[go: up one dir, main page]

JP5483058B2 - Circulating fluidized bed gasifier structure - Google Patents

Circulating fluidized bed gasifier structure Download PDF

Info

Publication number
JP5483058B2
JP5483058B2 JP2009175252A JP2009175252A JP5483058B2 JP 5483058 B2 JP5483058 B2 JP 5483058B2 JP 2009175252 A JP2009175252 A JP 2009175252A JP 2009175252 A JP2009175252 A JP 2009175252A JP 5483058 B2 JP5483058 B2 JP 5483058B2
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
gasification
char
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009175252A
Other languages
Japanese (ja)
Other versions
JP2011026491A (en
Inventor
高広 村上
浩一 松岡
善三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009175252A priority Critical patent/JP5483058B2/en
Publication of JP2011026491A publication Critical patent/JP2011026491A/en
Application granted granted Critical
Publication of JP5483058B2 publication Critical patent/JP5483058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)

Description

本発明は、循環流動層を用いて燃料より可燃ガスを取り出すためのガス化反応炉に関するものである。   The present invention relates to a gasification reactor for extracting combustible gas from fuel using a circulating fluidized bed.

従来から、石炭、バイオマス、ごみ、下水汚泥などの炭化水素資源の固体燃料を利用し、生成したガスを、可燃ガス及び熱源として利用することにより、有機資源の有効活用を図る技術が開発されている。
該ガス化装置の1つとして、反応炉を流動層ガス化炉と流動層燃焼炉に分離し、流動層ガス化炉に炭化水素資源の固体燃料を供給し、水蒸気でガス化を行い、生成した未燃分(チャー)と流動媒体を流動層燃焼炉で燃焼させ、加熱された流動媒体を前記ガス化炉に戻す循環流動層を用いたものが知られている(特許文献1)。
上記のガス化反応炉は外部循環方式であるが、特許文献2に記載された反応炉のように、内部循環方式のものもあり、該反応炉においては、流動媒体に粒子状スラグを利用することで、ガス化炉内で生成されたガス中に含まれるタールが改質されタール分の少ない可燃ガスが生成されるとともに、劣化したスラグを未燃チャーとともに燃焼炉へ導入し再活性化して、ガス化炉へ戻される。
これらの流動層ガス化炉と流動層燃焼炉を有する循環流動層ガス化反応炉においては、それぞれの炉から、ガス化ガスと燃焼ガスを別々に取り出すことができ、不活性ガスを含まない高カロリーなガスを製造することができる。
Conventionally, technologies have been developed to make effective use of organic resources by using solid fuels of hydrocarbon resources such as coal, biomass, garbage, and sewage sludge, and using the generated gas as a combustible gas and heat source. Yes.
As one of the gasifiers, the reactor is separated into a fluidized bed gasification furnace and a fluidized bed combustion furnace, a solid fuel of hydrocarbon resources is supplied to the fluidized bed gasification furnace, gasified with steam, and generated There is known one using a circulating fluidized bed in which the unburned portion (char) and the fluidized medium are burned in a fluidized bed combustion furnace and the heated fluidized medium is returned to the gasification furnace (Patent Document 1).
The gasification reaction furnace is an external circulation system, but there is an internal circulation system such as the reaction furnace described in Patent Document 2, in which particulate slag is used as a fluid medium. As a result, the tar contained in the gas generated in the gasification furnace is reformed to generate a combustible gas with a small amount of tar, and the deteriorated slag is introduced into the combustion furnace together with unburned char and reactivated. , Returned to the gasifier.
In the circulating fluidized bed gasification reactor having these fluidized bed gasification furnace and fluidized bed combustion furnace, the gasification gas and the combustion gas can be separately taken out from the respective furnaces, and the inert gas is not included. Caloric gas can be produced.

さらに、該ガス化反応炉の流動層ガス化炉について、種々の提案がなされている。
例えば、特許文献3では、流動層ガス化炉を、有機物原料が供給されて熱分解反応によりタールを含む熱分解ガスを生成する室と、熱分解反応によって生成した熱分解残渣を導入してガス化ガスを生成する室とに分けることにより、良質のガス化ガスの生成を高めるようにしたガス化装置が提案されている。
また、特許文献4は、本発明者らの提案によるものであるが、流動層ガス化炉の前段にアルカリ吸収炉を独立して設けることにより、アルカリ吸収炉内でタールをチャーに吸着させてチャーのガス化効率を向上させることができ、かつ、チャーのガス化の阻害効果も避けることができるものである。
さらに、特許文献5では、流動層ガス化炉を複数のガス化装置により構成し、生成したガスを別個に取り出すようにしたガス化装置が提案されている。
Furthermore, various proposals have been made for the fluidized bed gasification furnace of the gasification reaction furnace.
For example, in Patent Document 3, a fluidized bed gasification furnace is configured to introduce a gas into which a raw material is supplied and a pyrolysis gas containing tar is generated by a pyrolysis reaction, and a pyrolysis residue generated by the pyrolysis reaction is introduced. A gasifier has been proposed in which generation of high-quality gasification gas is enhanced by dividing it into a chamber for generating gasification gas.
Further, Patent Document 4 is based on the proposal of the present inventors, but by providing an alkali absorption furnace in front of the fluidized bed gasification furnace, tar is adsorbed on the char in the alkali absorption furnace. The gasification efficiency of char can be improved, and the effect of inhibiting the gasification of char can be avoided.
Furthermore, Patent Document 5 proposes a gasification apparatus in which a fluidized bed gasification furnace is constituted by a plurality of gasification apparatuses, and the generated gas is taken out separately.

特開2005−41959号公報JP 2005-41959 A 特開2005−68297号公報JP 2005-68297 A 特開2008−156552号公報JP 2008-156552 A 特開2008−303377号公報JP 2008-303377 A 特開2009−40887号公報JP 2009-40887 A 特願2009−37625Japanese Patent Application No. 2009-37625

本発明者らは、前記の循環流動層ガス化反応炉を用いたガス化方法及び装置について更に検討したところ、流動媒体として、アルミナ、石灰石、ゼオライトなどのタール吸着性物質を投入すると、タールを効率良く吸着できるという利点があるが、特に、タール吸着性物質として、多孔質アルミナなどの多孔質粒子を用いた場合、よりタールを効率良く吸着できるものの、流動媒体として従来使用されている硅砂よりも極めて高価であるため、その使用量を可能な限り低減する必要がある。
また、炉内で多孔質粒子と灰粒子が混在するために、一定間隔で炉下部から灰を抜き出す際に、多孔質粒子も一緒に抜き出されてしまう。
さらに、炉後段のタール処理にかかるコスト(改質炉、スクラバなど)も削減する必要がある。
The present inventors further examined the gasification method and apparatus using the circulating fluidized bed gasification reactor, and when a tar adsorbing substance such as alumina, limestone, or zeolite was added as a fluid medium, the tar was Although there is an advantage that it can be adsorbed efficiently, in particular, when porous particles such as porous alumina are used as the tar adsorbing substance, although tar can be adsorbed more efficiently, it is more than the conventional sand used as a fluid medium. However, it is necessary to reduce the amount of use as much as possible.
Further, since porous particles and ash particles coexist in the furnace, the porous particles are also extracted together when the ash is extracted from the lower part of the furnace at regular intervals.
Furthermore, it is necessary to reduce the cost (reforming furnace, scrubber, etc.) required for tar treatment at the latter stage of the furnace.

本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、上段にタール吸収炉を備えた二段炉構造の燃料熱分解炉を、ガス化炉の前段に設けるとともに、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体と、上段のタール吸収炉から取り出されるタールが吸着した流動媒体とを、それぞれ独立して循環させることにより解決しうるという知見を得、特許出願している(特許文献6)。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have provided a fuel pyrolysis furnace having a two-stage furnace structure with a tar absorption furnace in the upper stage in the front stage of the gasification furnace and a lower stage fuel. Obtained the knowledge that the fluid medium containing unburned char taken out from the pyrolysis furnace and the fluid medium adsorbed with the tar taken out from the upper tar absorption furnace can be solved by independently circulating the patent. An application has been filed (Patent Document 6).

しかしながら、上記提案の循環流動層ガス化反応炉においては、トータルの生成ガスの量が多くなるという効果があるものの、具体例では、下段の燃料熱分解炉から取り出される未燃焼チャーを含有する流動媒体を下段のチャーガス化炉へ、上段のタール吸収炉から取り出されるタールが吸着した流動媒体を上段のコークガス化炉へ供給されるが、ガス化剤をガス化炉下段の一方向から供給するようにしているため、該ガス化炉の上段炉では、下段炉で先にガス化反応により生成したガスと、未反応のガス化剤とが混在しており、上段炉での反応率が低下する可能性がある。   However, although the proposed circulating fluidized bed gasification reactor has the effect of increasing the total amount of product gas, in a specific example, a fluid containing unburned char taken out from the lower fuel pyrolysis furnace is used. The medium is supplied to the lower char gasification furnace, and the fluid medium adsorbed with tar taken from the upper tar absorption furnace is supplied to the upper coke gasification furnace, but the gasifying agent is supplied from one direction of the lower gasification furnace. Therefore, in the upper furnace of the gasification furnace, the gas previously generated by the gasification reaction in the lower furnace and the unreacted gasifying agent are mixed, and the reaction rate in the upper furnace decreases. there is a possibility.

本発明は、こうした課題を解決して、タールの吸着効率の良好な多孔質微粒子が灰粒子と混在することなく、その使用量を可能な限り低減したうえ、さらに、簡易な手法でガス化炉におけるガス化効率を向上しうる循環流動層ガス化反応炉を提供することを目的とするものである。   The present invention solves these problems and reduces the amount of porous fine particles having good tar adsorption efficiency mixed with ash particles as much as possible, and further, a gasification furnace by a simple method. An object of the present invention is to provide a circulating fluidized bed gasification reactor capable of improving the gasification efficiency in the above.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、先の特許出願の循環流動層ガス化反応炉において、チャーガス化炉及びコークガス化炉の各々に、別個のガス化剤導入手段を設けることにより、ガス化炉におけるガス化効率を向上しうるという知見を得た。   As a result of intensive studies to achieve the above object, the present inventors have introduced a separate gasifying agent into each of the char gasification furnace and the coke gasification furnace in the circulating fluidized bed gasification reactor of the previous patent application. The knowledge that the gasification efficiency in a gasification furnace can be improved by providing the means was obtained.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]熱分解炉、流動層ガス化炉、及び流動層燃焼炉がこの順に設けられ、流動媒体が導入された前記流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の前記流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が前記熱分解炉、前記流動層ガス化炉及び前記流動層燃焼炉を循環するように構成された循環流動層ガス化反応炉であって、
前記熱分解炉は、下段の燃料熱分解炉及びその上段に備えられたタール吸収炉からなる二段炉構造であり、
前記流動層ガス化炉は、下段のチャーガス化炉及びその上段に備えられたコークガス化炉からなる二段炉構造であり、
前記流動層燃焼炉は、それぞれ独立したチャー残渣燃焼炉及びコーク残渣燃焼炉からなり、
前記燃料熱分解炉の後段には、前記チャーガス化炉及び前記チャー残渣燃焼炉をこの順に連結し、前記タール吸収炉の後段には、前記コークガス化炉及び前記コーク残渣燃焼炉をこの順に連結するとともに、
前記チャーガス化炉及び前記コークガス化炉の各々に別個のガス化剤導入手段を設けたことを特徴とする循環流動層ガス化反応炉。
[2]前記上段のコークガス化炉の容積を、下段のチャーガス化炉の容積よりも大きくしたことを特徴とする上記[]の循環流動層ガス化反応炉。
[3]前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動性媒体に吸着させるようにしたことを特徴とする上記[1]又は[2]の循環流動層ガス化反応炉。
[4]前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする上記[1]〜[3]の循環流動層ガス化反応炉。
[5]前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする上記[1]〜〔4〕の循環流動層ガス化反応炉。
[6]前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする上記〔1〕〜〔5〕の循環流動層ガス化反応炉。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] the pyrolysis furnace, fluidized bed gasification furnace, and fluidized bed combustion furnace is provided in this order, starting material was gasified in the fluidized medium is introduced the fluidized bed gasification furnace, the char produced during the gasification and introducing a fluid medium to the fluidized bed combustion furnace in the subsequent stage, circulating along with the combustion of unburned, reheated fluid medium is the pyrolysis furnace, the fluidized bed gasification furnace and the fluidized bed combustion furnace A circulating fluidized bed gasification reactor configured to:
The pyrolysis furnace has a two-stage furnace structure comprising a lower fuel pyrolysis furnace and a tar absorption furnace provided in the upper stage,
The fluidized bed gasification furnace has a two-stage furnace structure consisting of a lower char gasification furnace and a coke gasification furnace provided in the upper stage,
The fluidized bed combustion furnace includes an independent char residue combustion furnace and a coke residue combustion furnace,
The subsequent stage of the fuel pyrolysis furnace, connecting the Chagasu furnace and the char remaining渣燃calciner in this order, to the subsequent stage of the tar absorption furnace, connecting the Kokugasu furnace and the coke remaining渣燃calciner in this order With
A circulating fluidized bed gasification reactor characterized in that a separate gasifying agent introduction means is provided in each of the char gasification furnace and the coke gasification furnace.
[2] The circulating fluidized bed gasification reactor according to [ 1 ], wherein the volume of the upper coke gasification furnace is larger than the volume of the lower char gasification furnace.
[3] The above-mentioned upper tar absorption furnace uses a tar adsorbing substance as a fluid medium, and adsorbs the tar generated in the lower fuel pyrolysis furnace to the fluid medium. The circulating fluidized bed gasification reactor according to [1] or [2].
[4] The circulating fluidized bed gasification reactor according to any one of [1] to [3] above, wherein the lower fuel pyrolysis furnace uses dredged sand as a fluidized medium.
[5] Pyrolysis gas generated by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas generated by char and / or coke gasification in the fluidized bed gasification furnace, and The circulating fluidized bed gasification reaction according to any one of the above [1] to [4], comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a fluidized bed combustion furnace Furnace.
[6] The circulating fluidized bed gasification reactor according to [1] to [5], wherein the fuel pyrolysis furnace has an alkali absorption function.

本発明においては、熱分解炉を燃料熱分解炉とタール吸収炉に分離し、ガス化炉をチャーガス化炉とコークガス化炉に分離するとともに、チャーガス化炉及びコークガス化炉の各々に、別個のガス化剤導入手段を設けたので、チャーをガス化させるために必要なガス化剤の量を最小限にできる。また、ガス化炉を上下の二段炉構造とした場合でも、上段炉での反応率が低下することがない。さらに、タール吸収炉の流動媒体だけを、多孔質アルミナなどの多孔質粒子とし、その使用量を最小限にすることができ、多孔質粒子と灰粒子とが混在しないようにすることができる。   In the present invention, the pyrolysis furnace is separated into a fuel pyrolysis furnace and a tar absorption furnace, the gasification furnace is separated into a char gasification furnace and a coke gasification furnace, and each of the char gasification furnace and the coke gasification furnace is separately provided. Since the gasifying agent introduction means is provided, the amount of gasifying agent necessary for gasifying the char can be minimized. Moreover, even when the gasification furnace has an upper and lower two-stage furnace structure, the reaction rate in the upper stage furnace does not decrease. Furthermore, only the fluid medium of the tar absorption furnace can be made of porous particles such as porous alumina, so that the amount of use can be minimized and the porous particles and ash particles can be prevented from being mixed.

本発明のガス化装置の第1の実施の形態を模式的に示す図。The figure which shows typically 1st Embodiment of the gasification apparatus of this invention. 本発明のガス化装置の別の実施の形態を模式的に示す図。The figure which shows typically another embodiment of the gasification apparatus of this invention.

以下、本発明の実施の形態について、図面に基づいて説明するが、本発明はこの実施の形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to these embodiments.

図1は、本発明の循環流動層ガス化反応炉の第1の実施の形態を模式的に示す図であって、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構成の燃料熱分解炉を備え、該燃料熱分解炉の下段の後段には、チャーガス化炉及びチャー残渣燃焼炉をこの順に連結させ、前記上段のタール吸収炉の後段には、コークガス化炉及びコーク残渣燃焼炉をこの順に連結させたものである。そして、前記チャーガス化炉及び前記コークガス化炉は、それぞれを下段及び上段に備えた二段型の流動層ガス化炉とされており、チャーガス化炉及びコークガス化炉には、別個にガス化剤を供給する手段を設けてある。
また、チャー残渣燃焼炉及びコーク残渣燃焼炉は、それぞれ独立した流動層燃焼炉で構成されている。
なお、本発明において、前記の燃料熱分解炉を、前述の特許文献3に記載されたようなアルカリ吸収機能を有する炉とし、チャーに揮発ガス中のアルカリを積極的に吸着させてガス化触媒として利用し、チャーのガス化効率を向上させることができることはいうまでもない。
FIG. 1 is a diagram schematically showing a first embodiment of a circulating fluidized bed gasification reactor according to the present invention, which is a fuel having a two-stage furnace configuration having a tar absorption furnace and a fuel pyrolysis furnace at the top and bottom. A pyrolysis furnace is provided, and a char gasification furnace and a char residue combustion furnace are connected in this order to the lower stage of the fuel pyrolysis furnace, and a coke gasification furnace and a coke residue combustion are connected to the latter stage of the upper tar absorption furnace. The furnaces are connected in this order. The char gasification furnace and the coke gasification furnace are two-stage fluidized bed gasification furnaces each provided in a lower stage and an upper stage, and the char gasification furnace and the coke gasification furnace are separately provided with gasifying agents. Means for supplying are provided.
Moreover, the char residue combustion furnace and the coke residue combustion furnace are each constituted by independent fluidized bed combustion furnaces.
In the present invention, the fuel pyrolysis furnace is a furnace having an alkali absorption function as described in Patent Document 3, and the gasification catalyst is prepared by actively adsorbing the alkali in the volatile gas to the char. Needless to say, the gasification efficiency of char can be improved.

さらに、チャー残渣燃焼炉の後段には、サイクロンを設け、その下段のダウンカマーから、前記チャー残渣燃焼炉からの高温流動媒体を、前記燃料熱分解炉に戻すようにされている。同様に、コーク残渣燃焼炉の後段にも、サイクロンを設け、その下段のダウンカマーから、コーク残渣燃焼炉からの高温流動媒体を前記タール吸収炉に戻すようにされている。   Further, a cyclone is provided at the rear stage of the char residue combustion furnace, and the high-temperature fluid medium from the char residue combustion furnace is returned to the fuel pyrolysis furnace from the downcomer at the lower stage. Similarly, a cyclone is also provided at the rear stage of the coke residue combustion furnace, and the high-temperature fluid medium from the coke residue combustion furnace is returned to the tar absorption furnace from the downcomer at the lower stage.

多孔質アルミナなどの多孔質粒子は、原料から生成するタールを効率よく吸収するために好ましく用いられるが、高価であるという欠点を有している。
本発明の循環流動層ガス化反応炉においては、流動層ガス化炉の前段に、タール吸収炉及び燃料熱分解炉を上下に備えた二段炉構造の熱分解炉を備えているので、上段のタール吸収炉流動媒体に、多孔質粒子等のタール吸着効率の良好なものを使用し、その下段の燃料熱分解炉に導入する流動媒体には、一般的に使用されている安価な硅砂を主成分とするものを使用することにより、高価な流動媒体の使用量を最小限にすることが可能となる。
また、チャー残渣燃焼炉とコーク残渣燃焼炉とが分離しているので、上段のタール吸収炉を循環する多孔質微粒子などの流動媒体は、チャー残渣燃焼炉で発生する灰粒子と混在しないようにできる。
また、炉内でタール処理ができるので、従来、炉後段でのタール処理にかかっていたコストを削減できる。
Porous particles such as porous alumina are preferably used in order to efficiently absorb tar generated from the raw material, but have the disadvantage of being expensive.
In the circulating fluidized bed gasification reactor according to the present invention, a thermal decomposition furnace having a two-stage furnace structure having a tar absorption furnace and a fuel pyrolysis furnace at the top and bottom is provided in the upstream of the fluidized bed gasification furnace. The tar absorption furnace fluid medium used in the above is a tar medium with good tar adsorption efficiency, such as porous particles. The fluid medium introduced into the fuel pyrolysis furnace at the lower stage is made of generally inexpensive inexpensive sand. By using the main component, it is possible to minimize the amount of expensive fluid medium used.
In addition, since the char residue combustion furnace and the coke residue combustion furnace are separated, fluid media such as porous fine particles circulating in the upper tar absorption furnace should not be mixed with the ash particles generated in the char residue combustion furnace. it can.
Further, since tar treatment can be performed in the furnace, the cost conventionally required for the tar treatment at the latter stage of the furnace can be reduced.

以下、上段のタール吸収炉の流動媒体に、多孔質アルミナのような多孔質粒子を使用し、その下段の燃料分解炉の流動媒体に硅砂を使用した例を用いて、原料のガス化について具体的に説明する。
バイオマス、ごみ、下水汚泥、及び石炭などの炭化水素系固体燃料を、下段の燃料熱分解炉へ供給するとともに、下部より、例えば、生成した燃焼ガスの一部を循環させたCOガス、或いはNやArのような不活性ガス等を、流動ガスとして導入し、燃料分解炉に供給された前記炭化水素系固体燃料を熱分解させる。
生成した熱分解ガスと同時に生成するタールが上段のタール吸収炉へ流れる。そのタールは、タール吸収炉中の前記多孔質粒子に吸着され、一部はガスに改質される。タールを含まない熱分解ガスは、上部に設けられた熱分解ガスの取出し手段から取り出すことができる。
取り出された熱分解ガスは、可燃ガスの一種であって、燃料電池やガスエンジンによる発電、液体燃料などに使用される。
なお、本発明においてガス化の原料としては、前述のような炭化水素系固体燃料に限られず、タールの発生し易い液体燃料を用いることも可能である。
Hereinafter, the gasification of the raw material will be described using an example in which porous particles such as porous alumina are used for the fluid medium of the upper tar absorption furnace and dredged sand is used for the fluid medium of the lower fuel cracking furnace. I will explain it.
A hydrocarbon-based solid fuel such as biomass, garbage, sewage sludge, and coal is supplied to the lower fuel pyrolysis furnace and, for example, CO 2 gas in which a part of the generated combustion gas is circulated from the lower part, or An inert gas such as N 2 or Ar is introduced as a flowing gas, and the hydrocarbon solid fuel supplied to the fuel cracking furnace is pyrolyzed.
The tar generated simultaneously with the generated pyrolysis gas flows to the upper tar absorption furnace. The tar is adsorbed by the porous particles in the tar absorption furnace, and a part thereof is reformed to gas. The pyrolysis gas containing no tar can be taken out from the pyrolysis gas take-out means provided at the top.
The extracted pyrolysis gas is a kind of combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, and the like.
In the present invention, the raw material for gasification is not limited to the hydrocarbon-based solid fuel as described above, and a liquid fuel that easily generates tar can also be used.

下段の燃料熱分解炉では、熱分解後のチャー及び硅砂は、次のチャーガス化炉へ送られる。
一方、上段のタール吸収炉でタールを吸着した多孔質粒子は、チャーガス化炉上段のコークガス化炉へ送られる。
In the lower fuel pyrolysis furnace, the pyrolyzed char and cinnabar are sent to the next char gasification furnace.
On the other hand, the porous particles having adsorbed tar in the upper tar absorption furnace are sent to the upper coke gasification furnace.

チャーガス化炉及びコークガス化炉は、流動層とされており、それぞれの炉内に導入されたチャー及びコークは、それぞれの炉内で、下部より導入された、ガス化剤とのガス化反応によりガス化される。ガス化剤としては、水蒸気或いは酸素或いは空気などが用いられる。ガス化剤と反応して生成したガス化ガスは、コークガス化炉上部から取り出される。
取り出されたガス化ガスは、可燃ガスであり、燃料電池やガスエンジンによる発電、液体燃料などに利用される。
The char gasification furnace and the coke gasification furnace are fluidized beds, and the char and coke introduced into each furnace are gasified by a gasification reaction with a gasifying agent introduced from the lower part in each furnace. Gasified. As the gasifying agent, water vapor, oxygen, air, or the like is used. The gasification gas produced by reacting with the gasifying agent is taken out from the upper part of the coke gasification furnace.
The extracted gasification gas is a combustible gas, and is used for power generation by a fuel cell or a gas engine, liquid fuel, or the like.

また、図1に示す装置では、前述のタール吸収炉上部から取り出された熱分解ガスと、コークガス化炉上部から取り出されたガス化ガスを別個に取り出しているが、熱分解ガスとガス化ガスを、それぞれの炉出口以後で合流させてから利用してもよく、熱源として用いる際には、合流前或いは後に、熱交換器をつけることもできる。   In the apparatus shown in FIG. 1, the pyrolysis gas taken out from the upper part of the tar absorption furnace and the gasification gas taken out from the upper part of the coke gasification furnace are taken out separately. May be used after being merged after each furnace outlet, and when used as a heat source, a heat exchanger may be attached before or after the merge.

チャーガス化炉内の残渣チャー及びコークガス化炉内の残渣コークは、それぞれ、別個に設けられた、次の残渣チャー燃焼炉及び残渣コーク燃料炉に導入される。
残渣チャー燃焼炉及び残渣コーク燃焼炉は、いずれも流動層とされており、残渣チャー及び残渣コークが完全燃焼可能な滞留時間を確保する。それぞれの燃焼炉では、導入された残渣チャー及び残渣コークを、それぞれの燃焼炉の下部より導入された空気或いは酸素と共に燃焼させ、サイクロンにより燃焼ガスをそれぞれの炉の上部に設けられた取出手段から取り出される。
それぞれの燃焼炉から取り出された燃焼ガスは、主に熱源として利用されるものであり、前述したとおり、その一部を燃料熱分解炉に再循環させることも可能である。また、前記ガス化炉又はそれぞれの燃焼炉に導入する空気や蒸気の予熱源としても利用できる。
The residue char in the char gasification furnace and the residue coke in the coke gasification furnace are respectively introduced into the next residue char combustion furnace and residue coke fuel furnace provided separately.
Both the residue char combustion furnace and the residue coke combustion furnace are fluidized beds, and ensure a residence time during which the residue char and residue coke can be completely combusted. In each combustion furnace, the introduced residue char and residue coke are burned together with air or oxygen introduced from the lower part of each combustion furnace, and the combustion gas is extracted from the extraction means provided in the upper part of each furnace by a cyclone. It is taken out.
The combustion gas taken out from each combustion furnace is mainly used as a heat source, and as described above, a part of the combustion gas can be recycled to the fuel pyrolysis furnace. It can also be used as a preheating source for air or steam introduced into the gasification furnace or each combustion furnace.

一方、チャー残渣燃焼炉で再加熱された硅砂、及びコーク燃焼炉で再加熱された多孔質粒子は、それぞれ、燃料熱分解炉及びタール吸収炉へ戻される。
なお、ガス化炉内で生じる反応(特にシフト反応)には、チャーの濃度が密接に関係しており、熱バランスが成立する範囲内であれば、未燃チャーの一部を再循環させ、ガス化炉内のチャー濃度を反応に適した濃度に制御することで、例えば、ガス化の際のH/CO比の制御が可能となり、液体燃料への利用が有利となる。
On the other hand, the silica sand reheated in the char residue combustion furnace and the porous particles reheated in the coke combustion furnace are returned to the fuel pyrolysis furnace and the tar absorption furnace, respectively.
Note that the char concentration is closely related to the reaction (especially shift reaction) occurring in the gasification furnace, and if the heat balance is within the range, a part of the unburned char is recirculated, By controlling the char concentration in the gasification furnace to a concentration suitable for the reaction, for example, the H 2 / CO ratio at the time of gasification can be controlled, and the use for liquid fuel is advantageous.

燃料熱分解炉とチャーガス化炉、チャーガス化炉と残渣チャー燃焼炉、タール吸収炉とコークガス化炉、或いは、コークガス化炉と残渣コーク燃焼炉のそれぞれを連結する連通路は、ループシール、L型バルブ、移動層など、マテリアルシールできれば、いずれの型でも良い。   A fuel pyrolysis furnace and a char gasification furnace, a char gasification furnace and a residue char combustion furnace, a tar absorption furnace and a coke gasification furnace, or a communication path connecting each of the coke gasification furnace and the residue coke combustion furnace is a loop seal, L-shaped Any type of material can be used as long as the material can be sealed, such as a valve or moving layer.

以上のとおり、図1に示す循環流動層ガス化反応炉においては、下段の燃料熱分解炉に導入される流動媒体及び固体燃料の流れは、燃料熱分解炉→連通路→チャーガス化炉→連通路→チャー残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→燃料熱分解炉となり、一方、上段のタール吸収炉に導入される流動媒体の流れは、タール吸収炉→連通路→コークガス化炉→連通路→コーク残渣燃焼炉→サイクロン(図示せず)→ダウンカマー(図示せず)→タール吸収炉となる。   As described above, in the circulating fluidized bed gasification reactor shown in FIG. 1, the flow of the fluid medium and the solid fuel introduced into the lower fuel pyrolysis furnace is as follows: fuel pyrolysis furnace → communication passage → char gasification furnace → communication Passage → Char residue combustion furnace → Cyclone (not shown) → Downcomer (not shown) → Fuel pyrolysis furnace On the other hand, the flow of the fluid medium introduced into the upper tar absorption furnace is as follows. Path → Coke gasification furnace → Communication path → Coke residue combustion furnace → Cyclone (not shown) → Downcomer (not shown) → Tar absorption furnace.

図1に示した装置によれば、熱分解炉の上下が、燃料熱分解炉とタール吸収炉の二段に分離されているので、多孔質粒子等のタール吸着効率が良好な流動媒体、例えば、多孔質アルミナを、上段のタール吸収炉にのみに供給することにより、その使用量を最小限にすることができるという利点がある。さらに、燃料熱分解炉、チャーガス化炉及び残渣チャー燃焼炉とからなる系と、タール吸収炉、コークガス化炉及び残渣コーク燃焼炉からなる系とで、それぞれ別々に流動媒体を循環させることができるので、多孔質粒子などのタール吸着効率が良好な流動媒体と灰粒子とが混在しないようにすることができる。
また、図1に示した循環流動層ガス化反応炉によれば、下段のチャーガス化炉及び上段のコークガス化炉のそれぞれに、水蒸気又は酸素などのガス化剤を別個に供給するので、チャーをガス化させるために必要なガス化剤の量を最小限にできる。また、上段のコークガス化炉での反応率が低下することがない。
According to the apparatus shown in FIG. 1, since the upper and lower sides of the pyrolysis furnace are separated into two stages, a fuel pyrolysis furnace and a tar absorption furnace, a fluid medium having good tar adsorption efficiency such as porous particles, for example, By supplying the porous alumina only to the upper tar absorption furnace, there is an advantage that the amount of use can be minimized. Furthermore, the fluid medium can be separately circulated in a system comprising a fuel pyrolysis furnace, a char gasification furnace and a residue char combustion furnace, and a system comprising a tar absorption furnace, a coke gasification furnace and a residue coke combustion furnace. Therefore, it is possible to prevent the fluid medium having good tar adsorption efficiency such as porous particles from mixing with the ash particles.
In addition, according to the circulating fluidized bed gasification reactor shown in FIG. 1, a gasifying agent such as water vapor or oxygen is separately supplied to each of the lower char gasification furnace and the upper coke gasification furnace. The amount of gasifying agent necessary for gasification can be minimized. Further, the reaction rate in the upper coke gasification furnace does not decrease.

図2は、本発明の循環流動層ガス化反応炉の第2の実施の形態を模式的に示す図である。
図1に示す装置では、下段のチャーガス化炉の容積と上段のコークガス化炉の容積をほぼ同じにしているが、図2に示す装置では、上段のコークガス化炉の容積を、下段のチャーガス化炉の容積よりも大きく構成されている。この点以外は、図1に示す循環流動層ガス化反応炉と同じである。
前述のとおり、本発明の装置においては、上段のコークガス化炉にも水蒸気又は酸素などのガス化剤を直接供給するので、粒子の流動が下段よりも激しくなるが、図2に示すように、コークガス化炉の容積を大きくすることにより、多孔質粒子が炉外へ飛散することを防止することができる。
FIG. 2 is a diagram schematically showing a second embodiment of the circulating fluidized bed gasification reactor of the present invention.
In the apparatus shown in FIG. 1, the volume of the lower char gasification furnace and the volume of the upper coke gasification furnace are substantially the same, but in the apparatus shown in FIG. 2, the volume of the upper coke gasification furnace is changed to the lower char gasification furnace. It is configured to be larger than the furnace volume. Except this point, it is the same as the circulating fluidized bed gasification reactor shown in FIG.
As described above, in the apparatus of the present invention, since the gasifying agent such as water vapor or oxygen is directly supplied to the upper coke gasification furnace, the flow of particles becomes more intense than the lower one, but as shown in FIG. By increasing the volume of the coke gasification furnace, it is possible to prevent the porous particles from being scattered outside the furnace.

図1及び図2は、いずれも単なる概念図であって、各炉は、これらの図に示したような完全分離型だけでなく、例えば、内側を熱分解炉、ガス化炉、外側を燃焼炉とするなど、こられ炉の一部又は全体を一体型にすることも可能である。   1 and 2 are merely conceptual diagrams, and each furnace is not only a completely separated type as shown in these figures. For example, the inside is a pyrolysis furnace, a gasification furnace, and the outside is burned. It is also possible to integrate a part or the whole of the smelting furnace such as a furnace.

本発明の循環流動層ガス化反応炉におけるシステムは、バイオマス、ごみ、下水汚泥などの未利用炭化水素資源の利用に適用する他に、例えば、石炭やバイオマスとのハイブリッドガス化(共ガス化)、或いは、固体燃料と液体燃料とのハイブリッドガス化にも適用することができる。   The system in the circulating fluidized bed gasification reactor of the present invention is applied to the utilization of unused hydrocarbon resources such as biomass, garbage, sewage sludge, and, for example, hybrid gasification (cogasification) with coal and biomass. Alternatively, it can also be applied to hybrid gasification of solid fuel and liquid fuel.

Claims (6)

熱分解炉、流動層ガス化炉、及び流動層燃焼炉がこの順に設けられ、流動媒体が導入された前記流動層ガス化炉内で原料をガス化させ、ガス化時に生成したチャー及び流動媒体を後段の前記流動層燃焼炉に導入して、未燃分を燃焼させるとともに、再加熱された流動媒体が前記熱分解炉、前記流動層ガス化炉及び前記流動層燃焼炉を循環するように構成された循環流動層ガス化反応炉であって、
前記熱分解炉は、下段の燃料熱分解炉及びその上段に備えられたタール吸収炉からなる二段炉構造であり、
前記流動層ガス化炉は、下段のチャーガス化炉及びその上段に備えられたコークガス化炉からなる二段炉構造であり、
前記流動層燃焼炉は、それぞれ独立したチャー残渣燃焼炉及びコーク残渣燃焼炉からなり、
前記燃料熱分解炉の後段には、前記チャーガス化炉及び前記チャー残渣燃焼炉をこの順に連結し、前記タール吸収炉の後段には、前記コークガス化炉及び前記コーク残渣燃焼炉をこの順に連結するとともに、
前記チャーガス化炉及び前記コークガス化炉の各々に別個のガス化剤導入手段を設けたことを特徴とする循環流動層ガス化反応炉。
Pyrolysis furnace, fluidized bed gasification furnace, and fluidized bed combustion furnace is provided in this order, the fluidized medium feed was gasified is introduced the fluidized bed gasification furnace, the char produced during the gasification and fluidized medium the introduced into the fluidized bed combustion furnace in the subsequent stage, along with the combustion of unburned, reheated fluid medium is the pyrolysis furnace, so as to circulate the fluidized bed gasification furnace and the fluidized bed combustion furnace A configured circulating fluidized bed gasification reactor,
The pyrolysis furnace has a two-stage furnace structure comprising a lower fuel pyrolysis furnace and a tar absorption furnace provided in the upper stage,
The fluidized bed gasification furnace has a two-stage furnace structure consisting of a lower char gasification furnace and a coke gasification furnace provided in the upper stage,
The fluidized bed combustion furnace includes an independent char residue combustion furnace and a coke residue combustion furnace,
The subsequent stage of the fuel pyrolysis furnace, connecting the Chagasu furnace and the char remaining渣燃calciner in this order, to the subsequent stage of the tar absorption furnace, connecting the Kokugasu furnace and the coke remaining渣燃calciner in this order With
A circulating fluidized bed gasification reactor characterized in that a separate gasifying agent introduction means is provided in each of the char gasification furnace and the coke gasification furnace.
前記上段のコークガス化炉の容積を、下段のチャーガス化炉の容積よりも大きくしたことを特徴とする請求項に記載の循環流動層ガス化反応炉。 The circulating fluidized bed gasification reactor according to claim 1 , wherein the volume of the upper coke gasification furnace is larger than the volume of the lower char gasification furnace. 前記上段のタール吸収炉には、流動媒体としてタール吸着性物質を使用し、下段の燃料熱分解炉において生成したタールを該流動性媒体に吸着させるようにしたことを特徴とする請求項1又は2に記載の循環流動層ガス化反応炉。   The tar absorbent material is used as the fluid medium in the upper tar absorption furnace, and the tar generated in the lower fuel pyrolysis furnace is adsorbed to the fluid medium. 2. The circulating fluidized bed gasification reactor according to 2. 前記下段の燃料熱分解炉には、流動媒体として硅砂を使用することを特徴とする請求項1〜3のいずれか1項に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to any one of claims 1 to 3, wherein the lower fuel pyrolysis furnace uses dredged sand as a fluidized medium. 前記燃料熱分解炉において揮発分の熱分解及びタールの改質により生成する熱分解ガス、前記流動層ガス化炉においてチャー及び/又はコークのガス化により生成するガス化ガス、及び前記流動層燃焼炉においてチャー残渣及び/又はコーク残渣の燃焼により生成する燃焼ガスを、それぞれ独立して取り出す手段を備えたことを特徴とする請求項1〜4のいずれか1項に記載の循環流動層ガス化反応炉。   Pyrolysis gas produced by pyrolysis of volatile matter and tar reforming in the fuel pyrolysis furnace, gasification gas produced by gasification of char and / or coke in the fluidized bed gasification furnace, and fluidized bed combustion The circulating fluidized bed gasification according to any one of claims 1 to 4, further comprising means for independently taking out combustion gases generated by combustion of char residue and / or coke residue in a furnace. Reactor. 前記燃料熱分解炉が、アルカリ吸収機能を有することを特徴とする請求項1〜5のいずれか1項に記載の循環流動層ガス化反応炉。   The circulating fluidized bed gasification reactor according to any one of claims 1 to 5, wherein the fuel pyrolysis furnace has an alkali absorption function.
JP2009175252A 2009-07-28 2009-07-28 Circulating fluidized bed gasifier structure Expired - Fee Related JP5483058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175252A JP5483058B2 (en) 2009-07-28 2009-07-28 Circulating fluidized bed gasifier structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175252A JP5483058B2 (en) 2009-07-28 2009-07-28 Circulating fluidized bed gasifier structure

Publications (2)

Publication Number Publication Date
JP2011026491A JP2011026491A (en) 2011-02-10
JP5483058B2 true JP5483058B2 (en) 2014-05-07

Family

ID=43635606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175252A Expired - Fee Related JP5483058B2 (en) 2009-07-28 2009-07-28 Circulating fluidized bed gasifier structure

Country Status (1)

Country Link
JP (1) JP5483058B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483060B2 (en) * 2009-08-07 2014-05-07 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification reactor
CN102191088B (en) * 2011-04-12 2013-06-12 浙江大学 Solid fuel double fluidized bed thermal pyrolysis grade transformation device and method
CN103160330B (en) * 2013-03-22 2014-07-16 唐山雷浩能源技术装备有限公司 System and method for pyrolysis combined gasification of pulverized coal
CN103216843A (en) * 2013-03-29 2013-07-24 合肥德博生物能源科技有限公司 Biomass gasifying burning boiler
JP6187968B2 (en) * 2013-09-09 2017-08-30 国立研究開発法人産業技術総合研究所 Circulating fluidized bed gasifier
CN103992824B (en) * 2014-05-28 2015-10-07 哈尔滨工业大学 The coal pyrolytic gasified staged conversion device and method of cyclone
KR101611486B1 (en) 2014-11-11 2016-04-11 한국에너지기술연구원 Method for fast pyrolysis of biomass using double tube type fluidized bed reactor
CN104830375B (en) * 2015-04-21 2018-02-27 神雾科技集团股份有限公司 A kind of method and apparatus that combustion gas is prepared using rubbish charcoal as raw material
CN113136230A (en) * 2020-01-17 2021-07-20 北京航天石化技术装备工程有限公司 Garbage pyrolysis process system
CN116083129A (en) * 2020-08-26 2023-05-09 中国科学院工程热物理研究所 Staged gasification device and staged gasification method
CN115322812B (en) * 2022-09-13 2023-07-14 河南理工大学 A fixed sludge gasification decoking and ash removal coupled with waste incineration power generation device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609955U (en) * 1983-06-24 1985-01-23 バブコツク日立株式会社 gasifier
JP4479906B2 (en) * 2005-02-03 2010-06-09 株式会社Ihi Fluidized bed gasification gas purification method and purification apparatus
JP4314488B2 (en) * 2005-07-05 2009-08-19 株式会社Ihi Gasification method for solid fuel and gasification apparatus using the method
JP5004093B2 (en) * 2007-08-23 2012-08-22 独立行政法人産業技術総合研究所 Gasification reactor for generating combustible gas
JP5532207B2 (en) * 2009-02-20 2014-06-25 独立行政法人産業技術総合研究所 Circulating fluidized bed gasification reactor

Also Published As

Publication number Publication date
JP2011026491A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5483058B2 (en) Circulating fluidized bed gasifier structure
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
JP4314488B2 (en) Gasification method for solid fuel and gasification apparatus using the method
EP3026098B1 (en) Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam
JP4479906B2 (en) Fluidized bed gasification gas purification method and purification apparatus
CN1961062B (en) Solid-fuel gasification system
US20040244289A1 (en) Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
Moneti et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass
CN101932677A (en) A biomass gasification method and apparatus for production of syngas with a rich hydrogen content
JP5057466B2 (en) Method for generating combustible gas and gasification reactor therefor
JP5630626B2 (en) Organic raw material gasification apparatus and method
JP2011522084A (en) Two-stage high-temperature preheating steam gasifier
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP5483060B2 (en) Circulating fluidized bed gasification reactor
JP2007112873A (en) Gasification fuel gasification method and apparatus
JP5004093B2 (en) Gasification reactor for generating combustible gas
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP5403574B2 (en) Gasification system using activated carbon extracted from a tar absorption tower.
JP2011105892A (en) Circulating fluidized bed gasification reactor enabling to effectively use tar adsorptive substance
JP5344447B2 (en) Gasification system that reuses alkali evaporated in gasification furnace
JP6160997B2 (en) Circulating fluidized bed gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees