズとの接着部に加わる応力を分散させることができる。また、基板と光学レンズが支柱部で接着され、基板と光学レンズとの間に支柱の高さ分だけの空気が移動できる層を有することにより、従来技術のように発光素子部品を密閉した場合よりも放熱性を良くすることができる。これにより、通常使用による発光素子のON/OFFに伴う発光素子モジュールの温度変化を抑制し、応力の発生を抑制することができる。 Furthermore, since the optical lens has a structure having a plurality of support portions, and the optical lens is fixed on the substrate through the support portions, the stress applied to the bonding portion between the substrate and the optical lens can be dispersed. In addition, when the substrate and the optical lens are bonded at the support column, and the light-emitting element component is sealed as in the prior art by having a layer that can move the air by the height of the support column between the substrate and the optical lens The heat dissipation can be improved. Thereby, the temperature change of the light emitting element module accompanying ON / OFF of the light emitting element by normal use can be suppressed, and generation | occurrence | production of stress can be suppressed.
また、発光素子は透明樹脂で封止され発光素子部品に搭載される構成とすることで、良品の発光素子部品を選別して基板上に搭載することができ、発光素子モジュールの歩留まり低下を抑制することができる。 In addition, by adopting a configuration in which the light emitting element is sealed with a transparent resin and mounted on the light emitting element component, a non-defective light emitting element component can be selected and mounted on the substrate, and the yield reduction of the light emitting element module is suppressed. can do.
従って、本発明に依れば、熱膨張による基板と光学レンズとの接着部のクラックや剥がれが抑制された、歩留まりの良い発光素子モジュールを提供可能になる。上記発光素子モジュールは、液晶テレビや液晶モニター等の液晶表示装置のバックライトを発生させるためのバックライト装置として利用されることができる。 Therefore, according to the present invention, it is possible to provide a light-emitting element module with a high yield in which cracks and peeling of the bonded portion between the substrate and the optical lens due to thermal expansion are suppressed. The light emitting element module can be used as a backlight device for generating a backlight of a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor.
〈第1実施形態〉
本発明の一実施形態に係る発光素子モジュール1の構成例を図1に示す。図1は、本実施の形態が適用される発光素子モジュール1の基板の垂直方向の断面図である。基板11上には、発光素子としてLEDを搭載した発光素子部品2が、夫々、一列または複数列に複数個搭載されているが、図1では、一つの発光素子部品2に着目して描いている。尚、以降に示される図面では、適宜、要部が強調して示されており、図面上の各構成部分の寸法比と実際の寸法比とは必ずしも一致するものではない。
<First Embodiment>
FIG. 1 shows a configuration example of a light emitting element module 1 according to an embodiment of the present invention. FIG. 1 is a vertical sectional view of a substrate of a light emitting element module 1 to which the exemplary embodiment is applied. On the substrate 11, a plurality of light emitting element components 2 each having an LED mounted as a light emitting element are mounted in one or a plurality of rows, respectively. In FIG. Yes. In the drawings shown below, the main parts are appropriately emphasized as appropriate, and the dimensional ratios of the constituent parts on the drawings do not necessarily match the actual dimensional ratios.
発光素子部品2は、セラミック等の部品基板3上にLEDチップ(図示せず)が1個或いは複数個搭載され、ワイヤ(図示せず)等により部品基板3に電気的に接続され、LEDチップとワイヤが封止樹脂6により封止されて構成されている。そして、発光素子部品2は、基板11のランド部13a上にハンダ等の導電材料7により部品端子4を介して基板11と接続され、光学レンズ21の中心が、発光素子部品2の中心と略重なるように設置されている。封止樹脂6にはシリコーン系等の透明樹脂が用いられ、必要に応じ蛍光体などが添加されている。このように、予めLEDチップを透明樹脂で封止した発光素子部品2を作製し、良品の発光素子部品2を基板11上に搭載することで、多数のLEDを搭載する発光素子モジュール1の歩留まり低下を抑制することができる。 The light-emitting element component 2 includes one or more LED chips (not shown) mounted on a component substrate 3 such as ceramic, and is electrically connected to the component substrate 3 by wires (not shown). The wire is sealed with a sealing resin 6. The light emitting element component 2 is connected to the substrate 11 via the component terminal 4 by a conductive material 7 such as solder on the land portion 13a of the substrate 11, and the center of the optical lens 21 is substantially the same as the center of the light emitting element component 2. It is installed so that it may overlap. A transparent resin such as silicone is used for the sealing resin 6, and a phosphor or the like is added as necessary. Thus, the yield of the light emitting element module 1 which mounts many LED by producing the light emitting element component 2 which sealed LED chip previously with transparent resin, and mounting the non-defective light emitting element component 2 on the board | substrate 11 is carried out. The decrease can be suppressed.
基板11は、例えば、布状或いは不織布状のガラス繊維や有機繊維などに樹脂(エポキシ樹脂、シアネート樹脂等)を含浸させて形成された基材12上に、配線処理が施され作製されている。配線13(13a,13b)には銅が用いられている。配線の最表面には金メッキを施しても良い。また、発光素子部品2は発熱が比較的大きいので、配線は基板11の両面に施しておくと良い。発光素子部品2の搭載箇所において、部品端子4の端子配置に合わせてランド部13aが配置されている。基板の最表面には白色の絶縁材料(白レジスト等)14が、配線部13bを覆うように形成されている。基板11の最表面を白色の絶縁材料14で覆うことにより、配線の保護に加え、発光素子からの光の反射率を高め、表示エリア内への光照射量を高めることができる。尚、反射シートを別に基板表面に設ける場合は通常のソルダレジストでも構わない。 The substrate 11 is produced by performing a wiring process on a base material 12 formed by impregnating a resin (epoxy resin, cyanate resin or the like) with, for example, cloth-like or non-woven-like glass fiber or organic fiber. . Copper is used for the wiring 13 (13a, 13b). The outermost surface of the wiring may be plated with gold. In addition, since the light emitting element component 2 generates a relatively large amount of heat, wiring is preferably provided on both surfaces of the substrate 11. Land portions 13 a are arranged in accordance with the terminal arrangement of the component terminals 4 at the place where the light emitting element component 2 is mounted. A white insulating material (white resist or the like) 14 is formed on the outermost surface of the substrate so as to cover the wiring portion 13b. By covering the outermost surface of the substrate 11 with the white insulating material 14, in addition to protecting the wiring, the reflectance of light from the light emitting element can be increased, and the amount of light irradiated into the display area can be increased. In addition, when a reflective sheet is separately provided on the substrate surface, a normal solder resist may be used.
基板11上には、絶縁材料14で覆われていない開口部15aと15bを有し、開口部15aにおいて、発光素子部品2が基板11上のランド部13aに接続され、開口部15bにおいて、光学レンズ21と基板11上の基材12とが接着樹脂31により固定されている。ここで、接着樹脂31は、引っ張り破断伸びが50%以上の、伸び率の良好な接着樹脂である。開口部15bのサイズは、光学レンズの支柱部23の底面サイズと同じか、それよりも僅かに大きくすると良い。このように、支柱部23の底面サイズと同じか僅かに大きいサイズの開口部を絶縁材料上に設けることで、接着樹脂31の位置決めを容易にし、樹脂量の管理も容易となる。尚、基板11の熱膨張係数は、樹脂基板11では1×10−5/℃から3×10−5/℃程度であり、セラミック基板においては5×10−6/℃程度である。 On the substrate 11, openings 15 a and 15 b that are not covered with the insulating material 14 are provided. In the opening 15 a, the light emitting element component 2 is connected to the land portion 13 a on the substrate 11. The lens 21 and the base material 12 on the substrate 11 are fixed by an adhesive resin 31. Here, the adhesive resin 31 is an adhesive resin having a good elongation rate with a tensile breaking elongation of 50% or more. The size of the opening 15b is preferably the same as or slightly larger than the size of the bottom surface of the support 23 of the optical lens. As described above, by providing the insulating material with an opening having the same size as or slightly larger than the bottom surface size of the support portion 23, the positioning of the adhesive resin 31 is facilitated, and the management of the resin amount is also facilitated. The thermal expansion coefficient of the substrate 11 is about 1 × 10 −5 / ° C. to 3 × 10 −5 / ° C. for the resin substrate 11 and about 5 × 10 −6 / ° C. for the ceramic substrate.
光学レンズ21は、透明性に優れたアクリル系、ポリカーボネート、メタクリルや、その他にもスチレン系、エポキシ系樹脂等を用いることができる。これらの材料の熱膨張係数は6×10−5/℃から8×10−5/℃程度である。光学レンズ21の形状を図2に示す。図2(a)に側面図を、図2(b)に上から見た図を示す。図2(a)及び(b)に示されるように、光学レンズ21は、レンズ部22と、支柱部23と、窪み部24と、マーク部25を有し、金型を用いて射出成型などで一体物として成型され、作製されている。 The optical lens 21 can be made of acrylic, polycarbonate, methacryl having excellent transparency, or styrene or epoxy resin. These materials have a thermal expansion coefficient of about 6 × 10 −5 / ° C. to about 8 × 10 −5 / ° C. The shape of the optical lens 21 is shown in FIG. FIG. 2A shows a side view, and FIG. 2B shows a view from above. As shown in FIGS. 2A and 2B, the optical lens 21 includes a lens portion 22, a support portion 23, a recess portion 24, and a mark portion 25, and injection molding is performed using a mold. It is molded and manufactured as a single piece.
レンズ部22は、予めシミュレーション等により光を拡散できるように非球面形状に設計され、形成されている。 The lens part 22 is designed and formed in an aspherical shape so that light can be diffused by simulation or the like in advance.
支柱部23は、光学レンズ21を基板11に接着樹脂31を用いて固定するために設けられた複数の支柱からなる。当該支柱は3本以上設けることが基板11に対して水平に取り付けることが容易になるので望ましい。また、支柱部23の全ての支柱を接着樹脂31により基板11と固定しても良いが、少なくとも2本の支柱を固定することで光学レンズ21の回転が生じないので望ましい。 The column part 23 includes a plurality of columns provided to fix the optical lens 21 to the substrate 11 using the adhesive resin 31. It is desirable to provide three or more support columns because it is easy to attach the support columns horizontally to the substrate 11. Further, all the columns of the column part 23 may be fixed to the substrate 11 with the adhesive resin 31, but it is desirable because the optical lens 21 does not rotate by fixing at least two columns.
ここで、支柱部23は、基板11と光学レンズ21との熱膨張係数の不整合による接着部分に加わる応力を分散させる役割を有している。当該応力は、基板11への光学レンズ21の接着後の温度変化(接着樹脂31の硬化時の加熱処理後の冷却、又は表示装置のON/OFFにより発光素子部品2その他の部品が繰り返し発熱・冷却されることによる温度変化)により寸法(支柱部23の各支柱間の距離)が変化することで発生する。従って、支柱部23の支柱の高さが高いほど、接着部分への応力を分散させることができる。 Here, the column portion 23 has a role of dispersing stress applied to the bonded portion due to mismatch of thermal expansion coefficients between the substrate 11 and the optical lens 21. The stress is a temperature change after the optical lens 21 is bonded to the substrate 11 (cooling after the heat treatment when the adhesive resin 31 is cured, or ON / OFF of the display device, and the light emitting element component 2 and other components repeatedly generate heat. This occurs when the dimensions (distance between the columns of the column part 23) change depending on the temperature change due to cooling. Therefore, the stress to the bonded portion can be dispersed as the column height of the column part 23 is higher.
更に、基板11と光学レンズ21が支柱部23で接着されることにより、基板11と光学レンズ21との間に当該支柱の高さ分の空気が移動できる層を有し、発光素子モジュール1の放熱性を良くすることができる。 Further, the substrate 11 and the optical lens 21 are bonded by the support portion 23, thereby having a layer between the substrate 11 and the optical lens 21 in which air corresponding to the height of the support column can move. Heat dissipation can be improved.
尚、基板11の上面と水平な方向においては、支柱部23の断面形状は、円、楕円、三角形、正方形、長方形、多角形等、種々の形状が考えられるが、光学レンズ21の中心と支柱部23の中心を結ぶ方向(即ち、レンズの半径方向)の断面の幅は0.5〜5mm程度が望ましい。光学レンズ21の中心と支柱部23の中心を結ぶ方向において、支柱部23の幅が広すぎると光学的な影響が生じ、逆に狭すぎると強度が弱くなるためである。一方、光学レンズ21の中心と支柱部23の中心を結ぶ線に垂直な方向(即ち、レンズの外周方向)においては、幅を比較的広げることができ、断面の幅は0.5〜10mm程度が望ましい。光学レンズ21の中心と支柱部23の中心を結ぶ線に垂直な方向においては、光学的な影響は少ないが、支柱部の断面幅が広すぎると空気の移動を妨げるため放熱性に影響が生じる。しかしながら、断面幅が10mmを超える場合であっても、発光素子部品2を密閉した場合と比べると空気が移動できる層を有することにより放熱性が向上されている。 In the horizontal direction with respect to the upper surface of the substrate 11, various shapes such as a circle, an ellipse, a triangle, a square, a rectangle, and a polygon can be considered as the cross-sectional shape of the column 23, but the center of the optical lens 21 and the column The width of the cross section in the direction connecting the centers of the portions 23 (that is, the radial direction of the lens) is preferably about 0.5 to 5 mm. This is because, in the direction connecting the center of the optical lens 21 and the center of the column part 23, if the width of the column part 23 is too wide, an optical influence occurs, and conversely, if it is too narrow, the strength becomes weak. On the other hand, in the direction perpendicular to the line connecting the center of the optical lens 21 and the center of the column 23 (that is, the outer peripheral direction of the lens), the width can be relatively widened, and the width of the cross section is about 0.5 to 10 mm. Is desirable. In the direction perpendicular to the line connecting the center of the optical lens 21 and the center of the column part 23, there is little optical influence. However, if the cross-sectional width of the column part is too wide, air movement is hindered and heat dissipation is affected. . However, even when the cross-sectional width exceeds 10 mm, the heat dissipation is improved by having a layer through which air can move as compared with the case where the light emitting element component 2 is sealed.
支柱部23の支柱の高さは、接着樹脂31に加わる応力を低減する意味ではできる限り高くすることが望ましいが、発光素子モジュール1が搭載される表示装置の厚さや発光素子の実装高さなどとの兼ね合いにより決定され、0.1〜5mm程度が妥当である。また、接着樹脂31で固定する支柱部23の個々の支柱間の距離が大きくなればなるほど、接着樹脂31に加わる応力も大きくなるため、当該支柱間の距離は20mm以下とすることが望ましい。 Although the height of the column of the column 23 is preferably as high as possible in the sense of reducing the stress applied to the adhesive resin 31, the thickness of the display device on which the light emitting element module 1 is mounted, the mounting height of the light emitting element, and the like. And about 0.1 to 5 mm is appropriate. Moreover, since the stress applied to the adhesive resin 31 increases as the distance between the individual columns of the column portion 23 fixed by the adhesive resin 31 increases, the distance between the columns is preferably 20 mm or less.
光学レンズ21の中央部には、発光素子部品2を一部収納するための窪み部24が形成されており、発光素子部品2が密閉されず、発光素子部品2と窪み部24の間に空気の層を有していることにより、発光素子部品2の、惹いては発光素子モジュール1全体の放熱性を良くしている。 In the central portion of the optical lens 21, a recess 24 for accommodating a part of the light emitting element component 2 is formed. The light emitting element component 2 is not sealed, and air is interposed between the light emitting element component 2 and the recess 24. Therefore, the heat radiation performance of the light emitting element component 2 and the light emitting element module 1 as a whole is improved.
マーク部25は光学レンズ21を基板11に搭載する際のアライメントマークとして用いられている。マーク部25は光学レンズ21の外周から外側に突出した構造とし、支柱部23の外側に、光学レンズ21の中心から3つの支柱の中心を通過する延長線上にそれぞれ設けている。マーク部25の形状は光学レンズ21の正面から見て三角形や長方形などの形状で、光学レンズ成型後のゲート切断部(図示なし)の形状と区別できる形状であれば良い。本実施形態ではゲート切断部の形状が長方形であるため、マーク部25の形状を三角形としている。 The mark portion 25 is used as an alignment mark when the optical lens 21 is mounted on the substrate 11. The mark portion 25 has a structure that protrudes outward from the outer periphery of the optical lens 21, and is provided outside the support column portion 23 on extension lines that pass from the center of the optical lens 21 through the centers of the three support columns. The shape of the mark portion 25 may be a shape such as a triangle or a rectangle as viewed from the front of the optical lens 21 and may be any shape that can be distinguished from the shape of the gate cutting portion (not shown) after the optical lens molding. In this embodiment, since the shape of the gate cutting part is a rectangle, the shape of the mark part 25 is a triangle.
接着樹脂31の接着信頼性についての実験結果を図3に示す。図3はガラス繊維にエポキシ樹脂を含浸させて形成されたコンポジット基板(熱膨張係数2.5×10−5/℃)上に、アクリル系樹脂の光学レンズ21(熱膨張係数6.0×10−5/℃)を支柱部23を介して接着、固定し、温度サイクル試験(−40℃/85℃、20分/回、300回)を実施後の各接着樹脂31の剥がれを検査した結果を示す。接着樹脂31は図3のA〜Fに示される6種類であり、90℃以下で硬化できる接着樹脂から選択されている。支柱部23の支柱の中心間距離を9mm、13mm、15mmとした光学レンズ21に対し、接着樹脂31により固定される支柱部23の支柱の本数は2本で実験を行った。ただし、光学レンズ21は基板11の上面に対し平行を保つように、支柱部23に少なくとも3本の支柱を設けている。 FIG. 3 shows an experimental result regarding the adhesion reliability of the adhesive resin 31. 3 shows an acrylic resin optical lens 21 (thermal expansion coefficient 6.0 × 10) on a composite substrate (thermal expansion coefficient 2.5 × 10 −5 / ° C.) formed by impregnating glass fiber with an epoxy resin. −5 / ° C.) is bonded and fixed via the support column 23, and the result of inspecting the peeling of each adhesive resin 31 after the temperature cycle test (−40 ° C./85° C., 20 minutes / times, 300 times) is performed. Indicates. There are six types of adhesive resins 31 shown in FIGS. 3A to 3F, and are selected from adhesive resins that can be cured at 90 ° C. or lower. The experiment was conducted with the number of support columns 23 fixed by the adhesive resin 31 with respect to the optical lens 21 with the center distance between the support columns 23 being 9 mm, 13 mm, and 15 mm. However, the optical lens 21 is provided with at least three columns in the column 23 so as to be parallel to the upper surface of the substrate 11.
注目すべきは、50%以上の引っ張り破断伸びを有する材料B〜Fにおいては、支柱間距離が15mmにおいても接着樹脂31の剥がれがなかった点である。175%以上の引っ張り破断伸びを有する材料C〜Fにおいては、支柱間距離が15mmのもので1000回以上の温度変化サイクルを施しても剥がれは発生しなかった。更に、材料C〜Fは、湿度により硬化するため、40℃〜60℃の低温での硬化が可能であり、更に、8時間以上の長時間処理を要してもよい場合は室温で硬化させることができる。 It should be noted that in the materials B to F having a tensile breaking elongation of 50% or more, the adhesive resin 31 was not peeled even when the distance between the columns was 15 mm. In the materials C to F having a tensile elongation at break of 175% or more, the distance between the support columns was 15 mm, and peeling did not occur even when the temperature change cycle was performed 1000 times or more. Furthermore, since the materials C to F are cured by humidity, they can be cured at a low temperature of 40 ° C. to 60 ° C., and are further cured at room temperature when long-term treatment of 8 hours or more may be required. be able to.
〈第2実施形態〉
次に、上記発光素子モジュール1の製造方法につき説明する。図4〜図5は、図1に示される発光素子モジュール1の製造工程を示す図である。
Second Embodiment
Next, a manufacturing method of the light emitting element module 1 will be described. 4-5 is a figure which shows the manufacturing process of the light emitting element module 1 shown by FIG.
先ず、発光素子部品2、基板11、及び、光学レンズ21を準備する。ここで、基板11は、例えばエポキシとガラス繊維を複合した樹脂基板であり、図4に基板11の断面図を示す。基板11の両面に配線13が形成されている。当該配線13は銅、ニッケル、金等の材料で形成することができる。配線13のうち、基板11の一方の面に発光素子部品2を搭載するランド部13aが形成され、両面に配線部13bが形成されている。また、発光素子部品2が搭載されない他方の面においては全面に配線部13bが設けられることで基板11の放熱性を向上させている。ソルダレジスト14は、両面に形成される配線13bの全面を覆い、配線部13bを保護しており、ランド部13aと、光学レンズ21の支柱部23が設置される位置に、夫々開口部15a,15bが設けられている。 First, the light emitting element component 2, the substrate 11, and the optical lens 21 are prepared. Here, the substrate 11 is, for example, a resin substrate in which epoxy and glass fiber are combined, and FIG. 4 shows a cross-sectional view of the substrate 11. Wirings 13 are formed on both surfaces of the substrate 11. The wiring 13 can be formed of a material such as copper, nickel, or gold. Of the wiring 13, a land portion 13a for mounting the light emitting element component 2 is formed on one surface of the substrate 11, and a wiring portion 13b is formed on both surfaces. In addition, on the other surface where the light emitting element component 2 is not mounted, the wiring portion 13b is provided on the entire surface, so that the heat dissipation of the substrate 11 is improved. The solder resist 14 covers the entire surface of the wiring 13b formed on both surfaces and protects the wiring portion 13b, and at the positions where the land portion 13a and the column portion 23 of the optical lens 21 are installed, the openings 15a, 15b is provided.
発光素子部品2は、セラミックからなる部品基板3の上にLEDチップ(図示せず)が1個或いは複数個搭載され、ワイヤ(図示せず)等により電気的に接続され、LEDチップとワイヤが封止樹脂6により封止されて形成されている。 In the light emitting element component 2, one or a plurality of LED chips (not shown) are mounted on a component substrate 3 made of ceramic, and are electrically connected by a wire (not shown) or the like. It is formed by being sealed with a sealing resin 6.
光学レンズ21は金型を用いて、射出成型等により、レンズ部22と、支柱部23と、窪み部24と、マーク部25とが一体で成型されている。支柱部23、マーク部25は後で取り付けても良いが、一種類の材料ですむため、工程上容易な一体成型が望ましい。レンズ部22の底面に梨地等を入れると離散性や光の放散性を高めることができる。 As for the optical lens 21, the lens part 22, the support | pillar part 23, the hollow part 24, and the mark part 25 are integrally shape | molded by injection molding etc. using the metal mold | die. The support column 23 and the mark unit 25 may be attached later, but since only one type of material is required, it is desirable to perform integral molding that is easy in the process. When satin or the like is put on the bottom surface of the lens portion 22, the discreteness and the light diffusing property can be enhanced.
次に、基板11上に発光素子部品2を設置する。図5に発光素子部品2が設置された基板11の断面図を示す。発光素子部品2の部品基板3の実装面には銅、銀、ニッケル、金などからなる部品端子4が設けられており、ハンダ或いは導電接着材等の導電材料7により基板11のランド部13aに実装される。導電材料7は、部品端子4か、ランド部13aの何れか又は両方に設けると良い。これらの導電材料はリフローやオーブンなどにより熱処理され、発光素子部品2が基板11上に固定される。 Next, the light emitting element component 2 is installed on the substrate 11. FIG. 5 shows a cross-sectional view of the substrate 11 on which the light emitting element component 2 is installed. A component terminal 4 made of copper, silver, nickel, gold, or the like is provided on the mounting surface of the component substrate 3 of the light emitting element component 2, and the land portion 13a of the substrate 11 is formed by a conductive material 7 such as solder or a conductive adhesive. Implemented. The conductive material 7 may be provided on either or both of the component terminal 4 and the land portion 13a. These conductive materials are heat-treated by reflow or oven, and the light emitting element component 2 is fixed on the substrate 11.
次に、基板11上に光学レンズ21を、接着樹脂31を用いて固定する。接着樹脂31は、上述の通り、接着後の引っ張り破断伸びが50%以上となる、伸び率の良好な接着樹脂である。 Next, the optical lens 21 is fixed on the substrate 11 using an adhesive resin 31. As described above, the adhesive resin 31 is an adhesive resin having a good elongation rate at which the tensile elongation at break after bonding is 50% or more.
図5の基板11上の開口部15b上に接着樹脂31を適量供給し、光学レンズ21の支柱部23の支柱の底面と接着させる。基板11上の光学レンズ接着位置への接着樹脂31の供給は、接着樹脂31が液状の場合、ディスペンス法、印刷法などにより行うことができる。シート状、テープ上の場合は仮圧着などをおこなって供給しておく。製造上は液状の接着樹脂31をディスペンス法により塗布する方法が簡便であり望ましい。 An appropriate amount of the adhesive resin 31 is supplied onto the opening 15b on the substrate 11 in FIG. 5 and bonded to the bottom surface of the support column 23 of the optical lens 21. The supply of the adhesive resin 31 to the optical lens bonding position on the substrate 11 can be performed by a dispensing method, a printing method, or the like when the adhesive resin 31 is liquid. In the case of a sheet form or tape, provisional pressure bonding is performed before supply. In production, a method of applying the liquid adhesive resin 31 by a dispensing method is simple and desirable.
接着樹脂31は、接着箇所(支柱部23の全ての支柱の底部、或いはそのうちの少なくとも2箇所)のみに供給するため、従来技術のようにレンズ周縁部全体を接着する場合に比べて使用量を低減することが可能である。 Since the adhesive resin 31 is supplied only to the bonding location (the bottom of all the columns of the column 23 or at least two of them), the amount of use is smaller than when the entire lens periphery is bonded as in the prior art. It is possible to reduce.
次に、光学レンズ21の基板11への固定をダイボンダー、マウンターなどの一般的な搭載機を用いて行う。マーク部25はその際のアライメントマークとして用いられる。 Next, the optical lens 21 is fixed to the substrate 11 using a general mounting machine such as a die bonder or a mounter. The mark portion 25 is used as an alignment mark at that time.
接着樹脂31として、エポキシ系の熱硬化タイプの接着樹脂(図3のB)を用いる場合は、レンズ21の搭載後は、90℃以下である80℃で5分の熱処理で硬化させることができる。従って、150℃以上の高温で熱硬化する一般的な接着樹脂と比べて、熱硬化後の冷却後に加わる応力を小さくすることができる。また、5分程度の短時間で済むため、オーブンだけでなく、ホットプレートやリフロー炉によっても硬化が可能となる。 When an epoxy-based thermosetting adhesive resin (B in FIG. 3) is used as the adhesive resin 31, after the lens 21 is mounted, it can be cured by a heat treatment at 80 ° C., which is 90 ° C. or less, for 5 minutes. . Accordingly, the stress applied after cooling after thermosetting can be reduced as compared with a general adhesive resin that is thermoset at a high temperature of 150 ° C. or higher. Moreover, since it takes only a short time of about 5 minutes, it can be cured not only by an oven but also by a hot plate or a reflow furnace.
また、接着樹脂31として、シリコーン系やポリウレタンなどの湿度硬化タイプの接着樹脂(図3のC〜F)を用いる場合は、より低い温度である40〜60℃で硬化させることができる。更に、8時間程度の長時間の硬化処理が許される場合においては、室温で硬化させることができるので、更に接着樹脂31に加わる応力を低減することができる。 Moreover, when using humidity hardening type adhesive resins (CF of FIG. 3), such as a silicone type and a polyurethane, as the adhesive resin 31, it can be hardened at 40-60 degreeC which is a lower temperature. Furthermore, when a long-time curing process of about 8 hours is allowed, it can be cured at room temperature, so that the stress applied to the adhesive resin 31 can be further reduced.
上記工程により、光学レンズ21がその支柱部23を介して基板11上に接着され、光学レンズ21の中心が、発光素子部品2の中心と略重なるように基板11上に固定されることにより、図1に示される、基板11上に発光素子部品2、及び光学レンズ21が設置された発光素子モジュール1が製造される。発光素子モジュール1は、液晶テレビや液晶モニターなどの液晶表示装置などのシャーシにリベット等で固定され、バックライトユニットとして用いることができる。 By the above process, the optical lens 21 is bonded onto the substrate 11 via the support column 23, and the center of the optical lens 21 is fixed on the substrate 11 so as to substantially overlap the center of the light emitting element component 2. The light emitting element module 1 in which the light emitting element component 2 and the optical lens 21 are installed on the substrate 11 shown in FIG. 1 is manufactured. The light emitting element module 1 is fixed to a chassis of a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor with a rivet or the like, and can be used as a backlight unit.
尚、上述の実施形態は本発明の好適な実施形態の一例である。本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。 The above-described embodiment is an example of a preferred embodiment of the present invention. The embodiment of the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.
〈別実施形態〉
以下に、別実施形態について説明する。
<Another embodiment>
Another embodiment will be described below.
〈1〉上記第1及び第2実施形態において、光学レンズ21は、絶縁材料(ソルダレジスト)14上に開けられた開口部15bにおいて、基板11の基材12と光学レンズ21の支柱部23が接着樹脂31により接着されることにより基板11上に固定されているが、開口部15bを設けず、絶縁材料(ソルダレジスト)14と光学レンズ21の支柱部23を接着樹脂31で固定しても良い。その場合、支柱部23が配置される領域にマーキングを行っておくと、接着樹脂31の供給時における接着箇所の位置決めと樹脂供給量の管理が容易になる。ただし、絶縁材料14と基材12との密着性があまり良くない場合があるので、その場合には絶縁材料14上に開口部を設ける方が望ましい。 <1> In the first and second embodiments, the optical lens 21 includes the base 12 of the substrate 11 and the support 23 of the optical lens 21 in the opening 15b opened on the insulating material (solder resist) 14. Although it is fixed on the substrate 11 by being bonded by the adhesive resin 31, the insulating material (solder resist) 14 and the column portion 23 of the optical lens 21 are fixed by the adhesive resin 31 without providing the opening 15 b. good. In that case, if marking is performed on the region where the support column 23 is arranged, it becomes easy to position the bonding portion and manage the resin supply amount when the adhesive resin 31 is supplied. However, since the adhesion between the insulating material 14 and the base material 12 may not be so good, it is desirable to provide an opening on the insulating material 14 in that case.
〈2〉上記発光素子モジュール1は、全表示画面分に対応する数の発光素子部品2を全て、一つのモジュール上に搭載しても良いが、この場合、表示画面サイズに相当する大きさの基板11を必要とし、また、画面サイズごとに基板11を変える必要がある。そこで、数個から数十個までの発光素子部品2を搭載した基本発光素子モジュールを複数種類、複数枚数用意し、画面サイズに応じて当該基本発光素子モジュールを複数枚数組み合わせて使用することで、所望の表示画面サイズ用の発光素子モジュール1を構成することが望ましい。例えば、発光素子部品2が夫々5個、6個、8個搭載されている3種類の基本発光素子モジュールを準備することで、様々な表示画面サイズに対応することができる。これにより、個々のモジュールのサイズを小さく、個々のモジュール上の発光素子部品2の搭載数を少なくできるため、発光素子モジュール1の歩留まりを下げることなく製造できる。当該基本発光素子モジュール同士はジャンパー線、或いはコネクター等で接続され発光素子モジュール1が構成される。当該基本発光素子モジュールにおける発光素子部品2及び光学レンズ21の構成、及び、基板への固定方法については、上記第1及び第2実施形態における発光素子モジュール1と同様であり、説明を省略する。 <2> The light emitting element module 1 may have all the light emitting element components 2 corresponding to the entire display screen mounted on one module. In this case, however, the light emitting element module 1 has a size corresponding to the display screen size. The substrate 11 is required, and it is necessary to change the substrate 11 for each screen size. Therefore, by preparing a plurality of types and a plurality of basic light emitting element modules on which several to several tens of light emitting element components 2 are mounted, by using a combination of a plurality of basic light emitting element modules according to the screen size, It is desirable to configure the light emitting element module 1 for a desired display screen size. For example, by preparing three types of basic light-emitting element modules on which five, six, and eight light-emitting element parts 2 are mounted, various display screen sizes can be supported. Thereby, since the size of each module can be reduced and the number of light emitting element components 2 mounted on each module can be reduced, the light emitting element module 1 can be manufactured without reducing the yield. The light emitting element modules 1 are configured by connecting the basic light emitting element modules with jumpers or connectors. About the structure of the light emitting element component 2 and the optical lens 21 in the said basic light emitting element module, and the fixing method to a board | substrate, it is the same as that of the light emitting element module 1 in the said 1st and 2nd embodiment, Description is abbreviate | omitted.
本発明は、発光素子を搭載した発光素子モジュールに利用可能であり、特に、液晶テレビや液晶モニターなどの液晶表示装置用のバックライト装置に利用することができる。 The present invention can be used for a light emitting element module including a light emitting element, and in particular, can be used for a backlight device for a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor.
1: 本発明に係る発光素子モジュール
2: 発光素子部品(LED部品)
3: 部品基板
4: 部品端子
5: LED
6: 封止樹脂
7: 導電材料(ハンダ、導電接着材等)
8: ワイヤ
11: 基板
12: 基材
13: 配線
13a: ランド部
13b: 配線部
14: 絶縁材料(ソルダレジスト等)
15a,15b: 開口部
21: 光学レンズ
22: レンズ部
23: 支柱部
24: 窪み部
25: マーク部
31: 接着樹脂
32: (従来技術の)接着樹脂
41: キャップ
41a: レンズ部
41b: リフレクタ部
42: 封止樹脂
1: Light emitting device module 2 according to the present invention: Light emitting device component (LED component)
3: Component board 4: Component terminal 5: LED
6: Sealing resin 7: Conductive material (solder, conductive adhesive, etc.)
8: Wire 11: Substrate 12: Base material 13: Wiring 13a: Land portion 13b: Wiring portion 14: Insulating material (solder resist, etc.)
15a, 15b: Opening 21: Optical lens 22: Lens part 23: Supporting part 24: Recessed part 25: Mark part 31: Adhesive resin 32: Adhesive resin 41 (of the prior art) 41: Cap 41a: Lens part 41b: Reflector part 42: Sealing resin
Claims (10)
前記光学レンズは、外周部から前記基板方向に突出する3以上の支柱部を有し、
前記光学レンズと前記基板の間に空気が移動できる層を有する状態で、且つ、引っ張り破断伸びが50%以上の接着樹脂により前記支柱部が前記基板上に接着されることにより前記光学レンズが前記基板上に固定され、
前記支柱部の少なくとも2本は、前記接着樹脂により前記基板上に固定される一方、前記支柱部の少なくとも1本が、前記基板上に固定されていないことを特徴とする発光素子モジュール。 A light-emitting element module comprising a light-emitting element component mounted with a light-emitting element and an optical lens for dispersing light from the light-emitting element on a substrate,
The optical lens has three or more struts projecting from the outer periphery toward the substrate,
The optical lens is bonded to the substrate by an adhesive resin having a layer in which air can move between the optical lens and the substrate and having a tensile breaking elongation of 50% or more. Fixed on the board,
At least two of the support portions are fixed on the substrate by the adhesive resin, and at least one of the support portions is not fixed on the substrate.
発光素子を透明樹脂で封止した発光素子部品を準備する工程と、
基板上に配線及び前記発光素子部品を設置するためのランドが形成された前記基板を準備する工程と、
外周部から前記基板方向に突出する3以上の支柱部を有する光学レンズを準備する工程と、
前記基板の前記ランド上に前記発光素子部品を設置する工程と、
引っ張り破断伸びが50%以上の接着樹脂を用いて前記発光素子部品毎に前記光学レンズの前記支柱部の底面を前記基板上に接着し、前記光学レンズを前記基板上に固定するレンズ固定工程を含むことを特徴とする発光素子モジュールの製造方法。 A method for producing the light-emitting element module according to claim 1,
A step of preparing a light emitting element component in which the light emitting element is sealed with a transparent resin;
Preparing the substrate on which a land for installing wiring and the light emitting element component is formed on the substrate;
Preparing an optical lens having three or more struts projecting from the outer periphery toward the substrate;
Installing the light emitting element component on the land of the substrate;
A lens fixing step of bonding the bottom surface of the support column of the optical lens to the substrate for each light emitting element component using an adhesive resin having a tensile elongation at break of 50% or more, and fixing the optical lens on the substrate. A method for manufacturing a light emitting element module, comprising:
9. The method of manufacturing a light emitting element module according to claim 8, wherein, in the lens fixing step, the optical lens is fixed using the humidity curable adhesive resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013115654A JP5498611B2 (en) | 2013-05-31 | 2013-05-31 | LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013115654A JP5498611B2 (en) | 2013-05-31 | 2013-05-31 | LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009164260A Division JP2011018863A (en) | 2009-07-10 | 2009-07-10 | Light-emitting element module, method of manufacturing the same, and backlight apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013211583A JP2013211583A (en) | 2013-10-10 |
JP5498611B2 true JP5498611B2 (en) | 2014-05-21 |
Family
ID=49529094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013115654A Expired - Fee Related JP5498611B2 (en) | 2013-05-31 | 2013-05-31 | LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5498611B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005020908A1 (en) * | 2005-02-28 | 2006-08-31 | Osram Opto Semiconductors Gmbh | Lighting device for back lighting of liquid crystal display, has optical unit with radiation emission surface which has convex curved partial region that partially surrounds concave curved partial region in distance to optical axis |
JP2007072432A (en) * | 2005-08-08 | 2007-03-22 | Konica Minolta Opto Inc | Optical element and illumination device including the same |
-
2013
- 2013-05-31 JP JP2013115654A patent/JP5498611B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013211583A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011018863A (en) | Light-emitting element module, method of manufacturing the same, and backlight apparatus | |
JP5463225B2 (en) | Surface emitting unit and method for manufacturing the same | |
CN106847801B (en) | A surface-mounted RGB-LED packaging module and its manufacturing method | |
JP5396215B2 (en) | Semiconductor light emitting device manufacturing method, semiconductor light emitting device, and liquid crystal display device | |
KR101493104B1 (en) | Resin sheet for encapsulating optical semiconductor element and optical semiconductor device | |
TW200905855A (en) | Light-emitting device, display device and production method of light-emitting device | |
KR20130096094A (en) | Light emitting device package, manufactueing method for light emitting device pacakge and lighting system having light emitting device package | |
US20120018884A1 (en) | Semiconductor package structure and forming method thereof | |
JP2010238540A (en) | Light emitting module and manufacturing method thereof | |
KR101945057B1 (en) | Base for optical semiconductor device and method for preparing the same, and optical semiconductor device | |
KR101226282B1 (en) | Light emitting diode module and manufacturing method thereof | |
KR20120039590A (en) | Method of manufacturing high power white led package module | |
KR20120085085A (en) | Cob type light emitting module and method of the light emitting module | |
CN107978667B (en) | LED display dot matrix module | |
US9142528B2 (en) | Semiconductor device with an interlocking structure | |
JP5498611B2 (en) | LIGHT EMITTING ELEMENT MODULE, ITS MANUFACTURING METHOD, AND BACKLIGHT DEVICE | |
JP2007329370A (en) | Light-emitting device, and method of manufacturing light emitting device | |
JP2013183124A (en) | Semiconductor light emitting device | |
US20150198294A1 (en) | Light bar, backlight device, and manufacturing methods thereof | |
KR20110051718A (en) | Bracket-integrated heat dissipation PCB for backlight unit, chassis structure with same and manufacturing method thereof | |
KR101140081B1 (en) | LED Package and Manufacturing Method thereof | |
US20160126430A1 (en) | Light-emitting device with hardened encapsulant islands | |
RU2612736C2 (en) | Led matrix | |
KR101145209B1 (en) | Light emitting apparatus | |
JP2007329369A (en) | Light-emitting device, and method of manufacturing light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5498611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |