JP5463861B2 - Exhaust gas purification catalyst - Google Patents
Exhaust gas purification catalyst Download PDFInfo
- Publication number
- JP5463861B2 JP5463861B2 JP2009257293A JP2009257293A JP5463861B2 JP 5463861 B2 JP5463861 B2 JP 5463861B2 JP 2009257293 A JP2009257293 A JP 2009257293A JP 2009257293 A JP2009257293 A JP 2009257293A JP 5463861 B2 JP5463861 B2 JP 5463861B2
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- oxide powder
- powder
- supported
- cezr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 92
- 238000000746 purification Methods 0.000 title claims description 22
- 239000000843 powder Substances 0.000 claims description 214
- 239000002131 composite material Substances 0.000 claims description 118
- 239000010410 layer Substances 0.000 claims description 68
- 239000002245 particle Substances 0.000 claims description 51
- 229910052697 platinum Inorganic materials 0.000 claims description 34
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 31
- 229910052763 palladium Inorganic materials 0.000 claims description 30
- 229910052703 rhodium Inorganic materials 0.000 claims description 15
- 229910000510 noble metal Inorganic materials 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 239000002356 single layer Substances 0.000 claims description 5
- 239000011246 composite particle Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 description 45
- 239000001301 oxygen Substances 0.000 description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 43
- 239000007789 gas Substances 0.000 description 37
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 28
- 238000003860 storage Methods 0.000 description 15
- 229910002215 La0.9Sr0.1Ga0.8Mg0.2O3 Inorganic materials 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 229910052746 lanthanum Inorganic materials 0.000 description 10
- 239000011164 primary particle Substances 0.000 description 10
- 229910002651 NO3 Inorganic materials 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 210000002421 cell wall Anatomy 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、排気ガス浄化用触媒に関する。 The present invention relates to an exhaust gas purification catalyst.
エンジン排気ガス中のHC(炭化水素)、CO及びNOx(窒素酸化物)を浄化する触媒は約200℃から約1100℃までの広範な温度域で高い浄化率を有することが求められる。そのため、Pt、Pd、Rh等の希少金属を触媒金属として用いるとともに、これら触媒金属を活性アルミナ、酸化ジルコニウム、或いは酸素吸蔵放出能を有するCe系酸化物等の耐熱性酸化物粒子に担持させた状態で担体上の触媒層に含ませることが行なわれている。しかし、触媒が高温の排気ガスに晒されると、少しずつではあるが、触媒金属が凝集してその表面積が低下し、触媒性能が低下することが知られている。そのため、通常はこの凝集を見越して触媒金属を触媒層に多めに含ませることがなされている。 A catalyst that purifies HC (hydrocarbon), CO, and NOx (nitrogen oxide) in engine exhaust gas is required to have a high purification rate in a wide temperature range from about 200 ° C. to about 1100 ° C. Therefore, rare metals such as Pt, Pd, and Rh are used as catalyst metals, and these catalyst metals are supported on heat-resistant oxide particles such as activated alumina, zirconium oxide, or Ce-based oxides having oxygen storage / release ability. In this state, the catalyst layer on the support is included. However, it is known that when the catalyst is exposed to high-temperature exhaust gas, the catalytic metal is agglomerated and its surface area is reduced, and the catalytic performance is lowered. For this reason, usually, a large amount of catalyst metal is included in the catalyst layer in anticipation of this aggregation.
一方、最近では、触媒金属が凝集しないようにする工夫もなされ、例えば、特許文献1,2には、RhをCeZr系複合酸化物にドープさせるとともに、一部の触媒金属をその複合酸化物の表面に露出させることが記載されている。かかるRhドープCeZr系複合酸化物によれば、Rhの凝集が抑制されるだけでなく、CeZr系複合酸化物の酸素吸蔵放出量の増大及び酸素吸蔵放出速度の向上も同時に実現される。これは、排気ガス空燃比(A/F)の変動があっても、触媒まわりを排気ガスの浄化に好適なストイキ近傍の雰囲気に素早く戻すことができるという、自動車ならではの課題解決に大きな効果を奏する。
On the other hand, recently, a device has been devised to prevent the catalyst metal from agglomerating. For example,
また、排気ガス浄化用触媒では、主に酸化触媒能が利用されるPtやPdと、主に還元触媒能が利用されるRhとを組み合わせることがなされている。例えば、PtとRh、PdとRh、という二種の触媒金属を組み合わせたバイメタル触媒、或いはPt、Pd及びRhの組み合わせであるトリメタル触媒が知られている。上記特許文献1,2ではPtやPdは活性アルミナに担持されている。
Further, in the exhaust gas purifying catalyst, Pt or Pd that mainly uses oxidation catalytic ability is combined with Rh that mainly uses reduction catalytic ability. For example, a bimetallic catalyst in which two types of catalytic metals Pt and Rh and Pd and Rh are combined, or a trimetallic catalyst that is a combination of Pt, Pd, and Rh is known. In
また、特許文献3には、貴金属を含有するペロブスカイト型複合酸化物を排気ガス浄化用触媒に利用することが記載されている。それは、例えば、Pdを含有するペロブスカイト型複合酸化物が担持されたLa含有θアルミナと、Pt及びRhが担持されたジルコニア系複合酸化物と、Ptが担持されたセリア系複合酸化物と、Pt及びRhが担持されたθアルミナとを混合したものである。上記貴金属を含有するペロブスカイト型複合酸化物については、一般式AB1−mNmO3(Aは希土類元素及びアルカリ土類金属から選ばれる少なくとも1種、Bは遷移元素及びAlから選ばれる少なくとも1種、NはRh、Pd及びPtから選ばれる少なくとも1種、0<m<0.5)で表されている。 Patent Document 3 describes that a perovskite complex oxide containing a noble metal is used as an exhaust gas purifying catalyst. For example, a La-containing θ-alumina supporting a perovskite-type composite oxide containing Pd, a zirconia-based composite oxide supporting Pt and Rh, a ceria-based composite oxide supporting Pt, and Pt And θ alumina on which Rh is supported. The perovskite complex oxide containing the noble metal has a general formula AB 1-m N m O 3 (A is at least one selected from rare earth elements and alkaline earth metals, B is at least selected from transition elements and Al). One, N is represented by at least one selected from Rh, Pd and Pt, 0 <m <0.5).
上述の如きペロブスカイト型複合酸化物は酸素イオン伝導性を有することが知られており、酸素の吸蔵(吸着)放出能に関し、ペロブスカイト型複合酸化物とCe系複合酸化物とを比較すると、両者は次の関係にある。 The perovskite complex oxide as described above is known to have oxygen ion conductivity, and when comparing the perovskite complex oxide with the Ce-based complex oxide in terms of oxygen storage (adsorption) release, It has the following relationship.
(1) 酸素吸蔵放出量 ペロブスカイト型複合酸化物>Ce系複合酸化物
(2) 酸素吸蔵放出速度 ペロブスカイト型複合酸化物<Ce系複合酸化物
(3) 放出酸素 ペロブスカイト型複合酸化物;普通の酸素分子
Ce系複合酸化物;活性酸素
また、上記(2)にも関連するが、Ce系複合酸化物は、リーン(酸素過剰雰囲気)で酸素を吸蔵し、リッチ(酸素不足雰囲気)で酸素を放出するのに対し、ペロブスカイト型複合酸化物は、リーンで周囲から酸素を取り込み、リッチでその酸素を放出する傾向があるものの、Ce系複合酸化物に比べて、雰囲気の変化に対する酸素の吸蔵・放出の応答性が低い。
(1) Oxygen storage / release amount Perovskite complex oxide> Ce complex oxide
(2) Oxygen storage / release rate Perovskite complex oxide <Ce complex oxide
(3) Released oxygen Perovskite complex oxide; Ordinary oxygen molecule
Ce-based composite oxide; active oxygen Although related to (2) above, Ce-based composite oxide absorbs oxygen in a lean (oxygen-rich atmosphere) and releases oxygen in a rich (oxygen-deficient atmosphere). On the other hand, the perovskite complex oxide tends to take in oxygen from the surroundings in a lean manner and release the oxygen in a rich manner, but it does not absorb and release oxygen in response to changes in the atmosphere compared to Ce-based complex oxides. Responsiveness is low.
以上から、本発明は、ペロブスカイト型複合酸化物を排気ガス浄化用触媒に利用するにあたって、その酸素吸蔵放出速度が遅い点、雰囲気のリーン・リッチ変化に対する応答性が低い点、放出される酸素の活性が低い点を考慮して、排気ガス浄化用触媒の性能改善を図ることを課題とする。 From the above, the present invention uses a perovskite complex oxide as an exhaust gas purifying catalyst, has a low oxygen storage / release rate, a low response to lean / rich changes in the atmosphere, In view of the low activity, it is an object to improve the performance of the exhaust gas purifying catalyst.
本発明は、上記課題を解決するために、ペロブスカイト型複合酸化物とRhドープCeZr系複合酸化物とを組み合わせた。 In order to solve the above problems, the present invention combines a perovskite complex oxide and a Rh-doped CeZr-based complex oxide.
すなわち、上記課題を解決する第1の手段は、CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶しているRhドープCeZr系複合酸化物粉末と、耐熱性粒子にPt及びPdの少なくとも一方の貴金属が担持された貴金属担持耐熱性粉末とが担体上の触媒層に含まれている排気ガス浄化用触媒であって、
上記触媒層は、単層又は複数の層よりなり、さらに、ペロブスカイト型複合酸化物粉末を含有し、該ペロブスカイト型複合酸化物粉末と上記RhドープCeZr系複合酸化物粉末とは、同じ層中に混在し、若しくは隣接する二層に分かれており、
上記貴金属を担持する耐熱性粒子は、Laを含有する活性Al 2 O 3 粒子、BaSO 4 粒子、並びにCeZr系複合酸化物とAl 2 O 3 との複合化物粒子から選ばれる少なくとも一種であることを特徴とする。
That is, the first means for solving the above problem is that Rh-doped CeZr-based composite oxide powder in which Rh is solid-solved in CeZr-based composite oxide particles containing Ce and Zr, and Pt and An exhaust gas purifying catalyst comprising a noble metal-supported heat-resistant powder on which at least one noble metal of Pd is supported and contained in a catalyst layer on a carrier,
The catalyst layer is composed of a single layer or a plurality of layers, and further contains a perovskite-type composite oxide powder. The perovskite-type composite oxide powder and the Rh-doped CeZr-based composite oxide powder are in the same layer. It is mixed or divided into two adjacent layers ,
The heat-resistant particles supporting the noble metal are at least one selected from active Al 2 O 3 particles containing La , BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3. Features.
これにより、ペロブスカイト型複合酸化物粉末から酸素が放出されたとき、その一部がRhドープCeZr系複合酸化物粉末に吸蔵され、リッチ雰囲気になったときに該RhドープCeZr系複合酸化物粉末から活性酸素となって放出される。或いは、ペロブスカイト型複合酸化物粉末から放出される酸素が、RhドープCeZr系複合酸化物粉末から放出される活性酸素との反応により、活性が高い状態になる。このように、RhドープCeZr系複合酸化物粉末の存在によって、ペロブスカイト型複合酸化物粉末から放出される酸素の活性化が図れる。 As a result, when oxygen is released from the perovskite complex oxide powder, a part of the oxygen is occluded in the Rh-doped CeZr-based complex oxide powder, and when the rich atmosphere is reached, the Rh-doped CeZr-based complex oxide powder Released as active oxygen. Alternatively, the oxygen released from the perovskite complex oxide powder becomes highly active due to the reaction with the active oxygen released from the Rh-doped CeZr composite oxide powder. Thus, the oxygen released from the perovskite complex oxide powder can be activated by the presence of the Rh-doped CeZr-based complex oxide powder.
ここに、Rhが固溶していないCeZr系複合酸化物粉末、或いはその表面にRhを担持したCeZr系複合酸化物粉末も、吸蔵した酸素を活性酸素として放出するが、その吸蔵放出速度はRhドープCeZr系複合酸化物粉末に比べて遅く、そのため、ペロブスカイト型複合酸化物粉末から放出される酸素の活性化に充分な効果を発揮し得ない。すなわち、RhドープCeZr系複合酸化物粉末の場合は、その酸素吸蔵放出速度が速いためにペロブスカイト型複合酸化物粉末から放出される酸素の活性化が効率良く図れるものである。従って、ペロブスカイト型複合酸化物粉末から放出される酸素が、貴金属担持耐熱性粉末のPt又はPdによるHCやCOの酸化に有効に利用され、HCやCOの酸化、これに伴うNOxの還元が効率良く進む。 Here, CeZr-based composite oxide powder in which Rh is not dissolved, or CeZr-based composite oxide powder supporting Rh on its surface also releases the stored oxygen as active oxygen, but the storage-release rate is Rh It is slower than the doped CeZr-based composite oxide powder, and therefore cannot sufficiently exhibit the effect of activating oxygen released from the perovskite-type composite oxide powder. That is, in the case of the Rh-doped CeZr-based composite oxide powder, the oxygen released from the perovskite-type composite oxide powder can be activated efficiently because of its high oxygen storage / release rate. Therefore, the oxygen released from the perovskite complex oxide powder is effectively utilized for the oxidation of HC and CO by Pt or Pd of the noble metal-supported heat-resistant powder, and the oxidation of HC and CO and the accompanying reduction of NOx are efficient. Proceed well.
また、ペロブスカイト型複合酸化物粉末は、酸素の吸蔵放出速度は遅いものの、酸素の吸蔵放出量が多い。このため、エンジンの燃料カット時など排気ガスが比較的長い時間リーンになるときに、酸素がペロブスカイト型複合酸化物粉末に吸蔵され、RhドープCeZr系複合酸化物粉末まわりや貴金属担持耐熱性粉末まわりが酸素過剰雰囲気になることが抑制される。よって、これら触媒成分によるNOxの還元に有利になる。 In addition, the perovskite complex oxide powder has a large oxygen storage / release amount although the oxygen storage / release rate is slow. For this reason, oxygen is occluded in the perovskite type complex oxide powder when the exhaust gas leans for a relatively long time, such as when the engine is cut, and around the Rh-doped CeZr-based complex oxide powder and the noble metal-supported heat-resistant powder. Is suppressed to an oxygen-excess atmosphere. Therefore, it is advantageous for the reduction of NOx by these catalyst components.
そうして、上記貴金属を担持する耐熱性粒子を、Laを含有する活性Al2O3粒子、BaSO4粒子、並びにCeZr系複合酸化物とAl2O3との複合化物粒子から選ばれる少なくとも一種としたから、良好な触媒性能と耐熱性が得られる。耐熱性粒子としては、La含有Al2O3粒子が最も好ましく、これにCeZr系複合酸化物とAl2O3との複合化物粒子、及びBaSO4粒子が順に続く。 Then, at least one heat-resistant particles supporting the precious metal, active Al 2 O 3 particles containing La, selected from composite compound particles of BaSO 4 particles, and CeZr-based mixed oxide and Al 2 O 3 since was, good good catalyst performance and heat resistance can be obtained. As the heat-resistant particles, La-containing Al 2 O 3 particles are most preferable, followed by composite particles of CeZr-based composite oxide and Al 2 O 3 and BaSO 4 particles in this order.
La含有Al2O3粒子の場合、その耐熱性が高く且つ多数の細孔を有し表面積が大であることから、PtやPdを高分散に担持することができ、該PtやPdのシンタリングが抑制される。CeZr系複合酸化物とAl2O3との複合化物粒子は、CeZr系複合酸化物一次粒子とAl2O3一次粒子とが凝集してなるものであり、Al2O3一次粒子が立体障害となることによってCeZr系複合酸化物一次粒子のシンタリングが抑制され、長期間の使用によっても高い比表面積が維持される。BaSO4粒子の場合、活性Al2O3ほどの大きな比表面積は備えていないが、高温の排気ガスに晒されても、比表面積の低下が実質的になく、PtやPdのサポート材としては極めて安定であり、しかも、エンジンオイルから排気ガス中に混入するP、Zn、Sによる被毒(触媒の劣化)も少なくなる。 In the case of La-containing Al 2 O 3 particles, Pt and Pd can be supported in a highly dispersed state because of its high heat resistance, a large number of pores, and a large surface area. The ring is suppressed. Composite compound particles of CeZr-based mixed oxide and Al 2 O 3 is for the CeZr-based mixed oxide primary particles and Al 2 O 3 primary particles formed by agglomerating, Al 2 O 3 primary particles steric hindrance As a result, sintering of the CeZr-based composite oxide primary particles is suppressed, and a high specific surface area is maintained even after long-term use. In the case of BaSO 4 particles, the specific surface area as large as active Al 2 O 3 is not provided, but even when exposed to high-temperature exhaust gas, the specific surface area does not substantially decrease, and as a support material for Pt and Pd, It is extremely stable, and poisoning (deterioration of the catalyst) due to P, Zn, and S mixed from the engine oil into the exhaust gas is reduced.
上記ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるものであることが好ましい。これにより、ペロブスカイト型複合酸化物粉末の酸素吸蔵放出性能が高まるとともに、排気ガスの浄化に有利になる。 The perovskite complex oxide powder is preferably formed by supporting at least one kind selected from Pt, Pd and Rh on the perovskite complex oxide particles. As a result, the oxygen storage / release performance of the perovskite complex oxide powder is enhanced, and it is advantageous for purification of exhaust gas.
上記課題を解決する第2の手段は、CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶しているRhドープCeZr系複合酸化物粉末と、耐熱性粒子にPt及びPdの少なくとも一方の貴金属が担持された貴金属担持耐熱性粉末とが担体上の触媒層に含まれている排気ガス浄化用触媒であって、 A second means for solving the above problem is that Rh-doped CeZr-based composite oxide powder in which Rh is solid-solved in CeZr-based composite oxide particles containing Ce and Zr, and heat-resistant particles of Pt and Pd. An exhaust gas purifying catalyst comprising a noble metal-supporting heat-resistant powder on which at least one noble metal is supported and contained in a catalyst layer on a carrier,
上記触媒層は、単層又は複数の層よりなり、さらに、ペロブスカイト型複合酸化物粉末を含有し、該ペロブスカイト型複合酸化物粉末と上記RhドープCeZr系複合酸化物粉末とは、同じ層中に混在し、若しくは隣接する二層に分かれており、 The catalyst layer is composed of a single layer or a plurality of layers, and further contains a perovskite-type composite oxide powder. The perovskite-type composite oxide powder and the Rh-doped CeZr-based composite oxide powder are in the same layer. It is mixed or divided into two adjacent layers,
上記ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるものであることを特徴とする。 The perovskite complex oxide powder is characterized in that at least one selected from Pt, Pd and Rh is supported on the perovskite complex oxide particles.
これにより、上記第1の手段と同じく、ペロブスカイト型複合酸化物粉末から放出される酸素の活性化が図れ、この酸素が貴金属担持耐熱性粉末のPt又はPdによるHCやCOの酸化に有効に利用され、HCやCOの酸化、これに伴うNOxの還元が効率良く進む。また、排気ガスが比較的長い時間リーンになるときに、RhドープCeZr系複合酸化物粉末まわりや貴金属担持耐熱性粉末まわりが酸素過剰雰囲気になることが抑制されるため、これら触媒成分によるNOxの還元に有利になる。 As a result, the oxygen released from the perovskite complex oxide powder can be activated as in the first means, and this oxygen is effectively used for the oxidation of HC and CO by Pt or Pd of the noble metal-supported heat-resistant powder. Thus, the oxidation of HC and CO and the accompanying reduction of NOx proceed efficiently. Further, when the exhaust gas is lean for a relatively long time, it is suppressed that the atmosphere around the Rh-doped CeZr-based composite oxide powder and the noble metal-supported heat-resistant powder is in an oxygen-excess atmosphere. It is advantageous for reduction.
そうして、ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるから、その酸素吸蔵放出性能が高まるとともに、排気ガスの浄化に有利になる。 Thus, since the perovskite type complex oxide powder has at least one selected from Pt, Pd and Rh supported on the perovskite type complex oxide particles, its oxygen storage / release performance is enhanced and the exhaust gas is purified. To be advantageous.
好ましい実施形態では、上記触媒層が上下に隣接するように積層された上層と下層とを有し、上層にRhドープCeZr系複合酸化物粉末が含まれ、下層にペロブスカイト型複合酸化物粉末が含まれている。これにより、下層のペロブスカイト型複合酸化物粉末から放出される酸素が上層に入っていくため、該上層のRhドープCeZr系複合酸化物粉末が当該酸素の活性化に効率良く働く。 In a preferred embodiment, the catalyst layer has an upper layer and a lower layer laminated so as to be adjacent to each other, the upper layer includes an Rh-doped CeZr-based complex oxide powder, and the lower layer includes a perovskite-type complex oxide powder. It is. As a result, oxygen released from the lower perovskite complex oxide powder enters the upper layer, so that the upper Rh-doped CeZr-based composite oxide powder efficiently works to activate the oxygen.
また、上記ペロブスカイト型複合酸化物粉末は、Rh以外の触媒金属(例えば、Pt、Pd等)が固溶したペロブスカイト型複合酸化物粉末であることが好ましい。触媒金属の固溶により、ペロブスカイト型複合酸化物粉末の酸素吸蔵放出性能が高まるとともに、排気ガスの浄化に有利になる。 The perovskite complex oxide powder is preferably a perovskite complex oxide powder in which a catalyst metal other than Rh (eg, Pt, Pd, etc.) is dissolved. The solid solution of the catalyst metal enhances the oxygen storage / release performance of the perovskite-type composite oxide powder, and is advantageous for purification of exhaust gas.
以上のように、本発明によれば、担体上の触媒層がRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とペロブスカイト型複合酸化物粉末とを含有し、且つその触媒層が単層又は複数の層よりなり、ペロブスカイト型複合酸化物粉末とRhドープCeZr系複合酸化物粉末とは、同じ層中に混在し、若しくは隣接する二層に分かれており、RhドープCeZr系複合酸化物粉末によって、ペロブスカイト型複合酸化物粉末から放出される酸素の活性化が図れるため、該ペロブスカイト型複合酸化物粉末から放出される酸素が、貴金属担持耐熱性粉末のPt又はPdによるHCやCOの酸化に有効に利用されることになり、HCやCOの酸化、これに伴うNOxの還元が効率良く進み、しかも、排気ガスが比較的長い時間リーンになるときに、RhドープCeZr系複合酸化物粉末まわりや貴金属担持耐熱性粉末まわりが酸素過剰雰囲気になることが抑制され、これら触媒成分によるNOxの還元に有利になる。 As described above, according to the present invention, the catalyst layer on the support contains the Rh-doped CeZr-based composite oxide powder, the noble metal-supported heat-resistant powder, and the perovskite-type composite oxide powder, and the catalyst layer is a single layer. Alternatively, the perovskite-type composite oxide powder and the Rh-doped CeZr-based composite oxide powder are mixed in the same layer or divided into two adjacent layers, and the Rh-doped CeZr-based composite oxide powder. As a result, the oxygen released from the perovskite complex oxide powder can be activated, so that the oxygen released from the perovskite complex oxide powder is used to oxidize HC and CO by Pt or Pd of the noble metal-supported heat-resistant powder. It will be used effectively, the oxidation of HC and CO, and the accompanying reduction of NOx will proceed efficiently, and the exhaust gas will be lean for a relatively long time. When the, Rh-doped CeZr-based mixed oxide powder around or precious-metal-supporting heat-resistant powder around is suppressed to become an oxygen-rich atmosphere, which is advantageous in the reduction of NOx by these catalyst components.
そうして、第1の手段に係る発明によれば、上記貴金属担持耐熱性粉末は、その貴金属を担持する耐熱性粒子が、Laを含有する活性Al Thus, according to the invention relating to the first means, the noble metal-supported heat-resistant powder has an active Al in which the heat-resistant particles supporting the noble metal contain La. 22 OO 33 粒子、BaSOParticles, BaSO 44 粒子、並びにCeZr系複合酸化物とAlParticles, and CeZr-based composite oxide and Al 22 OO 33 との複合化物粒子から選ばれる少なくとも一種であるから、良好な触媒性能と耐熱性が得られる。Therefore, good catalytic performance and heat resistance can be obtained.
また、第2の手段に係る発明によれば、上記ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるから、その酸素吸蔵放出性能が高まるとともに、排気ガスの浄化に有利になる。 Further, according to the invention relating to the second means, the perovskite complex oxide powder is formed by supporting at least one kind selected from Pt, Pd and Rh on the perovskite complex oxide particles. The emission performance is enhanced and it is advantageous for purification of exhaust gas.
以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
<実施形態1>
図1に示すエンジンの排気ガス浄化用触媒において、1はハニカム担体であり、該ハニカム担体1のセル壁面1aに触媒層2が形成されている。この触媒層2は、酸素吸蔵放出能を有するRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とペロブスカイト型複合酸化物粉末とを混合状態で含有する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.
<
In the engine exhaust gas purification catalyst shown in FIG. 1,
RhドープCeZr系複合酸化物粉末は、CeとZrとを含有するCeZr系複合酸化物粒子にRhが固溶したものである。このCeZr系複合酸化物粒子は、さらにNd、Pr、La及びYから選ばれる少なくとも一種を含有するものとすることができ、又はAl2O3が複合されたものとすることができる。Al2O3が複合されたCeZr系複合酸化物粒子(二次粒子)は、CeZr系複合酸化物の一次粒子とAl2O3の一次粒子とが凝集してなるものである。 The Rh-doped CeZr-based composite oxide powder is obtained by dissolving Rh in CeZr-based composite oxide particles containing Ce and Zr. The CeZr-based composite oxide particles may further contain at least one selected from Nd, Pr, La, and Y, or may be a composite of Al 2 O 3 . CeZr-based composite oxide particles (secondary particles) in which Al 2 O 3 is composited are formed by agglomeration of primary particles of CeZr-based composite oxide and primary particles of Al 2 O 3 .
貴金属担持耐熱性粉末は、耐熱性酸化物粒子にPt及びPdの少なくとも一方の貴金属が担持されたものである。その耐熱性粒子は、Laを含有する活性Al2O3粒子(La含有Al2O3)、BaSO4粒子、並びにCeZr系複合酸化物とAl2O3との複合化物粒子(CeZrAl)から選ばれる少なくとも一種とすることができる。 The noble metal-supported heat-resistant powder is obtained by supporting at least one of Pt and Pd on a heat-resistant oxide particle. The heat-resistant particles are selected from La-containing active Al 2 O 3 particles (La-containing Al 2 O 3 ), BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3 (CeZrAl). Can be at least one kind.
ペロブスカイト型複合酸化物粉末は、一般式ABO3で表され、Aは希土類元素及びアルカリ土類金属から選ばれる少なくとも1種、Bは遷移元素から選ばれる少なくとも1種である。好ましいのは、LaGaO3系のペロブスカイト型複合酸化物粉末であり、そのAサイト(Laサイト)及びBサイト(Gaサイト)の少なくとも一方に2A族元素が固溶していることである。特にAサイトにSrが固溶し、BサイトにMgが固溶していることが好ましい。 The perovskite complex oxide powder is represented by the general formula ABO 3 , wherein A is at least one selected from rare earth elements and alkaline earth metals, and B is at least one selected from transition elements. Preference is given to LaGaO 3 -based perovskite complex oxide powders in which the group 2A element is in solid solution at least one of its A site (La site) and B site (Ga site). In particular, it is preferable that Sr is dissolved in the A site and Mg is dissolved in the B site.
或いは、触媒金属を含有するペロブスカイト型複合酸化物粉末も好ましい。例えば一般式AB1−XCXO3(AはLa、Sr、Ce、Ba又はCaのうちの少なくとも一種、BはCo、Fe、Ni、Cr、Mn又はMgのうちの少なくとも一種、CはPt又はPdのうちの少なくとも一種、0.05≦X≦0.2)で表されるペロブスカイト型複合酸化物粉末である。 Alternatively, a perovskite complex oxide powder containing a catalyst metal is also preferable. For example, the general formula AB 1-X C X O 3 (A is at least one of La, Sr, Ce, Ba or Ca, B is at least one of Co, Fe, Ni, Cr, Mn or Mg, and C is It is a perovskite type complex oxide powder represented by at least one of Pt and Pd, 0.05 ≦ X ≦ 0.2).
[実施例及び比較例]
−RhドープCeZr系複合酸化物粉末−
RhドープCeZr系複合酸化物粉末として、CeZrNd複合酸化物粒子にRhが固溶したRh−CeZrNd粉末を準備した。すなわち、Ce、Zr、Nd及びRhの各硝酸塩を含む溶液にアンモニア水を攪拌しながら添加して中和させ、得られた共沈物を水洗した後、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なうことにより、当該Rh−CeZrNd粉末を得た。ドープされたRhのうちの少なくとも一部は当該複合酸化物粒子の表面に露出している。このRhドープCeZr系複合酸化物のRhを除く組成比はCeO2:ZrO2:Nd2O3=45:45:10(質量%)であり、Rhドープ量は0.1質量%である。
[Examples and Comparative Examples]
-Rh-doped CeZr-based composite oxide powder-
As the Rh-doped CeZr-based composite oxide powder, an Rh—CeZrNd powder in which Rh was dissolved in CeZrNd composite oxide particles was prepared. That is, ammonia water is added to a solution containing nitrates of Ce, Zr, Nd, and Rh with neutralization while stirring, and the resulting coprecipitate is washed with water, and then dried in an air atmosphere at a temperature of 150 ° C. overnight. The obtained Rh—CeZrNd powder was obtained by firing, pulverizing, and firing at a temperature of 500 ° C. for 2 hours. At least a part of the doped Rh is exposed on the surface of the composite oxide particle. The composition ratio of the Rh-doped CeZr-based composite oxide excluding Rh is CeO 2 : ZrO 2 : Nd 2 O 3 = 45: 45: 10 (mass%), and the Rh doping amount is 0.1 mass%.
−貴金属担持耐熱性粉末−
貴金属担持耐熱性粉末として、各々Pdを担持したLa含有Al2O3、BaSO4、及びCeZrAl、並びに各々Ptを担持したLa含有Al2O3、BaSO4、及びCeZrAlの各粉末を準備した。CeZrAlは次の方法によって得た。すなわち、硝酸Al水溶液にアンモニア水を攪拌しながら添加して、アルミナ粒子の前駆体である水酸化Alの沈殿を得た。この沈殿を生じた溶液に、アンモニア水溶液を添加した後、Ce及びZrの各硝酸塩水溶液を添加して混合し、Ce及びZrの各水酸化物の共沈物と上記水酸化Alとの混合物を得た。この混合沈殿物を水洗し、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なった。これにより、Ce及びZrを含有するCeZr複合酸化物の一次粒子とアルミナの一次粒子とが凝集してなる当該CeZrAl粉末を得た。その組成比はCeO2:ZrO2:Al2O3=25:25:50(質量%)である。また、La含有Al2O3は、La2O3を4質量%含有するものである。
-Precious metal-supported heat-resistant powder-
Noble metal-supporting heat-resistant powder, each containing La carrying Pd Al 2 O 3, BaSO 4 , and CeZrAl, and La-containing carrying each Pt Al 2 O 3, BaSO 4 , and were prepared powders of CeZrAl. CeZrAl was obtained by the following method. That is, ammonia water was added to an aqueous solution of Al nitrate while stirring to obtain a precipitate of Al hydroxide, which is a precursor of alumina particles. An aqueous ammonia solution is added to the solution resulting from the precipitation, and then an aqueous nitrate solution of Ce and Zr is added and mixed. The coprecipitate of Ce and Zr hydroxide and the above-mentioned Al hydroxide is mixed. Obtained. The mixed precipitate was washed with water, dried in an air atmosphere at a temperature of 150 ° C. for a whole day and night, pulverized, and further calcined at a temperature of 500 ° C. for 2 hours. Thereby, the CeZrAl powder obtained by agglomerating primary particles of CeZr composite oxide containing Ce and Zr and primary particles of alumina was obtained. The composition ratio is CeO 2 : ZrO 2 : Al 2 O 3 = 25: 25: 50 (mass%). La-containing Al 2 O 3 contains 4% by mass of La 2 O 3 .
−ペロブスカイト型複合酸化物粉末−
ペロブスカイト型複合酸化物粉末として、La0.9Sr0.1Ga0.8Mg0.2O3粉末及びLaFe0.98Pd0.02O3粉末を準備した。
-Perovskite complex oxide powder-
La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder and LaFe 0.98 Pd 0.02 O 3 powder were prepared as the perovskite complex oxide powder.
La0.9Sr0.1Ga0.8Mg0.2O3粉末は次の方法によって得た。すなわち、La及びGaの各硝酸塩と、Sr及びMgの各酢酸塩をイオン交換水に溶解し混合した後、エバポレータを用いて減圧下で蒸発乾固させ、さらにホットプレート上で乾燥させた後、電気炉により400℃の温度で3時間の仮焼成を行なった。得られた生成物を乳鉢で粉砕した後、電気炉にて1300℃の温度で24時間の本焼成を行なうことにより、当該粉末を得た。 La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder was obtained by the following method. That is, each nitrate of La and Ga and each acetate of Sr and Mg were dissolved and mixed in ion-exchanged water, then evaporated to dryness under reduced pressure using an evaporator, and further dried on a hot plate, Pre-baking was performed for 3 hours at a temperature of 400 ° C. in an electric furnace. The obtained product was pulverized in a mortar and then subjected to main baking at a temperature of 1300 ° C. for 24 hours in an electric furnace to obtain the powder.
LaFe0.98Pd0.02O3粉末は次の方法によって得た。La、Fe及びPdの各硝酸塩、並びにクエン酸(無水)を蒸留水に入れて攪拌した後、加熱して溶媒を除去することにより、La、Fe及びPdのクエン酸錯体の混合物を得た。このクエン酸錯体混合物を、大気中において、400℃の温度に2時間加熱保持する仮焼成を行なった後、1000℃の温度に6時間加熱保持する本焼成を行なった。得られた焼成品を粉砕して当該粉末を得た。 LaFe 0.98 Pd 0.02 O 3 powder was obtained by the following method. La, Fe and Pd nitrates and citric acid (anhydrous) were placed in distilled water and stirred, and then the solvent was removed by heating to obtain a mixture of citrate complexes of La, Fe and Pd. This citric acid complex mixture was calcined in the air at a temperature of 400 ° C. for 2 hours and then calcined at a temperature of 1000 ° C. for 6 hours. The obtained fired product was pulverized to obtain the powder.
−Rh担持CeZr系複合酸化物粉末−
CeZrNd複合酸化物粒子にRhを蒸発乾固によって担持させることにより、Rh担持CeZr系複合酸化物粉末を得た。CeZrNd複合酸化物粒子の組成比はCeO2:ZrO2:Nd2O3=45:45:10(質量%)であり、Rh担持量は、0.1質量%となるようにした。
-Rh-supported CeZr composite oxide powder-
Rh-supported CeZr-based composite oxide powder was obtained by supporting Rh on the CeZrNd composite oxide particles by evaporation to dryness. The composition ratio of the CeZrNd composite oxide particles was CeO 2 : ZrO 2 : Nd 2 O 3 = 45: 45: 10 (mass%), and the Rh loading was 0.1 mass%.
−実施例1に係る触媒の調製−
RhドープCeZr系複合酸化物粉末と、La0.9Sr0.1Ga0.8Mg0.2O3粉末と、貴金属担持耐熱性粉末(Pt担持La含有Al2O3、Pt担持BaSO4、Pt担持CeZrAlのいずれか一)とを組み合わせて混合し、ハニカム担体にコーティングすることにより、実施例1に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。なお、RhドープCeZr系複合酸化物粉末など触媒粉末のコーティングは、該触媒粉末にバインダ及び水を加えてスラリー化して行なった(以下、同じ)。
-Preparation of catalyst according to Example 1-
Rh-doped CeZr-based composite oxide powder, La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder, noble metal-supported heat-resistant powder (Pt-supported La-containing Al 2 O 3 , Pt-supported BaSO 4 , Any one of Pt-supported CeZrAl) was mixed in combination and coated on a honeycomb carrier, thereby preparing three types of catalysts having different types of noble metal-supported heat-resistant powder according to Example 1. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-doped CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, 1.0 g / L for Pt, and La 0.9 Sr 0.1 Ga 0. .8 Mg 0.2 O 3 powder is 20 g / L. The coating of the catalyst powder such as the Rh-doped CeZr composite oxide powder was performed by adding a binder and water to the catalyst powder to form a slurry (hereinafter the same).
ハニカム担体としては、いずれもセル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm2)当たりのセル数600のコージェライト製であり、直径25.4mm、長さ50mmの円柱形状のもの(容量25ml)を用いた。この点は後述する他の実施例及び比較例も同じである。 The honeycomb carrier is made of cordierite having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ), and a diameter of 25.4 mm. A cylindrical shape having a length of 50 mm (capacity 25 ml) was used. This also applies to other examples and comparative examples described later.
−実施例2に係る触媒の調製−
La0.9Sr0.1Ga0.8Mg0.2O3粉末に代えてLaFe0.98Pd0.02O3粉末を採用し、他は実施例1と同様にして実施例2に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、LaFe0.98Pd0.02O3粉末が20g/Lである。
-Preparation of catalyst according to Example 2-
In place of La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder, LaFe 0.98 Pd 0.02 O 3 powder was employed, and the rest of the same manner as in Example 1 was followed in Example 2. Three types of catalysts with different types of such precious metal-supported heat-resistant powders were prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-doped CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat resistant powder, 1.0 g / L for Pt, and LaFe 0.98 Pd 0.02 O 3. The powder is 20 g / L.
−実施例3に係る触媒の調製−
貴金属担持耐熱性粉末として、Pd担持La含有Al2O3、Pd担持BaSO4、Pd担持CeZrAlのいずれか一を採用し、他は実施例1と同様にして実施例3に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Pdが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。
-Preparation of catalyst according to Example 3-
As the noble metal-supported heat-resistant powder, any one of Pd-supported La-containing Al 2 O 3 , Pd-supported BaSO 4 , and Pd-supported CeZrAl is adopted, and the other noble metal-supported heat resistance according to Example 3 is used. Three types of catalysts with different powder types were prepared. The supported amount per liter of honeycomb carrier is 100 g / L for Rh-doped CeZr-based composite oxide powder, 50 g / L for noble metal-supported heat-resistant powder, 1.0 g / L for Pd, La 0.9 Sr 0.1 Ga 0. .8 Mg 0.2 O 3 powder is 20 g / L.
−比較例1に係る触媒の調製−
RhドープCeZr系複合酸化物粉末に代えてRh担持CeZr系複合酸化物を採用し、他は実施例1と同様にして比較例1に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。
-Preparation of catalyst according to Comparative Example 1-
Instead of the Rh-doped CeZr-based composite oxide powder, an Rh-supported CeZr-based composite oxide was adopted, and the other three types of catalysts differing in the type of noble metal-supported heat-resistant powder according to Comparative Example 1 were used in the same manner as in Example 1. Prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-supported CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, 1.0 g / L for Pt, and La 0.9 Sr 0.1 Ga 0. .8 Mg 0.2 O 3 powder is 20 g / L.
−比較例2に係る触媒の調製−
RhドープCeZr系複合酸化物粉末に代えてRh担持CeZr系複合酸化物を採用し、他は実施例3と同様にして比較例2に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Pdが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。
-Preparation of catalyst according to Comparative Example 2-
Instead of the Rh-doped CeZr-based composite oxide powder, an Rh-supported CeZr-based composite oxide was adopted, and the other three types of catalysts having different types of noble metal-supported heat-resistant powder according to Comparative Example 2 were used in the same manner as in Example 3. Prepared. The supported amount per liter of honeycomb carrier is 100 g / L for the Rh-supported CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, 1.0 g / L for Pd, and La 0.9 Sr 0.1 Ga 0. .8 Mg 0.2 O 3 powder is 20 g / L.
−比較例3に係る触媒の調製−
La0.9Sr0.1Ga0.8Mg0.2O3粉末量を零とし、RhドープCeZr系複合酸化物粉末を増量する他は実施例1と同様にして比較例3に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が120g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/Lである。
-Preparation of catalyst according to Comparative Example 3-
A noble metal according to Comparative Example 3 in the same manner as in Example 1 except that the amount of La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder is set to zero and the amount of Rh-doped CeZr-based composite oxide powder is increased. Three types of catalysts with different types of supported heat-resistant powders were prepared. The supported amount per liter of the honeycomb carrier is 120 g / L for the Rh-doped CeZr composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, and 1.0 g / L for Pt.
−比較例4に係る触媒の調製−
RhドープCeZr系複合酸化物粉末量を零とし、La0.9Sr0.1Ga0.8Mg0.2O3粉末量を増量する他は実施例1と同様にして比較例4に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、La0.9Sr0.1Ga0.8Mg0.2O3粉末が120g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/Lである。
-Preparation of catalyst according to Comparative Example 4-
According to Comparative Example 4 as in Example 1, except that the amount of Rh-doped CeZr-based composite oxide powder is zero and the amount of La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder is increased. Three types of catalysts with different types of noble metal-supported heat-resistant powders were prepared. The supported amount per 1 L of honeycomb carrier is 120 g / L for La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder, 50 g / L for noble metal-supported heat-resistant powder, and 1.0 g / L for Pt. It is.
−排気ガス浄化性能評価−
実施例及び比較例の各触媒について、大気雰囲気において1000℃の温度に24時間加熱するエージングを行なった。次いで、これら触媒をモデルガス流通反応装置に取り付け、評価用モデルガスによってHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。評価用のモデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h−1、昇温速度は30℃/分である。
−Evaluation of exhaust gas purification performance−
About each catalyst of an Example and a comparative example, the aging which heats to the temperature of 1000 degreeC in air | atmosphere for 24 hours was performed. Next, these catalysts were attached to the model gas flow reactor, and the light-off temperature T50 relating to the purification of HC, CO, and NOx was measured with the model gas for evaluation. T50 is the gas temperature at the catalyst inlet when the temperature of the model gas flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. The model gas for evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.
結果を表1に示す。なお、表1において、「Rhドープ材」は「RhドープCeZr系複合酸化物粉末」、「Rh担持材」は「Rh担持CeZr系複合酸化物粉末」、「LaSrGaMgO」は「La0.9Sr0.1Ga0.8Mg0.2O3粉末」、「LaFePdO」は「LaFe0.98Pd0.02O3粉末」、「Al2O3」は「Al2O3」、「BaSO4」は「BaSO4」である。この点は後述する表2も同じである。 The results are shown in Table 1. In Table 1, “Rh-doped material” is “Rh-doped CeZr-based composite oxide powder”, “Rh-supported material” is “Rh-supported CeZr-based composite oxide powder”, and “LaSrGaMgO” is “La 0.9 Sr”. “0.1 Ga 0.8 Mg 0.2 O 3 powder”, “LaFePdO” is “LaFe 0.98 Pd 0.02 O 3 powder”, “Al 2 O 3 ” is “Al 2 O 3 ”, and “BaSO 4” is “ BaSO 4 ”. This also applies to Table 2 described later.
まず、比較例3と比較例4とを比較すると、HC、CO及びNOxいずれの浄化に関しても、比較例3の方が比較例4よりもT50は低い。これから、酸素吸蔵放出材としては、ペロブスカイト型複合酸化物粉末よりもRhドープCeZr系複合酸化物粉末の方が優れているということができる。 First, when Comparative Example 3 and Comparative Example 4 are compared, Comparative Example 3 has a lower T50 than Comparative Example 4 in terms of purification of HC, CO, and NOx. From this, it can be said that the Rh-doped CeZr-based composite oxide powder is superior to the perovskite-type composite oxide powder as the oxygen storage / release material.
次にCeZr系複合酸化物粉末とペロブスカイト型複合酸化物粉末との組み合わせについて検討する。貴金属担持耐熱性粉末の貴金属としてPtを採用した実施例1と比較例1とを比較すると、Ptを担持する耐熱性粉末の種類が同じであるケースでは、実施例1の方が比較例1よりもT50は低い。また、貴金属としてPdを採用した実施例3と比較例2とを比較した場合でも、同じく、実施例3の方が比較例2よりもT50は低い。これから、貴金属担持耐熱性粉末の貴金属がPt、Pdいずれの場合でも、ペロブスカイト型複合酸化物粉末にRhドープCeZr系複合酸化物粉末を組み合わせると、Rh担持CeZr系複合酸化物粉末を組み合わせる場合よりも排気ガス浄化性能が高くなることがわかる。 Next, a combination of CeZr-based complex oxide powder and perovskite complex oxide powder will be examined. Comparing Example 1 in which Pt is used as the noble metal-supporting heat-resistant powder and Comparative Example 1, in the case where the kind of the heat-resistant powder supporting Pt is the same, Example 1 is more than Comparative Example 1. T50 is low. Even when Example 3 employing Pd as a noble metal is compared with Comparative Example 2, similarly, Example 3 has a lower T50 than Comparative Example 2. From this, when the noble metal-supported heat-resistant powder is either Pt or Pd, when the Rh-doped CeZr-based composite oxide powder is combined with the perovskite-type composite oxide powder, the Rh-supported CeZr-based composite oxide powder is combined. It can be seen that the exhaust gas purification performance is improved.
実施例1と実施例2とを比較すると、実施例2の方がT50は低い。これから、ペロブスカイト型複合酸化物粉末としては、La0.9Sr0.1Ga0.8Mg0.2O3粉末よりもLaFe0.98Pd0.02O3粉末の方が良いことがわかる。 When Example 1 is compared with Example 2, Example 2 has a lower T50. From this, it can be seen that as the perovskite type complex oxide powder, LaFe 0.98 Pd 0.02 O 3 powder is better than La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder. .
次に貴金属担持耐熱性粉末の耐熱性粒子の種類がT50に及ぼす影響をみると、La含有Al2O3を用いたときのT50が最も低く、これにCeZrAl及びBaSO4が順に続いている。また、耐熱性粒子に担持する貴金属で比較すると、Pdを担持した実施例3の方がPtを担持した実施例1よりも、T50は低くなっている。
<実施形態2>
本実施形態のエンジンの排気ガス浄化用触媒に係る触媒層構造は図2に示されている。ハニカム担体1のセル壁面1aに形成されている触媒層2は、実施形態1とは違って、上層2a及び下層2bの二層構造になっている。上層2a及び下層2bの一方がRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを含有する層となり、他方がペロブスカイト型複合酸化物粉末を含有する層となる。好ましいのは、上層2aがRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを含有する層となり、下層2bがペロブスカイト型複合酸化物粉末を含有する層となることである。
Next, looking at the effect of the kind of heat-resistant particles of the noble metal-supported heat-resistant powder on T50, T50 is the lowest when La-containing Al 2 O 3 is used, followed by CeZrAl and BaSO 4 in this order. Further, when compared with the noble metal supported on the heat-resistant particles, T3 is lower in Example 3 supporting Pd than in Example 1 supporting Pt.
<
The catalyst layer structure relating to the exhaust gas purifying catalyst of the engine of this embodiment is shown in FIG. Unlike
[実施例及び比較例]
−実施例4に係る触媒の調製−
La0.9Sr0.1Ga0.8Mg0.2O3粉末をハニカム担体にコーティングして下層2bを形成した後、RhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末(Pt担持La含有Al2O3、Pt担持BaSO4、Pt担持CeZrAlのいずれか一)とを組み合わせて混合し、下層2bの上にコーティングすることにより、上層2aを形成した。この方法により、実施例4に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。
[Examples and Comparative Examples]
-Preparation of catalyst according to Example 4-
After coating the honeycomb carrier with La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder to form the
−実施例5に係る触媒の調製−
La0.9Sr0.1Ga0.8Mg0.2O3粉末に代えてLaFe0.98Pd0.02O3粉末を採用し、他は実施例4と同様にして実施例5に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、LaFe0.98Pd0.02O3粉末が20g/Lである。
-Preparation of catalyst according to Example 5-
In place of La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder, LaFe 0.98 Pd 0.02 O 3 powder was adopted, and the same procedure as in Example 4 was applied to Example 5. Three types of catalysts with different types of such precious metal-supported heat-resistant powders were prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-doped CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat resistant powder, 1.0 g / L for Pt, and LaFe 0.98 Pd 0.02 O 3. The powder is 20 g / L.
−実施例6に係る触媒の調製−
実施例5とは逆に、下層がRhドープCeZr系複合酸化物粉末と貴金属担持耐熱性粉末とを含有し、上層がLaFe0.98Pd0.02O3粉末を含有する構成とする他は、実施例4と同様にして実施例6に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、LaFe0.98Pd0.02O3粉末が20g/Lである。
-Preparation of catalyst according to Example 6-
Contrary to Example 5, the lower layer contains Rh-doped CeZr-based composite oxide powder and noble metal-supported heat-resistant powder, and the upper layer contains LaFe 0.98 Pd 0.02 O 3 powder. In the same manner as in Example 4, three types of catalysts having different types of noble metal-supported heat-resistant powder according to Example 6 were prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-doped CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat resistant powder, 1.0 g / L for Pt, and LaFe 0.98 Pd 0.02 O 3. The powder is 20 g / L.
−実施例7に係る触媒の調製−
ペロブスカイト型複合酸化物粉末として、La0.9Sr0.1Ga0.8Mg0.2O3粉末にPdを蒸発乾固法によって担持させた粉末を採用し、他は実施例4と同様にして実施例7に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。但し、La0.9Sr0.1Ga0.8Mg0.2O3粉末にPdを担持させたことに対応させて、貴金属担持耐熱性粉末のPt担持量を減らした。すなわち、ハニカム担体1L当たりの担持量は、RhドープCeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Pd担持La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lであり、貴金属担持耐熱性粉末によるハニカム担体へのPt担持量が0.8g/L、Pd担持La0.9Sr0.1Ga0.8Mg0.2O3粉末によるハニカム担体へのPd担持量が0.2g/Lである。
-Preparation of catalyst according to Example 7-
As the perovskite-type composite oxide powder, a powder in which Pd is supported on an La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder by evaporation to dryness is used, and the others are the same as in Example 4. Thus, three types of catalysts having different types of noble metal-supported heat-resistant powder according to Example 7 were prepared. However, the amount of Pt supported on the noble metal-supported heat-resistant powder was reduced corresponding to the fact that Pd was supported on the La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 powder. That is, the supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-doped CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, and Pd-supported La 0.9 Sr 0.1 Ga 0.8 Mg 0. .2 O 3 powder is 20 g / L, Pt supported amount on honeycomb carrier by noble metal supported heat resistant powder is 0.8 g / L, Pd supported La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 The amount of Pd supported on the honeycomb carrier by the O 3 powder is 0.2 g / L.
−比較例5に係る触媒の調製−
RhドープCeZr系複合酸化物粉末に代えてRh担持CeZr系複合酸化物を採用し、他は実施例4と同様にして比較例5に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、La0.9Sr0.1Ga0.8Mg0.2O3粉末が20g/Lである。
-Preparation of catalyst according to Comparative Example 5-
Instead of the Rh-doped CeZr-based composite oxide powder, an Rh-supported CeZr-based composite oxide was adopted, and the other three types of catalysts with different types of noble metal-supported heat-resistant powder according to Comparative Example 5 were used in the same manner as in Example 4. Prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-supported CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, 1.0 g / L for Pt, and La 0.9 Sr 0.1 Ga 0. .8 Mg 0.2 O 3 powder is 20 g / L.
−比較例6に係る触媒の調製−
RhドープCeZr系複合酸化物粉末に代えてRh担持CeZr系複合酸化物を採用し、他は実施例5と同様にして比較例6に係る貴金属担持耐熱性粉末の種類が異なる3種類の触媒を調製した。ハニカム担体1L当たりの担持量は、Rh担持CeZr系複合酸化物粉末が100g/L、貴金属担持耐熱性粉末が50g/L、Ptが1.0g/L、LaFe0.98Pd0.02O3粉末が20g/Lである。
-Preparation of catalyst according to Comparative Example 6-
Instead of the Rh-doped CeZr-based composite oxide powder, an Rh-supported CeZr-based composite oxide was adopted, and the other three types of catalysts with different types of noble metal-supported heat-resistant powder according to Comparative Example 6 were used in the same manner as in Example 5. Prepared. The supported amount per liter of the honeycomb carrier is 100 g / L for the Rh-supported CeZr-based composite oxide powder, 50 g / L for the noble metal-supported heat-resistant powder, 1.0 g / L for Pt, and LaFe 0.98 Pd 0.02 O 3. The powder is 20 g / L.
−排気ガス浄化性能評価−
上記実施例及び比較例の各触媒について、実施形態1と同じ条件でエージングを行ない、同じ条件でHC、CO及びNOxの浄化に関するライトオフ温度T50を測定した。結果を表2に示す。表2において、「Pd/LaSrGaMgO」は「Pd担持La0.9Sr0.1Ga0.8Mg0.2O3」である。
−Evaluation of exhaust gas purification performance−
About each catalyst of the said Example and comparative example, aging was performed on the same conditions as
表1と表2との比較から、例えば、触媒成分が同じ実施例1と実施例4との比較、実施例2と実施例5,6との比較、比較例1と比較例5との比較から、二層構造にすることにより、排気ガス浄化性能が高まることがわかる。但し、ペロブスカイト型複合酸化物粉末を下層に配置した実施例4,5は対応する実施例1,2に比べてT50の低下が顕著であるが、ペロブスカイト型複合酸化物粉末を上層に配置した実施例6は、対応する実施例2からみて、T50の低下度合が小さい。これから、二層構造にする場合は、ペロブスカイト型複合酸化物粉末を下層にすることが好ましいということができる。下層のペロブスカイト型複合酸化物粉末から放出される酸素が上層のRhドープCeZr系複合酸化物粉末によって効率良く活性化されるためである。 From the comparison between Table 1 and Table 2, for example, the comparison between Example 1 and Example 4 having the same catalyst component, the comparison between Example 2 and Examples 5 and 6, and the comparison between Comparative Example 1 and Comparative Example 5 Thus, it can be seen that the exhaust gas purification performance is enhanced by adopting a two-layer structure. However, in Examples 4 and 5 in which the perovskite type complex oxide powder is disposed in the lower layer, the T50 is significantly lower than in the corresponding Examples 1 and 2, but in the examples in which the perovskite type complex oxide powder is disposed in the upper layer. In Example 6, as seen from the corresponding Example 2, the degree of decrease in T50 is small. From this, it can be said that in the case of a two-layer structure, it is preferable to use a perovskite complex oxide powder as a lower layer. This is because oxygen released from the lower perovskite complex oxide powder is efficiently activated by the upper Rh-doped CeZr-based complex oxide powder.
また、表2の実施例4,5と比較例5,6との比較から、二層構造においても、ペロブスカイト型複合酸化物粉末にRhドープCeZr系複合酸化物粉末を組み合わせると、Rh担持CeZr系複合酸化物粉末を組み合わせる場合よりも排気ガス浄化性能が高くなることがわかる。また、実施例4と実施例7との比較から、ペロブスカイト型複合酸化物粉末に貴金属を担持させると、排気ガス浄化性能が高まることがわかる。 Further, from the comparison between Examples 4 and 5 and Comparative Examples 5 and 6 in Table 2, even in the two-layer structure, when the Rh-doped CeZr composite oxide powder is combined with the perovskite composite oxide powder, the Rh-supported CeZr system It can be seen that the exhaust gas purification performance is higher than when the composite oxide powder is combined. Further, from comparison between Example 4 and Example 7, it is understood that exhaust gas purification performance is enhanced when a noble metal is supported on the perovskite complex oxide powder.
なお、貴金属担持耐熱性粉末は、実施形態1,2では、貴金属としてPt及びPdのいずれかを担持したものであるが、Pt及びPdの両者を担持したものとすることもできる。 In the first and second embodiments, the noble metal-carrying heat-resistant powder carries either Pt or Pd as the noble metal, but may carry both Pt and Pd.
また、上記実施例ではRhドープCeZr系複合酸化物粉末として、CeZrNd複合酸化物粒子にRhが固溶したRh−CeZrNd粉末を用いたが、Ndに代えてPr、La及びYを用いてもよい。この場合、Ndの硝酸塩をPr、La、Y等の硝酸塩に変えることでこれらの少なくとも一種を含有するRhドープCeZr系複合酸化物粉末が得られる。さらに、RhドープCeZr系複合酸化物粉末は、CeZr系複合酸化物の一次粒子とAl2O3の一次粒子とが凝集してなるものに代えることができる。その製法としては、硝酸Al水溶液にアンモニア水を攪拌しながら添加して、アルミナ粒子の前駆体である水酸化Alの沈殿を得、この沈殿を生じた溶液に、アンモニア水溶液を添加した後、Ce、Zr及びRhの各硝酸塩水溶液を添加して混合し、Ce、Zr及びRhの各水酸化物の共沈物と上記水酸化Alとの混合物とし、さらにこの混合沈殿物を水洗し、大気雰囲気において150℃の温度で一昼夜乾燥させ、粉砕し、さらに500℃の温度に2時間保持する焼成を行なう方法が採用できる。 Further, in the above embodiment, Rh-CeZrNd powder in which Rh is dissolved in CeZrNd composite oxide particles is used as the Rh-doped CeZr-based composite oxide powder, but Pr, La and Y may be used instead of Nd. . In this case, an Rh-doped CeZr-based composite oxide powder containing at least one of these can be obtained by changing Nd nitrate to nitrate such as Pr, La, or Y. Furthermore, the Rh-doped CeZr-based composite oxide powder can be replaced with a product obtained by agglomerating primary particles of CeZr-based composite oxide and primary particles of Al 2 O 3 . As the production method, ammonia water is added to an aqueous solution of Al nitrate while stirring to obtain a precipitate of Al hydroxide, which is a precursor of alumina particles, and after adding an aqueous ammonia solution to the resulting solution, Ce , Zr and Rh nitrate aqueous solutions were added and mixed to form a mixture of Ce, Zr and Rh hydroxide coprecipitates and the above-mentioned Al hydroxide. In this method, it is possible to employ a method of drying at a temperature of 150 ° C. for a whole day and night, pulverizing, and further firing at a temperature of 500 ° C. for 2 hours.
1 ハニカム担体
1a セル壁面
2 触媒層
2a 上層
2b 下層
DESCRIPTION OF
Claims (5)
上記触媒層は、単層又は複数の層よりなり、さらに、ペロブスカイト型複合酸化物粉末を含有し、該ペロブスカイト型複合酸化物粉末と上記RhドープCeZr系複合酸化物粉末とは、同じ層中に混在し、若しくは隣接する二層に分かれており、
上記貴金属を担持する耐熱性粒子は、Laを含有する活性Al 2 O 3 粒子、BaSO 4 粒子、並びにCeZr系複合酸化物とAl 2 O 3 との複合化物粒子から選ばれる少なくとも一種であることを特徴とする排気ガス浄化用触媒。 Rh-doped CeZr-based composite oxide powder in which Rh is dissolved in CeZr-based composite oxide particles containing Ce and Zr, and noble metal-supported heat-resistant particles in which at least one of Pt and Pd is supported on heat-resistant particles An exhaust gas purifying catalyst contained in the catalyst layer on the carrier,
The catalyst layer is composed of a single layer or a plurality of layers, and further contains a perovskite-type composite oxide powder. The perovskite-type composite oxide powder and the Rh-doped CeZr-based composite oxide powder are in the same layer. It is mixed or divided into two adjacent layers ,
The heat-resistant particles supporting the noble metal are at least one selected from active Al 2 O 3 particles containing La , BaSO 4 particles, and composite particles of CeZr-based composite oxide and Al 2 O 3. A catalyst for exhaust gas purification.
上記触媒層は、単層又は複数の層よりなり、さらに、ペロブスカイト型複合酸化物粉末を含有し、該ペロブスカイト型複合酸化物粉末と上記RhドープCeZr系複合酸化物粉末とは、同じ層中に混在し、若しくは隣接する二層に分かれており、 The catalyst layer is composed of a single layer or a plurality of layers, and further contains a perovskite-type composite oxide powder. The perovskite-type composite oxide powder and the Rh-doped CeZr-based composite oxide powder are in the same layer. It is mixed or divided into two adjacent layers,
上記ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるものであることを特徴とする排気ガス浄化用触媒。 The exhaust gas purification catalyst, wherein the perovskite complex oxide powder is formed by supporting at least one kind selected from Pt, Pd and Rh on the perovskite complex oxide particles.
上記触媒層は上下に隣接するように積層された上層と下層とを有し、上層に上記RhドープCeZr系複合酸化物粉末が含まれ、下層に上記ペロブスカイト型複合酸化物粉末が含まれていることを特徴とする排気ガス浄化用触媒。 In claim 1 or claim 2,
The catalyst layer has an upper layer and a lower layer laminated so as to be vertically adjacent to each other, the upper layer includes the Rh-doped CeZr-based composite oxide powder, and the lower layer includes the perovskite-type composite oxide powder. An exhaust gas purifying catalyst characterized by that.
上記ペロブスカイト型複合酸化物粉末は、Rh以外の触媒金属が固溶したペロブスカイト型複合酸化物粉末であることを特徴とする排気ガス浄化用触媒。 In any one of Claim 1 thru | or 3,
The exhaust gas purifying catalyst, wherein the perovskite complex oxide powder is a perovskite complex oxide powder in which a catalyst metal other than Rh is dissolved.
上記ペロブスカイト型複合酸化物粉末は、当該ペロブスカイト型複合酸化物粒子にPt、Pd及びRhから選ばれる少なくとも一種が担持されてなるものであることを特徴とする排気ガス浄化用触媒。 In claim 1, claim 3 subordinate to claim 1, claim 4 subordinate to claim 1, or claim 4 subordinate to claim 3 subordinate to claim 1 ,
The exhaust gas purification catalyst, wherein the perovskite complex oxide powder is formed by supporting at least one kind selected from Pt, Pd and Rh on the perovskite complex oxide particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257293A JP5463861B2 (en) | 2009-11-10 | 2009-11-10 | Exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257293A JP5463861B2 (en) | 2009-11-10 | 2009-11-10 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011101841A JP2011101841A (en) | 2011-05-26 |
JP5463861B2 true JP5463861B2 (en) | 2014-04-09 |
Family
ID=44192441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009257293A Expired - Fee Related JP5463861B2 (en) | 2009-11-10 | 2009-11-10 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5463861B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5580722B2 (en) * | 2010-11-26 | 2014-08-27 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and process for producing the same |
US9266092B2 (en) * | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
CN113769758B (en) * | 2021-07-29 | 2024-01-09 | 重庆海尔热水器有限公司 | Preparation method of CO purifier and CO purifier |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4263542B2 (en) * | 2002-10-11 | 2009-05-13 | ダイハツ工業株式会社 | Method for producing exhaust gas purification catalyst |
JP4496873B2 (en) * | 2004-07-23 | 2010-07-07 | マツダ株式会社 | Exhaust gas purification catalyst |
JP4654746B2 (en) * | 2005-04-14 | 2011-03-23 | マツダ株式会社 | Exhaust gas purification catalyst device |
JP4591959B2 (en) * | 2005-06-10 | 2010-12-01 | 国立大学法人九州大学 | Diesel particulate filter |
JP4647406B2 (en) * | 2005-06-16 | 2011-03-09 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
JP4760625B2 (en) * | 2006-09-06 | 2011-08-31 | マツダ株式会社 | Exhaust gas purification catalyst device |
JP5326251B2 (en) * | 2007-10-02 | 2013-10-30 | マツダ株式会社 | Exhaust gas purification catalyst device |
JP4969496B2 (en) * | 2008-03-17 | 2012-07-04 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
-
2009
- 2009-11-10 JP JP2009257293A patent/JP5463861B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011101841A (en) | 2011-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5515939B2 (en) | Exhaust gas purification catalyst | |
JP5428773B2 (en) | Exhaust gas purification catalyst | |
JP5176727B2 (en) | Exhaust gas purification catalyst material manufacturing method and exhaust gas purification catalyst | |
US20190126248A1 (en) | Exhaust gas purifying catalyst | |
JP5014845B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst | |
JP6869976B2 (en) | Three-way catalyst for purifying gasoline engine exhaust gas | |
JP6748590B2 (en) | Exhaust gas purification catalyst | |
JP2006334490A (en) | Catalyst for cleaning exhaust gas | |
JPWO2010010714A1 (en) | Oxygen storage material, exhaust gas purification catalyst, and honeycomb catalyst structure for exhaust gas purification | |
JP2012055842A (en) | Exhaust gas purifying catalyst | |
JP6146436B2 (en) | Exhaust gas purification catalyst | |
JP5391664B2 (en) | Exhaust gas purification catalyst | |
JP2017006905A (en) | Exhaust gas purifying catalyst | |
EP2493594B1 (en) | Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it | |
JP5463861B2 (en) | Exhaust gas purification catalyst | |
JP5531567B2 (en) | Exhaust gas purification catalyst | |
JP2011101839A (en) | Exhaust gas purifying catalyst | |
JP5488215B2 (en) | Exhaust gas purification catalyst | |
JP4513453B2 (en) | Exhaust gas purification catalyst | |
JPH09248462A (en) | Exhaust gas-purifying catalyst | |
JP5428774B2 (en) | Exhaust gas purification catalyst | |
JP4538726B2 (en) | Exhaust gas purification catalyst | |
JP2007203160A (en) | Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP7448620B2 (en) | Nitrogen oxide storage materials and exhaust gas purification catalysts | |
JP4265445B2 (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121025 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20121210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5463861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |