JP5496212B2 - 宇宙船のための、熱源からの熱負荷を制御する熱モジュール、及び宇宙船モジュール式熱プラットホーム - Google Patents
宇宙船のための、熱源からの熱負荷を制御する熱モジュール、及び宇宙船モジュール式熱プラットホーム Download PDFInfo
- Publication number
- JP5496212B2 JP5496212B2 JP2011529586A JP2011529586A JP5496212B2 JP 5496212 B2 JP5496212 B2 JP 5496212B2 JP 2011529586 A JP2011529586 A JP 2011529586A JP 2011529586 A JP2011529586 A JP 2011529586A JP 5496212 B2 JP5496212 B2 JP 5496212B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- thermal
- spacecraft
- module
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 claims description 15
- 230000000903 blocking effect Effects 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- ARJSGSALIJXTLS-UHFFFAOYSA-N SMTP-2 Natural products OC1=C2CC(O)C(CCC=C(CCC(O)C(C)(C)O)C)(C)OC2=C2CN(CCO)C(=O)C2=C1 ARJSGSALIJXTLS-UHFFFAOYSA-N 0.000 description 21
- 238000013461 design Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000382 optic material Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000036561 sun exposure Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
- B64G1/506—Heat pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/06—Control arrangements therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
- B64G1/503—Radiator panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/06—Derivation channels, e.g. bypass
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Control Of Temperature (AREA)
Description
−通常は搭載電子機器を備える少なくとも1つの熱源3
−以下を備えるバイパス管路付き2相(液体及び蒸気)ループシステム5
・バイパス管路6
・集熱器7(好ましくは、蒸発器)
・2つの相、すなわち、蒸気及び液体用の輸送管路8、9
・熱流調整器10(好ましくは、熱調整弁)
・凝縮器11
−多層断熱材(MLI)などの断熱システム12
−好ましくは放熱器を備える熱遮断システム13
−熱シンク14(通常は、宇宙)。
−モジュール方式
−拡張性
−自動調節
−宇宙での宇宙船方向からの独立性
−任意の方向で地上にて宇宙船を試験する可能性。何故なら、通常の一定又は可変コンダクタンスの熱パイプ(VCHP)とは対照的に、TPBL5は重力場で任意の位置にて動作できるからである。これは、毛管芯(ポンプ)の孔の有効直径が非常に小さいことにより、重力に抗して最大数メートルまで動作することができる毛管ポンプ輸送のループの顕著な形態であり、宇宙船で使用される典型的な熱パイプは、蒸発器が凝縮器より上にある場合、最大数センチメートルまで水平方向で、又は非常に小さい勾配でしか動作できない。
−自立運転
−受動的でエネルギ効率がよい。何故なら、熱モジュール1のための電力量がゼロまで減少する(好ましい設計において)か、又は毛管ポンプ以外を使用する場合は最小値まで減少するからである。
−通常の一定又は可変コンダクタンスの熱パイプとは対照的に、熱源3からの高い熱負荷を管理する可能性。
−バイパス熱調整器の設計及び特徴にしか依存しない精密な温度制御。
−宇宙船内の電子機器の配置構成の融通性。何故なら、TPBL5内の輸送管路8、9及びバイパス管路6の直径が小さく、したがって複雑な配索が非常に容易だからである。
−普遍性:本発明のSMTP2は様々な宇宙ミッション又は軌道に使用することができる(実際には、1つのパラメータしか検証しなくてよい。そのパラメータは、SMTP2の熱遮断能力は最高温度の環境状態における最大熱負荷以上でなければならないという事である)。
Claims (9)
- 宇宙船のための、熱源(3)からの熱負荷を制御する熱モジュール(1)であって、2相ループシステム(5)と、熱遮断システム(13)とを備え、前記2相ループシステム(5)が、集熱器(7)と、熱流調整器(10)と、バイパス管路(6)と、凝縮器(11)とを備え、前記凝縮器(11)と前記熱遮断システム(13)が、熱的に結合され、前記2相ループシステム(5)の前記熱流調整器(10)が、前記熱負荷の一部分の流れの向きを前記熱源(3)から前記凝縮器(11)へと変え、該凝縮器から前記熱遮断システム(13)が前記熱負荷を熱シンク(14)に向け、前記熱負荷の他の部分の流れを、比例動作により前記バイパス管路(6)を通してバイパスさせ、且つ、前記熱源(3)の過冷却を回避するために前記集熱器(7)に戻すことによって前記熱源(3)の温度が調節され、前記熱流調整器(10)が、収縮ベローズ(33)によって分離された2つのチャンバ(31,32)を備え、主チャンバ(31)が、前記2相ループシステム(5)の一部であって、前記熱負荷の循環を制御し、第2のチャンバ(32)が、前記熱モジュール(1)の温度設定点を調節するために使用されることを特徴とする熱モジュール(1)。
- 前記主チャンバ(31)が、前記収縮ベローズ(33)に接合された可動要素(37)を備え、前記可動要素(37)が前記熱モジュール(1)に加わる前記熱負荷に従ってその位置を自動調節することができ、したがって前記集熱器(7)と前記凝縮器(11)が連結される位置、前記集熱器(7)と前記バイパス管路(6)が連結される位置、及び前記集熱器(7)と前記凝縮器(11)と前記バイパス管路(6)が連結される中間位置を採用できることを特徴とする、請求項1に記載の宇宙船のための、熱負荷を制御する熱モジュール(1)。
- 前記第2のチャンバ(32)が所定の圧力値の気体で充填され、この気体が温度制御ファクタとして作用し、前記熱モジュール(1)内の前記温度が規定値より低い場合、前記2相ループシステム(5)内の前記流体の対応する前記圧力が、前記第2のチャンバ(32)内の前記気体の前記圧力より低くなり、前記凝縮器(11)への経路が閉じて、全熱流を前記バイパス管路(6)へ向けることができるようにし、前記熱モジュール(1)内の前記温度が上昇すると、前記2相ループシステム(5)内の前記圧力が前記第2のチャンバ(32)内の前記圧力より高くなるので、前記凝縮器(11)への前記接続が開き始めることを特徴とする、請求項1又は2に記載の宇宙船のための、熱負荷を制御する熱モジュール(1)。
- 断熱システム(12)をさらに備えることを特徴とする、請求項1〜3のいずれかに記載の宇宙船のための、熱負荷を制御する熱モジュール(1)。
- 熱パイプフレーム網を備える等温化システム(4)をさらに備えることを特徴とする、請求項1〜4のいずれかに記載の宇宙船のための、熱負荷を制御する熱モジュール(1)。
- 前記2相ループシステム(5)内に2相流体の循環を提供する受動的毛管ポンプをさらに備えることを特徴とする、請求項1〜5のいずれかに記載の宇宙船のための、熱負荷を制御する熱モジュール(1)。
- 前記受動的毛管ポンプが、前記集熱器(7)と同一の要素であることを特徴とする、請求項6に記載の宇宙船で使用して熱負荷を制御する熱モジュール(1)。
- 請求項1〜7のいずれかに記載の少なくとも1つの熱モジュール(1)を備える宇宙船モジュール式熱プラットホーム(2)であって、該宇宙船モジュール式熱プラットホーム(2)を組み合わせる、及び/又は他の熱アーキテクチャに埋め込み、出力消費を減少させて熱遮断能力を増大させることにより、前記熱アーキテクチャの最適な熱管理を提供できることを特徴とする、宇宙船モジュール式熱プラットホーム(2)。
- 少なくとも2つの熱モジュール(1)の対向する熱遮断システム(13)が、熱パイプ(26)によって接続されることにより、前記熱遮断システム(13)の作業状態を等化し、前記熱が前記少なくとも2つの熱モジュール(1)の前記バイパス管路(6)のそれぞれにバイパスされていることを特徴とする、請求項8に記載の宇宙船モジュール式熱プラットホーム(2)。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2008/070181 WO2010037872A1 (es) | 2008-10-02 | 2008-10-02 | Plataforma térmica modular de nave espacial |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012504522A JP2012504522A (ja) | 2012-02-23 |
JP5496212B2 true JP5496212B2 (ja) | 2014-05-21 |
Family
ID=40677746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011529586A Expired - Fee Related JP5496212B2 (ja) | 2008-10-02 | 2008-10-02 | 宇宙船のための、熱源からの熱負荷を制御する熱モジュール、及び宇宙船モジュール式熱プラットホーム |
Country Status (4)
Country | Link |
---|---|
US (1) | US8910701B2 (ja) |
EP (1) | EP2332839B1 (ja) |
JP (1) | JP5496212B2 (ja) |
WO (1) | WO2010037872A1 (ja) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2942774B1 (fr) * | 2009-03-06 | 2011-05-06 | Thales Sa | Dispositif de controle thermique pour un engin spatial |
WO2012052573A1 (es) * | 2010-10-21 | 2012-04-26 | Ibérica Del Espacio, S.A. | Dispositivo de control térmico regulado por presión. |
RU2481255C2 (ru) * | 2011-08-05 | 2013-05-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ изготовления системы терморегулирования космического аппарата |
RU2489330C2 (ru) * | 2011-08-05 | 2013-08-10 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ контроля качества системы терморегулирования космического аппарата |
FR2985808B1 (fr) | 2012-01-13 | 2018-06-15 | Airbus Defence And Space | Dispositif de refroidissement adapte a la regulation thermique d'une source de chaleur d'un satellite, procede de realisation du dispositif de refroidissement et satellite associes |
RU2494933C1 (ru) * | 2012-02-06 | 2013-10-10 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Система термостатирования оборудования космического объекта |
RU2493056C1 (ru) * | 2012-05-21 | 2013-09-20 | Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") | Космический аппарат дистанционного зондирования земли |
RU2509695C1 (ru) * | 2012-07-11 | 2014-03-20 | Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Способ заправки рабочим телом гидравлической магистрали замкнутого жидкостного контура, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и устройство для его осуществления |
US9296496B2 (en) * | 2013-03-04 | 2016-03-29 | Raytheon Company | Thermal management system and method for space and air-borne sensors |
US20140290486A1 (en) * | 2013-04-01 | 2014-10-02 | Hamilton Sundstrand Space Systems International, Inc. | Liquid depth-operated valve assembly for use in a zero gravity environment and method |
RU2541597C2 (ru) * | 2013-04-16 | 2015-02-20 | Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Система терморегулирования космического аппарата |
CN103448925A (zh) * | 2013-08-08 | 2013-12-18 | 上海卫星工程研究所 | 卫星用星敏感器高精度温控装置 |
CN103448920B (zh) * | 2013-08-08 | 2016-04-20 | 上海卫星工程研究所 | 星载星敏感器的精密控温装置 |
CN103407582B (zh) * | 2013-08-08 | 2015-09-23 | 北京空间机电研究所 | 一种空间大型载荷的热管理系统 |
ITTO20130873A1 (it) * | 2013-10-29 | 2015-04-30 | Alenia Aermacchi Spa | Circuito di raffreddamento/riscaldamento a fluido bifase con valvole di controllo del flusso sensibili alla temperatura |
WO2016129044A1 (ja) * | 2015-02-09 | 2016-08-18 | 富士通株式会社 | 冷却装置及び電子機器 |
US10583940B2 (en) | 2015-03-03 | 2020-03-10 | York Space Systems LLC | Pressurized payload compartment and mission agnostic space vehicle including the same |
US10392135B2 (en) | 2015-03-30 | 2019-08-27 | Worldvu Satellites Limited | Satellite radiator panels with combined stiffener/heat pipe |
EP3095714A1 (de) * | 2015-05-19 | 2016-11-23 | Airbus DS GmbH | Modularer satellit |
US9939203B2 (en) | 2015-06-15 | 2018-04-10 | Hamilton Sundstrand Corporation | Variable heat rejection using heat pipe heat exchanger |
US9908643B2 (en) * | 2015-08-05 | 2018-03-06 | Worldvu Satellites Limited | Passive thermal system providing an embedded interface for heat pipes |
RU2633666C2 (ru) * | 2015-12-11 | 2017-10-16 | Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" | Способ изготовления системы терморегулирования космического аппарата |
RU2648519C2 (ru) * | 2015-12-11 | 2018-03-26 | Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" | Способ контроля качества системы терморегулирования космического аппарата |
KR20180114933A (ko) | 2016-03-31 | 2018-10-19 | 미쓰비시덴키 가부시키가이샤 | 히트 파이프 패널을 이용한 방열 장치 |
CN106428641A (zh) * | 2016-11-17 | 2017-02-22 | 上海卫星工程研究所 | 空间高效热传输微泵驱动流体回路装置 |
US10780998B1 (en) * | 2017-03-22 | 2020-09-22 | Space Systems/Loral, Llc | Spacecraft design with multiple thermal zones |
US20190041145A1 (en) * | 2017-08-01 | 2019-02-07 | Hamilton Sundstrand Corporation | Three-way modulating valve for temperature control |
US10775110B2 (en) | 2018-04-12 | 2020-09-15 | Rolls-Royce North American Technologies, Inc. | Tight temperature control at a thermal load with a two phase pumped loop, optionally augmented with a vapor compression cycle |
US20190315501A1 (en) * | 2018-04-17 | 2019-10-17 | Raytheon Company | Thermally-enhanced and deployable structures |
WO2020123523A1 (en) * | 2018-12-10 | 2020-06-18 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Two-phase cooling in vascular composites using a pumped fluid loop |
US20220364795A1 (en) * | 2019-12-09 | 2022-11-17 | Mitsubishi Electric Corporation | Cooling device and artificial satellite |
JP7294113B2 (ja) * | 2019-12-19 | 2023-06-20 | 三菱電機株式会社 | 宇宙機用ポンプ式排熱システム |
RU2731136C1 (ru) * | 2019-12-26 | 2020-08-31 | Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" | Способ повышения надежности работы жидкостной системы охлаждения оборудования герметичного отсека |
KR102316386B1 (ko) * | 2020-01-17 | 2021-10-22 | 한국항공우주연구원 | 원자력 히터 설계 검증용 시험장치 |
US11508488B2 (en) | 2020-09-10 | 2022-11-22 | Battelle Energy Alliance, Llc | Heat transfer systems for nuclear reactor cores, and related systems |
US11273925B1 (en) | 2020-10-14 | 2022-03-15 | Rolls-Royce North American Technologies Inc. | Thermal management system and method for cooling a hybrid electric aircraft propulsion system |
EP4240652A4 (en) | 2020-11-05 | 2024-08-28 | Katalyst Space Technologies, LLC | Devices, systems and methods for augmenting satellites |
CN113212798B (zh) * | 2021-04-28 | 2022-12-02 | 中国科学院高能物理研究所 | 一种全天监测高能望远镜的载荷热控系统设计方法 |
US11650015B2 (en) * | 2021-08-09 | 2023-05-16 | Aavid Thermalloy, Llc | Method and apparatus for thermosiphon device |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2322047A (en) * | 1942-03-16 | 1943-06-15 | G & O Mfg Company | Oil cooler |
US2511582A (en) * | 1945-09-12 | 1950-06-13 | Grindrod George | Process and apparatus for cooling milk and other liquids |
US3489203A (en) * | 1967-06-01 | 1970-01-13 | Us Navy | Controlled heat pipe |
US3847208A (en) * | 1973-09-14 | 1974-11-12 | Nasa | Structural heat pipe |
US4162701A (en) | 1977-11-21 | 1979-07-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal control canister |
JPS579368A (en) * | 1980-06-17 | 1982-01-18 | Osaka Gas Co Ltd | Safety device for governor regulating pipe |
US4492266A (en) * | 1981-10-22 | 1985-01-08 | Lockheed Missiles & Space Company, Inc. | Manifolded evaporator for pump-assisted heat pipe |
JPH0357200U (ja) * | 1989-10-06 | 1991-05-31 | ||
US5036905A (en) * | 1989-10-26 | 1991-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | High efficiency heat exchanger |
GB2240169B (en) * | 1990-01-17 | 1993-06-02 | Ferranti Int Plc | Closed circuit cooling system |
US5103897A (en) * | 1991-06-05 | 1992-04-14 | Martin Marietta Corporation | Flowrate controller for hybrid capillary/mechanical two-phase thermal loops |
US5588591A (en) * | 1995-08-31 | 1996-12-31 | Sweitzer, Jr.; Bruce K. | Heat dissipation unit |
US6152213A (en) * | 1997-03-27 | 2000-11-28 | Fujitsu Limited | Cooling system for electronic packages |
US6073888A (en) * | 1998-12-02 | 2000-06-13 | Loral Space & Communications, Ltd. | Sequenced heat rejection for body stabilized geosynchronous satellites |
US7069975B1 (en) * | 1999-09-16 | 2006-07-04 | Raytheon Company | Method and apparatus for cooling with a phase change material and heat pipes |
JP2001315700A (ja) * | 2000-05-01 | 2001-11-13 | Mitsubishi Heavy Ind Ltd | 宇宙飛行体の熱制御装置 |
US6478258B1 (en) | 2000-11-21 | 2002-11-12 | Space Systems/Loral, Inc. | Spacecraft multiple loop heat pipe thermal system for internal equipment panel applications |
JP2003206807A (ja) * | 2002-01-15 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | 高温ガス方向切換バルブ |
JP2003291900A (ja) * | 2002-04-05 | 2003-10-15 | Mitsubishi Electric Corp | 人工衛星熱制御装置 |
FR2853883B1 (fr) * | 2003-04-15 | 2006-01-27 | Cit Alcatel | Satellite comportant des moyens de transfert thermique d'une etagere supportant des equipements vers des panneaux radiateurs |
FR2912995B1 (fr) * | 2007-02-26 | 2009-05-22 | Alcatel Lucent Sas | Dispositif de controle thermique embarque a bord d'un engin spatial |
TW201036527A (en) * | 2009-03-19 | 2010-10-01 | Acbel Polytech Inc | Large-area liquid-cooled heat-dissipation device |
-
2008
- 2008-10-02 WO PCT/ES2008/070181 patent/WO2010037872A1/es active Application Filing
- 2008-10-02 JP JP2011529586A patent/JP5496212B2/ja not_active Expired - Fee Related
- 2008-10-02 EP EP08875584.8A patent/EP2332839B1/en active Active
- 2008-12-03 US US12/327,108 patent/US8910701B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2010037872A1 (es) | 2010-04-08 |
US20110001013A1 (en) | 2011-01-06 |
EP2332839A1 (en) | 2011-06-15 |
EP2332839B1 (en) | 2015-06-24 |
US8910701B2 (en) | 2014-12-16 |
JP2012504522A (ja) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5496212B2 (ja) | 宇宙船のための、熱源からの熱負荷を制御する熱モジュール、及び宇宙船モジュール式熱プラットホーム | |
US5954298A (en) | Active spacecraft thermal control system and method | |
US8616271B2 (en) | Thermal control device on board a spacecraft | |
US20100223942A1 (en) | Thermal Management Device for a Spacecraft | |
WO2000068630A1 (en) | Thermal control system for spacecraft | |
Bhandari et al. | Mars Science Laboratory thermal control architecture | |
RU2487063C2 (ru) | Система терморегулирования приборного отсека посадочного лунного модуля | |
Bugby et al. | Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management | |
Ambrose | Flex heat pipe East-West deployable radiator | |
Ababneh et al. | Copper-water and hybrid aluminum-ammonia heat pipes for spacecraft thermal control applications | |
Williams | Robust satellite thermal control using forced air convection thermal switches for operationally responsive space missions | |
Bugby et al. | Development and testing of a miniaturized multi‐evaporator hybrid loop heat pipe | |
Tulin et al. | The 4000W hybrid single-and two-phase thermal control system for payload and equipment of geostationary communication satellite. | |
Roukis et al. | COMET Service Module Thermal Control System Design Using a Capillary Pumped Loop | |
Ueno et al. | Thermal-vacuum test data for Jem/Maxi loop heat pipe system with two radiators | |
van Benthem et al. | Valve-less Mechanically Pumped Fluid Loop (MPFL) using East and West Panels of a Large Telecommunication Satellite as Radiator | |
TORRES et al. | LHP as strategic thermal control element for space and planetary missions | |
Bower et al. | A Passive Sublimator Driven Coldplate (ISDC-P) for Direct Avionics Cooling | |
Bhandari et al. | Thermal systems design and analysis for a 10 K Sorption Cryocooler flight experiment | |
Douglas et al. | Effect of variable emittance coatings on the operation of a miniature loop heat pipe | |
WO2021117105A1 (ja) | 冷却装置及び人工衛星 | |
Schlitt et al. | COM2PLEX-A Combined European LHP Experiment on SPACEHAB/QUEST | |
Van Oost et al. | Design and preliminary results of the HPCPL-based loops for the'Stentor'satellite | |
Delil et al. | TPX: Two-Phase Experiment for Get Away Special G-557 | |
Peabody et al. | Lessons Learned from the Wide Field camera 3 flight correlation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5496212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |