JP5477993B2 - Fitting type connecting part and method for manufacturing the same - Google Patents
Fitting type connecting part and method for manufacturing the same Download PDFInfo
- Publication number
- JP5477993B2 JP5477993B2 JP2010073502A JP2010073502A JP5477993B2 JP 5477993 B2 JP5477993 B2 JP 5477993B2 JP 2010073502 A JP2010073502 A JP 2010073502A JP 2010073502 A JP2010073502 A JP 2010073502A JP 5477993 B2 JP5477993 B2 JP 5477993B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- alloy
- layer
- copper plate
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000011247 coating layer Substances 0.000 claims description 323
- 239000010410 layer Substances 0.000 claims description 127
- 239000000956 alloy Substances 0.000 claims description 118
- 229910045601 alloy Inorganic materials 0.000 claims description 117
- 239000010949 copper Substances 0.000 claims description 117
- 229910017755 Cu-Sn Inorganic materials 0.000 claims description 112
- 229910017927 Cu—Sn Inorganic materials 0.000 claims description 112
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 112
- 238000007747 plating Methods 0.000 claims description 99
- 239000000463 material Substances 0.000 claims description 93
- 229910052802 copper Inorganic materials 0.000 claims description 68
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 62
- 238000007788 roughening Methods 0.000 claims description 25
- 238000003780 insertion Methods 0.000 claims description 17
- 230000037431 insertion Effects 0.000 claims description 17
- 238000003825 pressing Methods 0.000 claims description 11
- 230000013011 mating Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 25
- 229910000881 Cu alloy Inorganic materials 0.000 description 16
- 239000002345 surface coating layer Substances 0.000 description 14
- 229910001128 Sn alloy Inorganic materials 0.000 description 8
- 238000004080 punching Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 229910000990 Ni alloy Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052727 yttrium Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910017482 Cu 6 Sn 5 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
本発明は、主として自動車・民生機器等の電気配線に使用されるコネクタ用端子やバスバー等の嵌合型接続部品及びその製造方法に関し、特にオス端子とメス端子の挿抜に際しての摩擦や摩耗の低減が求められる嵌合型接続部品及びその製造方法に関する。 The present invention relates to a fitting-type connecting component such as a connector terminal or a bus bar used mainly for electrical wiring of automobiles / consumer equipment, and a manufacturing method thereof, and particularly, to reduce friction and wear when inserting / removing a male terminal and a female terminal. The present invention relates to a fitting-type connecting component that requires a high-speed and a manufacturing method thereof.
特許文献1には、電気的信頼性が高く(低接触抵抗)、摩擦係数が低く、嵌合型コネクタ用端子として好適な接続部品用導電材料が記載されている。特許文献1の発明では、通常の銅合金板条より表面粗さを大きくした銅合金板条を母材として用い、母材表面にNiめっき層、Cuめっき層及びSnめっき層をこの順に、又はCuめっき層及びSnめっき層をこの順に、あるいはSnめっき層のみを形成し、Snめっき層をリフロー処理して、Cuめっき層とSnめっき層から、あるいは銅合金母材とSnめっき層からCu−Sn合金層を形成するとともに、リフロー処理により平滑化したSnめっき層の間からCu−Sn合金層の一部を表面に露出させる(母材表面に形成された凹凸の凸の部分でCu−Sn合金層の一部が露出する)。 Patent Document 1 describes a conductive material for connection parts that has high electrical reliability (low contact resistance), a low coefficient of friction, and is suitable as a fitting connector terminal. In the invention of Patent Document 1, a copper alloy strip having a surface roughness larger than that of a normal copper alloy strip is used as a base material, and a Ni plating layer, a Cu plating layer, and a Sn plating layer are formed on the base material surface in this order, or Cu plating layer and Sn plating layer are formed in this order or only the Sn plating layer is formed, and the Sn plating layer is reflow-treated to form Cu-- from the Cu plating layer and the Sn plating layer, or from the copper alloy base material and the Sn plating layer. A part of the Cu-Sn alloy layer is exposed to the surface from between the Sn plating layer smoothed by the reflow process while forming the Sn alloy layer (Cu-Sn at the convex and concave portions formed on the surface of the base material) Part of the alloy layer is exposed).
特許文献1においてリフロー処理後に形成された接続部品用導電材料は、表面被覆層として、Cu−Sn合金層及びSn層、又はNi層、Cu−Sn合金層及びSn層をこの順に有し、場合によっては母材表面とCu−Sn合金層の間、又はNi層とCu−Sn合金層の間にCu層が残留している。特許文献1では、最表面にCu−Sn合金層とSn層が形成され(Cu−Sn合金層の表面露出面積率が3〜75%)、平均の厚さが0.1〜3.0μm、Cu含有量が20〜70at%、Sn層の平均の厚さが0.2〜5.0μmと規定され、母材表面について少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、Cu−Sn合金層の表面露出間隔について少なくとも一方向において0.01〜0.5mmが望ましいことが記載されている。 The conductive material for connecting parts formed after the reflow process in Patent Document 1 has a Cu—Sn alloy layer and a Sn layer, or a Ni layer, a Cu—Sn alloy layer, and a Sn layer in this order as a surface coating layer. Depending on the case, the Cu layer remains between the surface of the base material and the Cu—Sn alloy layer or between the Ni layer and the Cu—Sn alloy layer. In Patent Document 1, a Cu—Sn alloy layer and an Sn layer are formed on the outermost surface (the surface exposed area ratio of the Cu—Sn alloy layer is 3 to 75%), and the average thickness is 0.1 to 3.0 μm. The Cu content is specified to be 20 to 70 at%, the average thickness of the Sn layer is defined to be 0.2 to 5.0 μm, and the arithmetic average roughness Ra in at least one direction on the base material surface is 0.15 μm or more. It is described that the arithmetic average roughness Ra of the direction is preferably 4.0 μm or less, and the surface exposure interval of the Cu—Sn alloy layer is preferably 0.01 to 0.5 mm in at least one direction.
特許文献2には、特許文献1の下位概念に相当する接続部品用導電材料及びその製造方法が記載されている。そのめっき層構成及びリフロー処理後の被覆層構成自体は、特許文献1のものと同じである。特許文献2においてリフロー処理後に形成された接続部品用導電材料は、最表面にCu−Sn合金層とSn層が形成され(表面被覆層のうちCu−Sn合金層の表面露出面積率が3〜75%)、Cu−Sn合金層の平均の厚さが0.2〜3.0μm、Cu含有量が20〜70at%、Sn層の平均厚さが0.2〜5.0μm、材料表面の少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが3.0μm以下と規定され、母材表面について少なくとも一方向の算術平均粗さRaが0.3μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、さらにCu−Sn合金層の表面露出間隔について少なくとも一方向において0.01〜0.5mmが望ましいことが記載されている。 Patent Document 2 describes a conductive material for connecting parts corresponding to the subordinate concept of Patent Document 1 and a method for manufacturing the same. The plating layer configuration and the coating layer configuration itself after the reflow treatment are the same as those in Patent Document 1. In the conductive material for connecting parts formed after the reflow process in Patent Document 2, a Cu—Sn alloy layer and an Sn layer are formed on the outermost surface (the surface exposed area ratio of the Cu—Sn alloy layer of the surface coating layer is 3 to 3). 75%), the average thickness of the Cu—Sn alloy layer is 0.2 to 3.0 μm, the Cu content is 20 to 70 at%, the average thickness of the Sn layer is 0.2 to 5.0 μm, The arithmetic average roughness Ra in at least one direction is 0.15 μm or more, the arithmetic average roughness Ra in all directions is defined as 3.0 μm or less, and the arithmetic average roughness Ra in at least one direction on the base material surface is 0.00. It is described that the arithmetic average roughness Ra in all directions is preferably 4.0 μm or less at 3 μm or more, and the surface exposure interval of the Cu—Sn alloy layer is preferably 0.01 to 0.5 mm in at least one direction. Yes.
特許文献3には、基本的に特許文献1,2の技術思想を継承しながら、同時にはんだ付け性を改善した接続部品用導電材料及びその製造方法が記載されている。この発明において、めっき層構成及びリフロー処理後の被覆層構成自体は、特許文献1,2のものと基本的に同じであるが、この発明は特許文献1,2と異なり、Cu−Sn合金層が露出していない場合(最表面にSn層のみ)を含み得る。この出願においてリフロー処理後に形成された接続部品用導電材料は、表面被覆層のうちNi層の平均の厚さが3.0μm以下、Cu−Sn合金層の平均の厚さが0.2〜3.0μm、材料の垂直断面におけるSn層の最小内接円の直径[D1]が0.2μm以下、最大内接円の直径[D2]が1.2〜20μm、材料の最表点とCu−Sn合金層の最表点との高度差[Y]が0.2μm以下と規定され、さらに[D1]が0μmのとき(Cu−Sn合金層が一部露出し、最表面がCu-Sn合金層とSn層からなるとき)、材料表面におけるCu−Sn合金層の最大内接円の直径[D3]が150μm以下又は/及び材料表面におけるSn層の最大内接円直径[D4]が300μm以下が望ましいことが記載されている。 Patent Document 3 describes a conductive material for connecting parts that basically inherits the technical ideas of Patent Documents 1 and 2, and at the same time has improved solderability, and a manufacturing method thereof. In this invention, the plating layer structure and the coating layer structure itself after the reflow treatment are basically the same as those in Patent Documents 1 and 2, but the present invention is different from Patent Documents 1 and 2, and the Cu-Sn alloy layer. May be included (only the Sn layer on the outermost surface). In the conductive material for connecting parts formed after the reflow treatment in this application, the average thickness of the Ni layer of the surface coating layer is 3.0 μm or less, and the average thickness of the Cu—Sn alloy layer is 0.2 to 3 0.0 μm, diameter of the smallest inscribed circle [D1] of the Sn layer in the vertical section of the material is 0.2 μm or less, diameter [D2] of the largest inscribed circle is 1.2 to 20 μm, the outermost point of the material and Cu− When the height difference [Y] from the outermost point of the Sn alloy layer is specified to be 0.2 μm or less, and [D1] is 0 μm (a part of the Cu—Sn alloy layer is exposed and the outermost surface is a Cu—Sn alloy) The maximum inscribed circle diameter [D3] of the Cu—Sn alloy layer on the material surface is 150 μm or less and / or the maximum inscribed circle diameter [D4] of the Sn layer on the material surface is 300 μm or less. Is desirable.
一方、特許文献4〜6には、銅合金板条に打抜き加工を施した後、全体にSnめっきを施す、いわゆる後めっきを施すことにより、打抜き端面にもSnめっき層を形成し、打抜き加工の前に銅合金板条にSnめっきを施す(先めっき)場合に比べて、端子等のはんだ付け性を向上させることが記載されている。 On the other hand, in Patent Documents 4 to 6, after a copper alloy sheet is subjected to punching, Sn plating is performed on the entire surface, so-called post plating is performed to form a Sn plating layer on the punched end face, and punching is performed. It is described that the solderability of terminals and the like is improved as compared with the case where the Sn plating is applied to the copper alloy sheet before (1).
さらに、特許文献7、8には、後めっきが施される端子において、電気的信頼性が高く(低接触抵抗)、嵌合部の摩擦係数が低く、かつはんだ付け部のはんだ付け性を向上させることが記載されている。
特許文献7の発明では、端子成形加工時に嵌合部分のみ表面粗度を大きくし、Niめっき層、Cuめっき層及びSnめっき層をこの順に、又はCuめっき層及びSnめっき層をこの順に、あるいはSnめっき層のみを形成し、Snめっき層をリフロー処理して、Cuめっき層とSnめっき層から、あるいは銅合金母材とSnめっき層からCu−Sn合金層を形成するとともに、リフロー処理により平滑化したSnめっき層の間からCu−Sn合金層の一部を表面に露出させる(母材表面に形成された凹凸の凸の部分でCu−Sn合金層の一部が露出する)。この際、めっき厚は全面同じとする。嵌合部においては、最表面にCu−Sn合金層とSn層が形成され(Cu−Sn合金層が表面に露出)ているため、はんだ濡れ性に問題があるが、嵌合部以外は凹凸が無いためCu−Sn合金層が露出しておらず(最表面にSn層のみ)、はんだ濡れ性は良好である。
Furthermore, Patent Documents 7 and 8 disclose that terminals that are subjected to post plating have high electrical reliability (low contact resistance), a low coefficient of friction at the fitting portion, and improved solderability at the soldering portion. Is described.
In the invention of Patent Document 7, the surface roughness is increased only at the fitting portion at the time of terminal molding, the Ni plating layer, the Cu plating layer, and the Sn plating layer in this order, or the Cu plating layer and the Sn plating layer in this order, or Only the Sn plating layer is formed, the Sn plating layer is reflowed, and the Cu-Sn alloy layer is formed from the Cu plating layer and the Sn plating layer, or from the copper alloy base material and the Sn plating layer, and smoothed by the reflow processing. A part of the Cu—Sn alloy layer is exposed on the surface from between the formed Sn plating layers (a part of the Cu—Sn alloy layer is exposed at the convex and concave portions formed on the surface of the base material). At this time, the entire plating thickness is the same. In the fitting part, since the Cu—Sn alloy layer and the Sn layer are formed on the outermost surface (the Cu—Sn alloy layer is exposed on the surface), there is a problem in solder wettability. Therefore, the Cu—Sn alloy layer is not exposed (only the Sn layer on the outermost surface), and the solder wettability is good.
特許文献8の発明では、表面粗さの大きい銅合金材料に打ち抜き加工を施して端子素材を形成した後、Niめっき層、Cuめっき層及びSnめっき層をこの順に、又はCuめっき層及びSnめっき層をこの順に、あるいはSnめっき層のみを形成し、Snめっき層をリフロー処理して、Cuめっき層とSnめっき層から、あるいは銅合金母材とSnめっき層からCu−Sn合金層を形成するとともに、リフロー処理により平滑化したSnめっき層の間からCu−Sn合金層の一部を表面に露出させる(母材表面に形成された凹凸の凸の部分でCu−Sn合金層の一部が露出する)。この際、はんだ付け部のSnめっき層は厚く形成することで、はんだ付け部においてはCu−Sn合金層が表面に露出しておらず、はんだ濡れ性は良好である。 In the invention of Patent Literature 8, after a copper alloy material having a large surface roughness is punched to form a terminal material, the Ni plating layer, the Cu plating layer, and the Sn plating layer are arranged in this order, or the Cu plating layer and the Sn plating layer. The layers are formed in this order or only the Sn plating layer is formed, and the Sn plating layer is reflowed to form the Cu-Sn alloy layer from the Cu plating layer and the Sn plating layer, or from the copper alloy base material and the Sn plating layer. At the same time, a part of the Cu—Sn alloy layer is exposed on the surface from between the Sn plating layer smoothed by the reflow process (a part of the Cu—Sn alloy layer is formed on the uneven surface formed on the base material surface). Exposed). At this time, the Sn plating layer of the soldering portion is formed thick, so that the Cu—Sn alloy layer is not exposed on the surface in the soldering portion, and the solder wettability is good.
特許文献1〜3及び特許文献7,8に記載された接続部品用導電材料は、表面粗化処理した銅板材を母材として用い、その表面に例えばNiめっき層、Cuめっき層及びSnめっき層をこの順に形成し、Snめっき層をリフロー処理して、Cuめっき層とSnめっき層からCu−Sn合金被覆層を形成するとともに、リフロー処理により平滑化したSn被覆層の間からCu−Sn合金被覆層の一部を表面に露出させている。
従来、Sn被覆層及びCu−Sn被覆層の露出形態の指標として、Cu−Sn合金被覆層の露出面積率と平均露出間隔(特許文献1,2)、及びSn被覆層の最大内接円直径及び最大外接円直径(特許文献3)が規定されている。
The conductive materials for connecting parts described in Patent Documents 1 to 3 and Patent Documents 7 and 8 use a surface roughened copper plate material as a base material, and have, for example, a Ni plating layer, a Cu plating layer, and a Sn plating layer on the surface. Are formed in this order, and the Sn plating layer is reflowed to form a Cu—Sn alloy coating layer from the Cu plating layer and the Sn plating layer, and the Cu—Sn alloy is smoothed between the Sn coating layers smoothed by the reflow processing. A part of the coating layer is exposed on the surface.
Conventionally, as an index of the exposed form of the Sn coating layer and the Cu—Sn coating layer, the exposed area ratio and average exposure interval of the Cu—Sn alloy coating layer (Patent Documents 1 and 2), and the maximum inscribed circle diameter of the Sn coating layer And a maximum circumscribed circle diameter (Patent Document 3).
一方、個々のSn被覆層又はCu−Sn合金被覆層の形状については、これまで特に注目されていない。しかし、端子のさらなる小型化に対応するには、前記のようにやや抽象的な指標に留まらず、個々のSn被覆層又はCu−Sn合金被覆層の具体的形状について、適正で制御可能な平面視形状が必要になると考えられる。
従って、本発明は、適正で制御可能な平面視形状を有するSn被覆層又はCu−Sn合金被覆層を有し、端子の小型化にも対応可能な嵌合型接続部品を提供することを目的とする。
On the other hand, the shape of individual Sn coating layers or Cu—Sn alloy coating layers has not received much attention so far. However, in order to cope with further miniaturization of the terminal, the plane is not limited to a slightly abstract index as described above, and the specific shape of each Sn coating layer or Cu—Sn alloy coating layer can be appropriately controlled. It is considered that a visual shape is required.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fitting-type connecting component that has a Sn coating layer or a Cu-Sn alloy coating layer having a proper and controllable plan view shape, and can cope with the miniaturization of terminals. And
本発明に係る嵌合型接続部品は、所定形状に打抜き加工した銅板材に後めっき及びリフロー処理して製造され、相手側部品との接触側最表面にCu−Sn合金被覆層とSn被覆層が混在し、前記Sn被覆層がリフロー処理により平滑化されているものであり、次の点を特徴とする。
(1)前記Sn被覆層は複数の平行線として観察されるSn被覆層群を含み、前記Sn被覆層群を構成する個々のSn被覆層の両側に前記Cu−Sn合金被覆層が隣接して存在し、前記表面の部品挿入方向の最大高さ粗さRzが10μm以下であること、又は、
(2)前記Sn被覆層は複数の平行線として観察されるSn被覆層群と、同じく複数の平行線として観察される別のSn被覆層群を1又は2以上含み、各Sn被覆層群は格子状に交差し、各Sn被覆層群を構成する個々のSn被覆層の両側にCu−Sn合金被覆層が隣接して存在し、前記表面の端子挿入方向の最大高さ粗さRzが10μm以下であること。
The fitting-type connecting component according to the present invention is manufactured by post-plating and reflowing a copper plate material punched into a predetermined shape, and a Cu-Sn alloy coating layer and a Sn coating layer on the outermost surface on the contact side with the counterpart component The Sn coating layer is smoothed by a reflow process, and has the following features.
(1) The Sn coating layer includes a Sn coating layer group observed as a plurality of parallel lines, and the Cu-Sn alloy coating layer is adjacent to both sides of each Sn coating layer constituting the Sn coating layer group. Exists, and the maximum height roughness Rz of the surface in the component insertion direction is 10 μm or less, or
(2) The Sn coating layer includes one or more Sn coating layer groups that are observed as a plurality of parallel lines and one or more other Sn coating layer groups that are also observed as a plurality of parallel lines. Cu—Sn alloy coating layers exist adjacent to each other on both sides of each Sn coating layer constituting each Sn coating layer group, and the maximum height roughness Rz in the terminal insertion direction on the surface is 10 μm. The following.
上記嵌合型接続部品において、各Sn被覆層群に属するSn被覆層の幅が1〜500μm、各Sn被覆層群に属するSn被覆層のうち隣接するSn被覆層同士の間隔が1〜2000μmであることが望ましい。
なお、各Sn被覆層群に属する個々のSn被覆層は、上記のとおり、相手側部品との接触(摺動)側最表面において、複数の平行線として観察されるものをいうが、個々のSn被覆層は必ずしも数学的な意味で平行線状である必要はない。各Sn被覆層群に属する個々のSn被覆層が、ほぼ同形状で湾曲、波打ち、あるいは屈曲している場合も本発明に含まれる。
In the fitting type connecting part, the width of the Sn coating layer belonging to each Sn coating layer group is 1 to 500 μm, and the interval between adjacent Sn coating layers among the Sn coating layers belonging to each Sn coating layer group is 1 to 2000 μm. It is desirable to be.
As described above, each Sn coating layer belonging to each Sn coating layer group refers to one observed as a plurality of parallel lines on the outermost surface on the contact (sliding) side with the counterpart component. The Sn coating layer does not necessarily have to be parallel lines in a mathematical sense. The present invention includes a case where individual Sn coating layers belonging to each Sn coating layer group are curved, wavy, or bent in substantially the same shape.
上記嵌合型接続部品は、銅板材(母材)の表面被覆層として、最表面にCu−Sn合金被覆層と、Sn被覆層が形成される。Cu−Sn合金被覆層とSn被覆層からなる表面被覆層の具体的形態として、例えば前記特許文献1〜3に記載されたように、Cu−Sn合金被覆層とSn被覆層がこの順に形成され、リフロー処理により平滑化されたSn被覆層の間から、Cu−Sn合金被覆層の一部が最表面に露出している形態が考えられる。この場合、最表面に露出したCu−Sn合金被覆層が、粗さ曲線の山として測定され、この山が前記最大高さ粗さRzの大きさに反映される。 In the fitting type connecting component, a Cu—Sn alloy coating layer and a Sn coating layer are formed on the outermost surface as a surface coating layer of a copper plate material (base material). As a specific form of the surface coating layer composed of the Cu—Sn alloy coating layer and the Sn coating layer, for example, as described in Patent Documents 1 to 3, the Cu—Sn alloy coating layer and the Sn coating layer are formed in this order. A form in which a part of the Cu—Sn alloy coating layer is exposed on the outermost surface from between the Sn coating layers smoothed by the reflow treatment is conceivable. In this case, the Cu—Sn alloy coating layer exposed on the outermost surface is measured as a peak of the roughness curve, and this peak is reflected in the size of the maximum height roughness Rz.
Cu−Sn合金被覆層とSn被覆層がこの順に形成されている場合において、前記Cu−Sn合金被覆層の平均厚さが0.1〜3μm、前記Sn被覆層の平均厚さが0.2〜5.0μmであることが望ましい。各被覆層の上記平均厚さは、従来技術(前記特許文献1〜3)のものと同等の数値である。
上記嵌合型接続部品の表面被覆層の一部として、銅板材(母材)の表面と前記Cu−Sn合金被覆層の間にNi被覆層が形成されていてもよく、また、前記Ni被覆層と前記Cu−Sn合金被覆層の間にさらにCu被覆層が形成されていてもよい。さらに、前記接続部品用銅板材の表面とNi被覆層の間にCu被覆層が形成されていてもよい。
なお、本発明において、Sn被覆層、Ni被覆層及びCu被覆層は、それぞれSn、Ni、Cu金属のほか、Sn合金、Ni合金及びCu合金を含む。
When the Cu—Sn alloy coating layer and the Sn coating layer are formed in this order, the average thickness of the Cu—Sn alloy coating layer is 0.1 to 3 μm, and the average thickness of the Sn coating layer is 0.2. It is desirable that it is -5.0 micrometers. The said average thickness of each coating layer is a numerical value equivalent to the thing of a prior art (the said patent documents 1-3).
A Ni coating layer may be formed between the surface of the copper plate (base material) and the Cu-Sn alloy coating layer as a part of the surface coating layer of the fitting-type connecting component, and the Ni coating A Cu coating layer may be further formed between the layer and the Cu—Sn alloy coating layer. Furthermore, a Cu coating layer may be formed between the surface of the copper plate material for connection parts and the Ni coating layer.
In the present invention, the Sn coating layer, the Ni coating layer, and the Cu coating layer include Sn alloy, Ni alloy, and Cu alloy in addition to Sn, Ni, and Cu metal, respectively.
本発明によれば、低挿入力でかつ電気的信頼性に優れた嵌合型接続部品を提供することができる。
本発明で規定されたSn被覆層及びCu−Sn合金被覆層の平面視形状は、端子の小型化にも対応可能であり、かつ銅板材の表面粗化処理を適正に行うことでその平面視形状の制御を容易に行うことができる。
According to the present invention, it is possible to provide a fitting-type connecting component having a low insertion force and excellent electrical reliability.
The planar view shapes of the Sn coating layer and the Cu—Sn alloy coating layer defined in the present invention are compatible with the miniaturization of the terminals, and the planar view is obtained by appropriately performing the surface roughening treatment of the copper plate material. The shape can be easily controlled.
以下、本発明に係る嵌合型接続部品について、具体的に説明する。
本発明の嵌合型接続部品は、所定形状に打抜き加工した銅板材に後めっき及びリフロー処理して製造されるもので、相手側部品との接触側最表面にCu−Sn合金被覆層とSn被覆層が混在し、Sn被覆層がリフロー処理により平滑化されている。Cu−Sn合金被覆層とSn被覆層からなる表面被覆層について、より具体的な形態をいえば、銅板材(母材)の表面にCu−Sn合金被覆層とSn被覆層がこの順に形成され、リフロー処理により平滑化されたSn被覆層の間から、Cu−Sn合金被覆層の一部が最表面に露出している。相手側部品との接触(摺動)側最表面に硬いCu−Sn合金被覆層が露出することにより、端子挿入力が低減する。
最表面に露出したCu−Sn合金被覆層は、JISB0601に基づく粗さ曲線の山として測定され、この山が最大高さ粗さRzの大きさに反映される。
Hereinafter, the fitting-type connecting component according to the present invention will be specifically described.
The fitting-type connecting component of the present invention is manufactured by post-plating and reflowing a copper plate material punched into a predetermined shape, and a Cu-Sn alloy coating layer and Sn on the outermost surface in contact with the mating component. The coating layer is mixed and the Sn coating layer is smoothed by the reflow process. Regarding the surface coating layer composed of the Cu—Sn alloy coating layer and the Sn coating layer, more specifically, the Cu—Sn alloy coating layer and the Sn coating layer are formed in this order on the surface of the copper plate (base material). Part of the Cu—Sn alloy coating layer is exposed on the outermost surface from between the Sn coating layers smoothed by the reflow treatment. By exposing the hard Cu—Sn alloy coating layer on the outermost surface in contact (sliding) with the counterpart component, the terminal insertion force is reduced.
The Cu—Sn alloy coating layer exposed on the outermost surface is measured as a crest of a roughness curve based on JISB0601, and this crest is reflected in the magnitude of the maximum height roughness Rz.
本発明に係る嵌合型接続部品において、相手側部品との接触側最表面に存在する前記Sn被覆層及びCu−Sn合金被覆層は、下記(1)又は(2)の形態をとる。
(1)複数の平行線として観察されるSn被覆層群を含み、該Sn被覆層群を構成する個々のSn被覆層(このSn被覆層を、特に平行Sn被覆層という場合がある)の両側にCu−Sn合金被覆層が隣接して存在する。
(2)複数の平行線として観察されるSn被覆層群と、同じく複数の平行線として観察される別のSn被覆層群を1又は2以上含み、各Sn被覆層群は格子状に交差し、各Sn被覆層群を構成する個々のSn被覆層(このSn被覆層を、特に平行Sn被覆層という場合がある)の両側にCu−Sn合金被覆層が隣接して存在する。
In the fitting-type connecting component according to the present invention, the Sn coating layer and the Cu—Sn alloy coating layer present on the outermost surface on the contact side with the counterpart component take the following form (1) or (2).
(1) Both sides of each Sn coating layer that includes a Sn coating layer group observed as a plurality of parallel lines and constitutes the Sn coating layer group (this Sn coating layer may be referred to as a parallel Sn coating layer in particular) The Cu—Sn alloy coating layer is present adjacent to each other.
(2) One or two or more Sn coating layer groups observed as a plurality of parallel lines and another Sn coating layer group also observed as a plurality of parallel lines, and each Sn coating layer group intersects in a lattice pattern. A Cu—Sn alloy coating layer is present adjacent to both sides of each Sn coating layer constituting each Sn coating layer group (this Sn coating layer may be referred to as a parallel Sn coating layer in particular).
平行Sn被覆層及びCu−Sn合金被覆層の上記(1),(2)の形態を、図1,2の模式図を参照して説明する。なお、図1,2は嵌合型接続部品の最表面の一部を略正方形に抜き出して示す平面模式図である。
まず、図1(a),(b)は、上記(1)の形態の典型例を示す。図1(a)に示す例では、所定幅を有する複数の平行Sn被覆層1a〜1d(まとめて平行Sn被覆層1という場合がある)が略等間隔で平行線状に形成され、各平行Sn被覆層1a〜1dの両側にCu−Sn合金被覆層2が隣接して存在する。Cu−Sn合金被覆層2も所定幅を有し、同じく略等間隔で平行線状に形成されている。平行線状に形成された複数の平行Sn被覆層1a〜1dにより、本発明でいうSn被覆層群Xが構成される。
The forms (1) and (2) of the parallel Sn coating layer and the Cu—Sn alloy coating layer will be described with reference to the schematic diagrams of FIGS. 1 and 2 are schematic plan views showing a part of the outermost surface of the fitting type connecting part extracted in a substantially square shape.
First, FIGS. 1A and 1B show a typical example of the form (1). In the example shown in FIG. 1A, a plurality of parallel Sn coating layers 1a to 1d having a predetermined width (sometimes collectively referred to as parallel Sn coating layers 1) are formed in parallel lines at substantially equal intervals, and each parallel line is formed. The Cu—Sn alloy coating layer 2 is adjacent to both sides of the Sn coating layers 1a to 1d. The Cu—Sn alloy coating layer 2 also has a predetermined width, and is formed in parallel lines at substantially equal intervals. The plurality of parallel Sn coating layers 1a to 1d formed in a parallel line form the Sn coating layer group X referred to in the present invention.
図1(b)に示す例では、所定幅を有する複数の平行Sn被覆層1a〜1dが略等間隔で平行線状に形成され、その両側にCu−Sn合金被覆層2が隣接して存在する。Cu−Sn合金被覆層2も所定幅を有し、同じく略等間隔で平行線状に形成されているが、Cu−Sn合金被覆層2の中にSn被覆層3が島状に存在する点で、図1(a)の例と異なる。平行線状に形成された複数の平行Sn被覆層1により、本発明でいうSn被覆層群Xが構成される。
なお、図1(b)において島状に存在するSn被覆層3が連続して、Cu−Sn合金被覆層2が分断される場合、あるいはSn被覆層3の中にさらにCu−Sn合金被覆層が小さく島状に存在する場合等、種々の他の形態が生じ得る。
In the example shown in FIG. 1B, a plurality of parallel Sn coating layers 1a to 1d having a predetermined width are formed in parallel lines at substantially equal intervals, and Cu—Sn alloy coating layers 2 are adjacent to both sides thereof. To do. The Cu—Sn alloy coating layer 2 also has a predetermined width and is formed in parallel lines at substantially equal intervals, but the Sn coating layer 3 exists in an island shape in the Cu—Sn alloy coating layer 2. Thus, it is different from the example of FIG. The plurality of parallel Sn coating layers 1 formed in parallel lines form the Sn coating layer group X referred to in the present invention.
In addition, when Sn coating layer 3 which exists in island shape in FIG.1 (b) is continuous, and Cu-Sn alloy coating layer 2 is parted, or Cu-Sn alloy coating layer in Sn coating layer 3 further. Various other forms may occur, such as when the islands are small and in the form of islands.
図2(a),(b)は、上記(2)の形態の典型例を示す。図2(a)に示す例では、所定幅を有する複数の平行Sn被覆層1a〜1dが略等間隔で平行線状に形成され、かつ、それに直角に交差して、所定幅を有する複数の平行Sn被覆層4a〜4d(まとめて平行Sn被覆層4という場合がある)が略等間隔で平行線状に形成されている。平行線状に形成された複数の平行Sn被覆層1a〜1dにより、本発明でいうSn被覆層群Xが構成され、同じく平行線状に形成された複数の平行Sn被覆層4a〜4dにより、本発明でいうSn被覆層群Yが構成される。2つのSn被覆層群X、Yは格子状に交差し、各格子に囲まれたエリアにCu−Sn合金被覆層2が存在する。この場合も、Cu−Sn合金被覆層2は各平行Sn被覆層1,4の両側に隣接して存在するということができる。 2A and 2B show typical examples of the form (2). In the example shown in FIG. 2A, a plurality of parallel Sn coating layers 1a to 1d having a predetermined width are formed in parallel lines at substantially equal intervals, and intersecting at right angles to the plurality of parallel Sn coating layers 1a to 1d Parallel Sn coating layers 4a to 4d (sometimes collectively referred to as parallel Sn coating layer 4) are formed in parallel lines at substantially equal intervals. The plurality of parallel Sn coating layers 1a to 1d formed in parallel lines constitutes the Sn coating layer group X referred to in the present invention, and the plurality of parallel Sn coating layers 4a to 4d also formed in parallel lines, The Sn coating layer group Y referred to in the present invention is configured. The two Sn coating layer groups X and Y intersect in a lattice pattern, and the Cu—Sn alloy coating layer 2 exists in an area surrounded by each lattice. Also in this case, it can be said that the Cu—Sn alloy coating layer 2 exists adjacent to both sides of each parallel Sn coating layer 1, 4.
図2(b)に示す例では、所定幅を有する複数の平行Sn被覆層1a〜1dが略等間隔で平行線状に形成され、かつ、それに直角に交差して、所定幅を有する複数の平行Sn被覆層4a〜4dが略等間隔で平行線状に形成されている。平行線状に形成された複数の平行Sn被覆層1a〜1dにより、本発明でいうSn被覆層群Xが構成され、同じく平行線状に形成された複数の平行Sn被覆層4a〜4dにより、本発明でいうSn被覆層群Yが構成される。2つのSn被覆層群X、Yは格子状に交差し、各格子に囲まれたエリアにCu−Sn合金被覆層2が存在する。この例ではCu−Sn合金被覆層2の中にSn被覆層3が島状に存在し、この点で、図2(a)の例と異なる。この場合も、Cu−Sn合金被覆層2は各平行Sn被覆層1,4の両側に隣接して存在するということができる。
なお、図2(b)において島状に存在するSn被覆層3の中にさらにCu−Sn合金被覆層が小さく島状に存在する場合等、種々の他の形態が生じ得る。
In the example shown in FIG. 2B, a plurality of parallel Sn coating layers 1a to 1d having a predetermined width are formed in parallel lines at substantially equal intervals, and intersecting at right angles to the plurality of parallel Sn coating layers 1a to 1d having a predetermined width. Parallel Sn coating layers 4a to 4d are formed in parallel lines at substantially equal intervals. The plurality of parallel Sn coating layers 1a to 1d formed in parallel lines constitutes the Sn coating layer group X referred to in the present invention, and the plurality of parallel Sn coating layers 4a to 4d also formed in parallel lines, The Sn coating layer group Y referred to in the present invention is configured. The two Sn coating layer groups X and Y intersect in a lattice pattern, and the Cu—Sn alloy coating layer 2 exists in an area surrounded by each lattice. In this example, the Sn coating layer 3 exists in an island shape in the Cu—Sn alloy coating layer 2, and this is different from the example of FIG. Also in this case, it can be said that the Cu—Sn alloy coating layer 2 exists adjacent to both sides of each parallel Sn coating layer 1, 4.
In FIG. 2B, various other forms may occur, for example, when the Cu—Sn alloy coating layer is present in an island shape in the Sn coating layer 3 existing in an island shape.
図1,2に示す嵌合型接続部品において、表面に露出したCu−Sn合金被覆層2は、リフロー処理により平滑化した平行Sn被覆層1(Sn被覆層3,平行Sn被覆層4も)の水準より、高さ方向に突出している。このような両被覆層の断面形態について、図3に示す断面模式図を参照して説明する。
図3において、銅板材(母材)5には、比較的深い凹部6が略等間隔で形成され、凹部6の両側に凸部7が形成され、凹部6を挟まない隣接する凸部7,7間は比較的平らである。このような表面構造はプラトー構造といわれている。凹部6は、銅板材5の表面に複数の平行線として観察される。
1 and 2, the Cu—Sn alloy coating layer 2 exposed on the surface is a parallel Sn coating layer 1 (also Sn coating layer 3 and parallel Sn coating layer 4) smoothed by reflow treatment. It protrudes in the height direction from the level of. The cross-sectional form of such both coating layers is demonstrated with reference to the cross-sectional schematic diagram shown in FIG.
In FIG. 3, the copper plate material (base material) 5 has relatively deep recesses 6 formed at substantially equal intervals, convex portions 7 are formed on both sides of the recess 6, and adjacent convex portions 7 that do not sandwich the recess 6. Between 7 is relatively flat. Such a surface structure is called a plateau structure. The recess 6 is observed as a plurality of parallel lines on the surface of the copper plate material 5.
図3(a)は図1(a)(又は図2(a))に対応するもので、銅板材5の表面全体にCu−Sn合金被覆層2が形成され、前記凹部6においてCu−Sn合金被覆層2の上に平行Sn被覆層1が形成されている。この凹部6に形成された平行Sn被覆層1が、図1(a)又は図2(a)において平行線状に観察された平行Sn被覆層1a〜1d(又は平行Sn被覆層4a〜4d)に相当する。
図3(b)は図1(b)(又は図2(b))に対応するもので、銅板材5の表面全体にCu−Sn合金被覆層2が形成され、前記凹部6においてCu−Sn合金被覆層2の上に平行Sn被覆層1が形成されている。プラトー部でもCu−Sn合金被覆層2の上にSn被覆層3が形成されている。この凹部6に形成された平行Sn被覆層1が、図1(b)又は図2(b)において平行線状に観察された平行Sn被覆層1a〜1d(又は平行Sn被覆層4a〜4d)に相当し、プラトー部に形成されたSn被覆層3が、図1(b)又は図2(b)において島状に観察されたSn被覆層3に相当する。
FIG. 3A corresponds to FIG. 1A (or FIG. 2A), and the Cu—Sn alloy coating layer 2 is formed on the entire surface of the copper plate material 5, and Cu—Sn is formed in the recess 6. A parallel Sn coating layer 1 is formed on the alloy coating layer 2. The parallel Sn coating layers 1 formed in the recesses 6 are parallel Sn coating layers 1a to 1d (or parallel Sn coating layers 4a to 4d) observed in parallel lines in FIG. 1 (a) or FIG. 2 (a). It corresponds to.
FIG. 3B corresponds to FIG. 1B (or FIG. 2B), and the Cu—Sn alloy coating layer 2 is formed on the entire surface of the copper plate material 5, and Cu—Sn is formed in the recess 6. A parallel Sn coating layer 1 is formed on the alloy coating layer 2. The Sn coating layer 3 is formed on the Cu—Sn alloy coating layer 2 also in the plateau portion. The parallel Sn coating layers 1 formed in the recesses 6 are parallel Sn coating layers 1a to 1d (or parallel Sn coating layers 4a to 4d) observed in parallel lines in FIG. 1B or 2B. The Sn coating layer 3 formed on the plateau portion corresponds to the Sn coating layer 3 observed in an island shape in FIG. 1B or FIG.
ここで、Cu−Sn合金被覆層2と平行Sn被覆層1(及び平行Sn被覆層4)からなる表面被覆層の上記形態について、その形成手段の一例を具体的に説明する。
部品形状に打抜き後、又は打抜き前あるいは打抜きと同時に、銅板材5に対しプレス加工による表面粗化処理が施される。この表面粗化処理は、図4(a)に示すように、押圧面にごく細かい凹凸がほぼ一定ピッチで形成された金型8をプレス機にセットし、該金型8で銅板材5の表面をプレスすることで行われる。このプレス加工により、銅板材5の表面に金型8の押圧面の凸部(刃先)が押し込まれ、銅板材5の表面に凹部6が平行線状に転写され、同時に、凹部6から押し出された材料が凹部6の両側に盛り上がり、必然的に凸部7が形成される。凹部6を間に挟まない隣接する凸部7,7間の銅板材表面は、仕上げ圧延のままの比較的平ら(プラトー)な状態を保っている。
Here, an example of the means for forming the surface coating layer composed of the Cu—Sn alloy coating layer 2 and the parallel Sn coating layer 1 (and the parallel Sn coating layer 4) will be specifically described.
After punching into the part shape, before punching or simultaneously with punching, the copper plate material 5 is subjected to surface roughening treatment by press working. In this surface roughening treatment, as shown in FIG. 4 (a), a mold 8 in which fine irregularities are formed on a pressing surface at a substantially constant pitch is set in a press machine, and the mold 8 is used to This is done by pressing the surface. By this pressing, the convex portion (blade edge) of the pressing surface of the mold 8 is pushed into the surface of the copper plate material 5, and the concave portion 6 is transferred to the surface of the copper plate material 5 in the form of parallel lines, and is simultaneously pushed out of the concave portion 6. The raised material swells on both sides of the concave portion 6, and the convex portion 7 is inevitably formed. The surface of the copper plate material between the adjacent convex portions 7 and 7 that do not sandwich the concave portion 6 is kept relatively flat (plateau) as it is finish-rolled.
続いて、部品形状に打ち抜いたこの銅板材5の表面に、特許文献1〜3等と同様に、例えばCuめっき及びSnめっきが施され、さらにリフロー処理が施される。このリフロー処理により、Cuめっき層のCuとSnめっき層のSnからCu−Sn合金被覆層が形成され、溶融Snが凹部6等に流動する。その結果、図3(a)に示すように、平滑化した平行Sn被覆層1がCu−Sn合金被覆層2の上に形成され、Cu−Sn合金被覆層2の一部が平行Sn被覆層1の両側に、該平行Sn被覆層1に隣接して露出する。このときCuめっき層の一部がCu−Sn合金被覆層2の下に残留することもある。
なお、本発明に関しては、リフロー処理後の表面被覆層を構成する各層について「被覆層」と表現し、リフロー処理前の表面めっき層を構成する各層について「めっき層」と表現している。
リフロー処理後に残留するSn量が比較的多ければ、銅合金板表面のプラトー部に前記Sn被覆層3が形成され(図1(b),図2(b),図3(b)参照)、あるいは前記Sn被覆層3の被覆エリアが増える。図3(b)に示すように、Sn被覆層3は平行Sn被覆層1に比べて薄肉である。
Subsequently, for example, Cu plating and Sn plating are performed on the surface of the copper plate material 5 punched out into a component shape, and reflow treatment is further performed. By this reflow treatment, a Cu—Sn alloy coating layer is formed from Cu of the Cu plating layer and Sn of the Sn plating layer, and molten Sn flows into the recesses 6 and the like. As a result, as shown in FIG. 3A, the smoothed parallel Sn coating layer 1 is formed on the Cu—Sn alloy coating layer 2, and a part of the Cu—Sn alloy coating layer 2 is a parallel Sn coating layer. 1 is exposed adjacent to the parallel Sn coating layer 1. At this time, a part of the Cu plating layer may remain under the Cu—Sn alloy coating layer 2.
In the present invention, each layer constituting the surface coating layer after the reflow treatment is expressed as “coating layer”, and each layer constituting the surface plating layer before the reflow processing is expressed as “plating layer”.
If the amount of Sn remaining after the reflow treatment is relatively large, the Sn coating layer 3 is formed on the plateau portion on the surface of the copper alloy plate (see FIGS. 1B, 2B, and 3B), Or the coating area of the said Sn coating layer 3 increases. As shown in FIG. 3B, the Sn coating layer 3 is thinner than the parallel Sn coating layer 1.
Sn被覆層群Xを構成する平行Sn被覆層1、及びSn被覆層群Yを構成する平行Sn被覆層4は、いずれも幅a,b(図1,2参照)が1〜500μm、隣接する平行Sn被覆層同士の間隔c,d(図1,2参照)が1〜2000μmに設定される。なお、平行Sn被覆層の幅と、隣接する平行Sn被覆層同士の間隔を上記のように設定するのは、この範囲内であれば平行Sn被覆層とCu−Sn合金被覆層が最表面に適度に混在して、低摩擦係数による挿入力の低減と電気的信頼性の両方が確保できるからである。 The parallel Sn coating layer 1 constituting the Sn coating layer group X and the parallel Sn coating layer 4 constituting the Sn coating layer group Y are adjacent to each other in widths a and b (see FIGS. 1 and 2) of 1 to 500 μm. The distances c and d (see FIGS. 1 and 2) between the parallel Sn coating layers are set to 1 to 2000 μm. Note that the width of the parallel Sn coating layer and the interval between adjacent parallel Sn coating layers are set as described above so that the parallel Sn coating layer and the Cu-Sn alloy coating layer are on the outermost surface as long as they are within this range. This is because it is possible to ensure both reduction in insertion force and electrical reliability due to a low friction coefficient when mixed appropriately.
より具体的に説明すると、平行Sn被覆層の幅を1μm以上とするのは、それより狭い幅の平行Sn被覆層を形成することは、銅板材の表面粗化処理に困難が伴うためである。一方、平行Sn被覆層の幅が大きくなりすぎると、相手側端子の接点部が平行Sn被覆層に入り込み、挿入力が高くなるため、平行Sn被覆層の幅は500μm以下とする。近年の端子の小型化を考慮すると、平行Sn被覆層の幅は200μm以下が望ましく、50μm以下がより望ましい。
また、隣接する平行Sn被覆層同士の間隔を1μm以上とするのは、銅板材の表面粗化処理に困難が伴うためである。一方、隣接する平行Sn被覆層同士の間隔が大きくなりすぎると、当初のSnめっき層の厚さによって、相手側端子とCu−Sn合金被覆層との接触面積が大きくなりすぎるか、小さくなりすぎる傾向があり、その場合、いずれにしても挿入力の上昇(低挿入力効果の低下)を招く。従って、隣接する平行Sn被覆層同士の間隔は2000μm以下とする。近年の端子の小型化を考慮すると、平行Sn被覆層の幅は1000μm以下が望ましく、250μm以下がより望ましい。平行Sn被覆層の幅、及び隣接する平行Sn被覆層同士の間隔はほぼ一定であることが望ましいが、それは必須ではない。
More specifically, the width of the parallel Sn coating layer is set to 1 μm or more because it is difficult to form a parallel Sn coating layer with a narrower width on the surface roughening treatment of the copper plate material. . On the other hand, if the width of the parallel Sn coating layer becomes too large, the contact portion of the mating terminal enters the parallel Sn coating layer and the insertion force increases, so the width of the parallel Sn coating layer is set to 500 μm or less. Considering the recent miniaturization of terminals, the width of the parallel Sn coating layer is desirably 200 μm or less, and more desirably 50 μm or less.
The reason why the interval between adjacent parallel Sn coating layers is set to 1 μm or more is that the surface roughening treatment of the copper plate material is difficult. On the other hand, if the distance between adjacent parallel Sn coating layers becomes too large, the contact area between the counterpart terminal and the Cu—Sn alloy coating layer becomes too large or too small depending on the initial thickness of the Sn plating layer. In this case, in any case, an increase in insertion force (decrease in low insertion force effect) is caused. Therefore, the interval between adjacent parallel Sn coating layers is set to 2000 μm or less. Considering the recent miniaturization of terminals, the width of the parallel Sn coating layer is desirably 1000 μm or less, and more desirably 250 μm or less. Although it is desirable that the width of the parallel Sn coating layer and the interval between the adjacent parallel Sn coating layers are substantially constant, it is not essential.
図3に示すように、最表面に露出したCu−Sn合金被覆層2は、平行Sn被覆層1及びSn被覆層3の水準から高さ方向に突出している。このため、例えば端子挿入方向(図1,2に白抜き矢印で示す)に表面粗さを測定すると、JISB0601に基づく粗さ曲線の山として測定される。
本発明では、部品(端子)挿入方向の最大高さ粗さRzが10μm以下(0μmを含む)と規定されている。この最大高さ粗さRzが大きいと、最表面に露出するCu−Sn合金被覆層の表面積が広くなり、部品表面の耐食性が低下して酸化物量などが増え、接触抵抗が増加しやすく、電気的信頼性を維持することが困難となる。また、銅板材の表面粗化処理において銅板材5に凹部6を幅広く深く形成すると、最大高さ粗さRzが大きくなるが、これは銅板材5の変形を伴いやすい。従って、最大高さ粗さRzは10μm以下とし、望ましくは0超(多少とも突出している)〜5μm以下である。
As shown in FIG. 3, the Cu—Sn alloy coating layer 2 exposed on the outermost surface protrudes in the height direction from the level of the parallel Sn coating layer 1 and the Sn coating layer 3. For this reason, for example, when the surface roughness is measured in the terminal insertion direction (indicated by white arrows in FIGS. 1 and 2), it is measured as a peak of a roughness curve based on JISB0601.
In the present invention, the maximum height roughness Rz in the component (terminal) insertion direction is defined as 10 μm or less (including 0 μm). When this maximum height roughness Rz is large, the surface area of the Cu—Sn alloy coating layer exposed on the outermost surface is increased, the corrosion resistance of the component surface is reduced, the amount of oxides is increased, and the contact resistance is likely to increase. It becomes difficult to maintain the reliability of the machine. Further, when the concave portion 6 is formed wide and deep in the copper plate material 5 in the surface roughening treatment of the copper plate material, the maximum height roughness Rz increases, but this tends to be accompanied by deformation of the copper plate material 5. Therefore, the maximum height roughness Rz is set to 10 μm or less, and preferably more than 0 (extruded somewhat) to 5 μm or less.
図2の例では、2つの平行Sn被覆層群X,Yが互いに直角に交差していたが、この交差角度は適宜に設定できる。2つの平行Sn被覆層群X,Yを交差させた場合、Cu−Sn合金被覆層のコーナー部がより高く盛り上がり(表面粗化処理において2つの凹部が交差した箇所のコーナーが盛り上がる)、低挿入力効果が向上する。しかし、平行Sn被覆層の幅及び隣接する平行Sn被覆層同士の間隔が同じであれば、交差角度が小さいほど盛り上がり間隔が広がり、低挿入力効果が小さくなる。このため、この交差角度は望ましくは10°〜90°とする。
3群以上のSn被覆層群を格子状に交差させることも本発明に含まれる。この場合も、各Sn被覆層群を構成する平行Sn被覆層は、幅が1〜500μm、同じSn被覆層群に含まれる隣接する平行Sn被覆層同士の間隔が1〜2000μmに設定される。同じく、各Sn被覆層群の交差角度は望ましくは10〜90°とする。
In the example of FIG. 2, the two parallel Sn coating layer groups X and Y intersect each other at right angles, but this intersection angle can be set as appropriate. When two parallel Sn coating layer groups X and Y are crossed, the corner of the Cu-Sn alloy coating layer rises higher (the corner where the two concave portions intersect in the surface roughening process rises), and low insertion Power effect is improved. However, if the width of the parallel Sn coating layer and the interval between adjacent parallel Sn coating layers are the same, the smaller the crossing angle is, the wider the rising interval is, and the low insertion force effect is reduced. For this reason, this crossing angle is desirably 10 ° to 90 °.
It is also included in the present invention that three or more Sn coating layer groups intersect in a lattice pattern. Also in this case, the parallel Sn coating layers constituting each Sn coating layer group have a width of 1 to 500 μm, and the interval between adjacent parallel Sn coating layers included in the same Sn coating layer group is set to 1 to 2000 μm. Similarly, the crossing angle of each Sn coating layer group is preferably 10 to 90 °.
本発明に係る嵌合型接続部品において、部品(端子)挿入方向とSn被覆層群の長さ方向のなす角度は、0°〜90°の範囲で適宜設定すればよい。Sn被覆層群が1つの場合、上記角度は0°超〜90°が望ましく、この角度は大きいほど望ましく20°〜90°、さらに90°が望ましい。Sn被覆層群が複数の場合、少なくともいずれか1つのSn被覆層群について、挿入方向との角度が上記のようになるようにする。 In the fitting connection component according to the present invention, the angle formed by the component (terminal) insertion direction and the length direction of the Sn coating layer group may be appropriately set in the range of 0 ° to 90 °. When there is one Sn coating layer group, the angle is preferably more than 0 ° to 90 °, and the larger the angle, the more desirably 20 ° to 90 °, and further desirably 90 °. When there are a plurality of Sn coating layer groups, at least one of the Sn coating layer groups is set such that the angle with the insertion direction is as described above.
銅板材表面に形成する表面被覆層のうちCu−Sn合金被覆層は、Cu6Sn5とCu3Snのいずれか一方又は双方からなり、平均厚さは0.1〜3.0μmとされる。これは、従来技術(前記特許文献1,2)のものと同等の数値である。Cu−Sn合金被覆層の平均厚さが0.1μm未満では、材料表面の耐食性が低下して酸化物量などが増え、接触抵抗が増加しやすく、電気的信頼性を維持することが困難となる。一方、3.0μmを超えると、コスト面で不利であり、生産性も悪くなる。従って、Cu−Sn合金被覆層の平均厚さは0.1〜3.0μmとし、望ましくは0.2〜1.0μmとする。 Of the surface coating layer formed on the surface of the copper plate material, the Cu-Sn alloy coating layer is composed of one or both of Cu 6 Sn 5 and Cu 3 Sn, and the average thickness is 0.1 to 3.0 μm. . This is a numerical value equivalent to that of the prior art (Patent Documents 1 and 2). When the average thickness of the Cu—Sn alloy coating layer is less than 0.1 μm, the corrosion resistance of the material surface is reduced, the amount of oxide is increased, the contact resistance is likely to increase, and it is difficult to maintain electrical reliability. . On the other hand, if it exceeds 3.0 μm, it is disadvantageous in terms of cost and the productivity is also deteriorated. Therefore, the average thickness of the Cu—Sn alloy coating layer is 0.1 to 3.0 μm, and preferably 0.2 to 1.0 μm.
Sn被覆層は、Sn金属又はSn合金からなる。Sn合金の場合、合金元素としてCu、Ag、Ni、Bi、Zn等が挙げられ、これらの元素は10質量%以下であることが望ましい。Sn被覆層の平均厚さは0.2〜5.0μmとされる。これは、従来技術(前記特許文献1,2)のものと同等の数値である。Sn被覆層の平均厚さが0.2μm未満では、高温酸化などの熱拡散により材料表面のCuの酸化物が多くなり、接触抵抗が増加しやすく、耐食性も悪くなることから、電気的信頼性を維持することが困難となる。一方、5.0μmを超えると、コスト面で不利であり、生産性も悪くなる。従って、Sn被覆層の平均厚さは0.2〜5.0μmとし、望ましくは0.5〜3.0μmとする。 The Sn coating layer is made of Sn metal or Sn alloy. In the case of Sn alloy, Cu, Ag, Ni, Bi, Zn etc. are mentioned as an alloy element, and it is desirable that these elements are 10 mass% or less. The average thickness of the Sn coating layer is 0.2 to 5.0 μm. This is a numerical value equivalent to that of the prior art (Patent Documents 1 and 2). If the average thickness of the Sn coating layer is less than 0.2 μm, the amount of Cu oxide on the material surface increases due to thermal diffusion such as high-temperature oxidation, and the contact resistance tends to increase and the corrosion resistance also deteriorates. It becomes difficult to maintain. On the other hand, if it exceeds 5.0 μm, it is disadvantageous in terms of cost, and productivity is also deteriorated. Therefore, the average thickness of the Sn coating layer is 0.2 to 5.0 μm, and preferably 0.5 to 3.0 μm.
上記嵌合型接続部品の表面被覆層の一部として、銅板材の表面とCu−Sn合金被覆層の間にNi被覆層が形成されていてもよく、また、前記Ni被覆層と前記Cu−Sn合金被覆層の間にさらにCu被覆層が形成されていてもよい。さらに、前記接続部品用銅板材の表面とNi被覆層の間にCu被覆層が形成されていてもよい。これらの被覆層はいずれもめっきで形成されるものであり、Ni被覆層と前記Cu−Sn合金被覆層の間のCu被覆層は、先に述べたように、リフロー処理後にCu−Sn合金被覆層の下に残留したCuめっき層である。
Ni被覆層は金属Ni又はNi合金からなる。Ni合金の場合、合金元素としてCu、P、Coなどが挙げられ、Cuは40質量%以下、P、Coは10質量%以下が望ましい。Ni被覆層の平均厚さは0.1〜10μmが望ましい。また、Cu被覆層は金属Cu又はCu合金からなる。Cu合金の場合、合金元素としてSn、Znなどが挙げられ、Snは50質量%未満、他の元素は5質量%以下が望ましい。Cu被覆層の平均厚さは3.0μm以下が望ましい。
A Ni coating layer may be formed between the surface of the copper plate material and the Cu—Sn alloy coating layer as a part of the surface coating layer of the fitting type connecting component, and the Ni coating layer and the Cu— A Cu coating layer may be further formed between the Sn alloy coating layers. Furthermore, a Cu coating layer may be formed between the surface of the copper plate material for connection parts and the Ni coating layer. These coating layers are all formed by plating. As described above, the Cu coating layer between the Ni coating layer and the Cu-Sn alloy coating layer is coated with Cu-Sn alloy after the reflow treatment. This is a Cu plating layer remaining under the layer.
The Ni coating layer is made of metal Ni or Ni alloy. In the case of Ni alloy, Cu, P, Co, etc. are mentioned as an alloy element, Cu is 40 mass% or less, P and Co are 10 mass% or less. The average thickness of the Ni coating layer is preferably 0.1 to 10 μm. The Cu coating layer is made of metal Cu or Cu alloy. In the case of a Cu alloy, examples of alloy elements include Sn and Zn. Sn is preferably less than 50% by mass, and other elements are preferably 5% by mass or less. The average thickness of the Cu coating layer is desirably 3.0 μm or less.
次に上記嵌合型接続部品の製造方法について補足説明する。
表面粗化処理方法として、特許文献1〜3には、イオンエッチング等の物理的方法、エッチングや電解研磨等の化学的方法、圧延(研磨やショットブラスト等により粗面化したワークロールを使用)、研磨、ショットブラスト等の機械的方法が開示されている。しかし、このような方法で、上記のような複数の平行線として観察されるSn被覆層群と、その両側に隣接するCu−Sn合金被覆層を形成することはできない。
一方、特許文献7,8には、端子形状加工時に銅板材表面を表面粗化処理する技術が記載されている。すなわち、銅板材に打抜き加工を施し端子素材が帯状の連結部を介して長さ方向に連鎖状に連なった銅板材を形成するとともに、前記打抜き加工と同時にあるいは打抜き加工の前又は後に、前記銅板材にプレス加工を施し、端子素材板面(銅板材表面)の表面粗さを増大させる、というものである。しかし、特許文献7,8にはプレス加工の具体的手段についての記載はない。
Next, a supplementary description will be given of the method for manufacturing the fitting type connecting component.
As surface roughening treatment methods, Patent Documents 1 to 3 include physical methods such as ion etching, chemical methods such as etching and electropolishing, and rolling (using a work roll roughened by polishing or shot blasting). Mechanical methods such as polishing, shot blasting, etc. are disclosed. However, the Sn coating layer group observed as a plurality of parallel lines as described above and a Cu—Sn alloy coating layer adjacent to both sides thereof cannot be formed by such a method.
On the other hand, Patent Documents 7 and 8 describe a technique for roughening the surface of a copper plate material during terminal shape processing. That is, a copper plate material is punched to form a copper plate material in which terminal materials are connected in a chain in the length direction via a strip-shaped connecting portion, and at the same time as the punching process or before or after the punching process, The plate material is pressed to increase the surface roughness of the terminal material plate surface (copper plate material surface). However, Patent Documents 7 and 8 do not describe specific means for pressing.
Cu−Sn合金被覆層は、表面粗化処理(人為的に凹凸を形成)された銅板材表面の凸の部分でリフロー処理後に露出する。従って、Cu−Sn合金被覆層又はSn被覆層の露出形態は、表面粗化処理において銅板材表面に形成される凹凸の形態を反映したものとなる。
本発明では、表面粗化処理として、先に図4を参照して説明したように、押圧面にごく細かい凹凸が平行線状に形成された金型をプレス機にセットし、該金型で銅板材の表面をプレスし、凸部(刃先)を銅板材表面に打ち込む、という方法が適用できる。この方法であれば、本発明で規定するCu−Sn合金被覆層又はSn被覆層の露出形態を実現可能であり、Sn被覆層の幅、Sn被覆層同士の間隔についても自在に制御可能である。
なお、金型1の押圧面に細かい凹凸を付ける方法は、放電加工、研削加工、レーザー加工などがあり、必要とする寸法精度、加工形状により任意に選択できる。凸部の形状、形成ピッチは一定である必要はない。
The Cu—Sn alloy coating layer is exposed after the reflow treatment at the convex portion of the surface of the copper plate material subjected to the surface roughening treatment (artificially formed irregularities). Therefore, the exposed form of the Cu—Sn alloy coating layer or the Sn coating layer reflects the form of irregularities formed on the surface of the copper plate material in the surface roughening treatment.
In the present invention, as described above with reference to FIG. 4, as the surface roughening treatment, a mold in which fine irregularities are formed in parallel lines on the pressing surface is set in a press machine. The method of pressing the surface of a copper plate material and driving a convex part (blade edge) into the copper plate material surface is applicable. With this method, it is possible to realize the exposed form of the Cu—Sn alloy coating layer or the Sn coating layer defined in the present invention, and the width of the Sn coating layer and the interval between the Sn coating layers can be freely controlled. .
In addition, there are electrical discharge machining, grinding machining, laser machining, and the like as a method for giving fine unevenness to the pressing surface of the mold 1 and can be arbitrarily selected depending on required dimensional accuracy and machining shape. The shape of the protrusions and the formation pitch need not be constant.
部品形状への打抜き及び表面粗化処理の後、銅板材にいわゆる後めっきを行う。銅板材に対し表面粗化処理及び後めっきを行う領域は、銅板材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。銅板材の少なくとも相手側部材との嵌合時に摺動面となる面に行えばよい。
後めっきは、必要に応じてNiめっきを行った後、Cuめっき層と、Snめっき層をこの順に形成した後、リフロー処理を行うことにより製造することができる。また、必要に応じてNiめっき層の下に、Niめっきの密着性改善のため、Cuめっき層を形成することもできる。あるいは、銅板材表面に直接Snめっき層のみを形成してもよい。
After punching into the part shape and surface roughening treatment, so-called post plating is performed on the copper plate material. The area | region which performs a surface roughening process and post-plating with respect to a copper plate material may extend to the single side | surface or both surfaces of a copper plate material, and may occupy only a part of single side | surface or both surfaces. What is necessary is just to go to the surface used as a sliding surface at the time of fitting with the other party member at least of a copper plate material.
Post-plating can be manufactured by performing reflow processing after forming a Cu plating layer and a Sn plating layer in this order after performing Ni plating as required. Further, if necessary, a Cu plating layer can be formed under the Ni plating layer to improve the adhesion of the Ni plating. Alternatively, only the Sn plating layer may be formed directly on the copper plate material surface.
後めっき後の銅板材にリフロー処理を施すと、Cuめっき層とSnめっき層のCuとSnが相互拡散してCu−Sn合金被覆層が形成され、その際にSnめっき層が残留し、Cuめっき層は全て消滅する場合と一部残留する場合の両方があり得る。Cuめっき層の一部が残留するとき、銅板材表面(Niめっき層を形成したときはNi被覆層表面)とCu−Sn合金被覆層の間にCu被覆層が形成される。Niめっき層を形成しない場合、Cuめっき層の厚さによっては、銅板材(母材)からもCuが供給される場合がある。銅板材表面に直接Snめっき層のみを形成する場合、銅板材(母材)中のCuとSnめっき層中のSnが相互拡散してCu−Sn合金被覆層が形成される。 When the reflow treatment is applied to the post-plated copper plate material, Cu and Sn of the Cu plating layer and the Sn plating layer are mutually diffused to form a Cu-Sn alloy coating layer, and at that time, the Sn plating layer remains, and Cu The plating layer can be both extinguished or partially retained. When a part of the Cu plating layer remains, a Cu coating layer is formed between the copper plate material surface (the Ni coating layer surface when the Ni plating layer is formed) and the Cu-Sn alloy coating layer. When the Ni plating layer is not formed, depending on the thickness of the Cu plating layer, Cu may be supplied also from the copper plate material (base material). When only the Sn plating layer is directly formed on the surface of the copper plate material, Cu in the copper plate material (base material) and Sn in the Sn plating layer mutually diffuse to form a Cu—Sn alloy coating layer.
Cuめっき層の平均厚さは0.1〜1.5μm、Snめっき層の平均厚さは0.3〜8.0μm、Niめっき層の平均厚さは0.1〜10μmが望ましい。
なお、本発明において、Cuめっき層、Snめっき層及びNiめっき層は、それぞれCu、Sn、Ni金属のほか、Cu合金、Sn合金及びNi合金を含む。Cuめっき層、Snめっき層及びNiめっき層が、Cu合金、Sn合金及びNi合金の場合、各合金の合金元素は、Cu被覆層、Sn被覆層及びNi被覆層の各合金と同じでよい。
The average thickness of the Cu plating layer is preferably 0.1 to 1.5 μm, the average thickness of the Sn plating layer is preferably 0.3 to 8.0 μm, and the average thickness of the Ni plating layer is preferably 0.1 to 10 μm.
In addition, in this invention, Cu plating layer, Sn plating layer, and Ni plating layer contain Cu alloy, Sn alloy, and Ni alloy other than Cu, Sn, and Ni metal, respectively. When the Cu plating layer, the Sn plating layer, and the Ni plating layer are a Cu alloy, a Sn alloy, and a Ni alloy, the alloy element of each alloy may be the same as each alloy of the Cu coating layer, the Sn coating layer, and the Ni coating layer.
以下の実施例により、要点を絞り、さらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The following examples will focus on the essential points and more specifically describe the present invention, but the present invention is not limited to these examples.
[銅板材(めっき母材)の作製]
本実施例においては、Cu中に1.8質量%のNi、0.40質量%のSi、1.1質量%のZn、0.10質量%のSnを含有し、ビッカース硬さ180、厚さ0.25mmtの銅合金条を製作した。
上記銅合金条から100mm×40mm(圧延長手方向×直角方向)の試験片を切り出し、ピン端子を成形する順送金型内の所定位置(ピン端子成形加工後の位置)に、押圧面に所定凹凸を付けたパーツを取り付け、1mmw×22mmLのピン端子形状を5mmピッチで成形加工すると同時に、各ピン端子の1mmw×10mmLの範囲に表面粗化処理を行った。成形加工及び表面粗化処理後の銅板材の概略図を図5に示す。図5において11が銅板材、12がピン端子部、両矢印の範囲が表面粗化処理した部分である。凹凸形状の異なるパーツを用いたり、複数回打ちを行うこと等により、種々の表面形態を得ることができる。
[Production of copper plate material (plating base material)]
In this example, Cu contains 1.8 mass% Ni, 0.40 mass% Si, 1.1 mass% Zn, 0.10 mass% Sn, Vickers hardness 180, thickness A copper alloy strip having a thickness of 0.25 mm was manufactured.
A test piece of 100 mm × 40 mm (longitudinal direction of rolling × right angle direction) is cut out from the copper alloy strip, and predetermined on the pressing surface at a predetermined position (position after the pin terminal forming process) in the progressive die for forming the pin terminal. The parts with irregularities were attached, and a pin terminal shape of 1 mmw × 22 mmL was molded at a pitch of 5 mm, and at the same time, a surface roughening treatment was performed in the range of 1 mmw × 10 mmL of each pin terminal. FIG. 5 shows a schematic view of the copper plate material after the forming process and the surface roughening treatment. In FIG. 5, 11 is a copper plate material, 12 is a pin terminal part, and the range of a double-headed arrow is a surface roughened portion. Various surface forms can be obtained by using parts with different concavo-convex shapes or performing multiple hits.
続いて、No.1〜16の銅板材に対し、Niめっきを施し(一部は施さず)、次いでCuめっき及びSnめっきを施した後、280℃×10secのリフロー処理を行うことにより試験片を得た。
No.1の表面SEM(組成像)を図6に示す。図中の白色部がSn被覆層、黒色部がCu−Sn合金被覆層である。Sn被覆層には、それぞれ複数の平行線として観察される2つのSn被覆層群が含まれ、一方のSn被覆層群と他方のSn被覆層群は90°の角度で交差し、全体として格子状をなしている。なお、この例において表面粗化処理後、めっき前のピン端子表面には、複数の平行線として観察される細かい溝(谷)が90°の角度で交差して形成され、これらの溝が全体として格子状をなしている。
Subsequently, no. The copper plate materials 1 to 16 were subjected to Ni plating (partially not applied), then subjected to Cu plating and Sn plating, and then subjected to reflow treatment at 280 ° C. for 10 seconds to obtain test pieces.
No. A surface SEM (composition image) of No. 1 is shown in FIG. In the figure, the white part is the Sn coating layer, and the black part is the Cu—Sn alloy coating layer. The Sn coating layer includes two Sn coating layer groups that are each observed as a plurality of parallel lines. One Sn coating layer group and the other Sn coating layer group intersect at an angle of 90 °, and the lattice layer as a whole. It has a shape. In this example, after the surface roughening treatment, fine grooves (valleys) observed as a plurality of parallel lines are formed to intersect at an angle of 90 ° on the surface of the pin terminal before plating, and these grooves are entirely formed. As a grid.
表1に、各試験片の表面形態及び各被覆層の平均厚さを示す。表1において、直線Xとは一方のSn被覆層群を構成するSn被覆層を指し、直線Yとは他方のSn被覆層群を構成するSn被覆層を指し、一方のSn被覆層群しか存在しない場合、直線Yの欄を空欄としている。各試験片の表面形態を示す各パラメータ及び各被覆層の平均厚さの測定方法は、次のとおりである。 Table 1 shows the surface morphology of each test piece and the average thickness of each coating layer. In Table 1, the straight line X refers to the Sn coating layer constituting one Sn coating layer group, and the straight line Y refers to the Sn coating layer constituting the other Sn coating layer group, and only one Sn coating layer group exists. If not, the straight line Y column is left blank. Each parameter indicating the surface form of each test piece and the method for measuring the average thickness of each coating layer are as follows.
[最大高さ粗さRz]
接触式粗さ計(株式会社東京精密製;サーフコム1400)を用いて、JIS B0601:2001に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、接触針先端半径を5μmRとして、測定はピン端子挿入方向に複数箇所で行い、得られた各粗さ曲線から最大高さ粗さRzを求め、その最大値を試験片の最大高さ粗さRzとした。なお、最大高さ粗さRzはどの測定箇所でもほぼ同じ値が得られた。図6にNo.1で測定した粗さ曲線の一例を示す。
[Maximum roughness Rz]
It measured based on JISB0601: 2001 using the contact-type roughness meter (the Tokyo Seimitsu make; Surfcom 1400). The surface roughness measurement conditions were as follows: the cutoff value was 0.8 mm, the reference length was 0.8 mm, the evaluation length was 4.0 mm, the measurement speed was 0.3 mm / s, and the contact needle tip radius was 5 μmR. The maximum height roughness Rz was obtained from each of the obtained roughness curves, and the maximum value was taken as the maximum height roughness Rz of the test piece. The maximum height roughness Rz was almost the same value at any measurement location. In FIG. An example of the roughness curve measured by 1 is shown.
[Sn層の幅等]
試験片の表面を操作電子顕微鏡を用いて観察し、その組成像からSn被覆層(X,Y)の幅、直線X,Yの間隔を測定した。なお、X,Yの交差角度、Xと挿入方向交差角度は表面粗化処理の段階で設定した。
[被覆層厚さ]
試験片を平行線状に観察されるSn被覆層に垂直な断面で切断し、その断面の中央部を走査型電子顕微鏡を用いて観察し、その組成像を画像解析処理してNi被覆層、Cu−Sn合金被覆層及びSn被覆層の平均厚さを算出した。いずれもCu被覆層は消滅していた。
[Sn layer width, etc.]
The surface of the test piece was observed using an operation electron microscope, and the width of the Sn coating layer (X, Y) and the distance between the straight lines X, Y were measured from the composition image. The crossing angle of X and Y, and the crossing angle of X and the insertion direction were set at the stage of surface roughening treatment.
[Coating layer thickness]
The test piece was cut in a cross section perpendicular to the Sn coating layer observed in parallel lines, the central part of the cross section was observed using a scanning electron microscope, and the composition image was subjected to image analysis processing to obtain a Ni coating layer. The average thickness of the Cu—Sn alloy coating layer and the Sn coating layer was calculated. In all cases, the Cu coating layer disappeared.
続いて、得られた試験片について、摩擦係数評価試験及び高温放置後の接触抵抗評価試験を下記の要領で行った。その結果を、表2に示す。なお、表2の摩擦係数のエンボス1.5の欄はメス試験片の半球の内径が1.5mmのときの摩擦係数、エンボス1.0の欄はメス試験片の半球の内径が1.0mmのときの摩擦係数を記載している。また、表2の舌片の欄はメス試験片が幅10mmの湾曲した(曲率半径2mm)舌片のときの摩擦係数を記載している。 Subsequently, the obtained test piece was subjected to a friction coefficient evaluation test and a contact resistance evaluation test after being left at a high temperature in the following manner. The results are shown in Table 2. In Table 2, the emboss 1.5 column of the friction coefficient is the friction coefficient when the inner diameter of the female test piece is 1.5 mm, and the emboss 1.0 column is the inner diameter of the female test piece hemisphere is 1.0 mm. The coefficient of friction is shown. The column of the tongue piece in Table 2 describes the coefficient of friction when the female test piece is a curved tongue piece having a width of 10 mm (curvature radius of 2 mm).
[摩擦係数評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図7に示すような装置を用いて評価した。まず、各試験材(No.1〜16)から切り出したピン端子形状のオス試験片14を水平な台15に固定し、その上に、表面粗化処理を行っていない銅板材にめっき加工(Cu:0.15μm、Sn:1.0μm、リフロー処理)した材料から切り出した半球加工材(内径をφ1.5mm及びφ1.0mmとした)又は舌片に成形したメス試験片16をおいて被覆層同士を接触させた。続いて、メス試験片6に3.0Nの荷重(錘17)をかけてオス試験片14を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model−2152)を用いて、オス試験片14を端子挿入方向に水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。なお、18はロードセル、矢印は摺動方向である。
摩擦係数=F/3.0 …(1)
[Friction coefficient evaluation test]
The shape of the indented portion of the electrical contact in the fitting type connecting part was simulated and evaluated using an apparatus as shown in FIG. First, a pin terminal-shaped male test piece 14 cut out from each test material (No. 1 to 16) is fixed to a horizontal base 15, and a copper plate material that has not been subjected to surface roughening treatment is plated thereon ( Cu: 0.15 μm, Sn: 1.0 μm, reflow treatment) A hemispherical material cut out from the material (with an inner diameter of φ1.5 mm and φ1.0 mm) or a female test piece 16 formed on a tongue piece and covered The layers were brought into contact. Subsequently, a 3.0 N load (weight 17) is applied to the female test piece 6 to hold down the male test piece 14, and the male test piece 14 is attached using a horizontal load measuring device (Aiko Engineering Co., Ltd .; Model-2152). The test piece was pulled in the horizontal direction in the terminal insertion direction (the sliding speed was 80 mm / min), and the maximum frictional force F (unit: N) up to a sliding distance of 5 mm was measured. The coefficient of friction was determined by the following formula (1). In addition, 18 is a load cell and the arrow is a sliding direction.
Friction coefficient = F / 3.0 (1)
[高温放置後の接触抵抗評価試験]
各試験材に対し、大気中にて160℃×500hrの熱処理を行った後、接触抵抗を四端子法により、開放電圧20mV、電流10mA、無摺動の条件にて測定した。160℃×500hr加熱後の接触抵抗が1.0mΩ未満のものを耐熱性がよい(○)、1.0mΩ以上のものを耐熱性が劣る(×)と評価した。
[Evaluation test for contact resistance after standing at high temperature]
Each test material was subjected to a heat treatment at 160 ° C. for 500 hours in the air, and then contact resistance was measured by a four-terminal method under an open voltage of 20 mV, a current of 10 mA, and no sliding. A sample having a contact resistance of less than 1.0 mΩ after heating at 160 ° C. for 500 hours was evaluated as good (◯), and a sample having a contact resistance of 1.0 mΩ or more was evaluated as inferior in heat resistance (×).
表2に示すようにNo.1〜13は、Sn被覆層の幅と間隔、及び最大高さ粗さRzに関して本発明に規定する要件を満たし、少なくとも相手材が舌片の場合は、摩擦係数が0.4未満と低い値を示している。特に各パラメーターが望ましい範囲内、すなわち最大高さ粗さRzが0.1〜5μm、Sn被覆層(直線X,Y)の幅が50μm以下、隣接するSn被覆層同士の間隔(隣接する直線X,Xの間隔、直線Y,Yの間隔)が250μm以下のとき、エンボス1.0mmでも摩擦係数が0.4未満と低い値を示している。 As shown in Table 2, no. 1 to 13 satisfy the requirements defined in the present invention regarding the width and interval of the Sn coating layer and the maximum height roughness Rz, and at least when the counterpart material is a tongue piece, the friction coefficient is a low value of less than 0.4. Is shown. In particular, each parameter is within a desired range, that is, the maximum height roughness Rz is 0.1 to 5 μm, the width of the Sn coating layer (straight line X, Y) is 50 μm or less, and the interval between adjacent Sn coating layers (adjacent straight line X , X, and the distance between the straight lines Y, Y) are 250 μm or less, the coefficient of friction is as low as less than 0.4 even at 1.0 mm emboss.
一方、No.14は最大高さ粗さRzが大きすぎるため、加熱後接触抵抗が高く、No.15はSn被覆層の幅が大きすぎるため、摩擦係数が高く、No.16はSn被覆層同士の間隔(隣接する直線X,Xの間隔、直線Y,Yの間隔)が大きすぎるため、摩擦係数が高い。 On the other hand, no. No. 14 has a maximum height roughness Rz that is too high, so that the contact resistance after heating is high. No. 15 has a high friction coefficient because the width of the Sn coating layer is too large. No. 16 has a high friction coefficient because the interval between the Sn coating layers (the interval between adjacent straight lines X and X, the interval between straight lines Y and Y) is too large.
1,1a〜1d 平行Sn被覆層
2 Cu−Sn合金被覆層
3 Sn被覆層
4,4a〜4d 平行Sn被覆層
5 銅板材
6 凹部
7 凸部
8 金型
11 銅板材
12 ピン端子部
1,1a-1d Parallel Sn coating layer
2 Cu-Sn alloy coating layer
3 Sn coating layer 4, 4a-4d Parallel Sn coating layer
5 Copper plate material 6 Concave portion 7 Convex portion 8 Mold 11 Copper plate material 12 Pin terminal portion
Claims (11)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073502A JP5477993B2 (en) | 2010-03-26 | 2010-03-26 | Fitting type connecting part and method for manufacturing the same |
US13/069,016 US8956735B2 (en) | 2010-03-26 | 2011-03-22 | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
HUE11002424A HUE028388T2 (en) | 2010-03-26 | 2011-03-23 | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
EP11002424.7A EP2369688B1 (en) | 2010-03-26 | 2011-03-23 | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
CN2011100785520A CN102201626B (en) | 2010-03-26 | 2011-03-24 | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
US13/963,593 US9373925B2 (en) | 2010-03-26 | 2013-08-09 | Method for producing a mating-type connecting part |
US13/963,575 US8940405B2 (en) | 2010-03-26 | 2013-08-09 | Copper alloy and electrically conductive material for connecting parts, and mating-type connecting part and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010073502A JP5477993B2 (en) | 2010-03-26 | 2010-03-26 | Fitting type connecting part and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202266A JP2011202266A (en) | 2011-10-13 |
JP5477993B2 true JP5477993B2 (en) | 2014-04-23 |
Family
ID=44879202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010073502A Expired - Fee Related JP5477993B2 (en) | 2010-03-26 | 2010-03-26 | Fitting type connecting part and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5477993B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011088793A1 (en) * | 2011-12-16 | 2013-06-20 | Tyco Electronics Amp Gmbh | Electrical connector with microstructured contact element |
JP5362921B1 (en) | 2012-11-09 | 2013-12-11 | Jx日鉱日石金属株式会社 | Surface-treated copper foil and laminate using the same |
US9748683B2 (en) * | 2013-03-29 | 2017-08-29 | Kobe Steel, Ltd. | Electroconductive material superior in resistance to fretting corrosion for connection component |
KR20160023727A (en) | 2013-06-24 | 2016-03-03 | 오리엔타루토킨 가부시키가이샤 | Method for producing plated material, and plated material |
JP6401490B2 (en) * | 2014-04-24 | 2018-10-10 | 矢崎総業株式会社 | Contact connection structure |
JP6543138B2 (en) * | 2015-08-28 | 2019-07-10 | Dowaメタルテック株式会社 | Sn plated material and method of manufacturing the same |
JP6733493B2 (en) | 2016-10-25 | 2020-07-29 | 株式会社オートネットワーク技術研究所 | Electrical contacts, connector terminal pairs, and connector pairs |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4024244B2 (en) * | 2004-12-27 | 2007-12-19 | 株式会社神戸製鋼所 | Conductive material for connecting parts and method for manufacturing the same |
JP3926355B2 (en) * | 2004-09-10 | 2007-06-06 | 株式会社神戸製鋼所 | Conductive material for connecting parts and method for manufacturing the same |
JP2009266499A (en) * | 2008-04-23 | 2009-11-12 | Sony Corp | Electronic component |
-
2010
- 2010-03-26 JP JP2010073502A patent/JP5477993B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011202266A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9373925B2 (en) | Method for producing a mating-type connecting part | |
JP5477993B2 (en) | Fitting type connecting part and method for manufacturing the same | |
JP5260620B2 (en) | PCB terminal and manufacturing method thereof | |
JP6031318B2 (en) | Mating type connection terminal and method for manufacturing the same | |
KR102355331B1 (en) | Tin-plated copper alloy terminal material and method for producing same | |
JP6103811B2 (en) | Conductive material for connecting parts | |
JP5394963B2 (en) | Copper alloy and conductive material for connecting parts | |
WO2014045704A1 (en) | Connector terminal and material for connector terminal | |
KR20150024252A (en) | Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance | |
JP5089451B2 (en) | Metal material for connector and manufacturing method thereof | |
CN108368630B (en) | Conductive material for connecting member | |
WO2009116601A1 (en) | Metallic material for connector and process for producing the metallic material for connector | |
JP6647307B2 (en) | Terminal | |
JP6815876B2 (en) | Mating type terminal | |
JP5415707B2 (en) | Metal material for connector and manufacturing method thereof | |
JP6000392B1 (en) | Conductive material for connecting parts | |
JP2019071176A (en) | Terminal | |
JP7382702B2 (en) | terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5477993 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |