JP5464451B2 - コンバータ制御装置 - Google Patents
コンバータ制御装置 Download PDFInfo
- Publication number
- JP5464451B2 JP5464451B2 JP2011521756A JP2011521756A JP5464451B2 JP 5464451 B2 JP5464451 B2 JP 5464451B2 JP 2011521756 A JP2011521756 A JP 2011521756A JP 2011521756 A JP2011521756 A JP 2011521756A JP 5464451 B2 JP5464451 B2 JP 5464451B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- auxiliary circuit
- auxiliary
- converter
- snubber capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 73
- 239000000446 fuel Substances 0.000 claims description 53
- 230000005856 abnormality Effects 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 16
- 238000009499 grossing Methods 0.000 claims description 6
- 238000009795 derivation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/32—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
- B60L58/33—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
以下、各図を参照しながら本発明に係わる実施形態について説明する。 図1は本実施形態に係る車両に搭載されたFCHVシステムの構成を示す。なお、以下の説明では車両の一例として燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)を想定するが、電気自動車などにも適用可能である。また、車両のみならず各種移動体(例えば、船舶や飛行機、ロボットなど)や定置型電源、さらには携帯型の燃料電池システムにも適用可能である。
FCHVシステム100は、燃料電池110とインバータ140の間にFCコンバータ2500が設けられるとともに、バッテリ120とインバータ140の間にDC/DCコンバータ(以下、バッテリコンバータ)180が設けられている。
(1/2)O2+2H++2e- → H2O ・・・(2)
H2+(1/2)O2 → H2O ・・・(3)
図1に示すように、FCコンバータ2500は、U相、V相、W相によって構成された三相の共振型コンバータとしての回路構成を備えている。三相共振型コンバータの回路構成は、入力された直流電圧を一旦交流に変換するインバータ類似の回路部分と、その交流を再び整流して異なる直流電圧に変換する部分とが組み合わされている。本実施形態では、FCコンバータ2500としてフリーホイール回路(詳細は後述)を備えた多相のソフトスイッチングコンバータ(以下、多相のFCソフトスイッチングコンバータ)を採用している。
図2は、FCHVシステム100に搭載される多相のFCソフトスイッチングコンバータ2500の回路構成を示す図であり、図3は、多相のFCソフトスイッチングコンバータ2500の1相分の回路構成を示す図である。
主昇圧回路22aは、IGBT(Insulated Gate Bipolar Transistor)などからなる第1スイッチング素子S1とダイオードD4で構成されるスイッチング回路のスイッチ動作によって、コイルL1に蓄えられたエネルギを負荷130にダイオードD5を介して解放することで燃料電池110の出力電圧を昇圧する。
第2直列接続体は、ダイオードD2のアノード端子が第1直列接続体のダイオードD3とスナバコンデンサC2との接続部位に接続されている。さらに、ダイオードD2のカソード端子が第2スイッチング素子(補助スイッチ)S2の一端の極に接続されている。また、第2スイッチング素子S2の他端の極は、補助コイルL2とフリーホイール回路22cの接続部位に接続されている。フリーホイールダイオードD6のアノード端子は、燃料電池110の低電位側に接続される一方、フリーホイールダイオードD6のカソード端子は補助コイルL2に接続されている。このフリーホイール回路22cは、各相に共通のフリーホイールダイオードD6を備えており、補助コイルL2が通電中に第2スイッチング素子S2がオープン故障などした場合であっても、第2スイッチング素子S2を破壊するようなサージ電圧の発生を未然に防ぐために設けられたフェールセーフ機能を実現するための回路である。なお、フリーホイール回路22cを備えていない構成にも本発明を適用可能である。
まず、図4に示すソフトスイッチング処理が行われる初期状態は、燃料電池110から負荷130に要求される電力が供給されている状態、すなわち第1スイッチング素子S1、第2スイッチング素子S2がともにターンオフされることで、コイルL1、ダイオードD5を介して電流が負荷130に供給される状態にある。
ステップS101においては、第1スイッチング素子S1のターンオフを保持する一方、第2スイッチング素子S2をターンオンする。かかるスイッチング動作を行うと、FCソフトスイッチングコンバータ150の出力電圧VHと入力電圧VLの電位差により、負荷130側に流れていた電流がコイルL1、ダイオードD3、第2スイッチング素子S2、補助コイルL2を介して補助回路12b側に徐々に移行してゆく。なお、図5中では、負荷130側から補助回路12b側への電流の移行の様子を白抜き矢印で示している。
ここで、モード1からモード2への遷移完了時間tmode1は下記式(4)によって表される。
Ip;相電流
L2id;補助コイルL2のインダクタンス
上記遷移完了時間が経過し、ステップS102に移行すると、ダイオードD5を流れる電流はゼロとなり、コイルL1及びダイオードD5を介して補助回路12b側に電流が流れ込むとともに(図6に示す矢印Dm21参照)、代わってスナバコンデンサC2と燃料電池110の電圧VLとの電位差により、スナバコンデンサC2にチャージされていた電荷が補助回路12b側に流れてゆく(図6に示す矢印Dm22参照)。このスナバコンデンサC2の容量に応じて、第1スイッチング素子S1にかかる電圧が決定される。
図6に示すDm21の経路の通電が開始された後(図12に示す(A)参照)、スナバコンデンサC2の電圧VHと燃料電池110の電圧VLとの電位差により、図6に示すDm22の経路の通電、すなわち補助コイルL2への通電が開始される(図12に示す(B)参照)。ここで、図12に示すように、スナバコンデンサC2の電流は、スナバコンデンサC2の電圧が料電池110の電圧VLに到達するまで上昇し続ける。
左辺;補助コイルL2に蓄積されたエネルギ
右辺;スナバコンデンサC2に残存するエネルギ
図6に示すDm22の経路で電流が流れる動作が終了し、スナバコンデンサC2の電荷が抜けきる、あるいは最小電圧(MIN電圧)となると、第1スイッチング素子S1がターンオンされ、ステップS103に移行する。スナバコンデンサC2の電圧がゼロとなった状態では、第1スイッチング素子S1にかかる電圧もゼロとなるため、ZVS(Zero Voltage Switching)が実現される。かかる状態では、コイルL1に流れる電流Il1は、矢印Dm31に示す補助回路12b側に流れる電流Idm31と矢印Dm32に示す第1スイッチング素子S1を介して流れる電流Idm32の和となる(下記式(6)参照)。
そして、ステップS104では、ステップS103の状態が継続することで、コイルL1に流れ込んでいく電流量を増加させてコイルL1に蓄えられるエネルギを徐々に増加してゆく(図8に矢印Dm42参照)。ここで、補助回路12bにはダイオードD2が存在するため、補助コイルL2に逆電流は流れず、第2スイッチング素子S2を介してスナバコンデンサC2に充電が行われることはない。また、この時点で第1スイッチング素子S1はターンオンしているため、ダイオードD3を経由してスナバコンデンサC2に充電が行われることもない。従って、コイルL1の電流=第1スイッチング素子S1の電流となり、コイルL1に蓄えられるエネルギを徐々に増加してゆく。ここで、第1スイッチング素子S1のターンオン時間Ts1は、下記式(8)によって近似的に表される。
Tcon;制御周期
なお、制御周期とは、ステップS101〜ステップS106までの一連の処理を一周期(一サイクル)としたときのソフトスイッチング処理の時間周期を意味する。
ステップS104においてコイルL1に所望のエネルギが蓄えられると、第1スイッチング素子S12がターンオフされ、図9に矢印Dm51で示す経路に電流が流れる。ここで、図11は、モード5におけるスナバコンデンサC2の電圧Vc、第1スイッチング素子S1にかかる電圧Ve、第1スイッチング素子S1を流れる電流Ieの関係を例示した図である。上記スイッチング動作が行われると、モード2において電荷が抜かれて低電圧状態となっているスナバコンデンサC2に電荷がチャージされ、これにより、スナバコンデンサC2の電圧VcはFCソフトスイッチングコンバータ150のコンバータ出力電圧VHに向かって上昇する。このとき、第1スイッチング素子S1にかかる電圧Veの上昇速度は、スナバコンデンサC2への充電により抑制され(すなわち、電圧の立ち上がりが鈍化され)、ターンオフ時(図11に示すα参照)のスイッチング損失を低減するZVS動作をすることが可能となる。
スナバコンデンサC2が電圧VHまで充電されると、コイルL1に蓄えられたエネルギが負荷130側に解放される(図10に示す矢印Dm61参照)。ここで、第1スイッチング素子S1のターンオフ時間Ts2は、下記式(9)によって近似的に表される。
ここで、図13は、FCソフトスイッチングコンバータ150の補助回路22bが正常な場合のスナバコンデンサC2の両端電圧(実線)、第1スイッチング素子S1の両端電圧(破線)、第1スイッチング素子S1に流れる電流(一点鎖線)を示す図であり、図14は、FCソフトスイッチングコンバータ150の補助回路22bにオープン故障が生じている場合(すなわち、第2スイッチング素子S2が常時オフしている場合)のスナバコンデンサC2の両端電圧(実線)、第1スイッチング素子S1の両端電圧(破線)、第1スイッチング素子S1に流れる電流(一点鎖線)を示す図である。
なお、以下では、説明の便宜上、補助回路22bが正常な場合のスナバコンデンサC2の両端電圧Vc2、第1スイッチング素子S1の両端電圧Vs1をそれぞれソフトスイッチC2電圧、ソフトスイッチS1電圧と呼び、補助回路22bがオープン故障している場合のスナバコンデンサC2の両端電圧Vc2、第1スイッチング素子S1の両端電圧Vs1をそれぞれハードスイッチC2電圧、ハードスイッチS1電圧と呼ぶ。
補助回路22bが正常な状態において、スイッチング素子をターンオフすると(図8に示すモード4→図9に示すモード5参照)、コイルL1に溜まったエネルギーが解放され、図9に矢印Dm51で示す経路に電流が流れる。これにより、モード2において電荷が抜かれて低電圧状態となっているスナバコンデンサC2に電荷がチャージされ、ソフトスイッチC2電圧は上昇してゆく。ここで、ソフトスイッチS1電圧はクランプダイオードD3によってクランプされ、ソフトスイッチC2電圧がソフトスイッチS1電圧、すなわち電圧VHに収束してゆく。
補助回路22bにオープン故障が生じている場合には、スイッチング素子をターンオフする前にハードスイッチC2の両端電圧Vc2はVHを保持する。ここで、第1スイッチング素子S1がターンオフされると、補助回路22bが正常に動作しないために第1スイッチング素子S1にサージ電圧Vsuが発生する。このサージ電圧VsuはクランプダイオードD3によってクランプされ、スナバコンデンサC2によってハードスイッチC2電圧としてあらわれる。ハードスイッチS1電圧は、最終的にVHに収束してゆくが、ハードスイッチC2電圧はサージ電圧Vsuにクランプされるため、本実施形態では、スナバコンデンサC2の両端電圧Vc2と第1スイッチング素子S1の両端電圧Vs1との差分電圧ΔVを求め、求めた差分電圧ΔVが差分電圧閾値以上である場合に、補助回路22bに故障(オープン故障)が生じていると判断する。もちろん、差分電圧ΔVを求めることなく、スナバコンデンサC2の両端電圧Vc2のみを検出し、検出したコンデンサC2の両端電圧Vc2が正常電圧閾値以上である場合に故障(オープン故障)が生じていると判断しても良い(詳細は変形例1参照)。なお、差分電圧閾値や正常電圧閾値については、予め実験などによって求めておけば良い。以下、補助回路22bの故障判定処理について、図15を参照しながら説明する。
コントローラ(差分導出手段)160は、例えば図8に示すモード4から図9に示すモード5への移行に伴い、第1スイッチング素子S1をターンオフすると(ステップS1)、スナバコンデンサC2の両端電圧Vc2と第1スイッチング素子S1の両端電圧Vs1とを検出し、差分電圧ΔVを求める。
コントローラ160は、求めた差分電圧ΔVとメモリ(図示略)に格納された電圧閾値とを比較し、差分電圧ΔVが差分電圧閾値以上であるか否かを判断する(ステップS2)。
一方、コントローラ(判断手段、フェールセーフ手段)160は、差分電圧ΔVが差分電圧閾値以上である場合には、補助回路22bに故障(オープン故障)が生じていると判断し、ステップS3に示すフェールセーフ動作へ移行し、処理を終了する。ここで、フェールセーフ動作としては、補助回路22bにオープン故障が生じていると判断された相(例えばU相)のコンバータを停止し、残りの相(例えばV相、W相)のコンバータを利用して負荷130を駆動する。
<変形例1>
図16は、変形例1に係る補助回路22bの故障判定処理を示すフローチャートである。なお、図16に示すステップのうち、前掲図15に対応するステップについては同一符号を付し、詳細な説明は割愛する。
コントローラ(差分導出手段)160は、第1スイッチング素子S1をターンオフすると(ステップS1)、スナバコンデンサC2の両端電圧Vc2を検知する。
コントローラ160は、検知したスナバコンデンサC2の両端電圧Vc2とメモリ(図示略)に格納された正常電圧閾値とを比較し、スナバコンデンサC2の両端電圧Vc2が正常電圧閾値以上であるか否かを判断する(ステップSa2)。
一方、コントローラ(判断手段、フェールセーフ手段)160は、スナバコンデンサC2の両端電圧Vc2が正常電圧閾値以上である場合には、補助回路22bに故障(オープン故障)が生じていると判断し、ステップS3に示すフェールセーフ動作へ移行し、処理を終了する。ここで、フェールセーフ動作としては、補助回路22bにオープン故障が生じていると判断された相(例えばU相)のコンバータを停止し、残りの相(例えばV相、W相)のコンバータを利用して負荷130を駆動する。
上述した本実施形態では、フェールセーフ動作として、オープン故障が生じていると判断された相のコンバータを停止し、残りの相のコンバータを利用して負荷130を駆動する場合について説明したが、これに限る趣旨ではない。例えば、オープン故障が生じていると判断された相についてはソフトスイッチングではなくハードスイッチングを行うようにしても良い。ただし、ハードスイッチングを行う場合には、第1スイッチング素子S1について素子破壊などの問題が生じ得るため、予め電流の変化率を抑えるように出力制限をかければ良い。具体的には、コントローラ(フェールセーフ手段)160は、第1スイッチング素子S1に流れる電流の変化率が予め設定された閾値変化率以下となるように、監視・制限する。具体的には、ハードスイッチングを行う場合には第1スイッチング素子S1のゲート抵抗を大きくする、あるいは負荷130の最大許容値を低く設定することで、出力制限をかければ良い。ここで、第1スイッチング素子S1のゲート抵抗については、例えば補助回路22bが正常な場合に利用するゲート抵抗(以下、第1ゲート抵抗)R1と、補助回路22bにオープン故障が生じている場合に利用する抵抗値の大きなゲート抵抗(以下、第2ゲート抵抗)R2(>R1)を用意しておく。コントローラ160は、図15や図16に示す故障判定処理を実行結果に基づき、第1スイッチング素子S1のゲート抵抗の選択切換を行う。すなわち、コントローラ160は、補助回路22bが正常であると判断すると(ステップS2またはステップS2a;NO)、第1ゲート抵抗R1を選択する一方、補助回路22bにオープン故障が生じていると判断すると(ステップS2またはステップS2a;YES)、第2ゲート抵抗R2を選択する。かかる構成によって素子破壊などの問題を未然に防止しても良い。なお、負荷130の最大許容値の選択切換を行う場合の動作については、第1スイッチング素子S1のゲート抵抗の選択切換を行う場合と同様に説明することができるため、説明を割愛する。また、第1スイッチング素子S1のゲート抵抗値や負荷130の最大許容値については、予め実験などによって求めておければ良い。
また、上述した本実施形態では、補助回路22bに含まれる第2直列接続体として、ダイオードD2のアノード端子が第1直列接続体のダイオードD3とスナバコンデンサC2との接続部位に接続され、ダイオードD2のカソード端子が第2スイッチング素子(補助スイッチ)S2の一端の極に接続されている例を説明したが(図3参照)、この第2直列接続体の回路トポロジーについて、コイルL2、ダイオードD2、第2スイッチング素子S2などによるスイッチング回路の直列順序は適宜入れ替えた態様も採用し得る。具体的には、図16や図17に示すように、フリーホイール回路22cを除くとともにコイルL2と第2スイッチング素子S2などによるスイッチング回路の順序を入れ替えても良い。
Claims (6)
- 燃料電池の出力電圧を制御する主昇圧回路と補助回路とを備えたソフトスイッチングコンバータの制御装置であって、
前記補助回路は、
補助スイッチと、
主昇圧回路を構成する主スイッチに並列に接続され、かつ前記燃料電池の高電位側の端子と低電位側の端子に接続された、クランプダイオードとスナバコンデンサとが直列接続された第一直列接続体とを備え、
前記コンバータ制御装置は、
前記主スイッチをターンオフした場合に、前記クランプダイオードによってクランプされる前記スナバコンデンサの両端電圧を検知する検知手段と、
前記スナバコンデンサの両端電圧と設定された正常電圧閾値とを比較し、該両端電圧が正常電圧閾値を超えている場合に前記補助回路に異常が生じていると判断する判断手段と、
前記補助回路に異常が生じていると判断された場合に、ハードスイッチングを行う前記主昇圧回路の前記主スイッチに流れる電流の変化率を閾値変化率以下に制限するフェールセーフ手段と
を具備する、コンバータ制御装置。 - 前記スナバコンデンサ両端電圧と前記主スイッチの両端電圧との差分電圧を求める差分導出手段をさらに備え、
前記判断手段は、前記差分電圧と設定された故障判定閾値とを比較し、該差分電圧が該故障判定閾値を超えている場合に前記補助回路に異常が生じていると判断する、請求項1に記載のコンバータ制御装置。 - 前記フェールセーフ手段は、前記補助回路に異常が生じていると判断された場合のゲート抵抗を、前記補助回路が正常であると判断された場合の前記主スイッチのゲート抵抗よりも大な値に設定することで、前記電流の変化率を閾値変化率以下に制限する、請求項1または2に記載のコンバータ制御装置。
- 前記補助回路は、
前記クランプダイオードと前記スナバコンデンサとの接続部位と、前記主コイルの一端との間に接続された、ダイオードと補助コイルと前記補助スイッチとが直列接続された第二直列接続体をさらに備える、請求項1〜3のいずれか1の請求項に記載のコンバータ制御装置。 - 前記主昇圧回路は、
一端が前記燃料電池の高電位側の端子に接続された主コイルと、
アノードが前記主コイルの他端に接続された第一ダイオードと、
前記第一ダイオードのカソードと前記燃料電池の低電位側の端子に接続された平滑コンデンサとをさらに備え、
前記主スイッチは、一端が前記主コイルの他端に接続され、他端が前記燃料電池の低電位側の端子に接続されている、請求項1〜4のいずれか1の請求項に記載のコンバータ制御装置。 - 前記ソフトスイッチングコンバータは、
前記補助回路を、相毎に備えた多相ソフトスイッチングコンバータであり、
前記各相の補助回路を構成する補助コイルは、全相の補助回路について共通化されている、請求項1に記載のコンバータ制御装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/062594 WO2011004492A1 (ja) | 2009-07-10 | 2009-07-10 | コンバータ制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011004492A1 JPWO2011004492A1 (ja) | 2012-12-13 |
JP5464451B2 true JP5464451B2 (ja) | 2014-04-09 |
Family
ID=43428930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011521756A Active JP5464451B2 (ja) | 2009-07-10 | 2009-07-10 | コンバータ制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8896282B2 (ja) |
JP (1) | JP5464451B2 (ja) |
CN (1) | CN102474177B (ja) |
DE (1) | DE112009005057T5 (ja) |
WO (1) | WO2011004492A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010143293A1 (ja) * | 2009-06-11 | 2010-12-16 | トヨタ自動車株式会社 | コンバータ制御装置 |
JP5387628B2 (ja) * | 2011-07-29 | 2014-01-15 | Tdk株式会社 | 電流型絶縁コンバータ |
CN102358202B (zh) * | 2011-09-05 | 2013-06-12 | 电子科技大学 | 一种电动汽车蓄电池切换控制方法 |
CN103187807B (zh) * | 2011-12-31 | 2015-02-18 | 中国电力科学研究院 | 锂-液流电池联合储能电站的实时功率分配方法及系统 |
US9768607B2 (en) * | 2015-05-11 | 2017-09-19 | Infineon Technologies Ag | System and method for a multi-phase snubber circuit |
EP3304711A1 (en) * | 2015-05-27 | 2018-04-11 | Koninklijke Philips N.V. | Dc to dc converter |
JP6546543B2 (ja) * | 2016-02-17 | 2019-07-17 | 株式会社デンソー | 電力変換装置 |
US10014767B2 (en) * | 2016-03-25 | 2018-07-03 | Intel Corporation | Bi-directional multi-mode charge pump |
CN106405307B (zh) * | 2016-08-29 | 2019-02-26 | 西北工业大学 | 一种浮地交错变换器单管开路故障检测方法 |
US11913998B2 (en) * | 2018-07-25 | 2024-02-27 | Panasonic Intellectual Property Management Co., Ltd. | Management device and power supply system |
CN111204225B (zh) * | 2020-01-16 | 2021-10-22 | 宁波市江北九方和荣电气有限公司 | 机车电容在线检测及监控装置 |
US12199516B2 (en) * | 2023-01-11 | 2025-01-14 | Richtek Technology Corporation | Multi-phase switching converter and control method thereof |
US12199507B2 (en) * | 2023-03-01 | 2025-01-14 | Richtek Technology Corporation | Multi-phase switching converter and control method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821861A (ja) * | 1994-07-08 | 1996-01-23 | Toshiba Corp | 電力変換装置の故障検出回路 |
JP2000036308A (ja) * | 1998-07-16 | 2000-02-02 | Toyota Motor Corp | 燃料電池システム |
JP2002198792A (ja) * | 2000-12-25 | 2002-07-12 | Meidensha Corp | 半導体電力変換装置 |
WO2006098376A1 (ja) * | 2005-03-16 | 2006-09-21 | National University Corporation Yokohama National University | チョッパ回路 |
JP2008079447A (ja) * | 2006-09-22 | 2008-04-03 | Toyota Motor Corp | 多相電圧変換装置、車両および多相電圧変換装置の制御方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155112A (en) * | 1977-06-06 | 1979-05-15 | Motorola, Inc. | Power supply circuitry |
JP3384059B2 (ja) | 1993-11-12 | 2003-03-10 | 富士電機株式会社 | 燃料電池発電装置 |
US5754384A (en) * | 1996-09-09 | 1998-05-19 | Hughes Electronics Corporation | Overcurrent protection circuitry for non-isolated battery discharge controller |
JPH1094249A (ja) | 1996-09-12 | 1998-04-10 | Toshiba Corp | チョッパ回路 |
JP4265354B2 (ja) | 2003-09-26 | 2009-05-20 | 株式会社豊田自動織機 | 双方向dc−dcコンバータ |
JP2006042443A (ja) | 2004-07-23 | 2006-02-09 | Mitsubishi Electric Corp | 共振コンバータ |
US7233507B2 (en) * | 2005-05-18 | 2007-06-19 | Optimum Power Conversion, Inc. | Non dissipative snubber circuit with saturable reactor |
JP4877459B2 (ja) | 2005-06-01 | 2012-02-15 | ミツミ電機株式会社 | 電流共振型マルチフェーズdc/dcコンバータおよびその制御方法 |
JP2007006669A (ja) | 2005-06-27 | 2007-01-11 | Mitsumi Electric Co Ltd | 電流共振型マルチフェーズdc/dcコンバータおよびその制御方法 |
US7382113B2 (en) * | 2006-03-17 | 2008-06-03 | Yuan Ze University | High-efficiency high-voltage difference ratio bi-directional converter |
JP5133657B2 (ja) | 2007-11-15 | 2013-01-30 | 三菱電機株式会社 | 高電圧電源装置 |
JP4561827B2 (ja) | 2007-12-28 | 2010-10-13 | トヨタ自動車株式会社 | 燃料電池システム、及び燃料電池用昇圧コンバータ |
CN101237154A (zh) * | 2008-02-01 | 2008-08-06 | 清华大学 | 一种电动汽车用的动力电池-超级电容混合动力系统 |
DE112009004843B4 (de) | 2009-06-02 | 2019-01-17 | Toyota Jidosha Kabushiki Kaisha | Leistungsversorgungssystem |
-
2009
- 2009-07-10 DE DE112009005057T patent/DE112009005057T5/de active Pending
- 2009-07-10 CN CN200980160390.6A patent/CN102474177B/zh active Active
- 2009-07-10 WO PCT/JP2009/062594 patent/WO2011004492A1/ja active Application Filing
- 2009-07-10 JP JP2011521756A patent/JP5464451B2/ja active Active
- 2009-07-10 US US13/383,119 patent/US8896282B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821861A (ja) * | 1994-07-08 | 1996-01-23 | Toshiba Corp | 電力変換装置の故障検出回路 |
JP2000036308A (ja) * | 1998-07-16 | 2000-02-02 | Toyota Motor Corp | 燃料電池システム |
JP2002198792A (ja) * | 2000-12-25 | 2002-07-12 | Meidensha Corp | 半導体電力変換装置 |
WO2006098376A1 (ja) * | 2005-03-16 | 2006-09-21 | National University Corporation Yokohama National University | チョッパ回路 |
JP2008079447A (ja) * | 2006-09-22 | 2008-04-03 | Toyota Motor Corp | 多相電圧変換装置、車両および多相電圧変換装置の制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011004492A1 (ja) | 2012-12-13 |
CN102474177A (zh) | 2012-05-23 |
CN102474177B (zh) | 2014-12-24 |
US20120139522A1 (en) | 2012-06-07 |
WO2011004492A1 (ja) | 2011-01-13 |
DE112009005057T5 (de) | 2012-06-28 |
US8896282B2 (en) | 2014-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5464451B2 (ja) | コンバータ制御装置 | |
JP5327486B2 (ja) | コンバータ制御装置 | |
JP5447520B2 (ja) | コンバータ制御装置及び多相コンバータ | |
JP5018966B2 (ja) | コンバータ制御装置 | |
JP5435028B2 (ja) | コンバータ制御装置 | |
JP6597665B2 (ja) | 燃料電池システム | |
JP5464323B2 (ja) | コンバータ制御装置 | |
JP2011019338A (ja) | コンバータ制御装置 | |
WO2010140255A1 (ja) | コンバータ制御装置 | |
JP5333007B2 (ja) | 燃料電池システム | |
JP2011109776A (ja) | 電力変換装置 | |
JP2010288366A (ja) | コンバータ制御装置 | |
JP2011109775A (ja) | コンバータ制御装置 | |
JP2010288365A (ja) | コンバータ制御装置 | |
WO2010140227A1 (ja) | コンバータ制御装置 | |
JP2013038927A (ja) | 電動機を搭載した車両 | |
JP2011019337A (ja) | コンバータ制御装置 | |
JP2012019564A (ja) | 電力変換装置及び電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140108 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5464451 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |