JP5453739B2 - Liquid crystal element - Google Patents
Liquid crystal element Download PDFInfo
- Publication number
- JP5453739B2 JP5453739B2 JP2008173298A JP2008173298A JP5453739B2 JP 5453739 B2 JP5453739 B2 JP 5453739B2 JP 2008173298 A JP2008173298 A JP 2008173298A JP 2008173298 A JP2008173298 A JP 2008173298A JP 5453739 B2 JP5453739 B2 JP 5453739B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- group
- polymer
- voltage
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 290
- 150000001875 compounds Chemical class 0.000 claims description 160
- 239000000203 mixture Substances 0.000 claims description 145
- 125000000217 alkyl group Chemical group 0.000 claims description 111
- 229920000642 polymer Polymers 0.000 claims description 103
- 239000004990 Smectic liquid crystal Substances 0.000 claims description 66
- 238000002834 transmittance Methods 0.000 claims description 65
- 230000005684 electric field Effects 0.000 claims description 64
- 239000002243 precursor Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 20
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 16
- 230000008033 biological extinction Effects 0.000 claims description 15
- 230000001747 exhibiting effect Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000011343 solid material Substances 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 92
- 125000004432 carbon atom Chemical group C* 0.000 description 91
- 210000004027 cell Anatomy 0.000 description 77
- -1 benzyldimethyl ketal Chemical compound 0.000 description 52
- 125000001153 fluoro group Chemical group F* 0.000 description 51
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 51
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 49
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 48
- 125000003342 alkenyl group Chemical group 0.000 description 47
- 229910052731 fluorine Inorganic materials 0.000 description 47
- 238000000034 method Methods 0.000 description 43
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 42
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 34
- 125000002947 alkylene group Chemical group 0.000 description 33
- 125000001309 chloro group Chemical group Cl* 0.000 description 29
- 229910052801 chlorine Inorganic materials 0.000 description 28
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 28
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 25
- 230000001965 increasing effect Effects 0.000 description 23
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 description 22
- 230000007423 decrease Effects 0.000 description 19
- 238000006116 polymerization reaction Methods 0.000 description 17
- 229920000106 Liquid crystal polymer Polymers 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 16
- 239000010408 film Substances 0.000 description 16
- 230000000379 polymerizing effect Effects 0.000 description 16
- 210000002858 crystal cell Anatomy 0.000 description 15
- 238000004873 anchoring Methods 0.000 description 14
- 125000001424 substituent group Chemical group 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000010287 polarization Effects 0.000 description 13
- 150000001721 carbon Chemical group 0.000 description 12
- 230000007547 defect Effects 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 125000003545 alkoxy group Chemical group 0.000 description 10
- 230000009477 glass transition Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 125000004093 cyano group Chemical group *C#N 0.000 description 9
- 230000006641 stabilisation Effects 0.000 description 9
- 238000011105 stabilization Methods 0.000 description 9
- 0 C=*C(CCC(C(Oc1ccc(CCOC(c(cc2O)ccc2O)=O)cc1)=O)=C1)=C1O Chemical compound C=*C(CCC(C(Oc1ccc(CCOC(c(cc2O)ccc2O)=O)cc1)=O)=C1)=C1O 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 8
- 230000000087 stabilizing effect Effects 0.000 description 8
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 7
- 238000000149 argon plasma sintering Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 125000003566 oxetanyl group Chemical group 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 125000004959 2,6-naphthylene group Chemical group [H]C1=C([H])C2=C([H])C([*:1])=C([H])C([H])=C2C([H])=C1[*:2] 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 238000000819 phase cycle Methods 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 4
- 125000005714 2,5- (1,3-dioxanylene) group Chemical group [H]C1([H])OC([H])([*:1])OC([H])([H])C1([H])[*:2] 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 4
- 125000003302 alkenyloxy group Chemical group 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 125000004786 difluoromethoxy group Chemical group [H]C(F)(F)O* 0.000 description 4
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 230000005621 ferroelectricity Effects 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000009878 intermolecular interaction Effects 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000003098 cholesteric effect Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000010583 slow cooling Methods 0.000 description 3
- 125000005732 2,6-difluoro-1,4-phenylene group Chemical group [H]C1=C(F)C([*:1])=C(F)C([H])=C1[*:2] 0.000 description 2
- 125000005653 3,5-difluoro-1,4-phenylene group Chemical group [H]C1=C(F)C([*:2])=C(F)C([H])=C1[*:1] 0.000 description 2
- 125000005451 3-fluoro-1,4-phenylene group Chemical group [H]C1=C([*:1])C([H])=C(F)C([*:2])=C1[H] 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MAOBFOXLCJIFLV-UHFFFAOYSA-N (2-aminophenyl)-phenylmethanone Chemical class NC1=CC=CC=C1C(=O)C1=CC=CC=C1 MAOBFOXLCJIFLV-UHFFFAOYSA-N 0.000 description 1
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- GNMCGMFNBARSIY-UHFFFAOYSA-N 1,2,3,4,4a,4b,5,6,7,8,8a,9,10,10a-tetradecahydrophenanthrene Chemical compound C1CCCC2C3CCCCC3CCC21 GNMCGMFNBARSIY-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- CXWGKAYMVASWDQ-UHFFFAOYSA-N 1,2-dithiane Chemical compound C1CCSSC1 CXWGKAYMVASWDQ-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LSDTWMHYCLFXBZ-UHFFFAOYSA-N 1,5-dioxaspiro[5.5]undecane Chemical compound C1CCCCC21OCCCO2 LSDTWMHYCLFXBZ-UHFFFAOYSA-N 0.000 description 1
- FQWRSLDYRXSLAH-UHFFFAOYSA-N 1,5-dithiaspiro[5.5]undecane Chemical compound C1CCCCC21SCCCS2 FQWRSLDYRXSLAH-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- VYMSWGOFSKMMCE-UHFFFAOYSA-N 10-butyl-2-chloroacridin-9-one Chemical compound ClC1=CC=C2N(CCCC)C3=CC=CC=C3C(=O)C2=C1 VYMSWGOFSKMMCE-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- UXCIJKOCUAQMKD-UHFFFAOYSA-N 2,4-dichlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC(Cl)=C3SC2=C1 UXCIJKOCUAQMKD-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- LZHUBCULTHIFNO-UHFFFAOYSA-N 2,4-dihydroxy-1,5-bis[4-(2-hydroxyethoxy)phenyl]-2,4-dimethylpentan-3-one Chemical compound C=1C=C(OCCO)C=CC=1CC(C)(O)C(=O)C(O)(C)CC1=CC=C(OCCO)C=C1 LZHUBCULTHIFNO-UHFFFAOYSA-N 0.000 description 1
- LCHAFMWSFCONOO-UHFFFAOYSA-N 2,4-dimethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC(C)=C3SC2=C1 LCHAFMWSFCONOO-UHFFFAOYSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- 125000005449 2-fluoro-1,4-phenylene group Chemical group [H]C1=C([*:2])C([H])=C(F)C([*:1])=C1[H] 0.000 description 1
- QPXVRLXJHPTCPW-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-(4-propan-2-ylphenyl)propan-1-one Chemical compound CC(C)C1=CC=C(C(=O)C(C)(C)O)C=C1 QPXVRLXJHPTCPW-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- BOLMDIXLULGTBD-UHFFFAOYSA-N 3,4-dihydro-2h-oxazine Chemical compound C1CC=CON1 BOLMDIXLULGTBD-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 1
- 125000004864 4-thiomethylphenyl group Chemical group 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 101100132433 Arabidopsis thaliana VIII-1 gene Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DCTCFHMPZGWIEQ-UHFFFAOYSA-N CCN[N](N)(N)[U] Chemical compound CCN[N](N)(N)[U] DCTCFHMPZGWIEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- FHVUGIILBRBDBS-UHFFFAOYSA-N Fc(cc(cc1F)-c2cc3ccc(C4CCCCC4)cc3cc2)c1F Chemical compound Fc(cc(cc1F)-c2cc3ccc(C4CCCCC4)cc3cc2)c1F FHVUGIILBRBDBS-UHFFFAOYSA-N 0.000 description 1
- MLDSZFSZVALQLV-UHFFFAOYSA-N Fc(cc(cc1F)-c2cc3ccccc3cc2)c1F Chemical compound Fc(cc(cc1F)-c2cc3ccccc3cc2)c1F MLDSZFSZVALQLV-UHFFFAOYSA-N 0.000 description 1
- IDQCEVAARZDXRY-UHFFFAOYSA-N Fc(cc1)ccc1-c1cc(C=CC(C2)C3CCCCC3)c2cc1 Chemical compound Fc(cc1)ccc1-c1cc(C=CC(C2)C3CCCCC3)c2cc1 IDQCEVAARZDXRY-UHFFFAOYSA-N 0.000 description 1
- KLSMNVCVOJYXJE-UHFFFAOYSA-N Fc(ccc(-c(ccc1cc(C2CCCCC2)ccc11)c1F)c1)c1F Chemical compound Fc(ccc(-c(ccc1cc(C2CCCCC2)ccc11)c1F)c1)c1F KLSMNVCVOJYXJE-UHFFFAOYSA-N 0.000 description 1
- VZUSLTBHPWDMAW-UHFFFAOYSA-N Fc(ccc(-c1cc(cccc2)c2cc1)c1)c1F Chemical compound Fc(ccc(-c1cc(cccc2)c2cc1)c1)c1F VZUSLTBHPWDMAW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BWPYBAJTDILQPY-UHFFFAOYSA-N Methoxyphenone Chemical compound C1=C(C)C(OC)=CC=C1C(=O)C1=CC=CC(C)=C1 BWPYBAJTDILQPY-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- DBHQYYNDKZDVTN-UHFFFAOYSA-N [4-(4-methylphenyl)sulfanylphenyl]-phenylmethanone Chemical compound C1=CC(C)=CC=C1SC1=CC=C(C(=O)C=2C=CC=CC=2)C=C1 DBHQYYNDKZDVTN-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- VIQRCOQXIHFJND-UHFFFAOYSA-N bicyclo[2.2.2]oct-2-ene Chemical compound C1CC2CCC1C=C2 VIQRCOQXIHFJND-UHFFFAOYSA-N 0.000 description 1
- GPRLTFBKWDERLU-UHFFFAOYSA-N bicyclo[2.2.2]octane Chemical compound C1CC2CCC1CC2 GPRLTFBKWDERLU-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- QDVNNDYBCWZVTI-UHFFFAOYSA-N bis[4-(ethylamino)phenyl]methanone Chemical compound C1=CC(NCC)=CC=C1C(=O)C1=CC=C(NCC)C=C1 QDVNNDYBCWZVTI-UHFFFAOYSA-N 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QGGZBXOADPVUPN-UHFFFAOYSA-N dihydrochalcone Chemical class C=1C=CC=CC=1C(=O)CCC1=CC=CC=C1 QGGZBXOADPVUPN-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- LOZWAPSEEHRYPG-UHFFFAOYSA-N dithiane Natural products C1CSCCS1 LOZWAPSEEHRYPG-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- IVMHDOBGNQOUHO-UHFFFAOYSA-N oxathiane Chemical compound C1CCSOC1 IVMHDOBGNQOUHO-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- LYXOWKPVTCPORE-UHFFFAOYSA-N phenyl-(4-phenylphenyl)methanone Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C1=CC=CC=C1 LYXOWKPVTCPORE-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- NPSSWQJHYLDCNV-UHFFFAOYSA-N prop-2-enoic acid;hydrochloride Chemical compound Cl.OC(=O)C=C NPSSWQJHYLDCNV-UHFFFAOYSA-N 0.000 description 1
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical compound CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- OXTXYKOWIHKUFN-UHFFFAOYSA-N tetratert-butyl 5-benzoylbenzene-1,2,3,4-tetracarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=CC(C(=O)C=2C=CC=CC=2)=C1C(=O)OOC(C)(C)C OXTXYKOWIHKUFN-UHFFFAOYSA-N 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、電界強度に依存して消光位を連続的に変化させることができる液晶素子及び液晶素子の製造方法に関する。 The present invention relates to a liquid crystal element capable of continuously changing the extinction position depending on the electric field strength and a method for manufacturing the liquid crystal element.
クラークおよびラガウォールにより提案された強誘電性液晶材によれば、分子の長軸に対し永久双極子モーメントを分子の垂直方向に有することで自発分極を発現させ、自発分極の向きと逆極性電界により光スイッチングさせることができ、双安定性を有し、且つ電界の変化に対する応答が高速であることが記載されている(特許文献1参照)。この強誘電性液晶材を用いた液晶表示装置(ディスプレイ)は、単純マトリックス方式の駆動により大画面で高精細な液晶表示素子としての応用が期待されている。しかしながら、スイッチングに利用する強誘電性液晶のスメクチックC*相は、液晶分子の配向が螺旋状態を示しディスプレイに応用する場合には螺旋を解く必要がある。
一般に、強誘電性液晶であるスメクチック液晶は層構造であることが知られ、スメクチックC*相に於いてはキラル化合物の性質で極小的には層内の液晶ダイレクターの向く方向が隣接する層内の液晶ダイレクターの向く方向とはずれ巨視的に層の法線方向へ螺旋軸を描く。隣接する層間のダイレクターのずれが一周する距離を螺旋ピッチと定義される。この螺旋構造が存在すると偏光の直交ニコル下で螺旋軸と直交するように螺旋ピッチに由来する縞模様が現れて無電界状態では光散乱や回折により光を遮断できなくなりノーマルブラックモードのディスプレイへの応用を困難にしていた。
According to the ferroelectric liquid crystal material proposed by Clark and Ragawall, spontaneous polarization is developed by having a permanent dipole moment in the perpendicular direction of the molecule with respect to the long axis of the molecule. It is described that it can be optically switched, has bistability, and has a fast response to a change in electric field (see Patent Document 1). A liquid crystal display device (display) using this ferroelectric liquid crystal material is expected to be applied as a large-screen, high-definition liquid crystal display element by a simple matrix drive. However, the smectic C * phase of the ferroelectric liquid crystal used for switching needs to unwind the spiral when the orientation of the liquid crystal molecules shows a spiral state and is applied to a display.
In general, smectic liquid crystal, which is a ferroelectric liquid crystal, is known to have a layer structure, and in the smectic C * phase, it is a layer of adjacent liquid crystal directors in the layer. A spiral axis is drawn macroscopically in the normal direction of the layer, deviating from the direction of the liquid crystal director. The distance that the shift of the director between adjacent layers makes a round is defined as the helical pitch. When this spiral structure is present, a striped pattern derived from the spiral pitch appears perpendicular to the spiral axis under polarized Nicols of polarized light, and in the absence of an electric field, light cannot be blocked by light scattering or diffraction, resulting in a normal black mode display. It was difficult to apply.
螺旋を解く目的で螺旋ピッチより小さいセル厚の液晶セルに注入すると螺旋が解け層構造の法線方向に対して液晶分子が左右に傾斜(傾斜角度をチルト角と言う。)して二軸性の配向が得られる。これは、薄厚のセルにすることで螺旋が解け液晶分子はセル基板界面からの強い相互作用を受けて二軸配向状態を示す。これを表面安定化配向状態(SSFLCD)と呼び双安定性(メモリー性)による光学素子やディスプレイに応用される。しかし、螺旋ピッチは、温度で変化し降温で螺旋ピッチが小さくなる傾向があるため広い温度範囲(スメクチックC*相を示す温度範囲)で二軸性の配向を得るのに、少なくとも、セル厚≦螺旋ピッチの関係を動作温度条件の範囲で満たす必要があり、2μm以下の薄厚の液晶セルが用いられている。2μm以下の薄厚にすると、強誘電性液晶は液晶セル基板表面の配向安定化(表面安定化)の作用により配向のメモリー性(双安定性)が発現してメモリー性を有する黒と白の二値表示のディスプレイが得られるが、フルカラーディスプレイへの応用に於いては、印加電圧に比例した連続階調表示が必須で、前記双安定性の二値表示のディスプレイでは印加電圧に比例した階調表示が不可能になりフルカラー表示のディスプレイへの応用を難しくしている。
更に、現在実用化されている強誘電性液晶を用いたディスプレイは、配向膜にSiO2の斜方蒸着膜を用いることにより配向欠陥を無くしてコントラストを高くして、セル厚2μm以下で、且つ2インチ以下の超小型LCDである。しかし、LCDのサイズを大きくするとSiO2の斜方蒸着膜を均一に蒸着させることは難しくなり、セル厚が2μ以下では歩留まりが悪化して、その大型化は制限されていた。
When it is injected into a liquid crystal cell having a cell thickness smaller than the spiral pitch for the purpose of unraveling the spiral, the spiral is unwound and the liquid crystal molecules tilt to the left and right with respect to the normal direction of the layered structure (the tilt angle is called the tilt angle). Orientation is obtained. This is because when the cell is made thin, the spiral is broken and the liquid crystal molecules are subjected to a strong interaction from the cell substrate interface and show a biaxial alignment state. This is called surface stabilized orientation state (SSFLCD) and is applied to optical elements and displays with bistability (memory property). However, since the helical pitch changes with temperature and the helical pitch tends to decrease with decreasing temperature, in order to obtain biaxial orientation in a wide temperature range (temperature range showing a smectic C * phase), at least cell thickness ≦ It is necessary to satisfy the relationship of the helical pitch within the range of the operating temperature condition, and a thin liquid crystal cell of 2 μm or less is used. When the thickness is 2 μm or less, the ferroelectric liquid crystal exhibits a memory property (bistability) of alignment due to the alignment stabilization (surface stabilization) of the surface of the liquid crystal cell substrate. A value display can be obtained, but in application to a full color display, continuous gradation display proportional to the applied voltage is essential, and in the bistable binary display, the gradation proportional to the applied voltage is required. This makes it impossible to display the full color display.
Furthermore, a display using ferroelectric liquid crystal which is currently in practical use eliminates alignment defects by using an obliquely deposited SiO 2 film as the alignment film, increases the contrast, has a cell thickness of 2 μm or less, and An ultra-compact LCD of 2 inches or less. However, when the size of the LCD is increased, it becomes difficult to uniformly deposit the obliquely deposited SiO 2 film. When the cell thickness is 2 μm or less, the yield deteriorates and the enlargement is limited.
階調表示の課題を解消するために、FLC材料と共にメソゲン基を有するモノマーを使用し、紫外線を照射することによりモノマーを重合させ高分子安定化を図り、これにより双安定性を消失させて中間階調表示を可能にする技術が提案されている(非特許文献1及び2参照)。
又、これらは、強誘電性液晶と単官能液晶性アクリレートモノマーを含有する液晶組成物を液晶セル中で、該組成物がスメクチックA相やスメクチックC*相等の所定の液晶相を示す温度において紫外線を照射して、単官能液晶性アクリレートモノマーを高分子化させることにより得られる高分子安定化強誘電性液晶表示素子が開示されている(特許文献2、3、4及び5参照)。更に、強誘電性液晶材と単官能液晶性アクリレートモノマーを含有する強誘電性液晶組成物の強誘電性を示す温度で紫外線を照射する場合は、該組成物を液晶セル中で、該液晶組成物が強誘電性を示す温度において直流電圧を印加しながら紫外線を照射する方法が開示されている(特許文献4参照)。
In order to solve the problem of gradation display, a monomer having a mesogenic group is used together with the FLC material, and the polymer is polymerized by irradiating with ultraviolet rays to thereby stabilize the polymer, thereby eliminating the bistability and intermediate. Technologies that enable gradation display have been proposed (see Non-Patent Documents 1 and 2).
In addition, these include ultraviolet light at a temperature at which a liquid crystal composition containing a ferroelectric liquid crystal and a monofunctional liquid crystal acrylate monomer exhibits a predetermined liquid crystal phase such as a smectic A phase or a smectic C * phase. Has been disclosed, and a polymer-stabilized ferroelectric liquid crystal display device obtained by polymerizing a monofunctional liquid crystalline acrylate monomer is disclosed (see Patent Documents 2, 3, 4, and 5). Further, when the ferroelectric liquid crystal composition containing the ferroelectric liquid crystal material and the monofunctional liquid crystal acrylate monomer is irradiated with ultraviolet rays at a temperature showing the ferroelectricity, the composition is used in the liquid crystal cell. A method of irradiating ultraviolet rays while applying a DC voltage at a temperature at which an object exhibits ferroelectricity is disclosed (see Patent Document 4).
上述の方法で作製された高分子安定化強誘電性液晶性液晶素子は、紫外線照射の際に印加していた直流電圧に対し異極性の直流電圧を印加すると、配向膜の容易軸に対し直流電圧の絶対値に比例して、高分子安定化された傾き角の方向とは反対方向に強誘電性液晶材の配向方向が傾く。この場合でも双安定性は消失しているので、印加電圧を除去すれば、強誘電性液晶材は再び配向膜の容易軸に対して高分子安定化された傾き角を有する位置に配列する。このように紫外線照射時の印加直流電圧に対し異極性の電圧印加時における配向方向の変化を利用することで中間調表示が可能となる。しかし、印加電圧の極性に対して傾き角が配向膜の容易軸に対して対称にはならないため光学素子を直流電圧で駆動させるため焼付け等の素子の信頼性低下を招いていた。 The polymer-stabilized ferroelectric liquid crystal liquid crystal device manufactured by the above-described method can be applied with a direct current with respect to the easy axis of the alignment film when a direct current voltage of a different polarity is applied to the direct current voltage applied at the time of ultraviolet irradiation. In proportion to the absolute value of the voltage, the orientation direction of the ferroelectric liquid crystal material is tilted in a direction opposite to the tilt angle direction in which the polymer is stabilized. Even in this case, the bistability has disappeared. Therefore, if the applied voltage is removed, the ferroelectric liquid crystal material is arranged again at a position having a tilt angle where the polymer is stabilized with respect to the easy axis of the alignment film. In this way, halftone display is possible by utilizing the change in the orientation direction when a voltage of a different polarity is applied to the applied DC voltage during UV irradiation. However, since the tilt angle with respect to the polarity of the applied voltage is not symmetric with respect to the easy axis of the alignment film, the optical element is driven with a DC voltage, resulting in a decrease in reliability of the element such as baking.
この解決のために、一対の基板間に単官能液晶性アクリレートモノマーを含有した強誘電性液晶組成物を挟み、強誘電性液晶層に対し電圧印加しながらカイラルスメクチックC相を示す状態で、周波数2kHz〜4kHzの交流電界を印加するとともに、紫外線もしくは電子線を照射することで上記液晶性アクリレートモノマーを高分子化させる手段を用いて、配向膜の容易軸に対して印加電圧の極性に関わらず対象な傾き角を有し、一軸配向及びV字型の透過率−電圧特性を有する高分子安定化強誘電性液晶性液晶素子が開示されている(特許文献6参照)。当該液晶素子は、素子の駆動を交流電圧で駆動できる点で有用であるが、液晶性単官能アクリレートを用いているため熱や外部からの力による変形等で配向が乱れ易く信頼性の低いものであった。 To solve this problem, a ferroelectric liquid crystal composition containing a monofunctional liquid crystalline acrylate monomer is sandwiched between a pair of substrates, and a voltage is applied to the ferroelectric liquid crystal layer while exhibiting a chiral smectic C phase. Regardless of the polarity of the applied voltage with respect to the easy axis of the alignment film, a means for polymerizing the liquid crystalline acrylate monomer by applying an AC electric field of 2 kHz to 4 kHz and irradiating ultraviolet rays or an electron beam is used. A polymer-stabilized ferroelectric liquid crystal liquid crystal element having a target tilt angle, uniaxial alignment, and V-shaped transmittance-voltage characteristics is disclosed (see Patent Document 6). The liquid crystal element is useful in that the element can be driven with an alternating voltage, but since liquid crystal monofunctional acrylate is used, the alignment is easily disturbed by deformation due to heat or external force, etc., and the reliability is low. Met.
上述の何れの階調表示実現を目的として提案された技術は、強誘電性を示すスメクチックC*相に於いて高分子安定化により一軸配向が得られるように液晶分子の配向を安定化させるものであって、印加電圧に依存して液晶分子のチルト角が連続的に変化することで中間階調表示を可能にするものである。中間階調を得るためには表面安定化強誘電性液晶の双安定性(メモリー性)を消失させて課題を解決しているが、高分子安定化強誘電性液晶作製する際には、少なくとも一対の基板間(セル厚)が2μm以下の薄厚の液晶セルを用いて、双安定性の状態の二軸配向状態に電圧を印加しながら含有している高分子前駆体を重合させて目的の一軸配向を高分子安定化させる必要があるため、セル厚3μm以上の光学素子の量産化を難しくしていた。更に、セル厚を1.5μm程度のセル厚にして基板界面との相互作用で螺旋を解くため電圧−透過率特性に於いて基板界面の影響を大きく受けて液晶分子が電界に対して動き難くなりチルト角の低下を引き起こし、透過率の低下、駆動電圧の増加等の問題を起こしていた。 The technique proposed for realizing any of the above gradation displays is to stabilize the alignment of liquid crystal molecules so that uniaxial alignment can be obtained by stabilizing the polymer in the smectic C * phase exhibiting ferroelectricity. In this case, the halftone display is enabled by continuously changing the tilt angle of the liquid crystal molecules depending on the applied voltage. In order to obtain an intermediate gradation, the problem is solved by eliminating the bistability (memory property) of the surface-stabilized ferroelectric liquid crystal. However, when producing a polymer-stabilized ferroelectric liquid crystal, at least Using a thin liquid crystal cell with a thickness of 2 μm or less between a pair of substrates (cell thickness), the polymer precursor contained therein is polymerized while applying a voltage to a bi-stable biaxial orientation state. Since it is necessary to stabilize the polymer in the uniaxial orientation, it has been difficult to mass-produce optical elements having a cell thickness of 3 μm or more. Furthermore, since the cell thickness is about 1.5 μm and the spiral is unwound by interaction with the substrate interface, the voltage-transmittance characteristics are greatly affected by the substrate interface and the liquid crystal molecules are difficult to move with respect to the electric field. As a result, the tilt angle is lowered, causing problems such as a decrease in transmittance and an increase in driving voltage.
セル厚を増し、セル厚2μmより2〜3ミクロン厚くした範囲では、螺旋構造を示す縞模様は見られないが、基板の表面エネルギーと液晶の弾性エネルギーの作用に依存して液晶ダイレクターが捩れるような力が発生し、セルの厚さ方向で、強誘電性液晶分子のダイレクターがラビング配向方向から僅かにズレて捩れた状態の配向を示す。二軸配向状態に捩れ配向が加わり、偏光のクロスニコル下で偏光軸を回転させても一軸配向や二軸配向で見られるような暗視野に複屈折色が加わるようになり、この光漏れがディスプレイでは完全な黒が得られなくなる原因の一つでコントラスト低下を引き起こしていた。(非特許文献3、4参照)更に、セル厚を増していくと螺旋構造を発現する。(非特許文献5参照)このセル厚を臨界セル厚とすると、臨界セル厚以上で無電界では螺旋ピッチに対応した干渉色や螺旋構造に起因した光散乱が起こりノーマルブラックのディスプレイが得られなくなる。 In the range where the cell thickness is increased and the cell thickness is increased from 2 μm to 2 to 3 μm, no striped pattern showing a spiral structure is observed, but the liquid crystal director is twisted depending on the surface energy of the substrate and the elastic energy of the liquid crystal. Such a force is generated, and in the cell thickness direction, the ferroelectric liquid crystal molecule directors are aligned in a state of being slightly displaced from the rubbing alignment direction and twisted. Twisted orientation is added to the biaxial orientation state, and birefringent color is added to the dark field as seen in uniaxial orientation or biaxial orientation even if the polarization axis is rotated under polarized crossed Nicols, and this light leakage One of the reasons that perfect black cannot be obtained on a display is causing a decrease in contrast. (See Non-Patent Documents 3 and 4) Further, when the cell thickness is increased, a helical structure is developed. (Refer to Non-Patent Document 5) If this cell thickness is the critical cell thickness, if there is no critical cell thickness and there is no electric field, light scattering due to the interference color corresponding to the helical pitch and the helical structure occurs and a normal black display cannot be obtained. .
以上より、強誘電性液晶表示素子において製造効率に有利なセル厚を有するものは知られておらず、表面安定化を使用せずTFT駆動が可能で高コントラスト、高速応答、高透過率、且つ電界強度に比例して連続的に透過率を制御できる強誘電性液晶表示素子の開発が望まれていた。 From the above, there is no known ferroelectric liquid crystal display device having a cell thickness advantageous for manufacturing efficiency, and TFT driving is possible without using surface stabilization, high contrast, high speed response, high transmittance, and The development of a ferroelectric liquid crystal display element capable of continuously controlling the transmittance in proportion to the electric field intensity has been desired.
本発明が解決しようとする課題は、螺旋構造、捩れ配向、透過率低下を改善した量産可能なセル厚を有し、表面安定化配向状態を用いない液晶素子及び当該液晶素子の製造方法を提供することにある。 The problem to be solved by the present invention is to provide a liquid crystal device having a cell structure capable of mass production with improved helical structure, twisted alignment, and reduced transmittance, and not using a surface-stabilized alignment state, and a method for manufacturing the liquid crystal device There is to do.
前記課題を解決するために、本願発明者らは液晶素子の構成について検討を行った結果、螺旋構造のピッチとセル厚を特定の関係に最適化した構成を有する高分子安定化液晶素子を見出し本願発明の完成に至った。本発明は上記課題を解決するために、一対の電極層を有する基板間に、光学活性化合物を含有する液晶組成物及び高分子前駆体から成る透明性固体物質により構成される液晶層を有し、該液晶層において該液晶組成物が光学的に一軸配向しており、螺旋ピッチ(該液晶組成物の電圧無印加状態において発現する螺旋構造のピッチ(μm))とセル厚(該液晶層の厚さ(μm))が以下の関係を満たすことを特徴とする液晶素子を提供する。
螺旋ピッチ≦セル厚
更に、本願発明は、一対の電極層を有する基板間に、光学活性化合物を含有する液晶組成物及び透明性固体物質を形成する高分子前駆体を挟持し液晶層を形成し、該液晶組成物の螺旋ピッチ(該液晶組成物の電圧無印加状態において発現する螺旋構造のピッチ(μm))とセル厚(該液晶層の厚さ(μm))が以下の関係を満たし、
螺旋ピッチ≦セル厚
該液晶組成物の発現する螺旋構造を外部電界、又は温度により螺旋を解き、該高分子前駆体を硬化(架橋)させることにより高分子安定化させることにより無電界状態に於いて一軸性の配向状態を示し、これに電界を印加することにより電界強度に依存して消光位が連続的に変化する液晶素子の製造方法を提供する。
In order to solve the above problems, the inventors of the present invention have studied the configuration of the liquid crystal device, and as a result, found a polymer-stabilized liquid crystal device having a configuration in which the pitch of the spiral structure and the cell thickness are optimized to a specific relationship. The present invention has been completed. In order to solve the above problems, the present invention has a liquid crystal layer composed of a transparent solid material composed of a liquid crystal composition containing an optically active compound and a polymer precursor between a substrate having a pair of electrode layers. In the liquid crystal layer, the liquid crystal composition is optically uniaxially aligned, and the helical pitch (the pitch (μm) of the helical structure that appears when no voltage is applied to the liquid crystal composition) and the cell thickness (of the liquid crystal layer). A liquid crystal element characterized in that the thickness (μm) satisfies the following relationship is provided.
In addition, the present invention forms a liquid crystal layer by sandwiching a liquid crystal composition containing an optically active compound and a polymer precursor that forms a transparent solid substance between a substrate having a pair of electrode layers. The helical pitch of the liquid crystal composition (the pitch (μm) of the helical structure that appears when no voltage is applied to the liquid crystal composition) and the cell thickness (the thickness of the liquid crystal layer (μm)) satisfy the following relationship:
Spiral pitch ≦ cell thickness The helical structure expressed by the liquid crystal composition is released in the absence of an electric field by stabilizing the polymer by unwinding the spiral with an external electric field or temperature and curing (crosslinking) the polymer precursor. The present invention provides a method for manufacturing a liquid crystal element that exhibits a uniaxial alignment state and whose extinction position changes continuously depending on the electric field strength by applying an electric field thereto.
本発明の液晶素子によって、3μm以上のセル厚で一軸配向が得られ、V字型電圧-透過率特性に基づく中間階調表示が可能な数百マイクロミリ秒の高速応答を有する液晶ディスプレイが実現できる。当該素子及び本願発明の製造方法は従来の強誘電性液晶表示素子に比べてセル厚が厚いことから量産性に優れる。更に、本願発明の液晶素子は高分子安定化技術を適用していることから従来の強誘電性液晶表示素子と比較して耐衝撃性に優れる特徴を有する。 The liquid crystal device according to the present invention realizes a liquid crystal display having a high-speed response of several hundreds of microseconds in which a uniaxial alignment is obtained with a cell thickness of 3 μm or more, and halftone display based on V-shaped voltage-transmittance characteristics is possible. it can. The device and the manufacturing method of the present invention are excellent in mass productivity because the cell thickness is thicker than that of a conventional ferroelectric liquid crystal display device. Furthermore, since the liquid crystal element of the present invention applies a polymer stabilization technique, the liquid crystal element has a feature that is superior in impact resistance as compared with a conventional ferroelectric liquid crystal display element.
<螺旋を解いた配向状態を高分子安定化させる方法>
上記課題を解決するために、本発明に用いる液晶組成物は、スメクチックC相を示す液晶組成物にキラル化合物を添加することによりスメクチックC*相を発現させ、強誘電性による自発分極を示す液晶組成物に少量の少なくとも一種類以上の重合液晶性化合物を添加した重合性強誘電性液晶組成物である。重合性化合物は、液晶中に含まれるラジカル重合性化合物が熱、又は紫外線等の活性エネルギー線により重合し、それに伴い液晶組成物と相分離、又は液晶組成物中に分散した状態を引き起こして透明性高分子物質と液晶組成物からなる高分子安定化液晶表示素子を得るのに使用される。
<Method of stabilizing the polymer in the orientation state where the helix is unwound>
In order to solve the above problems, the liquid crystal composition used in the present invention is a liquid crystal exhibiting a smectic C * phase by adding a chiral compound to a liquid crystal composition exhibiting a smectic C phase and exhibiting spontaneous polarization due to ferroelectricity. A polymerizable ferroelectric liquid crystal composition obtained by adding a small amount of at least one polymer liquid crystal compound to the composition. The polymerizable compound is transparent because the radically polymerizable compound contained in the liquid crystal is polymerized by active energy rays such as heat or ultraviolet rays, and the liquid crystal composition is phase separated or dispersed in the liquid crystal composition. It is used to obtain a polymer-stabilized liquid crystal display device comprising a conductive polymer material and a liquid crystal composition.
この素子は、一対の電極層を有する基板間に配向制御膜と液晶層とを有する液晶素子において、液晶層は少なくとも液晶性高分子前駆体を一種類以上含有し、非液晶性高分子前駆体を含有することもできる光硬化性組成物の光硬化物及び強誘電性液晶材料から成り、且つ一対の電極層間に電圧を印加していない状態における液晶性高分子前駆体のメソゲン基の配向方向と、強誘電性液晶材料の配向方向が配向制御膜の配向方向に揃い一軸配向になるように電界で螺旋を解いた状態を高分子安定化させて、その配向を固定化させた液晶表示素子であって、液晶層中に液晶性高分子前駆体と非液晶性高分子前駆体を含有することも出来る硬化性物質を含む液晶組成物で、硬化物が重合相分離で微細な粒子状、又は微細な網目状に分散したもので、硬化物の一部に液晶性骨格を有する高分子鎖であって、該高分子鎖と強誘電性液晶分子との相互作用により一軸配向が得られるように強誘電性液晶分子が配向安定化され、電圧を印加していない状態では、一軸配向を示し偏光軸に合わせることにより消光位が得られる。電圧を印加すると強誘電性液晶の持つ双極子が電界方向へ再配向して液晶分子の配向方向が一軸配向から傾斜してその傾斜角の連続的な変化により透過率を変化させ連続的な階調表示が可能なV字型電圧−透過率特性を示す。この特性により、フルカラー表示が可能なディスプレイへ応用することができる。 This element is a liquid crystal element having an alignment control film and a liquid crystal layer between a substrate having a pair of electrode layers, wherein the liquid crystal layer contains at least one liquid crystalline polymer precursor, and a non-liquid crystalline polymer precursor Orientation of the mesogenic group of the liquid crystalline polymer precursor in a state in which no voltage is applied between the pair of electrode layers, and the photocured composition of the photocurable composition and the ferroelectric liquid crystal material can also contain And a liquid crystal display element in which the orientation of the ferroelectric liquid crystal material is aligned with the alignment direction of the orientation control film and the polymer is stabilized in a state where the spiral is unwound by an electric field so that the orientation is fixed. A liquid crystal composition containing a curable substance that can also contain a liquid crystalline polymer precursor and a non-liquid crystalline polymer precursor in the liquid crystal layer, and the cured product is in a fine particle form by polymerization phase separation. Or dispersed in a fine mesh, A polymer chain having a liquid crystalline skeleton in a part of the compound, and the ferroelectric liquid crystal molecules are stabilized in alignment so that uniaxial alignment is obtained by the interaction between the polymer chains and the ferroelectric liquid crystal molecules, In the state where no voltage is applied, the extinction position is obtained by exhibiting uniaxial orientation and matching the polarization axis. When a voltage is applied, the dipoles of the ferroelectric liquid crystal reorientate in the direction of the electric field, the orientation direction of the liquid crystal molecules tilts from the uniaxial orientation, and the transmittance is changed by the continuous change of the tilt angle to change the continuous level. V-shaped voltage-transmittance characteristics that can be displayed in gray scale. This characteristic enables application to a display capable of full color display.
セル厚3μm以上で一軸配向による消光位を得るためには螺旋を解く点、及び捩れ配向の課題を解決する必要がある。本発明では、螺旋が解けた液晶の配向状態を紫外線等を当てて組成物中に含有している高分子前駆体(液晶性アクリレート)を重合させることにより高分子安定化させ、螺旋の解けた配向状態を無電界状態でも維持させる手段を適応する。螺旋を解く手段は、
1.直流電界を印加して液晶分子が持つダイポール(双極子)を電界方向へ揃える方法
2.液晶組成や温度を上げて螺旋ピッチをセル厚以上の大きさにする方法
3.一軸配向が得られるように螺旋が解ける交流電圧を印加しながら高分子前駆体を重合させる方法
が挙げられる。
In order to obtain an extinction position by uniaxial orientation with a cell thickness of 3 μm or more, it is necessary to solve the problem of twisting and twisting orientation. In the present invention, the polymer is stabilized by polymerizing a polymer precursor (liquid crystalline acrylate) contained in the composition by applying ultraviolet rays or the like to the alignment state of the liquid crystal in which the spiral is broken, and the spiral is broken. A means for maintaining the alignment state even in the absence of an electric field is applied. The means to solve the spiral is
1. 1. A method of aligning dipoles (dipoles) of liquid crystal molecules in the electric field direction by applying a DC electric field. 2. Method of increasing the liquid crystal composition and temperature to make the helical pitch larger than the cell thickness A method of polymerizing a polymer precursor while applying an alternating voltage that can unwind a spiral so as to obtain uniaxial orientation can be mentioned.
1の電界を印加する手段は、螺旋を巻く力に打ち勝つ電界強度を印加する。使用するキラル化合物に依存するが少なくとも5V/μm以上の強い電界強度が必要になる。又、直流の極性とキラル化合物の双極子の向きに依存して液晶層法線方向から左右の何れかに傾斜した方向に液晶分子が揃い、高分子安定化させると非対称なV字型電圧−透過率特性、又は、半Vの字型電圧−透過率特性を示し交流駆動が難しくなる。2は、螺旋の右巻きを示すキラル化合物と螺旋の左巻きを示すキラル化合物をセル厚以上の螺旋ピッチになるような比率、及び添加量、キラル化合物の種類で調整する方法により螺旋を解くことが可能であるが、特に、セル厚3μmのセル厚以上で螺旋を解かせる方法として、螺旋を巻く力が弱いキラル化合物を使用か、組成物中のキラル化合物濃度を低く、例えば数%に抑える必要がある。この場合、強誘電性液晶組成物の自発分極が低くなり応答速度が遅くなったり、駆動電圧の増加などの問題を起し好ましくない。自発分極を高めるにはキラル化合物濃度を上げることになるが螺旋ピッチが小さくなり、螺旋が解ける濃度範囲が狭くなり渦かな濃度変化で螺旋構造が発現する確率が高く工業製品としては好ましくない。又、温度に依存して螺旋ピッチが変化し、用いるホスト液晶、及びキラル化合物の種類により螺旋ピッチの大きさ、及び螺旋ピッチの温度依存性が異なり、必ずしも光学素子の動作温度範囲全域で螺旋が解けるとは限らず問題があった。更に、ピッチを大きく示すキラル化合物の種類も限られるため実用的な組成物を得ることを難しくしていた。温度を上げると螺旋ピッチが増加することを利用してスメクチックA相−スメクチックC*相点移転付近の温度に加温することで螺旋ピッチを大きくする方法があるが、螺旋ピッチがセル厚以上になり螺旋が解けるが、捩れ配向状態が現れディスプレイのコントラスト低下要因になる。偏光顕微鏡で配向状態を観察すると暗の部分に捩れ配向状態による複屈折色が加わるようになることで分かる。 The means for applying one electric field applies an electric field strength that overcomes the force of winding the spiral. Depending on the chiral compound used, a strong electric field strength of at least 5 V / μm or more is required. Also, depending on the polarity of the direct current and the direction of the dipole of the chiral compound, the liquid crystal molecules are aligned in a direction inclined to the left or right from the normal direction of the liquid crystal layer, and when the polymer is stabilized, an asymmetric V-shaped voltage − A transmissivity characteristic or a half V-shaped voltage-transmittance characteristic is exhibited, and AC driving becomes difficult. 2 is that the spiral can be solved by adjusting the ratio of the chiral compound showing the right hand of the helix and the chiral compound showing the left hand of the helix to a helical pitch greater than the cell thickness, the addition amount, and the kind of the chiral compound. Although it is possible, in particular, as a method of unwinding the spiral at a cell thickness of 3 μm or more, it is necessary to use a chiral compound with weak spiraling force or to reduce the concentration of the chiral compound in the composition to a few percent, for example There is. In this case, the spontaneous polarization of the ferroelectric liquid crystal composition is lowered, resulting in a slow response speed and an increase in driving voltage. In order to increase the spontaneous polarization, the concentration of the chiral compound is increased. However, the helical pitch is reduced, the concentration range in which the helix can be dissolved is narrowed, and the probability that the helical structure is manifested by a vortex concentration change is high, which is not preferable as an industrial product. In addition, the helical pitch changes depending on the temperature, and the size of the helical pitch and the temperature dependence of the helical pitch vary depending on the type of host liquid crystal and chiral compound used. There was a problem that was not always solved. Furthermore, since the types of chiral compounds exhibiting a large pitch are limited, it has been difficult to obtain a practical composition. There is a method to increase the spiral pitch by heating to a temperature near the smectic A phase-smectic C * phase transfer using the increase in the spiral pitch when the temperature is raised, but the spiral pitch exceeds the cell thickness. Although the helix is unraveled, a twisted alignment state appears and becomes a factor of reducing the contrast of the display. When the alignment state is observed with a polarizing microscope, it can be seen that a birefringence color due to the twisted alignment state is added to the dark portion.
3の交流電界を印加する方法は、高分子前駆体を重合させて液晶分子の配向状態を高分子安定化させる際に印加される電界により一軸性の配向が得られる点と、初期配向ではスメクチックC*相の配向構造がシェブロン構造であったのをスイッチング状態にすることで擬似ブックシェルフ構造に変化させた所で高分子安定化させて強誘電性液晶特有のジグザグ配向欠陥を大幅に減少させてさせてモノドメイン状態を高分子安定化させる点と、3μm以上のセル厚(臨界セル厚以上)に於いて現れる螺旋構造や捩れ配向を解消させた状態から一軸配向が得られるような配向状態にさせて高分子安定化させる点である。即ち、螺旋ピッチ≦セル厚の関係で螺旋構造が現れる場合は、本発明の電界を印加する手段は、螺旋を解くのに必要な電界強度で且つ素子を重合させた後に電気光学効果がV字型電圧−透過率特性を示し、且つ一軸配向が得られる周波数の交流電界を印加することが重要である。交流電界で螺旋を解くには、電界により双極子が電界方向へ揃うようとする力が発生して螺旋が次第に解けて行き螺旋ピッチが無限大になる。この解けるまでに、スメクチックC*相の弾性率、双極子モーメントや粘性の影響を受け電界が印加されてから螺旋が解くまでに約10m秒程度時間が必要になる。そのため周波数は、螺旋が解く時間より速い場合は、双極子が完全に揃う前に電界の極性が切り替わるため、交番する電界に双極子は揃わなくなり螺旋が解けなくなる。少なくとも約200Hz以下の周波数の交流電界を印加させることが好ましい。 The method of applying an AC electric field of 3 is that a uniaxial alignment is obtained by an electric field applied when polymer precursors are polymerized to stabilize the alignment state of liquid crystal molecules, and in the initial alignment, smectic is used. When the C * phase orientation structure is a chevron structure, it is changed to a pseudo-bookshelf structure by switching to a switching state, which stabilizes the polymer and greatly reduces the zigzag orientation defects peculiar to ferroelectric liquid crystals. An orientation state in which a uniaxial orientation can be obtained from a state in which the monodomain state is stabilized by a polymer and the helical structure and twist orientation appearing at a cell thickness of 3 μm or more (critical cell thickness or more) are eliminated. This is the point of stabilizing the polymer. That is, when a spiral structure appears with a relationship of spiral pitch ≦ cell thickness, the means for applying an electric field according to the present invention has a V-shaped electro-optic effect after the elements are polymerized with the electric field strength necessary for unraveling the spiral. It is important to apply an AC electric field having a frequency that exhibits a mold voltage-transmittance characteristic and at which a uniaxial orientation is obtained. In order to solve the spiral with an AC electric field, the electric field generates a force that causes the dipoles to align in the direction of the electric field, so that the spiral gradually dissolves and the spiral pitch becomes infinite. It takes about 10 milliseconds from the time the electric field is applied until the helix is unwound by the influence of the elastic modulus, dipole moment and viscosity of the smectic C * phase. Therefore, if the frequency is faster than the time for the spiral to unwind, the polarity of the electric field is switched before the dipoles are completely aligned, so the dipoles are not aligned with the alternating electric field and the spiral cannot be unwound. It is preferable to apply an alternating electric field having a frequency of at least about 200 Hz or less.
又、螺旋ピッチ≦セル厚の関係で捩れ配向が現れる場合は、液晶の分極反転速度と同程度以上の周波数(数kHz)を印加することでダイレクターの動きを高速に回転させることや振動させることでダイレクターの配向分布範囲を広げることで捩れ配向状態を消滅させ良好な一軸配向性が示されるような状態で高分子安定化できるのでより好ましく、高分子安定化前の初期液晶配向状態に応じて交流電界の周波数、及び電圧を調整して印加することができる。 In addition, when twisted orientation appears due to the relationship of spiral pitch ≦ cell thickness, the director moves at high speed or vibrates by applying a frequency (several kHz) equal to or higher than the polarization reversal speed of the liquid crystal. It is more preferable because the polymer can be stabilized in such a state that the twisted alignment state disappears and good uniaxial alignment is shown by widening the orientation distribution range of the director, and the initial liquid crystal alignment state before the polymer stabilization is obtained. Accordingly, the frequency and voltage of the AC electric field can be adjusted and applied.
一方、交流を印加して一軸性配向が得られるのは以下のことが考えられる。紫外線露光前(高分子前駆体重合前)は、スメクチックC*相を示し層構造の法線方向に対して液晶分子は傾斜している。この状態に、交流電圧を印加して液晶分子を動かすと丁度、前記法線を中心線としてその周りを回転させたことで描かれる円錐状の軌跡を描く。このような液晶配向状態は、印加電圧の極性とキラル化合物の双極子モーメントの方向に依存して前期円錐の右回転、又は左回転の何れかの配向状態を通る。この回転状態に於いて交番電界を印加しながら高分子前駆体を重合させると円錐断面に描かれるV字の中心位置(前記法線方向付近)に消光位を示すような液晶配向状態が高分子安定化され一軸性の配向状態が発現する。これは、液晶分子の円錐状の回転により、回転速度に依存して重合による液晶分子の固定化がある確率で起こり、円錐状に散在するダイレクターの分布が光学的な二軸性を解消して光学的な一軸性を示すように存在するようになる。詰まり、円錐断面に描かれるV字状にダイレクターが分布する場合、円錐状に均一にダイレクターが分布する場合、が一軸性を示す配向状態として挙げられる。その結果、ノーマルブラックの液晶ディスプレイを作製することができる。液晶ディスプレイに於いて交流駆動連続階調表示が可能なV字型電圧−透過率特性が得られディスプレイに用いた場合は信頼性の向上が図られる。 On the other hand, it is considered that the uniaxial orientation can be obtained by applying alternating current. Before UV exposure (before polymer precursor polymerization), a smectic C * phase is exhibited and the liquid crystal molecules are tilted with respect to the normal direction of the layer structure. In this state, when an alternating voltage is applied to move the liquid crystal molecules, a conical locus drawn by rotating around the normal line as a center line is drawn. Such a liquid crystal alignment state passes through the alignment state of either the right rotation or the left rotation of the first cone depending on the polarity of the applied voltage and the direction of the dipole moment of the chiral compound. In this rotating state, when the polymer precursor is polymerized while applying an alternating electric field, the liquid crystal alignment state shows a quenching position at the center position (near the normal direction) of the V shape drawn in the conical section. It is stabilized and a uniaxial alignment state is developed. This occurs with the probability that the liquid crystal molecules are fixed by polymerization depending on the rotation speed due to the conical rotation of the liquid crystal molecules, and the distribution of directors scattered in the conical shape eliminates the optical biaxiality. Present to show optical uniaxiality. When the directors are clogged and distributed in a V-shape drawn in a conical section, when the directors are uniformly distributed in a conical shape, the orientation state can be cited as uniaxial. As a result, a normal black liquid crystal display can be manufactured. In a liquid crystal display, a V-shaped voltage-transmittance characteristic capable of AC drive continuous tone display is obtained, and when used in a display, reliability is improved.
しかし、使用する高分子前駆体の種類により一軸配向の方向が前記法線方向付近が著しく外れ非対称のV字型電圧−透過率特性になる場合や、一軸配向性を乱す場合があるので対称のV字型電圧−透過率特性になるように高分子前駆体の組成を調整する必要がある。又、一軸性の配向は、高分子前駆体を重合させる際に印加する電圧と周波数に影響される。印加電圧が低く高分子安定化されると一軸配向は見られず前記円錐上の二つの配向状態に由来した二つのドメインが同時に存在して高分子安定化され均一な一軸性配向が得られなくなり、ディスプレイの黒レベルが上がりコントラストが低下して好ましくない。この状態を示す電圧より上げていくと斑な二つのドメインが一方向へ揃うようになり、この時の電圧以上でUVを露光して高分子安定化させると一様な一軸性の配向が得られるような状態を高分子安定化され、直交する二枚の偏光板の間に素子を置くと消光位が偏光板の偏光軸の位置で観察されるようになる。このような配向状態は、ディスプレイに於いてはノーマルブラックが得られ好ましい。飽和電圧の数倍の電圧を印加すると強誘電性液晶の層が強電界により動き配向が乱れ好ましくない。更に、一軸配向の配向性は、周波数にも左右される。周波数が低いと、配向性が低下する傾向が見られる。これは、スメクチックC*相の層構造に於けるシェブロン構造に由来したジグザグ配向欠陥に起因する光漏れやラビング等の配向処理方向から外れる液晶が増えて漏れる光の量が多くなることに起因している。 However, depending on the type of polymer precursor used, the direction of uniaxial orientation may be significantly off from the vicinity of the normal direction, resulting in an asymmetric V-shaped voltage-transmittance characteristic, or uniaxial orientation may be disturbed. It is necessary to adjust the composition of the polymer precursor so as to obtain a V-shaped voltage-transmittance characteristic. The uniaxial orientation is affected by the voltage and frequency applied when polymerizing the polymer precursor. When the applied voltage is low and the polymer is stabilized, uniaxial orientation is not observed, and two domains derived from the two orientation states on the cone are present at the same time, and the polymer is stabilized and uniform uniaxial orientation cannot be obtained. This is not preferable because the black level of the display increases and the contrast decreases. As the voltage indicating this state is raised, the two distinct domains become aligned in one direction. When the polymer is stabilized by UV exposure above this voltage, uniform uniaxial orientation is obtained. In such a state, the polymer is stabilized, and when an element is placed between two orthogonal polarizing plates, the extinction position is observed at the position of the polarizing axis of the polarizing plate. Such an alignment state is preferable because normal black is obtained in a display. If a voltage several times the saturation voltage is applied, the ferroelectric liquid crystal layer moves due to a strong electric field, and the alignment is disturbed. Furthermore, the orientation of uniaxial orientation also depends on the frequency. When the frequency is low, the orientation tends to decrease. This is due to the increase in the amount of light leaked due to an increase in liquid crystal deviating from the alignment processing direction such as light leakage and rubbing due to zigzag alignment defects derived from the chevron structure in the smectic C * phase layer structure. ing.
更に、低周波の矩形波を印加して重合させた場合、重合過程中に右と左に傾斜した配向状態の二つのドメインが存在して二軸配向状態が高分子安定化され好ましくない。周波数を数百Hz程度から電気光学スイッチング速度程度の周波数(数kHz程度)に高くするのに伴い、シェブロン構造が擬似シェブロン構造に変化して光漏れの原因であるジグザグ欠陥が消失し、又、配向処理方向に揃う液晶が増え配向性が向上して黒レベルが下がりディスプレイに於いてはコントラストが向上するのでより好ましくなるが、周波数が高くなると双極子が交番する電界の速度に追従しなくなり螺旋構造が発現して目的の一軸配向が得られなくなる。そのため、用いる組成物の物性(粘度、弾性、双極子モーメント、自発分極)を考慮した条件(周波数、電圧)を探して電気光学素子を作製する必要がある。更に、一軸配向性は、高分子前駆体を重合する前の配向プロセス、用いる強誘電性液晶組成物の相系列、及びN*相の螺旋ピッチにも影響される。少なくとも本願に必要な強誘電性液晶の相系列は、高温側から等方相→N*相→スメクチックA相→スメクチックC*相の順の相系列が好ましく、加熱して等方相で液晶セルへ注入した後、N*相-スメクチックA相転移温度(Tna)付近のN*相側から徐冷して液晶を配向処理方向へ液晶分子を配向させる配向プロセスで配向させると配向性が高まりより好ましい。この時、N*相の螺旋ピッチがスメクチックA相へ転移する手前で解けていることが一軸配向性を高める必要条件になる。 Furthermore, when polymerization is performed by applying a low-frequency rectangular wave, two domains having an alignment state inclined to the right and left exist during the polymerization process, and the biaxial alignment state is stabilized, which is not preferable. As the frequency is increased from about several hundred Hz to a frequency (about several kHz) about the electro-optic switching speed, the chevron structure is changed to a pseudo chevron structure and the zigzag defect that causes light leakage disappears. The liquid crystal aligned in the alignment processing direction increases, the alignment improves, the black level decreases, and the contrast is improved in the display, which is more preferable. However, as the frequency increases, the dipole does not follow the alternating electric field velocity and spirals. The structure appears and the desired uniaxial orientation cannot be obtained. Therefore, it is necessary to produce an electro-optic element by searching for conditions (frequency, voltage) in consideration of physical properties (viscosity, elasticity, dipole moment, spontaneous polarization) of the composition to be used. Furthermore, the uniaxial orientation is also affected by the orientation process before polymerizing the polymer precursor, the phase sequence of the ferroelectric liquid crystal composition used, and the helical pitch of the N * phase. At least the phase sequence of the ferroelectric liquid crystal required for the present application is preferably the phase sequence of the isotropic phase → N * phase → smectic A phase → smectic C * phase from the high temperature side. After injecting into the N * phase, it is gradually cooled from the N * phase side in the vicinity of the N * phase to smectic A phase transition temperature (T na ) to align the liquid crystal molecules in the alignment process direction and align the liquid crystal molecules. More preferred. At this time, it is a necessary condition for improving the uniaxial orientation that the helical pitch of the N * phase is solved before the transition to the smectic A phase.
N*相の螺旋ピッチが解けていない場合は、スメクチックA相に配向の乱れが起こり一軸配向性の低下要因になる。徐冷は、Tnaから+3℃からTna−1℃の範囲で少なくとも2℃/分以下の速度にすることが好ましい。即ち、前記配向プロセスを経た後に、螺旋ピッチ≦セル厚の条件で螺旋構造を示す場合は、1の手段を用いて本願の液晶ディスプレイが作製される。1の手段は、螺旋を解くのに必要な周波数、及び電界強度で且つ一軸配向性が高くなる周波数を印加しながら高分子前駆体を重合させれば良く、50〜200Hz程度が好ましい。螺旋ピッチ≦セル厚の条件で捩れ配向を示す場合は、3の手段を用いて本願の液晶ディスプレイが作製される。更に、交流電圧の波形は、三角波、サイン波、矩形波、の何れでも作製することができるが、コントラストを高めるには矩形波がより好ましい。 When the spiral pitch of the N * phase is not solved, the disorder of orientation occurs in the smectic A phase, which causes a decrease in uniaxial orientation. The slow cooling is preferably performed at a rate of at least 2 ° C./min in the range of T na to + 3 ° C. to T na −1 ° C. That is, after the alignment process, when the spiral structure is exhibited under the condition of spiral pitch ≦ cell thickness, the liquid crystal display of the present application is manufactured using one means. The first means is to polymerize the polymer precursor while applying a frequency necessary for unwinding the helix and a frequency at which the electric field strength and the uniaxial orientation become high, preferably about 50 to 200 Hz. When the twisted orientation is exhibited under the condition of spiral pitch ≦ cell thickness, the liquid crystal display of the present application is manufactured using the three means. Furthermore, the waveform of the AC voltage can be any of a triangular wave, a sine wave, and a rectangular wave, but a rectangular wave is more preferable for increasing the contrast.
2の手段は、電界の極性に対して自発分極の向く方向が同一で螺旋の巻く向きが異なるキラル化合物を所望な螺旋ピッチが得られるような比率でホスト液晶組成物へ添加する。しかし、螺旋ピッチは温度で変化するため素子の全動作範囲(一例、−30℃〜80℃)で螺旋ピッチを3μm以上に維持させることは難しい。そこで、使用する液晶セルのセル厚に於いて螺旋が解ける温度にて上述した良好な一軸配向性を得られる電圧条件で高分子前駆体を重合させることが好ましい。この場合、捩れ配向を示す確率が高いため3の手段で作製することが好ましい。これにより全動作温度範囲で螺旋を解かれた状態を維持できる上記手段、1、2、3の高分子前駆体の重合は、熱、電子線、紫外線による方法を用いることができる。この内、紫外線による方法は、生産性に優れた方法で好ましい。しかし、短波長の紫外線は、液晶分子を分解させるため露光の際は紫外線のハイパスシャープカットフィルターを用いることが好ましい。特に、TFT駆動用途に用いる場合、電圧保持率の低下を抑えるために365nm以下の短波長紫外線を完全にカットすることが好ましい。紫外線の光源の種類によりシャープカットフィルターの種類を選択して最適な結果が得られるようにすることが好ましい。紫外線の露光量は、1500〜3000mJ/cm2が好ましい。 In the second means, chiral compounds having the same direction of spontaneous polarization with respect to the polarity of the electric field and different spiral directions are added to the host liquid crystal composition in such a ratio that a desired helical pitch can be obtained. However, since the helical pitch changes with temperature, it is difficult to maintain the helical pitch at 3 μm or more over the entire operating range of the device (eg, −30 ° C. to 80 ° C.). Therefore, it is preferable to polymerize the polymer precursor under a voltage condition that can obtain the above-described good uniaxial orientation at a temperature at which the spiral is unwound in the cell thickness of the liquid crystal cell to be used. In this case, since the probability of exhibiting a twisted orientation is high, it is preferable to produce by three means. As a result, the above-mentioned means capable of maintaining the unwound state in the entire operating temperature range, polymerization of the polymer precursors 1, 2, and 3 can be performed by a method using heat, electron beam, or ultraviolet ray. Of these, the method using ultraviolet rays is preferable because of its excellent productivity. However, it is preferable to use a high-pass sharp-cut filter of ultraviolet rays for exposure because short wavelength ultraviolet rays decompose liquid crystal molecules. In particular, when used in TFT driving applications, it is preferable to completely cut short wavelength ultraviolet rays of 365 nm or less in order to suppress a decrease in voltage holding ratio. It is preferable to select the type of the sharp cut filter according to the type of the ultraviolet light source so as to obtain an optimum result. As for the exposure amount of an ultraviolet-ray, 1500-3000mJ / cm < 2 > is preferable.
セル厚は、量産可能な3μm以上が好ましい。更に、V字型電圧−透過率特性にもセル厚に強く影響及ぼされる。セル厚が薄いと螺旋構造や捩れ配向の影響が無くなるが、その反面、基板界面との相互作用の影響がセル厚に反比例して大きくなり傾斜角(チルト角)が減少して透過率低下を引き起こしたり、駆動電圧が増加したりする。高透過率の特性を得るためには、少なくともセル厚を2μm以上にすることが好ましく、量産性を考慮すると3μmがより好ましい。更に、透過率は、リターデーション(液晶の屈折率異方性Δn、セル厚d、とすると、Δndの積)が光の波長λとするとλ/2になるよう液晶のΔnを調整することが好ましい。 The cell thickness is preferably 3 μm or more, which allows mass production. Furthermore, the cell thickness is also strongly influenced by the V-shaped voltage-transmittance characteristics. If the cell thickness is thin, the effect of the spiral structure and twist orientation is eliminated, but on the other hand, the effect of the interaction with the substrate interface increases inversely with the cell thickness, and the tilt angle (tilt angle) decreases and the transmittance decreases. Cause the drive voltage to increase. In order to obtain high transmittance characteristics, it is preferable that the cell thickness is at least 2 μm, and 3 μm is more preferable in consideration of mass productivity. Further, Δn of the liquid crystal can be adjusted so that the transmittance (the product of Δnd where the refractive index anisotropy Δn of the liquid crystal is Δn and the cell thickness d) is λ / 2 when the wavelength of light is λ. preferable.
<低電圧駆動及び高コントラストを示す電気光学特性>
このようにして形成された高分子安定化液晶表示素子は、前記組成物に添加され高分子前駆体の含有量に比例して駆動電圧、及び光散乱が上昇する。該前駆体の含有量が微量である場合、駆動電圧の上昇度合いは低減されるが、熱的や機械的安定性に乏しい。信頼性を高くするためには、前駆体の含有量を増やす必要があり、この時に駆動電圧の増加や液晶配向性の低下、及び散乱性の発現が問題になる。駆動電圧の増加は、例えば高分子分散型液晶表示素子の駆動電圧に関する記述として、特開平6−222320号公報において次式の関係が示されている。高分子安定化液晶素子の駆動電圧に対する考え方は、高分子分散型液晶表示素子と同様で、次の通りになる。
<Electro-optical characteristics showing low voltage drive and high contrast>
In the polymer-stabilized liquid crystal display device formed in this way, the driving voltage and light scattering increase in proportion to the content of the polymer precursor added to the composition. When the content of the precursor is very small, the degree of increase in driving voltage is reduced, but the thermal and mechanical stability is poor. In order to increase the reliability, it is necessary to increase the content of the precursor, and at this time, an increase in driving voltage, a decrease in liquid crystal alignment, and the appearance of scattering properties become problems. For example, Japanese Patent Laid-Open No. 6-222320 discloses the relationship of the following equation as an increase in the driving voltage as a description relating to the driving voltage of the polymer dispersed liquid crystal display element. The concept for the driving voltage of the polymer-stabilized liquid crystal element is the same as that of the polymer-dispersed liquid crystal display element, and is as follows.
(Vthはしきい値電圧を表し、1Kii及び2Kiiは弾性定数を表し、iは1、2又は3を表し、Δεは誘電率異方性を表し、<r>は透明性高分子物質界面の平均空隙間隔を表し、Aは液晶組成物に対する透明性高分子物質のアンカリングエネルギーを表し、dは透明性電極を有する基板間の距離を表す。) (Vth represents a threshold voltage, 1 Kii and 2 Kii represent elastic constants, i represents 1, 2 or 3, Δε represents dielectric anisotropy, and <r> represents a transparent polymer substance. (Indicates the average gap distance of the interface, A indicates the anchoring energy of the transparent polymer substance with respect to the liquid crystal composition, and d indicates the distance between the substrates having transparent electrodes.)
これによると、ネマチック液晶の高分子安定化液晶表示素子の駆動電圧は、透明性高分子物質界面の平均空隙間隔、基板間の距離、液晶組成物の弾性定数・誘電率異方性、及び液晶組成物と透明性高分子物質間のアンカリングエネルギーによって決定される。このうち、一般の液晶表示素子では駆動電圧はセル厚、該誘電率異方性、及び該弾性定数で決まるが、高分子安定化液晶表示素子においも高分子分散液晶と同様に透明性高分子物質間のアンカリングエネルギーに駆動電圧は大きく影響を受け、液晶と高分子の複合系での特有の現象になる。但し、強誘電性液晶の場合は、上述のΔεの替わりに自発分極Psになる。そのため、高分子安定化液晶表示素子においてもポリマーと液晶との界面の面積が増加するとともに系のアンカリングエネルギーが増して駆動電圧が上がる。言い換えると、本発明の組成物中に液晶性高分子前駆体の含有量が増加すると駆動電圧が上がることを意味している。駆動電圧の上昇を低減し、低い駆動電圧を維持させるためには、高分子安定化液晶を構成する高分子のアンカリングエネルギーを低くすれば良いことになる。例えば、重合性高分子前駆体の効果は、低分子液晶の一軸配向を高分子安定化させることにある。一方、非液晶性高分子前駆体は、該非液晶性高分子が低分子液晶に対してアンカーリング力が弱いものを用いることにより重合性高分子による駆動電圧増加を低減させる役割を果たす。前記組成物に用いる重合性液晶高分子前駆体と非液晶性高分子前駆体を併用して組成を調整することで高分子安定化の信頼性を維持したまま課題である駆動電圧を下げることができる。 According to this, the driving voltage of the nematic liquid crystal polymer-stabilized liquid crystal display element includes the average gap distance at the interface of the transparent polymer material, the distance between the substrates, the elastic constant / dielectric anisotropy of the liquid crystal composition, and the liquid crystal Determined by the anchoring energy between the composition and the transparent polymeric material. Among these, in general liquid crystal display elements, the driving voltage is determined by the cell thickness, the dielectric anisotropy, and the elastic constant. In the polymer-stabilized liquid crystal display element, the transparent polymer is the same as the polymer dispersed liquid crystal. The driving voltage is greatly influenced by the anchoring energy between materials, and this phenomenon becomes a characteristic phenomenon in the composite system of liquid crystal and polymer. However, in the case of a ferroelectric liquid crystal, spontaneous polarization Ps is used instead of the above-described Δε. Therefore, also in the polymer-stabilized liquid crystal display element, the area of the interface between the polymer and the liquid crystal is increased and the anchoring energy of the system is increased to increase the driving voltage. In other words, it means that when the content of the liquid crystalline polymer precursor is increased in the composition of the present invention, the driving voltage is increased. In order to reduce the increase in drive voltage and maintain a low drive voltage, the anchoring energy of the polymer constituting the polymer-stabilized liquid crystal may be lowered. For example, the effect of the polymerizable polymer precursor is to stabilize the uniaxial orientation of the low-molecular liquid crystal. On the other hand, the non-liquid crystalline polymer precursor serves to reduce an increase in driving voltage due to the polymerizable polymer by using the non-liquid crystalline polymer having a weak anchoring force with respect to the low molecular liquid crystal. By adjusting the composition by using a polymerizable liquid crystal polymer precursor and a non-liquid crystal polymer precursor used in the composition, the driving voltage, which is a problem, can be lowered while maintaining the reliability of polymer stabilization. it can.
非液晶性高分子前駆体の該エネルギーを低くするには、アルキル側鎖を有する二官能モノマーを用いれば良い。特に、アルキル側鎖の炭素原子数が5から15が良く、更に、該炭素原子数が8から13がより好ましい。アルキル側鎖が短い場合は、アンカリングエネルギーが高くなり、長すぎると、側鎖の影響が強くなりアンカリングエネルギーが高くなる。又、低分子液晶に類似したベンゼン環等を有するメソゲン基を側鎖にすると低分子液晶との親和性が高くなりアンカリングエネルギーが増加して好ましくない。更に、アルキル側鎖間の距離も重要で、炭素原子数の距離に換算して6〜18が良い。使用する液晶組成に依存するがアルキル側鎖間が狭いと低分子液晶が高分子界面で垂直配向してしまい好ましくない。 In order to lower the energy of the non-liquid crystalline polymer precursor, a bifunctional monomer having an alkyl side chain may be used. In particular, the alkyl side chain preferably has 5 to 15 carbon atoms, and more preferably 8 to 13 carbon atoms. When the alkyl side chain is short, the anchoring energy is high, and when it is too long, the influence of the side chain is strong and the anchoring energy is high. Further, if a mesogenic group having a benzene ring or the like similar to a low-molecular liquid crystal is used as a side chain, the affinity with the low-molecular liquid crystal is increased and the anchoring energy is increased, which is not preferable. Furthermore, the distance between the alkyl side chains is also important, and is preferably 6 to 18 in terms of the number of carbon atoms. Although it depends on the liquid crystal composition to be used, if the distance between the alkyl side chains is narrow, the low-molecular liquid crystal is not preferred because it is vertically aligned at the polymer interface.
アンカリングエネルギーは、側鎖が低分子液晶に及ぼす分子間相互作用と、主鎖が低分子液晶に及ぼす分子間相互作用とのバランスで決まり、両者の力が均等になるときにアンカリングエネルギーが最小になる。更に、高分子の架橋間距離は、高分子主鎖の熱運動性に影響を及ぼし、架橋間距離が短く熱運動性が低いと低分子液晶に対する分子相互作用が強く働きアンカリングエネルギーが高まる。架橋間距離が長くなると高分子主鎖の熱運動性が増して主鎖の熱による揺らぎが大きくなり分子間相互作用の力より揺らぎの力が大きくなると分子間相互作用を打ち消すように作用するためアンカリングエネルギーが小さくなる。しかし、架橋間距離が長くなると高分子前駆体の重合速度が遅くなり、液晶との相溶性が下がり好ましくなくなる。高分子主鎖の熱運動性を表す指標としては高分子ガラス転移温度が一般に用いられる。 The anchoring energy is determined by the balance between the intermolecular interaction that the side chain exerts on the low-molecular liquid crystal and the intermolecular interaction that the main chain exerts on the low-molecular liquid crystal. Be minimized. Furthermore, the distance between crosslinks of the polymer affects the thermal mobility of the polymer main chain. If the distance between crosslinks is short and the thermal mobility is low, the molecular interaction with the low-molecular liquid crystal is strong and the anchoring energy is increased. As the distance between crosslinks becomes longer, the thermal mobility of the polymer main chain increases and the fluctuation due to the heat of the main chain increases, and if the fluctuation force becomes larger than the intermolecular interaction force, it acts to cancel the intermolecular interaction Anchoring energy is reduced. However, if the distance between crosslinks is long, the polymerization rate of the polymer precursor is slowed, and the compatibility with the liquid crystal is lowered. As an index representing the thermal mobility of the polymer main chain, a polymer glass transition temperature is generally used.
本発明に用いられる高分子は、アンカーリングを低くする目的で該ガラス転移温度が室温以下になる高分子前駆体を用いることが好ましく、更には、ガラス転移温度が0〜−100℃であることがより好ましい。他に、ガラス転移温度を低くする意味では、機械的安定性を向上させるためにガラス転移温度を低くすることが好ましい。ガラス転移温度が室温以上であると素子外部からの変形などにより高分子で液晶の配向を安定化させる高分子網目構造が変形したり破損したりして高分子配向安定化の作用が落ちてしまう。ガラス転移温度が低いと該網目構造が変形しても網目の弾力性で元の状態に戻り固定化された配向が保持される。即ち、本発明に使用する液晶組成と高分子前駆体の主鎖長と側鎖長を調整して、かつガラス転移温度が室温以下である高分子前駆体を使用することで駆動電圧が低く、信頼性の高い高分子安定化液晶素子が得られる。しかしながら、機械的な変形や熱変化による配向の安定性と低電圧駆動特性を示す良好な電気光学特性はトレードオフの関係にあるため必要に応じて本発明に用いる高分子前駆体の組成、及び液晶組成を調整して所望の特性が得られるようにすることが好ましい。 The polymer used in the present invention is preferably a polymer precursor having a glass transition temperature of room temperature or lower for the purpose of lowering anchoring, and further has a glass transition temperature of 0 to -100 ° C. Is more preferable. In addition, in order to lower the glass transition temperature, it is preferable to lower the glass transition temperature in order to improve mechanical stability. If the glass transition temperature is higher than room temperature, the polymer network structure that stabilizes the liquid crystal alignment with the polymer may be deformed or damaged due to deformation from the outside of the device, etc. . When the glass transition temperature is low, even if the network structure is deformed, the original orientation is restored by the elasticity of the network and the fixed orientation is maintained. That is, by adjusting the main chain length and side chain length of the liquid crystal composition and polymer precursor used in the present invention, and using a polymer precursor having a glass transition temperature of room temperature or lower, the driving voltage is low, A highly reliable polymer-stabilized liquid crystal element can be obtained. However, the composition stability of the alignment due to mechanical deformation or thermal change and the good electro-optical characteristics showing low voltage driving characteristics are in a trade-off relationship, so that the composition of the polymer precursor used in the present invention, if necessary, and It is preferable to adjust the liquid crystal composition to obtain desired characteristics.
高分子安定化液晶は、液晶中に分散された高分子前駆体で液晶の所望の配向を固定化したり安定化させる。そのため、相分離により形成された高分子により光散乱を避ける必要がある。そのため、重合プロセスや高分子前駆体の組成調整などで光散乱が起こらない微細な網目状高分子や微細粒子を可視光の波長以下の大きさで少なくとも400nm以下に形成させることが好ましい。 The polymer-stabilized liquid crystal is a polymer precursor dispersed in the liquid crystal, which fixes or stabilizes the desired orientation of the liquid crystal. For this reason, it is necessary to avoid light scattering by the polymer formed by phase separation. Therefore, it is preferable to form a fine network polymer or fine particles that do not cause light scattering by a polymerization process or a composition adjustment of a polymer precursor, and have a size not larger than the wavelength of visible light and at least 400 nm or less.
更に、相分離方法は低分子液晶の配向を乱す恐れがある場合があり、この場合は、所望の安定化させる配向が得られるように配向秩序度の高い重合性液晶高分子前駆体を用いたり、電界、配向膜の配向規制力、磁場外場などを活用して目的の高分子安定化液晶素子が得られるように前記外場を調整して作製することもできる。更には、重合性液晶高分子前駆体と非液晶性高分子前駆体による共重合体でメソゲン基の自己組織化の性質や水素結合基等を基にした自己組織化を応用して規則性のある周期構造を形成させても良い。所望の特性を得るのに必要であればナノ微粒子状の高分子を低分子液晶中に分散させた構造であっても良い。又、液晶高分子前駆体とアンカーリング力に低い非液晶高分子前駆体で構成される高分子安定化液晶組成物を用いることで駆動電圧を低く、中間調表示が可能で、且つ高分子安定化の信頼性が高く、更に、光散乱が無い高コントラストの液晶表示素子を得ることができる。しかしながら、配向欠陥が発生すると表示コントラストが低下してしまう。 Furthermore, the phase separation method may disturb the orientation of the low-molecular liquid crystal. In this case, a polymerizable liquid crystal polymer precursor having a high degree of orientation order may be used so as to obtain the desired stabilizing orientation. In addition, the external field can be prepared by adjusting the external field so that the target polymer-stabilized liquid crystal element can be obtained by utilizing the electric field, the alignment regulating force of the alignment film, the magnetic field external field, and the like. Furthermore, it is a copolymer of a polymerizable liquid crystal polymer precursor and a non-liquid crystal polymer precursor, and is applied with a regularity by applying the self-organization properties of mesogenic groups and self-organization based on hydrogen bonding groups. A certain periodic structure may be formed. If necessary to obtain desired characteristics, a structure in which nanoparticulate polymer is dispersed in a low molecular liquid crystal may be used. In addition, by using a polymer-stabilized liquid crystal composition composed of a liquid crystal polymer precursor and a non-liquid crystal polymer precursor having a low anchoring force, the driving voltage is low, halftone display is possible, and the polymer is stable. It is possible to obtain a high-contrast liquid crystal display element that is highly reliable and has no light scattering. However, when an alignment defect occurs, the display contrast decreases.
<液晶素子>
液晶が配向膜等で配向させた状態を配向欠陥が少ない状態で高分子安定化により固定化させるためには、強誘電性液晶の場合は、少なくとも、ネマチック相から1分間に2℃程度の速度で除冷してキラルスメチックC相へ相転移させることが好ましく、用いる液晶セルの基板面が平坦であることがより好ましい。これによりキラルスメクチックC相で発生するジグザク配向欠陥の発生が改善される。上述の配向セル、及び配向プロセスを適用してスメクチック相の配向欠陥が少ない状態を作り、液晶相中で該高分子前駆体を網目状、又は分散した状態で重合させる必要がある。しかし、完全に上述の方法で配向欠陥を無くすことは難しく、数kHz程度迄の周波数の交流を印加しながら液晶分子を電界で動かしながら重合させると偏光顕微鏡で観察される液晶ダイレクターの平均配向方向に揃うようになり、結果としてジグザグ配向欠陥の無い一軸配向の素子を作製することができる。これは、スメクチック相の層構造が該交流で変化して擬似ブックシェルフ構造に変化したものと推定している。
<Liquid crystal element>
In order to fix the state in which the liquid crystal is aligned with an alignment film or the like by stabilizing the polymer in a state where there are few alignment defects, in the case of a ferroelectric liquid crystal, the speed is at least about 2 ° C. per minute from the nematic phase. It is preferable that the substrate is cooled to cause a phase transition to a chiral smectic C phase, and the substrate surface of the liquid crystal cell to be used is more preferably flat. This improves the generation of zigzag alignment defects generated in the chiral smectic C phase. It is necessary to apply the above-described alignment cell and alignment process to create a state with few smectic phase alignment defects, and to polymerize the polymer precursor in a network or dispersed state in the liquid crystal phase. However, it is difficult to completely eliminate alignment defects by the above-mentioned method, and when liquid crystal molecules are polymerized while moving with an electric field while applying an alternating current with a frequency up to several kHz, the average alignment of the liquid crystal directors observed with a polarizing microscope As a result, a uniaxially oriented element having no zigzag orientation defect can be produced. This is presumed that the layer structure of the smectic phase changed due to the alternating current and changed to a pseudo bookshelf structure.
本発明に用いる配向は、パラレル配向やアンチパラレル配向のラビング配向処理や光配向処理を施した配向膜を有する液晶セルを用いる。液晶セルの2枚の基板はガラス、プラスチックの如き柔軟性をもつ透明な材料を用いることができ、一方はシリコン等の不透明な材料でも良い。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。 For the alignment used in the present invention, a liquid crystal cell having an alignment film subjected to a rubbing alignment process or an optical alignment process of a parallel alignment or an antiparallel alignment is used. The two substrates of the liquid crystal cell can be made of a transparent material having flexibility such as glass or plastic, and one of them can be an opaque material such as silicon. A transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
カラーフィルターは、例えば、顔料分散法、印刷法、電着法、又は、染色法等によって作成することができる。顔料分散法によるカラーフィルターの作成方法を一例に説明すると、カラーフィルター用の硬化性着色組成物を、該透明基板上に塗布し、パターニング処理を施し、そして加熱又は光照射により硬化させる。この工程を、赤、緑、青の3色についてそれぞれ行うことで、カラーフィルター用の画素部を作成することができる。その他、該基板上に、TFT、薄膜ダイオード、金属絶縁体金属比抵抗素子等の能動素子を設けた画素電極を設置してもよい。前記基板を、透明電極層が内側となるように対向させる。その際、スペーサーを介して、基板の間隔を調整してもよい。このときは、得られる調光層の厚さが1〜100μmとなるように調整するのが好ましい。2から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料等が挙げられる。その後、エポキシ系熱硬化性組成物等のシール剤を、液晶注入口を設けた形で該基板にスクリーン印刷し、該基板同士を貼り合わせ、加熱しシール剤を熱硬化させる。
2枚の基板間に高分子安定化液晶組成物を狭持させるに方法は、通常の真空注入法、又はODF法などを用いることができる。この時、高分子安定化液晶組成物は、各種液晶化合物と本発明の高分子前駆体が相溶していれば良く、均一なアイソトロピック状態か、又はネマチック相であることが好ましい。スメクチック相では、素子作製時の取り扱い方が難しくなる。
The color filter can be prepared by, for example, a pigment dispersion method, a printing method, an electrodeposition method, or a dyeing method. A method for producing a color filter by a pigment dispersion method will be described as an example. A curable coloring composition for a color filter is applied on the transparent substrate, subjected to patterning treatment, and cured by heating or light irradiation. By performing this process for each of the three colors red, green, and blue, a pixel portion for a color filter can be created. In addition, a pixel electrode provided with an active element such as a TFT, a thin film diode, or a metal insulator metal specific resistance element may be provided on the substrate. The said board | substrate is made to oppose so that a transparent electrode layer may become an inner side. In that case, you may adjust the space | interval of a board | substrate through a spacer. At this time, it is preferable to adjust so that the thickness of the light control layer obtained may be set to 1-100 micrometers. 2 to 10 μm is more preferable, and when a polarizing plate is used, it is preferable to adjust the product of the refractive index anisotropy Δn of the liquid crystal and the cell thickness d so that the contrast is maximized. In addition, when there are two polarizing plates, the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good. Furthermore, a retardation film for widening the viewing angle can also be used. Examples of the spacer include glass particles, plastic particles, alumina particles, and a photoresist material. Thereafter, a sealant such as an epoxy thermosetting composition is screen-printed on the substrates with a liquid crystal inlet provided, the substrates are bonded together, and heated to thermally cure the sealant.
As a method for sandwiching the polymer-stabilized liquid crystal composition between the two substrates, a normal vacuum injection method, an ODF method, or the like can be used. At this time, the polymer-stabilized liquid crystal composition only needs to be compatible with various liquid crystal compounds and the polymer precursor of the present invention, and is preferably in a uniform isotropic state or a nematic phase. In the smectic phase, handling during device fabrication becomes difficult.
ラジカル重合性化合物を重合させる方法としては、紫外線照射が好適である。紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、高分子分散型液晶表示素子用組成物に含有されている光重合開始剤の吸収波長領域であり、且つ含有されている液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、具体的には、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプを使用して330nm以下の紫外線をカットして使用することが好ましく、350nm以下の紫外線をカットして使用することがより好ましい。 As a method for polymerizing the radically polymerizable compound, ultraviolet irradiation is suitable. As a lamp for generating ultraviolet rays, a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used. Further, the wavelength of the ultraviolet rays to be irradiated is an absorption wavelength region of the photopolymerization initiator contained in the polymer-dispersed liquid crystal display element composition, and a wavelength that is not the absorption wavelength region of the contained liquid crystal composition. It is preferable to irradiate ultraviolet rays in the region. Specifically, it is preferable to cut and use ultraviolet rays of 330 nm or less using a metal halide lamp, high-pressure mercury lamp, or ultra-high pressure mercury lamp, and cut ultraviolet rays of 350 nm or less. And more preferably used.
このようにして得られた素子の駆動は、ディスプレイの場合ノーマルブラックモード動作でTFT駆動させることができる。中間階調は電圧により透過率を制御して、連続的に中間調を変化させることができる。光の三原色のカラーフィルターによる加法混色、又は光の三原色のバックライト光源を点滅させたヒールドシーケンシャル駆動方式によりフルカラー表示のディスプレイを作製することができる。特に、能動素子と液晶画素電極との間に補助容量Csが並列接続されており、液晶画素電極をCflcとした場合、Cs/Cflsが0.1以上、10以下であることが好ましい。TFT駆動では一つの画素へ書き込んだ情報を次に書き込まれるまでの時間(フレームレート)の間、保持させる必要がある。そのためには、本発明の組成物に含有されるイオン性不純物を可能な限り除去する必要があるので精製が重要である。精製方法は、含有されるイオン性不純物の種類により様々な方法で行う必要があり、必要に応じて吸着剤、高純度の有機溶媒、純水等を用いて組成物や組成物に含有される各化合物を洗浄して十分に乾燥させて使用する組成物の比抵抗を少なくとも1013Ω/cm以上にすることが好ましい。 In the case of a display, the element thus obtained can be driven by a TFT in a normal black mode operation. The halftone can be changed continuously by controlling the transmittance with voltage. A full-color display can be manufactured by additive color mixing using a color filter of the three primary colors of light, or a heeled sequential drive method in which a backlight light source of the three primary colors of light is blinked. In particular, when the auxiliary capacitor Cs is connected in parallel between the active element and the liquid crystal pixel electrode, and the liquid crystal pixel electrode is Cflc, Cs / Cfls is preferably 0.1 or more and 10 or less. In TFT driving, it is necessary to hold information written to one pixel for the time (frame rate) until it is written next. For this purpose, purification is important because ionic impurities contained in the composition of the present invention must be removed as much as possible. The purification method needs to be performed by various methods depending on the type of ionic impurities contained, and is contained in the composition or the composition using an adsorbent, a high-purity organic solvent, pure water, or the like as necessary. It is preferable that the specific resistance of the composition to be used after washing and sufficiently drying each compound is at least 10 13 Ω / cm or more.
<高分子安定化液晶組成物の重合方法>
本発明の高分子安定化液晶表示素子用組成物を重合させる場合の重合方法としては、ラジカル重合、アニオン重合、カチオン重合等を用いることが可能であるが、ラジカル重合により重合することが好ましい。
<Polymerization method of polymer stabilized liquid crystal composition>
As a polymerization method for polymerizing the composition for a polymer-stabilized liquid crystal display element of the present invention, radical polymerization, anion polymerization, cationic polymerization, and the like can be used, but polymerization is preferably performed by radical polymerization.
ラジカル重合開始剤としては、熱重合開始剤、光重合開始剤を用いることができるが、光重合開始剤が好ましい。具体的には以下の化合物が好ましい。
ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアセトフェノン系;
As the radical polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator can be used, but a photopolymerization initiator is preferable. Specifically, the following compounds are preferable.
Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- ( 2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl- Acetophenone series such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone;
ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系;
2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド系;
ベンジル、メチルフェニルグリオキシエステル系;
ベンゾフェノン、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4,4’−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系;
2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系;
ミヒラーケトン、4,4’−ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系;
10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が好ましい。この中でも、ベンジルジメチルケタールが最も好ましい。
Benzoins such as benzoin, benzoin isopropyl ether and benzoin isobutyl ether;
Acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide;
Benzyl, methylphenylglyoxyesters;
Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ′, 4,4 ′ -Benzophenone series such as tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone;
Thioxanthone systems such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone;
Aminobenzophenone series such as Michler's ketone and 4,4′-diethylaminobenzophenone;
10-butyl-2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone and the like are preferable. Of these, benzyldimethyl ketal is most preferred.
本発明に用いる高分子安定化液晶組成物に使用する化合物の具体的な一例を以下に示す。該高分子安定化液晶組成物は、非液晶性(メタ)アクリレートとして下記一般式(Ia)で表される重合性化合物(I)の少なくとも一種を含有し、液晶性(メタ)アクリレートとして下記一般式(III−a)、(III−b)及び(III−c)からなる群より選ばれる少なくとも1種の重合性化合物(III)を含有し、強誘電性液晶として、下記一般式(II−a)又は(II−b)で表される低分子液晶化合物(II)と、一般式(IV−a)又は(IV−b)で表されるカイラル化合物(IV)とをそれぞれ少なくとも一種含有するものが好ましい。 A specific example of the compound used in the polymer-stabilized liquid crystal composition used in the present invention is shown below. The polymer-stabilized liquid crystal composition contains at least one polymerizable compound (I) represented by the following general formula (Ia) as a non-liquid crystalline (meth) acrylate, and has the following general properties as a liquid crystalline (meth) acrylate. A ferroelectric liquid crystal containing at least one polymerizable compound (III) selected from the group consisting of formulas (III-a), (III-b) and (III-c), has the following general formula (II- at least one low molecular liquid crystal compound (II) represented by a) or (II-b) and a chiral compound (IV) represented by formula (IV-a) or (IV-b) Those are preferred.
<重合性化合物(I)>
本発明に用いる高分子安定化液晶組成物に用いられる重合性化合物(I)は、下記一般式(I−a)
<Polymerizable compound (I)>
The polymerizable compound (I) used in the polymer-stabilized liquid crystal composition used in the present invention has the following general formula (Ia):
A2は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、A3及びA6はそれぞれ独立して水素原子又は炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から17のアルキル基で置換されていても良い。)を表し、
A 2 represents a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups present in the alkylene group are each independently an oxygen atom on the assumption that oxygen atoms are not directly bonded to each other). , —CO—, —COO— or —OCO— may be substituted, and one or two or more hydrogen atoms present in the alkylene group are each independently substituted with a fluorine atom, a methyl group or an ethyl group A 3 and A 6 each independently represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms (one or two or more methylene groups present in the alkyl group are In addition, the oxygen atom may be independently substituted with an oxygen atom, —CO—, —COO—, or —OCO— so that the oxygen atoms are not directly bonded to each other, and one or two or more present in the alkyl group Atom may be substituted with independently a halogen atom or an alkyl group having a carbon number of 1 to 17.) Represent,
A4及びA7はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、kは1から40を表し、B1、B2及びB3は、それぞれ独立して水素原子、炭素原子数1から10の直鎖もしくは分岐のアルキル基(該アルキル基中に存在する1個もしくは2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い)、又は一般式(I−b) A 4 and A 7 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups present in the alkyl group are such that oxygen atoms are not directly bonded to each other). Each independently substituted with an oxygen atom, -CO-, -COO- or -OCO-, and one or more hydrogen atoms present in the alkyl group are each independently a halogen atom or a carbon atom. And k represents 1 to 40, B 1 , B 2 and B 3 each independently represent a hydrogen atom or a carbon atom having 1 to 10 carbon atoms. A linear or branched alkyl group (one or two or more methylene groups present in the alkyl group are each independently an oxygen atom, —CO—, —COO, assuming that the oxygen atoms are not directly bonded to each other. Or may be substituted with -OCO-), or formula (I-b)
(式(I−b)中、A9は水素原子又はメチル基を表し、
A8は単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)で表される基を表す。ただし、2k+1個あるB1、B2及びB3のうち前記一般式(I−b)で表される基となるものの個数は0〜3個である。)で表される重合性化合物であって、該重合性化合物の重合物のガラス転移温度が−100℃から25℃である重合性化合物(I)である。
(In formula (Ib), A 9 represents a hydrogen atom or a methyl group,
A 8 is a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups present in the alkylene group are each independently an oxygen atom, assuming that oxygen atoms are not directly bonded to each other). , —CO—, —COO— or —OCO— may be substituted, and one or two or more hydrogen atoms present in the alkylene group are each independently substituted with a fluorine atom, a methyl group or an ethyl group Represents a group represented by: However, the number of 2 k + 1 B 1 , B 2, and B 3 that is the group represented by the general formula (Ib) is 0 to 3. And a polymerizable compound (I) having a glass transition temperature of −100 ° C. to 25 ° C. of the polymerized product of the polymerizable compound.
なお、本願発明において、「アルキレン基」とは、特に断りのない場合、脂肪族直鎖炭化水素の両端の炭素原子から水素原子各1個を除いた二価の基「−(CH2)n−」(ただしnは1以上の整数)を意味するものとし、その水素原子からハロゲン原子もしくはアルキル基への置換、又はメチレン基から酸素原子、−CO−、−COO−もしくは−OCO−への置換がある場合は、その旨を特に断るものとする。また、「アルキレン鎖長」とは、「アルキレン基」の一般式「−(CH2)n−」におけるnをいうものとする。
一般式(I−a)で表される重合性化合物(I)の好ましい構造として、下記一般式(I−c)
In the present invention, unless otherwise specified, the “alkylene group” is a divalent group “— (CH 2 ) n, wherein one hydrogen atom is removed from carbon atoms at both ends of an aliphatic linear hydrocarbon. -"(Where n is an integer of 1 or more), and the substitution from a hydrogen atom to a halogen atom or an alkyl group, or from a methylene group to an oxygen atom, -CO-, -COO- or -OCO- If there is a substitution, this shall be specifically refused. Further, the “alkylene chain length” refers to n in the general formula “— (CH 2 ) n —” of the “alkylene group”.
As a preferable structure of the polymerizable compound (I) represented by the general formula (Ia), the following general formula (Ic)
(式(I−c)中、A11及びA19はそれぞれ独立して水素原子又はメチル基を表し、A12及びA18はそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、 (In formula (Ic), A 11 and A 19 each independently represent a hydrogen atom or a methyl group, and A 12 and A 18 each independently represent a single bond or an alkylene group having 1 to 15 carbon atoms ( One or more methylene groups present in the alkylene group are each independently substituted with an oxygen atom, -CO-, -COO- or -OCO-, assuming that the oxygen atoms are not directly bonded to each other. And one or two or more hydrogen atoms present in the alkylene group may each independently be substituted with a fluorine atom, a methyl group or an ethyl group).
A13及びA16はそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、A14及びA17はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)を表し、A15は炭素原子数9から16のアルキレン基(該アルキレン基中に存在する少なくとも1個以上5個以下のメチレン基において、該メチレン基中の水素原子の一つはそれぞれ独立に炭素原子数1から10の直鎖又は分岐のアルキル基で置換されている。該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表す。)で表される化合物、一般式(I−d) A 13 and A 16 are each independently a linear alkyl group having 2 to 20 carbon atoms (one or two or more methylene groups present in the linear alkyl group are such that oxygen atoms are not directly bonded to each other) as things each independently represent an oxygen atom, -CO -, -. the COO- or may be substituted with -OCO-) represents, a 14 and a 17 from each independent number hydrogen atom or a carbon atom 1 10 alkyl groups (one or two or more methylene groups present in the alkyl group are each independently an oxygen atom, —CO—, —COO— or —OCO—, as oxygen atoms are not directly bonded to each other). And one or more hydrogen atoms present in the alkyl group may each independently be substituted with a halogen atom or an alkyl group having 1 to 9 carbon atoms). A 15 represents an alkylene group having 9 to 16 carbon atoms (in the alkylene group, at least 1 to 5 methylene groups, each of the hydrogen atoms in the methylene group is independently a carbon atom, It is substituted with a linear or branched alkyl group having a number of 1 to 10. One or more methylene groups present in the alkylene group are independently considered as those in which oxygen atoms are not directly bonded to each other. An oxygen atom, -CO-, -COO- or -OCO- may be substituted). ), A compound represented by the general formula (Id)
一般式(I−c)で表される重合性化合物の好ましい構造として、A11及びA19はいずれも水素原子であることが好ましい。これらの置換基A11又はA19がメチル基である化合物においても本願発明の効果は発現するが、水素原子である化合物は重合速度がより速くなる点で有利である。 As a preferable structure of the polymerizable compound represented by the general formula (Ic), both A 11 and A 19 are preferably hydrogen atoms. The effect of the present invention is exhibited even in a compound in which these substituents A 11 or A 19 are a methyl group, but a compound in which a hydrogen atom is used is advantageous in that the polymerization rate becomes faster.
A12及びA18はそれぞれ独立して単結合又は炭素原子数1〜3のアルキレン基であることが好ましい。二つの重合性官能基間距離は、A12及びA18とA15とで独立的にそれぞれ炭素数の長さを変えて調整することができる。一般式(I−c)で表される化合物の特徴は、重合性官能基間の距離(架橋点間の距離)が長いことであるが、この距離があまりに長いと重合速度が極端に遅くなって相分離に悪い影響が出てくるため、重合性官能基間距離には上限がある。一方、A13及びA16の二つの側鎖間距離も主鎖の運動性に影響がある。すなわちA13及びA16の間の距離が短いと側鎖A13及びA16がお互いに干渉するようになり、運動性の低下をきたす。従って、一般式(I−c)で表される化合物において重合性官能基間距離はA12、A18、及びA15の和で決まるが、このうちA12とA18を長くするよりはA15を長くした方が好ましい。 A 12 and A 18 are preferably each independently a single bond or an alkylene group having 1 to 3 carbon atoms. The distance between the two polymerizable functional groups can be adjusted by independently changing the length of the carbon number of A 12 and A 18 and A 15 , respectively. The feature of the compound represented by the general formula (Ic) is that the distance between the polymerizable functional groups (distance between the crosslinking points) is long, but if this distance is too long, the polymerization rate becomes extremely slow. Therefore, there is an upper limit on the distance between the polymerizable functional groups. On the other hand, the distance between the two side chains of A 13 and A 16 also affects the mobility of the main chain. That is, if the distance between A 13 and A 16 is short, the side chains A 13 and A 16 will interfere with each other, resulting in a decrease in mobility. Accordingly, the distance between polymerizable functional groups of the compound represented by the general formula (I-c) A 12, A 18, and is determined by the sum of A 15, A rather than these lengthening the A 12 and A 18 It is preferable to lengthen 15 .
一方、側鎖であるA13,A14,A16,A17においては、これらの側鎖の長さが次のような態様を有することが好ましい。
一般式(I−c)において、A13とA14は主鎖の同じ炭素原子に結合しているが、これらの長さが異なるとき、長いほうの側鎖をA13と呼ぶものとする(A13の長さとA14の長さが等しい場合は、いずれが一方をA13とする)。同様に、A16の長さとA17の長さが異なるとき、長いほうの側鎖をA16と呼ぶものとする(A16の長さとA17の長さが等しい場合は、いずれが一方をA16とする)。
On the other hand, in the side chains A 13 , A 14 , A 16 and A 17 , it is preferable that the length of these side chains has the following aspect.
In the general formula (Ic), A 13 and A 14 are bonded to the same carbon atom of the main chain. When these lengths are different, the longer side chain is referred to as A 13 ( If the length and the length of a 14 of a 13 are equal, one to one and a 13). Similarly, when the length of the length and A 17 of A 16 are different, if the length and the length of A 17 in the longer side chain of is referred to as A 16 (A 16 are equal, either the one and a 16).
このようなA13及びA16は、本願においてはそれぞれ独立して炭素原子数2から20の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)とされているが、好ましくは、それぞれ独立して炭素原子数2から18の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、より好ましくは、それぞれ独立して炭素原子数3から15の直鎖アルキル基(該直鎖アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)である。 In the present application, such A 13 and A 16 are each independently a linear alkyl group having 2 to 20 carbon atoms (one or two or more methylene groups present in the linear alkyl group are oxygen As the atoms are not directly bonded to each other, each may be independently substituted with an oxygen atom, —CO—, —COO—, or —OCO—. A straight-chain alkyl group having 2 to 18 atoms (one or two or more methylene groups present in the straight-chain alkyl group independently represent an oxygen atom, -CO -, -COO- or -OCO- may be substituted.), More preferably each independently a linear alkyl group having 3 to 15 carbon atoms (present in the linear alkyl group). 1 piece or Two or more of the methylene groups is, as the oxygen atoms are not directly bonded to each other, each independently represent an oxygen atom, -CO -, -. The COO- or may be substituted with -OCO-) is.
側鎖は主鎖に比べて運動性が高いので、これが存在することは低温での高分子鎖の運動性向上に寄与するが、前述したように二つの側鎖間で空間的な干渉が起こる状況では逆に運動性が低下する。このような側鎖間での空間的な干渉を防ぐためには側鎖間距離を長くすること、及び、側鎖長を必要な範囲内で短くすることが有効である。 Since the side chain has higher mobility than the main chain, its presence contributes to improvement of the mobility of the polymer chain at low temperature, but as mentioned above, spatial interference occurs between the two side chains. On the contrary, motility decreases. In order to prevent such spatial interference between side chains, it is effective to increase the distance between the side chains and to shorten the side chain length within a necessary range.
さらにA14及びA17については、本願においてはそれぞれ独立に水素原子又は炭素原子数1から10のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキル基中に存在する1個又は2個以上の水素原子はそれぞれ独立にハロゲン原子又は炭素原子数1から9のアルキル基で置換されていても良い。)とされているが、好ましくは、それぞれ独立に水素原子又は炭素原子数1から7のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、 Furthermore, for A 14 and A 17 , in the present application, each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups present in the alkyl group have an oxygen atom Each may be independently substituted with an oxygen atom, —CO—, —COO—, or —OCO— so that one or two or more hydrogen atoms present in the alkyl group are each independently May be substituted with a halogen atom or an alkyl group having 1 to 9 carbon atoms.), Preferably each independently a hydrogen atom or an alkyl group having 1 to 7 carbon atoms (the alkyl group). One or more methylene groups present therein are each independently oxygen atoms, —CO—, —COO— or —OCO—, as oxygen atoms are not directly bonded to each other. Is may be substituted.),
より好ましくは、それぞれ独立に水素原子又は炭素原子数1から5のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であり、さらに好ましくは、それぞれ独立に水素原子又は炭素原子数1から3のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとしてそれぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)である。 More preferably, they are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms (one or two or more methylene groups present in the alkyl group are independent as those in which oxygen atoms are not directly bonded to each other). May be substituted with an oxygen atom, —CO—, —COO— or —OCO—, and more preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms (the alkyl group). One or two or more methylene groups present therein may be each independently substituted with an oxygen atom, —CO—, —COO— or —OCO— so that the oxygen atoms are not directly bonded to each other. ).
このA14及びA17についても、その長さが長すぎることは側鎖間の空間的な干渉を誘起するため好ましくない。この一方でA14及びA17が短い長さを持ったアルキル鎖である場合、高い運動性を持った側鎖になり得ること、及び隣接する主鎖同士の接近を阻害する働きを有することが考えられ、高分子主鎖間の干渉を防ぐ作用がり主鎖の運動性を高めているものと考えられアンカリングエネルギーが低温で増加して行くことを抑制することができ高分子安定化液晶表示素子の低温域における表示特性を改善する上で有効である。 This A 14 and A 17 also, the possible length too long is not preferable for inducing the spatial interference between side chains. On the other hand, when A 14 and A 17 are alkyl chains having a short length, they can be side chains having high mobility and have a function of inhibiting the proximity of adjacent main chains. It is thought that it acts to prevent interference between polymer main chains, and it is thought that the mobility of the main chains is enhanced. This is effective in improving the display characteristics in the low temperature region of the device.
二つの側鎖間に位置するA15は、側鎖間距離を変える意味からも、架橋点間距離を広げてガラス転移温度を下げる意味からも、長い方が好ましい。しかしながらA15が長すぎる場合は一般式(I−c)で表される化合物の分子量が大きくなりすぎ液晶組成物との相溶性が低下してくること、及び重合速度が遅くなりすぎて相分離に悪影響が出ること等の理由から自ずとその長さには上限が設定される。 A 15 located between the two side chains is preferably longer in terms of changing the distance between the side chains and increasing the distance between the crosslinking points to lower the glass transition temperature. However to come formula compatibility with the liquid crystal composition has too high a molecular weight (I-c) compounds represented by is reduced when A 15 is too long, and the polymerization rate slows down too phase separation The length is naturally set to an upper limit because of adverse effects on the length.
よって、本願発明においてA15は、炭素原子数9から16のアルキレン基(該アルキレン基中に存在する少なくとも1個以上5個以下のメチレン基において、該メチレン基中の水素原子の一つはそれぞれ独立に炭素原子数1から10の直鎖又は分岐のアルキル基で置換されている。該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)であることが好ましい。 Therefore, in the present invention, A 15 represents an alkylene group having 9 to 16 carbon atoms (in the methylene group of at least 1 to 5 carbon atoms present in the alkylene group, one of the hydrogen atoms in the methylene group is Independently substituted with a linear or branched alkyl group having 1 to 10 carbon atoms, wherein one or more methylene groups present in the alkylene group are such that oxygen atoms are not directly bonded to each other. And each may be independently substituted with an oxygen atom, —CO—, —COO— or —OCO—.
すなわち、本願発明においてA15のアルキレン鎖長は炭素原子数9から16であることが好ましい。A15は構造上の特徴として、アルキレン基中の水素原子が炭素原子数1から10のアルキル基で置換された構造を有する。アルキル基の置換数は1個以上5個以下であるが、1個から3個が好ましく、2個又は3個置換されていることがより好ましい。置換するアルキル基の炭素原子数は、1個から5個が好ましく、1個から3個がより好ましい。 That is, in the present invention, the alkylene chain length of A 15 is preferably 9 to 16 carbon atoms. A 15 has a structure in which a hydrogen atom in an alkylene group is substituted with an alkyl group having 1 to 10 carbon atoms as a structural feature. The number of substitution of the alkyl group is 1 or more and 5 or less, preferably 1 to 3, and more preferably 2 or 3 substitutions. The number of carbon atoms of the alkyl group to be substituted is preferably 1 to 5, and more preferably 1 to 3.
一般式(I−a)で表される化合物は、Tetrahedron Letters,Vol.30,pp4985、Tetrahedron Letters,Vol.23,No6,pp681−684、及び、Journal of Polymer Science:PartA:Polymer Chemistry,Vol.34,pp217−225等の公知の方法で合成することができる。 The compound represented by the general formula (Ia) is described in Tetrahedron Letters, Vol. 30, pp 4985, Tetrahedron Letters, Vol. 23, No. 6, pp 681-684, and Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 34, pp217-225 and the like.
例えば、一般式(I−c)において、A14及びA17が水素である化合物は、エポキシ基を複数有する化合物と、エポキシ基と反応し得る活性水素を有するアクリル酸やメタクリル酸等の重合性化合物とを反応させ、水酸基を有する重合性化合物を合成し、次に、飽和脂肪酸と反応させることにより得ることができる。
更に、複数のエポキシ基を有する化合物と飽和脂肪酸とを反応させ、水酸基を有する化合物を合成し、次に水酸基と反応し得る基を有するアクリル酸塩化物等の重合性化合物とを反応させることにより得ることができる。
For example, in the general formula (I-c), Compound A 14 and A 17 are hydrogen, a compound having a plurality of epoxy groups, polymerizable acrylic acid or methacrylic acid having an active hydrogen reactive with epoxy groups It can be obtained by reacting with a compound to synthesize a polymerizable compound having a hydroxyl group and then reacting with a saturated fatty acid.
Furthermore, by reacting a compound having a plurality of epoxy groups with a saturated fatty acid, synthesizing a compound having a hydroxyl group, and then reacting with a polymerizable compound such as an acrylate chloride having a group capable of reacting with a hydroxyl group. Can be obtained.
またラジカル重合性化合物が、例えば、一般式(I−c)のA14及びA17がアルキル基であり、A12及びA18が炭素原子数1であるメチレン基である場合は、オキセタン基を複数有する化合物と、オキセタン基と反応し得る脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法や、オキセタン基を一つ有する化合物と、オキセタン基と反応し得る多価の脂肪酸塩化物や脂肪酸とを反応させ、更に、アクリル酸などの活性水素を有する重合性化合物とを反応させる方法等により得ることができる。 When the radically polymerizable compound is, for example, A 14 and A 17 in the general formula (Ic) are alkyl groups and A 12 and A 18 are methylene groups having 1 carbon atom, an oxetane group is selected. A method of reacting a compound having a plurality of compounds with a fatty acid chloride or a fatty acid capable of reacting with an oxetane group, and further reacting with a polymerizable compound having active hydrogen such as acrylic acid, a compound having one oxetane group, It can be obtained by a method of reacting a polyvalent fatty acid chloride or a fatty acid capable of reacting with an oxetane group, and further reacting with a polymerizable compound having active hydrogen such as acrylic acid.
また、一般式(I−c)のA12及びA18が炭素原子数3であるアルキレン基(プロピレン基;−CH2CH2CH2−)の場合は、オキセタン基の代わりにフラン基を複数有する化合物を用いることにより得ることができる。更に、一般式(I−c)のA12及びA18が炭素原子数4であるアルキレン基(ブチレン基;−CH2CH2CH2CH2−)の場合は、オキセタン基の代わりにピラン基を複数有する化合物を用いることにより得ることができる。
重合性化合物(I)の具体例を以下の(I-1)から(I-8)に挙げることができる。
In the case where A 12 and A 18 in the general formula (Ic) are an alkylene group having 3 carbon atoms (propylene group; —CH 2 CH 2 CH 2 —), a plurality of furan groups are used instead of the oxetane group. It can obtain by using the compound which has. Further, when A 12 and A 18 in the general formula (Ic) are an alkylene group having 4 carbon atoms (butylene group; —CH 2 CH 2 CH 2 CH 2 —), a pyran group is used instead of the oxetane group. It can obtain by using the compound which has two or more.
Specific examples of the polymerizable compound (I) can include the following (I-1) to (I-8).
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)は、下記一般式(II−a)又は(II−b)
The low-molecular liquid crystal compound (II) used in the polymer-stabilized liquid crystal composition of the present invention has the following general formula (II-a) or (II-b)
(式(II−a)及び(II−b)中、R1及びR2はそれぞれ独立して炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
C1は1,4−フェニレン基、1,4−シクロへキシレン基又は1,3−ジオキサン−2,5−ジイル基(これらの基のうち1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
C2及びC3はそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
Z1及びZ2はそれぞれ独立して、単結合、−CH2CH2−、−CH2O−、−OCH2−、−CH2CH2O−、−OCH2CH2−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−、−C≡C−、−CF2O−、−OCF2−、−COO−又は−OCO−を表し、
X1はフッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基、シアノ基を表し、
n1は、0、1又は2を表す。ただし、n1が2を表す場合、複数あるC1及びZ1は同じであっても異なっていても良い。)で表される化合物(II)である。
(In the formulas (II-a) and (II-b), R 1 and R 2 each independently represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (the alkyl group or alkenyl group). 1 or 2 or more methylene groups present in the group may be each independently substituted with an oxygen atom, assuming that the oxygen atoms are not directly bonded to each other).
C 1 is a 1,4-phenylene group, a 1,4-cyclohexylene group, or a 1,3-dioxane-2,5-diyl group (of which 1,4-phenylene group is unsubstituted) Or a fluorine atom, a chlorine atom, a methyl group, a trifluoromethyl group, or a trifluoromethoxy group as a substituent.
C 2 and C 3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyridazine-3,6- Diyl group, 1,3-dioxane-2,5-diyl group, cyclohexene-1,4-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6 -Diyl group, 2,6-naphthylene group or indane-2,5-diyl group (among these groups 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, The 2,6-naphthylene group and indan-2,5-diyl group are unsubstituted or have one fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoromethoxy group as a substituent. May have two or more.) Represent,
Z 1 and Z 2 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —CH 2 CH 2 O—, —OCH 2 CH 2 —, —CH 2. CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH═CH—, —C≡C—, —CF 2 O—, —OCF 2 —, —COO— or —OCO— are represented,
X 1 represents a fluorine atom, a chlorine atom, a trifluoromethyl group, a trifluoromethoxy group, a difluoromethyl group, an isocyanate group, or a cyano group,
n 1 represents 0, 1 or 2. However, when n 1 represents 2, a plurality of C 1 and Z 1 may be the same or different. It is a compound (II) represented by this.
一般式(II−a)又は(II−b)で表される化合物は、幅広い液晶温度範囲、低温域でのネマチック安定性及び相溶性、且つ高誘電率、高い比抵抗値の点で具体的には次に記載する一般式(V−a)、一般式(VI−a)、一般式(VI−b)、一般式(VII−a)及び一般式(VII−b)で表される化合物が好ましい。
<重合性液晶化合物(III)>
本発明の高分子安定化液晶組成物に用いられる重合性液晶化合物(III)は、下記一般式(III−a)、一般式(III−b)及び一般式(III−c)からなる群より選ばれる化合物が好ましい。
一般式(III−a)
The compound represented by the general formula (II-a) or (II-b) is specific in terms of a wide liquid crystal temperature range, nematic stability and compatibility in a low temperature range, a high dielectric constant, and a high specific resistance value. The compounds represented by the following general formula (Va), general formula (VI-a), general formula (VI-b), general formula (VII-a) and general formula (VII-b) Is preferred.
<Polymerizable liquid crystal compound (III)>
The polymerizable liquid crystal compound (III) used in the polymer-stabilized liquid crystal composition of the present invention is selected from the group consisting of the following general formula (III-a), general formula (III-b), and general formula (III-c). The selected compound is preferred.
Formula (III-a)
(式(III−a)中、R3及びR4はそれぞれ独立して水素原子又はメチル基を表し、C4及びC5はそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、 (In Formula (III-a), R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and C 4 and C 5 each independently represent a 1,4-phenylene group or 1,4-cyclohexene. Xylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyridazine-3,6-diyl group, 1,3-dioxane-2,5-diyl group, cyclohexene-1,4-diyl Group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group or indane-2,5-diyl group (these groups Of which 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group and indan-2,5-diyl group are unsubstituted or Fluorine atom as a substituent, salt Which can have one or more elemental atoms, methyl groups, trifluoromethyl groups or trifluoromethoxy groups),
Z3及びZ5はそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
Z4は、単結合、−CH2CH2−、−CH2O−、−OCH2−、−CH2CH2O−、−OCH2CH2−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH2CH2OCO−、−COOCH2CH2−、−CH2CH2COO−、−OCOCH2CH2−、−CH=CH−、−C≡C−、−CF2O−、−OCF2−、−COO−又は−OCO−を表し、
n2は、0、1又は2を表す。ただし、n2が2を表す場合、複数あるC4及びZ4は同じであっても異なっていても良い。)、
一般式(III−b)
Z 3 and Z 5 are each independently a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups present in the alkylene group are such that oxygen atoms are not directly bonded to each other) Each independently may be substituted with an oxygen atom, -CO-, -COO- or -OCO-, and one or more hydrogen atoms present in the alkylene group are each independently a fluorine atom, Which may be substituted with a methyl group or an ethyl group)
Z 4 is a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —CH 2 CH 2 O—, —OCH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, -OCH 2 CH 2 CH 2 -, - CH 2 CH 2 OCO -, - COOCH 2 CH 2 -, - CH 2 CH 2 COO -, - OCOCH 2 CH 2 -, - CH = CH -, - C≡C- , -CF 2 O -, - OCF 2 -, - COO- or an -OCO-,
n 2 represents 0, 1 or 2. However, when n 2 represents 2, a plurality of C 4 and Z 4 may be the same or different. ),
Formula (III-b)
(式(III−b)中、R5及びR6はそれぞれ独立して水素原子又はメチル基を表し、
C6は1,4−フェニレン基、1,4−シクロへキシレン基、ピリジン−2,5−ジイル基、ピリミジン−2,5−ジイル基、ピリダジン−3,6−ジイル基、1,3−ジオキサン−2,5−ジイル基、シクロヘキセン−1,4−ジイル基、デカヒドロナフタレン−2,6−ジイル基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基又はインダン−2,5−ジイル基(これらの基のうち1,4−フェニレン基、1,2,3,4−テトラヒドロナフタレン−2,6−ジイル基、2,6−ナフチレン基及びインダン−2,5−ジイル基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
(In formula (III-b), R 5 and R 6 each independently represent a hydrogen atom or a methyl group,
C 6 is 1,4-phenylene group, 1,4-cyclohexylene group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyridazine-3,6-diyl group, 1,3- Dioxane-2,5-diyl group, cyclohexene-1,4-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6 A naphthylene group or an indan-2,5-diyl group (among these groups 1,4-phenylene group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group and The indane-2,5-diyl group can be unsubstituted or have one or more fluorine, chlorine, methyl, trifluoromethyl or trifluoromethoxy groups as substituents. Represents)
C7及びC8はそれぞれ独立してベンゼン−1,2,4−トリイル基、ベンゼン−1,3,4−トリイル基、ベンゼン−1,3,5−トリイル基、シクロヘキサン−1,2,4−トリイル基、シクロヘキサン−1,3,4−トリイル基又はシクロヘキサン−1,3,5−トリイル基を表し、
Z6及びZ8はそれぞれ独立して単結合又は炭素原子数1から15のアルキレン基(該アルキレン基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良く、該アルキレン基中に存在する1個又は2個以上の水素原子はそれぞれ独立にフッ素原子、メチル基又はエチル基で置換されていても良い。)を表し、
C 7 and C 8 are each independently benzene-1,2,4-triyl group, benzene-1,3,4-triyl group, benzene-1,3,5-triyl group, cyclohexane-1,2,4. -Represents a triyl group, a cyclohexane-1,3,4-triyl group or a cyclohexane-1,3,5-triyl group,
Z 6 and Z 8 are each independently a single bond or an alkylene group having 1 to 15 carbon atoms (one or two or more methylene groups present in the alkylene group are such that oxygen atoms are not directly bonded to each other) Each independently may be substituted with an oxygen atom, -CO-, -COO- or -OCO-, and one or more hydrogen atoms present in the alkylene group are each independently a fluorine atom, Which may be substituted with a methyl group or an ethyl group)
Z7及びZ9それぞれ独立して単結合、−CH2CH2−、−CH2O−、−OCH2−、−CH2CH2O−、−OCH2CH2−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH2CH2OCO−、−COOCH2CH2−、−CH2CH2COO−、−OCOCH2CH2−、−CH=CH−、−C≡C−、−CF2O−、−OCF2−、−COO−又は−OCO−を表し、n3は、0、1又は2を表す。ただし、n3が2を表す場合、複数あるC6及びZ7は同じであっても異なっていても良く、n5及びn6はそれぞれ独立して1、2及び3を表す。)
一般式(III−c)
Z 7 and Z 9 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —CH 2 CH 2 O—, —OCH 2 CH 2 —, —CH 2 CH 2. CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH 2 CH 2 OCO -, - COOCH 2 CH 2 -, - CH 2 CH 2 COO -, - OCOCH 2 CH 2 -, - CH = CH-, —C≡C—, —CF 2 O—, —OCF 2 —, —COO— or —OCO— is represented, and n 3 represents 0, 1 or 2. However, when n 3 represents 2, a plurality of C 6 and Z 7 may be the same or different, and n 5 and n 6 each independently represent 1, 2 and 3. )
Formula (III-c)
6員環T1、T2及びT3はそれぞれ独立的に、
6-membered rings T 1 , T 2 and T 3 are each independently
のいずれか(ただしmは1から4の整数を表す。)を表し、n4は0又は1の整数を表し、Y1及びY2はそれぞれ独立して単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH2)4−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH2=CHCH2CH2−又は−CH2CH2CH=CH−を表し、
Y3は単結合、−COO−、又は−OCO−を表し、
R8は炭素原子数1から18の炭化水素基を表す。)
より具体的には、一般式(III−d)及び(III−e)
(Wherein m represents an integer of 1 to 4), n 4 represents an integer of 0 or 1, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —, -CH 2 O -, - OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH 2 ═CHCH 2 CH 2 — or —CH 2 CH 2 CH═CH—
Y 3 represents a single bond, —COO—, or —OCO—,
R 8 represents a hydrocarbon group having 1 to 18 carbon atoms. )
More specifically, general formulas (III-d) and (III-e)
Y11及びY12はそれぞれ独立して単結合、−O−、−COO−又は−OCO−を表し、Y13及びY14はそれぞれ独立して−COO−又は−OCO−を表し、
Y15及びY16はそれぞれ独立して−COO−又は−OCO−を表し、
Y 11 and Y 12 each independently represent a single bond, —O—, —COO— or —OCO—, Y 13 and Y 14 each independently represent —COO— or —OCO—,
Y 15 and Y 16 each independently represent —COO— or —OCO—,
r及びsはそれぞれ独立して2〜14の整数を表す。式中に存在する1,4−フェニレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)のいずれかで表される化合物を用いると、機械的強度や耐熱性に優れた光学異方体が得られるので好ましい。
一般式(III−a)で表される化合物の具体例を以下の(III−1)から(III−10)に挙げることができる。
r and s each independently represent an integer of 2 to 14. The 1,4-phenylene group present in the formula may be unsubstituted or have one or more fluorine, chlorine, methyl, trifluoromethyl or trifluoromethoxy groups as substituents. it can. It is preferable to use a compound represented by any one of (2), since an optically anisotropic body excellent in mechanical strength and heat resistance can be obtained.
Specific examples of the compound represented by the general formula (III-a) can include the following (III-1) to (III-10).
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
また、一般式(III−d)及び(III−e)のいずれかで表される化合物の具体例を以下の(III−11)から(III−20)に挙げることができる。
(Wherein j and k each independently represents an integer of 2 to 14)
Specific examples of the compound represented by any one of the general formulas (III-d) and (III-e) can be listed in the following (III-11) to (III-20).
(式中、j及びkはそれぞれ独立的に2〜14の整数を表す。)
一般式(III−b)で表される化合物の具体例を以下の(III−21)から(III−10)に挙げることができる。
(Wherein j and k each independently represents an integer of 2 to 14)
Specific examples of the compound represented by the general formula (III-b) can include the following (III-21) to (III-10).
<カイラル化合物(IV)>
本発明に用いられる高分子安定化液晶組成物におけるカイラル化合物(IV)は、一般式(IV−a)又は(IV−b)
<Chiral compound (IV)>
The chiral compound (IV) in the polymer-stabilized liquid crystal composition used in the present invention is represented by the general formula (IV-a) or (IV-b).
(式(IV−a)及び(IV−b)中、R9は炭素原子数1から10のアルキル基又は炭素原子数2から10のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子で置換されていても良い。)を表し、
C8及びC9はそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリミジン−2,5−ジイル基(これらの基のうち1,4−フェニレン基又は1,4−シクロへキシレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、シアノ基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
(In the formulas (IV-a) and (IV-b), R 9 represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms (one in the alkyl group or alkenyl group). Or two or more methylene groups may be independently substituted with oxygen atoms, assuming that the oxygen atoms are not directly bonded to each other.
C 8 and C 9 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyrimidine-2,5-diyl group (among these groups, 1,4-phenylene group or 1,4 -The cyclohexylene group is unsubstituted or can have one or more fluorine atom, chlorine atom, methyl group, cyano group, trifluoromethyl group or trifluoromethoxy group as a substituent. Represents
Z9は単結合、−CH2CH2−、−C≡C−、−CF2O−、−COO−又は−OCO−を表し、
Y4及びY5はそれぞれ独立して単結合、酸素原子、メチレン基、−OCH2−、−COO−、−OCO−、−OCH2CH2−又は−OCOCH2−を表し、
n5は、0、1又は2を表す。ただし、n5が2を表す場合、複数あるC8及びZ9は同じであっても異なっていても良い。
X4及びX5はそれぞれ独立して、一般式(IV−c)から(IV−h)
Z 9 represents a single bond, —CH 2 CH 2 —, —C≡C—, —CF 2 O—, —COO— or —OCO—,
Y 4 and Y 5 each independently represent a single bond, an oxygen atom, a methylene group, —OCH 2 —, —COO—, —OCO—, —OCH 2 CH 2 — or —OCOCH 2 —.
n 5 represents 0, 1 or 2. However, when n 5 represents 2, a plurality of C 8 and Z 9 may be the same or different.
X 4 and X 5 are each independently selected from the general formulas (IV-c) to (IV-h)
のいずれかの式で表される基を表す。ただし、式(IV−c)から(IV−h)中、*は炭素原子が不斉炭素原子であることを表し、結合する4つの基は相互に異なる。
Rc、Rd、Re、Rf及びRgはそれぞれ独立して炭素原子数2から20のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
Xc、Xd及びYdはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
Xe及びYeはそれぞれ独立して水素原子、フッ素原子、塩素原子、メチル基又はシアノ基を表し、
Represents a group represented by any formula of However, in formulas (IV-c) to (IV-h), * represents that the carbon atom is an asymmetric carbon atom, and the four groups bonded to each other are different from each other.
R c , R d , R e , R f and R g are each independently an alkyl group having 2 to 20 carbon atoms (one or two or more methylene groups present in the alkyl group are oxygen atoms And may be each independently substituted with an oxygen atom, -CO-, -COO-, or -OCO-) as not being directly bonded to each other.
X c , X d and Y d each independently represent a fluorine atom, a chlorine atom, a methyl group or a cyano group,
X e and Y e each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group or a cyano group,
Xh及びYhはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、
Zdは単結合又はメチレン基を表し、
Zeは酸素原子又は−OC(Re1)(Re2)O−で表される基(ただし、Re1及びRe2はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、Zfはカルボニル基又は−CH(Rf1)−で表される基(ただし、Rf1は水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
Zgは−OCO−、−COO−、−CH2O−又は−OCH2−を表す。)で表されるカイラル化合物(IV)である。
更に、カイラル化合物(IV)は、一般式(IV−i)であっても良く、
X h and Y h each independently represent a fluorine atom, a chlorine atom, a methyl group or a cyano group,
Z d represents a single bond or a methylene group,
Z e is an oxygen atom or a group represented by —OC (R e1 ) (R e2 ) O— (wherein R e1 and R e2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) .) represents, Z f represents a carbonyl group or -CH (R f1) - group represented by (wherein, R f1 represents a represents) an alkyl group having 1 to 10 carbon hydrogen atom or a carbon atom.
Z g represents —OCO—, —COO—, —CH 2 O— or —OCH 2 —. It is a chiral compound (IV) represented by this.
Further, the chiral compound (IV) may be the general formula (IV-i),
C10、C11、C12、及びC13はそれぞれ独立して1,4−フェニレン基、1,4−シクロへキシレン基、ピリミジン−2,5−ジイル基(これらの基のうち1,4−フェニレン基又は1,4−シクロへキシレン基は、非置換であるか又は置換基としてフッ素原子、塩素原子、メチル基、シアノ基、トリフルオロメチル基若しくはトリフルオロメトキシ基を1個若しくは2個以上有することができる。)を表し、
Z10及びZ11はそれぞれ独立して単結合、−CH2CH2−、−C≡C−、−CF2O−、−COO−又は−OCO−を表し、
Y10及びY11はそれぞれ独立して単結合、酸素原子、炭素数1から10のアルキレン基、−OCH2−、−COO−、−OCO−、−OCH2CH2−又は−OCOCH2−を表し、n11及びn12は、それぞれ独立して1又は2を表す。
X10はそれぞれ独立して、一般式(IV−j)から(IV−n)
C 10 , C 11 , C 12 , and C 13 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, pyrimidine-2,5-diyl group (of these groups, 1, 4 -The phenylene group or 1,4-cyclohexylene group is unsubstituted or has one or two fluorine atom, chlorine atom, methyl group, cyano group, trifluoromethyl group or trifluoromethoxy group as a substituent. It can have the above)
Z 10 and Z 11 each independently represent a single bond, —CH 2 CH 2 —, —C≡C—, —CF 2 O—, —COO— or —OCO—,
Y 10 and Y 11 each independently represent a single bond, an oxygen atom, an alkylene group having 1 to 10 carbon atoms, —OCH 2 —, —COO—, —OCO—, —OCH 2 CH 2 — or —OCOCH 2 —. N 11 and n 12 each independently represent 1 or 2.
X 10 each independently represents a formula (IV-j) to (IV-n)
ただし、式(IV−j)から(IV−n)中、*は炭素原子が不斉炭素原子であることを表し、Rf、Rg、Rh、Ri、Rj、Rk、Rl、Rm、Rn及びRoはそれぞれ独立して炭素原子数0から18のアルキレン基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立に酸素原子、−CO−、−COO−又は−OCO−で置換されていても良い。)を表し、
However, in formulas (IV-j) to (IV-n), * represents that the carbon atom is an asymmetric carbon atom, and R f , R g , R h , R i , R j , R k , R l , R m , R n, and R o are each independently an alkylene group having 0 to 18 carbon atoms (one or two or more methylene groups present in the alkyl group have oxygen atoms directly bonded to each other) Each may be independently substituted with an oxygen atom, -CO-, -COO-, or -OCO-).
Xc、Xd及びYdはそれぞれ独立してフッ素原子、塩素原子、メチル基又はシアノ基を表し、Xe及びYeはそれぞれ独立して水素原子、フッ素原子、塩素原子、メチル基又はシアノ基を表し、Zdは単結合又はメチレン基を表し、Zeは酸素原子又は−OC(Re1)(Re2)O−で表される基(ただし、Re1及びRe2はそれぞれ独立して水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
Zfはカルボニル基又は−CH(Rf1)−で表される基(ただし、Rf1は水素原子又は炭素原子数1から10のアルキル基を表す。)を表し、
Zgは−OCO−、−COO−、−CH2O−又は−OCH2−を表す。)で表されるカイラル化合物(IV)である。
<一般式(VI−a)及び一般式(VI−b)で表される低分子液晶化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(VI−a)又は(VI−b)
X c , X d and Y d each independently represent a fluorine atom, chlorine atom, methyl group or cyano group, and X e and Y e each independently represent a hydrogen atom, fluorine atom, chlorine atom, methyl group or cyano group. Z d represents a single bond or a methylene group, Z e represents an oxygen atom or a group represented by —OC (R e1 ) (R e2 ) O— (wherein R e1 and R e2 are independent of each other). Represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms),
Z f represents a carbonyl group or -CH (R f1) - group represented by (wherein, R f1 represents an alkyl group having 1 to 10 carbon hydrogen atom or a carbon atom.) Represent,
Z g represents —OCO—, —COO—, —CH 2 O— or —OCH 2 —. It is a chiral compound (IV) represented by this.
<Low molecular liquid crystal compound represented by general formula (VI-a) and general formula (VI-b)>
When the specific example of the low molecular liquid crystal compound (II) used for the polymer stabilization liquid crystal composition of this invention is shown, (II) is following general formula (VI-a) or (VI-b).
(式(VI−a)中、R21は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
C21は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
(In the formula (VI-a), R 21 represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (one or two or more present in the alkyl group or alkenyl group). A methylene group may be substituted with an oxygen atom, assuming that the oxygen atoms are not directly bonded to each other);
C 21 is a 1,4-phenylene group or a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or substituted with one or more fluorine atoms, chlorine atoms, methyl Group or a trifluoromethyl group or a trifluoromethoxy group).
六員環Y21はベンゼン環又はシクロヘキサン環を表し、 X21は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
X22からX26はそれぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
Z21は、単結合又は−CH2CH2−を表し、
Z22は、単結合、−CH2CH2−又は−CF2O−を表し、
n21は0又は1を表す。)
Six-membered ring Y 21 represents a benzene ring or a cyclohexane ring, X 21 represents a fluorine atom, a chlorine atom, an isocyanate group, a trifluoromethyl group, a trifluoromethoxy group, or a difluoromethoxy group,
X 22 to X 26 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group,
Z 21 represents a single bond or —CH 2 CH 2 —,
Z 22 represents a single bond, —CH 2 CH 2 — or —CF 2 O—,
n 21 represents 0 or 1; )
(式(VI−b)中、R31は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
C31は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
(In the formula (VI-b), R 31 represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (one or two or more present in the alkyl group or alkenyl group). A methylene group may be substituted with an oxygen atom, assuming that the oxygen atoms are not directly bonded to each other);
C 31 is a 1,4-phenylene group or a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or substituted with one or more fluorine atoms, chlorine atoms, methyl Group or a trifluoromethyl group or a trifluoromethoxy group).
六員環Y31はベンゼン環又はシクロヘキサン環を表し、
X31は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
X32からX36はそれぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
Z31は、単結合又は−CH2CH2−を表し、
Z32は、単結合、−CH2CH2−又は−CF2O−を表し、
n31は0又は1を表す。)
Six-membered ring Y 31 represents a benzene ring or a cyclohexane ring,
X 31 represents a fluorine atom, a chlorine atom, an isocyanate group, a trifluoromethyl group, a trifluoromethoxy group or a difluoromethoxy group,
X 32 to X 36 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group,
Z 31 represents a single bond or —CH 2 CH 2 —.
Z 32 represents a single bond, —CH 2 CH 2 — or —CF 2 O—,
n 31 represents 0 or 1; )
一般式(VI−a)及び一般式(VI−b)においてR21及びR31としては、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、
該アルキル基又はアルケニル基は、式(VI−c)
In General Formula (VI-a) and General Formula (VI-b), R 21 and R 31 are each an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (the alkyl group or alkenyl group). 1 or 2 or more methylene groups present therein may preferably be substituted with oxygen atoms so that the oxygen atoms are not directly bonded to each other.
The alkyl group or alkenyl group has the formula (VI-c)
C21及びC31としては、1,4−シクロヘキシレン基が好ましい。
Z21及びZ31としては、単結合が好ましい。
X21及びX31としては、フッ素原子もしくはトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
具体的には、一般式(VI−1)から一般式(VI−33)で表される化合物が好ましい。
As C 21 and C 31 , a 1,4-cyclohexylene group is preferable.
Z 21 and Z 31 are preferably a single bond.
X 21 and X 31 are preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
Specifically, compounds represented by general formula (VI-1) to general formula (VI-33) are preferable.
(式中、R22及びR32は炭素原子数1から18のアルキル基を表す。)
<一般式(VII−a)及び一般式(VII−b)で表される化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(VII−a)、及び一般式(VII−b)
(In the formula, R 22 and R 32 represent an alkyl group having 1 to 18 carbon atoms.)
<Compounds Represented by General Formula (VII-a) and General Formula (VII-b)>
Specific examples of the low-molecular liquid crystal compound (II) used in the polymer-stabilized liquid crystal composition of the present invention are shown in the following general formulas (VII-a) and (VII-b).
(式(VII−a)中、R41は、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、
C41は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
(In the formula (VII-a), R 41 represents an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (one or two or more present in the alkyl group or alkenyl group). A methylene group may be substituted with an oxygen atom, assuming that the oxygen atoms are not directly bonded to each other);
C 41 is a 1,4-phenylene group or a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or has one or more fluorine atoms, chlorine atoms, methyl Group or a trifluoromethyl group or a trifluoromethoxy group).
六員環Y41はベンゼン環又はシクロヘキサン環を表し、
X41は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
X42からX45は、それぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
Z41は、単結合又は−CH2CH2−を表し、
Z42は、単結合、−CH2CH2−又は−CF2O−を表し、
n41は0又は1を表す。)
Six-membered ring Y 41 represents a benzene ring or a cyclohexane ring,
X 41 represents a fluorine atom, a chlorine atom, an isocyanate group, a trifluoromethyl group, a trifluoromethoxy group or a difluoromethoxy group,
X 42 to X 45 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group,
Z 41 represents a single bond or —CH 2 CH 2 —.
Z 42 represents a single bond, -CH 2 CH 2 -, or -CF 2 O-,
n 41 represents 0 or 1; )
C51は、1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
C 51 represents a 1,4-phenylene group or a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or has one or more fluorine atoms, chlorine atoms, methyl groups as substituents) Group or a trifluoromethyl group or a trifluoromethoxy group).
六員環Y51はベンゼン環又はシクロヘキサン環を表し、
X51は、フッ素原子、塩素原子、イソシアネート基、トリフルオロメチル基、トリフルオロメトキシ基又はジフルオロメトキシ基を表し、
X52からX55は、それぞれ独立して、水素原子、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
Z51は、単結合又は−CH2CH2−を表し、
Z52は、単結合、−CH2CH2−又は−CF2O−を表し、
n51は0又は1を表す。)
Six-membered ring Y 51 represents a benzene ring or a cyclohexane ring,
X 51 represents a fluorine atom, a chlorine atom, an isocyanate group, a trifluoromethyl group, a trifluoromethoxy group or a difluoromethoxy group,
X 52 to X 55 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group,
Z 51 represents a single bond or —CH 2 CH 2 —,
Z 52 represents a single bond, —CH 2 CH 2 — or —CF 2 O—,
n 51 represents 0 or 1; )
一般式(VII−a)及び一般式(VII−b)においてR41及びR51としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、
該アルキル基又はアルケニル基は、式(VII−c)
In the general formula (VII-a) and the general formula (VII-b), R 41 and R 51 are each an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 6 carbon atoms (the alkyl group or alkenyl group). 1 or 2 or more methylene groups present therein may preferably be substituted with oxygen atoms so that the oxygen atoms are not directly bonded to each other.
The alkyl group or alkenyl group has the formula (VII-c)
C41及びC51としては、1,4−シクロヘキシレン基が好ましい。
Z41及びZ51としては、単結合が好ましい。
X41及びX51としては、フッ素原子もしくはトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
具体的には一般式(VII−1)から一般式(VII−42)で表される化合物が好ましい。
As C 41 and C 51 , a 1,4-cyclohexylene group is preferable.
Z 41 and Z 51 are preferably a single bond.
X 41 and X 51 are preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
Specifically, compounds represented by general formula (VII-1) to general formula (VII-42) are preferable.
(式中、R42及びR52は炭素原子数1から18のアルキル基を表す。)
また、更なる液晶温度領域の拡大、高誘電率、又は低粘性を得るため、一般式(V−a)、一般式(VI−a)、一般式(VI−b)、一般式(VII−a)、一般式(VII−b)の化合物に加えて、一般式(VIII−a)、一般式(IX−a)又は一般式(X)で表される化合物を含有することも好ましい。
<一般式(VIII−a)で表される化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(VIII−a)
(Wherein R 42 and R 52 represent an alkyl group having 1 to 18 carbon atoms.)
Further, in order to obtain further expansion of the liquid crystal temperature region, high dielectric constant, or low viscosity, the general formula (Va), the general formula (VI-a), the general formula (VI-b), and the general formula (VII- In addition to the compound of a) and general formula (VII-b), it is also preferable to contain the compound represented by general formula (VIII-a), general formula (IX-a), or general formula (X).
<Compound represented by formula (VIII-a)>
When the specific example of the low molecular liquid crystal compound (II) used for the polymer stabilization liquid crystal composition of this invention is shown, (II) is the following general formula (VIII-a).
C61、C62及びC63はそれぞれ独立して1,4−フェニレン基又は1,4−シクロヘキシレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
C 61 , C 62 and C 63 are each independently a 1,4-phenylene group or a 1,4-cyclohexylene group (the 1,4-phenylene group is unsubstituted or has one or two substituents) It can have the above fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoromethoxy group).
Z61及びZ62はそれぞれ独立して、単結合、−CH2O−、−OCH2−又は−CH2CH2−を表し、
n61は、0、1又は2を表す。ただし、n61が2の場合、複数存在するC61及びZ62は同一であっても異なっていても良い。
Z 61 and Z 62 each independently represent a single bond, —CH 2 O—, —OCH 2 — or —CH 2 CH 2 —,
n 61 represents 0, 1 or 2. However, when n 61 is 2, a plurality of C 61 and Z 62 may be the same or different.
一般式(VIII−a)においてR61及びR62としては、炭素原子数1から18のアルキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、式(VI−c)で表されるアルケニル基もしくはアルケニルオキシ基(ただしそのアルケニル基が式(VI−c)で表されるもの)又は炭素原子数1から5のアルキル基もしくはアルコキシ基が更により好ましい。
また、特に低粘性を得たい場合は、n61が0であり、C62及びC63が、1,4−シクロへキシレン基であり、Z62が単結合であることが好ましい。
In General Formula (VIII-a), R 61 and R 62 are each an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms (one or 2 present in the alkyl group or alkenyl group). The methylene group or more is preferably an alkenyl group or an alkenyloxy group represented by the formula (VI-c) (provided that the oxygen atom may not be directly bonded to each other and may be substituted with an oxygen atom). More preferably, the alkenyl group is represented by the formula (VI-c)) or an alkyl group or alkoxy group having 1 to 5 carbon atoms.
In particular, when it is desired to obtain a low viscosity, it is preferable that n 61 is 0, C 62 and C 63 are 1,4-cyclohexylene groups, and Z 62 is a single bond.
特に液晶温度範囲を拡大するには、n61が0又は1であり、C61及びC62が、1,4−シクロへキシレン基であり、C63が1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、Z61が単結合又は−CH2CH2−であり、Z62が単結合であることが好ましい。
特に高屈折率を得るためには、n61が1であり、C61が1,4−シクロへキシレン基又は1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、C62及びC63が1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子又はメチル基を有することができる。)であることが好ましい。
具体的には一般式(VIII−1)から一般式(VIII−5)で表される化合物が好ましい。
In particular, to expand the liquid crystal temperature range, n 61 is 0 or 1, C 61 and C 62 are 1,4-cyclohexylene groups, and C 63 is a 1,4-phenylene group (the 1, The 4-phenylene group is unsubstituted or may have one or more fluorine atoms or methyl groups as substituents.), And Z 61 is a single bond or —CH 2 CH 2 —. Z 62 is preferably a single bond.
In order to obtain a particularly high refractive index, n 61 is 1, and C 61 is a 1,4-cyclohexylene group or a 1,4-phenylene group (the 1,4-phenylene group is unsubstituted or 1 or 2 or more fluorine atoms and methyl groups can be substituted.) C 62 and C 63 are 1,4-phenylene groups (the 1,4-phenylene groups are unsubstituted). Or it may have one or more fluorine atoms or methyl groups as substituents.).
Specifically, compounds represented by general formula (VIII-1) to general formula (VIII-5) are preferable.
(式中、R65及びR66はそれぞれ独立して炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、X61からX66はそれぞれ独立して水素原子、フッ素原子又はメチル基を表す。)
更に一般式(VIII−a)の具体的な例は一般式(VIII−6)から(VIII−15)が好ましい。
(In the formula, R 65 and R 66 are each independently an alkyl group having 1 to 18 carbon atoms (one or two or more methylene groups present in the alkyl group have oxygen atoms not directly bonded to each other). And may be substituted with an oxygen atom.), And X 61 to X 66 each independently represents a hydrogen atom, a fluorine atom or a methyl group.)
Further, specific examples of general formula (VIII-a) are preferably general formulas (VIII-6) to (VIII-15).
(式中、R67及びR68はそれぞれ独立して炭素原子数1から18のアルキル基(該アルキル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、アルコキシ基、炭素原子数2から18のアルケニル基及びアルケニルオキシ基を表し、X及びYはそれぞれ独立して水素原子、フッ素原子又はメチル基を表す。Z63は、それぞれ独立して、単結合又は−O−を表し、Z64及びZ65はそれぞれ独立して、単結合、−CH2O−、−OCH2−又は−CH2CH2−を表す。 (In the formula, R 67 and R 68 are each independently an alkyl group having 1 to 18 carbon atoms (one or two or more methylene groups present in the alkyl group have oxygen atoms not directly bonded to each other). And may be substituted with an oxygen atom.), An alkoxy group, an alkenyl group having 2 to 18 carbon atoms and an alkenyloxy group, wherein X and Y are each independently a hydrogen atom, a fluorine atom or a methyl group. Z 63 represents each independently a single bond or —O—, and Z 64 and Z 65 each independently represent a single bond, —CH 2 O—, —OCH 2 — or —CH 2 CH. 2- represents.
<一般式(IX−a)で表される化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(IX−a)
<Compound represented by formula (IX-a)>
When the specific example of the low molecular liquid crystal compound (II) used for the polymer stabilization liquid crystal composition of this invention is shown, (II) is the following general formula (IX-a).
C71、C72及びC73はそれぞれ独立して1,4−フェニレン基、1,4−シクロヘキシレン基又はインダン−2,5−ジイル基(該1,4−フェニレン基及びインダン−2,5−ジイル基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、塩素原子、メチル基又はトリフルオロメチル基又はトリフルオロメトキシ基を有することができる。)を表し、
Z71及びZ72はそれぞれ独立して、単結合、−CH2CH2−又は−CH2O−を表し、
X71はフッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基、ジフルオロメチル基、イソシアネート基を表し、
n71は、0、1又は2を表す。ただし、n71が2の場合、複数存在するC71及びZ71はそれぞれ同じあっても、異なっていても良い。)
C 71 , C 72 and C 73 are each independently 1,4-phenylene group, 1,4-cyclohexylene group or indan-2,5-diyl group (the 1,4-phenylene group and indan-2,5 The -diyl group can be unsubstituted or have one or more fluorine, chlorine, methyl, trifluoromethyl or trifluoromethoxy groups as substituents).
Z 71 and Z 72 each independently represent a single bond, —CH 2 CH 2 — or —CH 2 O—,
X71 represents a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, a difluoromethyl group, an isocyanate group,
n 71 represents 0, 1 or 2. However, when n 71 is 2, a plurality of C 71 and Z 71 may be the same or different. )
一般式(IX−a)のR71としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、該アルケニル基は式(V−c)で表されるものが好ましく、炭素原子数1から18のアルキル基又は炭素原子数1から18のアルコキシ基が更により好ましい。 R 71 in the general formula (IX-a) is an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 6 carbon atoms (one or two or more present in the alkyl group or alkenyl group). The methylene group may preferably be substituted with an oxygen atom assuming that oxygen atoms are not directly bonded to each other.) The alkenyl group is preferably represented by the formula (Vc), and has Even more preferred are alkyl groups of 1 to 18 or alkoxy groups of 1 to 18 carbon atoms.
X71としては、フッ素原子又はトリフルオロメトキシ基が好ましく、フッ素原子がより好ましい。
また、特に高誘電率を得たい場合は、n71が0又は1であり、C71が1,4−シクロへキシレン基であり、C72が1,4−シクロへキシレン基又は1,4−フェニレン基(該1,4−フェニレン基は非置換であるか又は置換基として1個又は2個以上のフッ素原子、メチル基を有することができる。)であり、C73が2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、2,6−ジフルオロ−1,4−フェニレン基又は3,5−ジフルオロ−1,4−フェニレン基であり、Z71及びZ72が単結合であることが好ましい。
X 71 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
In particular, when it is desired to obtain a high dielectric constant, n 71 is 0 or 1, C 71 is a 1,4-cyclohexylene group, and C 72 is a 1,4-cyclohexylene group or 1,4. -Phenylene group (the 1,4-phenylene group is unsubstituted or may have one or more fluorine atoms or methyl groups as substituents), and C 73 is 2-fluoro- A 1,4-phenylene group, a 3-fluoro-1,4-phenylene group, a 2,6-difluoro-1,4-phenylene group or a 3,5-difluoro-1,4-phenylene group, and Z 71 and Z 72 is preferably a single bond.
特に液晶温度範囲を拡大するには、n71が2であり、C71が1,4−シクロへキシレン基であり、C72が、1,4−シクロへキシレン基又は1,4−フェニレン基であり、C73が2−フルオロ−1,4−フェニレン基、3−フルオロ−1,4−フェニレン基、2,6−ジフルオロ−1,4−フェニレン基又は3,5−ジフルオロ−1,4−フェニレン基であり、Z71及びZ72が単結合又は−CH2CH2−であることが好ましい。
具体的には一般式(IX−1)から一般式(IX−4)で表される化合物が好ましい。
In particular, to expand the liquid crystal temperature range, n 71 is 2, C 71 is a 1,4-cyclohexylene group, and C 72 is a 1,4-cyclohexylene group or a 1,4-phenylene group. And C73 is 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 2,6-difluoro-1,4-phenylene group or 3,5-difluoro-1,4 - phenylene group, Z 71 and Z 72 is a single bond or -CH 2 CH 2 - is preferably.
Specifically, compounds represented by general formula (IX-1) to general formula (IX-4) are preferable.
(式中、R72は炭素原子数1から18のアルキル基又はアルコキシ基を表し、X72からX75はそれぞれ独立に水素原子又はフッ素原子を表し、Z73は単結合又は−CH2CH2−を表す。)
これら一般式(IX−1)から一般式(IX−4)の中でも、一般式(IX−5)から一般式(IX−7)で表される化合物がより好ましい。
(Wherein R 72 represents an alkyl group or alkoxy group having 1 to 18 carbon atoms, X 72 to X 75 each independently represents a hydrogen atom or a fluorine atom, and Z 73 represents a single bond or —CH 2 CH 2. Represents-)
Among these general formulas (IX-1) to (IX-4), compounds represented by general formulas (IX-5) to (IX-7) are more preferable.
(式中、R77は炭素原子数1から18のアルキル基を表し、X77からX79はそれぞれ独立して水素原子又はフッ素原子を表す。)
<一般式(X)で表される化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(X)
(In the formula, R 77 represents an alkyl group having 1 to 18 carbon atoms, and X 77 to X 79 each independently represents a hydrogen atom or a fluorine atom.)
<Compound represented by formula (X)>
Specific examples of the low-molecular liquid crystal compound (II) used in the polymer-stabilized liquid crystal composition of the present invention are shown in the following general formula (X).
(式(X)中、R101及びR102は各々独立に炭素原子数1〜18の直鎖状又は分岐状のアルキル基を示し、但し、1つ又は2つの隣接していない−CH2−基が−O−、−S−、−CO−、−CO−O−、−O−CO−、−CO−S−、−S−CO−、−O−CO−O−、−CH=CH−、−C≡C−、シクロプロピレン基又は−Si(CH3)2−で置き換えられてもよく、さらにアルキル基の1つ又はそれ以上の水素原子がフッ素原子あるいはCN基で置き換えられていてもよく、A101は1,4−フェニレン基を表わし、B101及びC101は各々独立に1つ又は2つの水素原子がフッ素原子、CF3基、OCF3基、あるいはCN基、あるいはこれらの複数の基で置き換えられてもよい1,4−フェニレン基、又は、1,4−シクロヘキシレン基を表し、a1、b1、及びc1は0又は1の整数を示し、(a1+b1+c1)=1又は2である。)
一般式(X)で表される化合物は具体例的には、一般式(X−a)から(X−f)で表される。
(In formula (X), R 101 and R 102 each independently represents a linear or branched alkyl group having 1 to 18 carbon atoms, provided that one or two non-adjacent —CH 2 — The group is —O—, —S—, —CO—, —CO—O—, —O—CO—, —CO—S—, —S—CO—, —O—CO—O—, —CH═CH. -, -C≡C-, a cyclopropylene group, or -Si (CH 3 ) 2- may be substituted, and one or more hydrogen atoms of the alkyl group may be replaced by a fluorine atom or a CN group. A 101 represents a 1,4-phenylene group, and B 101 and C 101 each independently represent one or two hydrogen atoms as a fluorine atom, a CF 3 group, an OCF 3 group, a CN group, or a plurality of these 1,4-phenylene group which may be replaced by a group, or , 1,4 cyclohexylene, a 1, b 1, and c 1 is an integer of 0 or 1, (a 1 + b 1 + c 1) = 1 or 2.)
The compounds represented by the general formula (X) are specifically represented by the general formulas (Xa) to (Xf).
(一般式(X−a)から(X−f)中、Y101及びX4は、各々独立に炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)を表し、Z101は、炭素原子数1から18のアルキル基、又はアルコキシ基、又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)、又は独立してフッ素原子、塩素原子、トリフルオロメチル基又はトリフル
オロメトキシ基、ジフルオロメチル基、イソシアネート基を表し、
X81からX96は、それぞれ独立して、水素原子、フッ素原子、又はメチル基を表す。
一般式(X−a)から一般式(X−f)で表される化合物の具体例を以下の(X−1)
から(X−17)に挙げることができる。
(In the general formulas (Xa) to (Xf), Y 101 and X 4 are each independently an alkyl group having 1 to 18 carbon atoms, an alkoxy group, or an alkenyl group having 2 to 18 carbon atoms. (one, or two or more methylene groups present in the alkyl or alkenyl group, as the oxygen atoms are not directly bonded to each other, an oxygen atom may be substituted.) represent, Z 101 is , An alkyl group having 1 to 18 carbon atoms, an alkoxy group, or an alkenyl group having 2 to 18 carbon atoms (one or two or more methylene groups present in the alkyl group or alkenyl group have an oxygen atom May be substituted with an oxygen atom as not directly bonded to each other), or independently a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, difluoromethyl It represents group, an isocyanate group,
X 81 to X 96 each independently represents a hydrogen atom, a fluorine atom, or a methyl group.
Specific examples of the compounds represented by the general formula (Xa) to the general formula (Xf) include the following (X-1)
To (X-17).
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(XI)
Specific examples of the low-molecular liquid crystal compound (II) used in the polymer-stabilized liquid crystal composition of the present invention are shown in the following general formula (XI).
(式(XI−a)から(XI−f)中、R201及びR202は各々独立に炭素原子数1から18のアルキル基、アルコシキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)又はアルケニルオキシ基を表し、
Z201は、単結合、−CH2CH2、−OCH2−又は−CH2O−を表し、
(In formulas (XI-a) to (XI-f), R 201 and R 202 each independently represents an alkyl group having 1 to 18 carbon atoms, an alkoxyl group, or an alkenyl group having 2 to 18 carbon atoms (the alkyl group). Or one or two or more methylene groups present in the alkenyl group may be substituted with an oxygen atom so that the oxygen atoms are not directly bonded to each other) or an alkenyloxy group,
Z 201 represents a single bond, —CH 2 CH 2 , —OCH 2 — or —CH 2 O—,
X201、Y201及びW201は、フッ素原子、塩素原子、トリフルオロメチル基又はトリフルオロメトキシ基、ジフルオロメチル基、を表し、 一般式(XI−e)及び(XI−f)のVとしては、−CH2−又は−O−を表す。
一般式(XI−a)及び一般式(XI−f)においてR201及びR202としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、
該アルキル基又はアルケニル基は、式(XI−g)
X 201 , Y 201 and W 201 each represents a fluorine atom, a chlorine atom, a trifluoromethyl group or a trifluoromethoxy group, and a difluoromethyl group, and V in the general formulas (XI-e) and (XI-f) , -CH2- or -O-.
In General Formula (XI-a) and General Formula (XI-f), R 201 and R 202 are each an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 6 carbon atoms (the alkyl group or alkenyl group). 1 or 2 or more methylene groups present therein may preferably be substituted with oxygen atoms so that the oxygen atoms are not directly bonded to each other.
The alkyl group or alkenyl group has the formula (XI-g)
<一般式(XII)で表される化合物>
本発明の高分子安定化液晶組成物に用いられる低分子液晶化合物(II)の具体例を示すと(II)は、下記一般式(XII)
<Compound represented by formula (XII)>
Specific examples of the low-molecular liquid crystal compound (II) used in the polymer-stabilized liquid crystal composition of the present invention are shown in the following general formula (XII).
(式(XII−a)から(XII−c)中、R301及びR302は各々独立に炭素原子数1から18のアルキル基、アルコシキル基又は炭素原子数2から18のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)又はアルケニルオキシ基を表し、
一般式(XII−a)及び一般式(XII−c)においてR301及びR302としては、炭素原子数1から18のアルキル基又は炭素原子数2から6のアルケニル基(該アルキル基又はアルケニル基中に存在する1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、酸素原子で置換されていてもよい。)が好ましく、該アルキル基又はアルケニル基は、式(XII−d)
(In formulas (XII-a) to (XII-c), R 301 and R 302 each independently represents an alkyl group having 1 to 18 carbon atoms, an alkoxyl group, or an alkenyl group having 2 to 18 carbon atoms (the alkyl group). Or one or two or more methylene groups present in the alkenyl group may be substituted with an oxygen atom so that the oxygen atoms are not directly bonded to each other) or an alkenyloxy group,
In General Formula (XII-a) and General Formula (XII-c), R 301 and R 302 are each an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 6 carbon atoms (the alkyl group or alkenyl group). 1 or 2 or more methylene groups present therein may preferably be substituted with an oxygen atom so that the oxygen atoms are not directly bonded to each other), and the alkyl group or alkenyl group may be represented by the formula ( XII-d)
<高分子安定化液晶組成物の組成比>
本発明の高分子安定化液晶組成物は、化合物(II)で表される非重合性低分子液晶化合物と、カイラル化合物(IV)と、重合性化合物(I)及び重合性化合物(III)で表される重合性液晶化合物で構成される。該非重合性低分子液晶化合物とカイラル化合物の合計と、重合性化合物の構成比は、重合性化合物の構成割合が多すぎると高分子安定化液晶組成物としての特性を損なうため最適な構成比が存在する。具体的には、該非重合性低分子液晶化合物とカイラル化合物の合計が92%〜99.9%であることが好ましく、92%〜99%であることがより好ましく、94%〜98%含有であることが特に好ましい。
<Composition ratio of polymer stabilized liquid crystal composition>
The polymer-stabilized liquid crystal composition of the present invention comprises a non-polymerizable low-molecular liquid crystal compound represented by compound (II), a chiral compound (IV), a polymerizable compound (I), and a polymerizable compound (III). It is comprised with the polymeric liquid crystal compound represented. The total composition ratio of the non-polymerizable low-molecular liquid crystal compound and the chiral compound and the composition ratio of the polymerizable compound are such that if the composition ratio of the polymerizable compound is too large, the characteristics as the polymer-stabilized liquid crystal composition are impaired. Exists. Specifically, the total of the non-polymerizable low-molecular liquid crystal compound and the chiral compound is preferably 92% to 99.9%, more preferably 92% to 99%, and 94% to 98% contained. It is particularly preferred.
本発明の高分子安定化液晶組成物は、一般式(II−a)又は(II−b)で表される低分子液晶化合物として、一般式(VI−a)、一般式(VI−b)、一般式(VII−a)、一般式(VII−b)、一般式(VIII−a)、一般式(IX−a)、一般式(X)で表される化合物の少なくとも一種を含む液晶組成物を92から99.9質量%含有し、一般式(I−a)、(III−a)で表される化合物を含む重合性組成物を0.1から8%を含有していることが好ましく、該液晶組成物を92%から99%含有し、該重合性組成物を1から8質量%含有することがより好ましく、該液晶組成物を94%から98%含有し、該重合性組成物を2から6質量%含有することが特に好ましい。 The polymer-stabilized liquid crystal composition of the present invention has a general formula (VI-a) or a general formula (VI-b) as a low molecular liquid crystal compound represented by the general formula (II-a) or (II-b). , A liquid crystal composition comprising at least one compound represented by formula (VII-a), formula (VII-b), formula (VIII-a), formula (IX-a), or formula (X) 92 to 99.9% by mass of the product, 0.1 to 8% of the polymerizable composition containing the compounds represented by the general formulas (Ia) and (III-a) Preferably, the liquid crystal composition is contained in 92% to 99%, the polymerizable composition is contained in 1 to 8% by mass, the liquid crystal composition is contained in 94% to 98%, and the polymerizable composition is contained. It is particularly preferable to contain 2 to 6% by mass of the product.
液晶組成物としては、一般式(X)で表される化合物の含有率が5から90%、一般式(X−a)、一般式(X−b)、一般式(X−c)で表される化合物群の含有率が50から99%であるものが好ましい。一般式(VI−a)、一般式(VI−b)及び一般式(VII−a)、一般式(VII−b)で表される化合物群、及び一般式(VIII−a)、一般式(IX−a)で表せる化合物群は、目的の該液晶組成物の基礎物性を得るために用いることが好ましい。前記基礎物性は、屈折率異方性、誘電異方性、弾性定数、液晶相の相系列、液晶相の温度範囲、自発分極等を実用には調整する必要があるため目的に応じて化合物を選択すて使用することが好ましい。特に、、更には、(XI−a)から(XI−f)で表せる化合物郡及び(XII−a)から(XII−c)で表せる化合物郡は負の誘電異方性を調整する目的で化合物を選択して使用することが好ましい。本発明の高分子安定化液晶組成物においては、重合性化合物(III)の含有率が0.05%から7%であって、重合性化合物(III)と前記重合性化合物(I)との組成比が(III):(I)=1:1から49:1であることが好ましい。 As the liquid crystal composition, the content of the compound represented by the general formula (X) is 5 to 90%, represented by the general formula (Xa), the general formula (Xb), and the general formula (Xc). A compound having a content of 50 to 99% is preferred. A compound group represented by general formula (VI-a), general formula (VI-b) and general formula (VII-a), general formula (VII-b), and general formula (VIII-a), general formula ( The compound group represented by IX-a) is preferably used for obtaining the basic physical properties of the target liquid crystal composition. The basic physical properties include refractive index anisotropy, dielectric anisotropy, elastic constant, liquid crystal phase sequence, liquid crystal phase temperature range, spontaneous polarization, etc. It is preferable to select and use. In particular, the compound group represented by (XI-a) to (XI-f) and the compound group represented by (XII-a) to (XII-c) are compounds for the purpose of adjusting negative dielectric anisotropy. It is preferable to select and use. In the polymer-stabilized liquid crystal composition of the present invention, the content of the polymerizable compound (III) is 0.05% to 7%, and the polymerizable compound (III) and the polymerizable compound (I) The composition ratio is preferably (III) :( I) = 1: 1 to 49: 1.
本発明においては、重合性液晶化合物(III)のほかに多官能液晶性モノマーを添加することもできる。この多官能液晶性モノマーとしては、重合性官能基として、アクリロイルオキシ基、メタクリロイルオキシ基、アクリルアミド基、メタクリルアミド基、エポキシ基、ビニル基、ビニルオキシ基、エチニル基、メルカプト基、マレイミド基、ClCH=CHCONH−、CH2=CCl−、CHCl=CH−、RCH=CHCOO−(ここでRは塩素、フッ素、又は炭素原子数1〜18の炭化水素基を表す)が挙げられるが、これらの中でもアクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、メルカプト基、ビニルオキシ基が好ましく、メタクリロイルオキシ基又はアクリロイルオキシ基が特に好ましく、アクリロイルオキシ基が最も好ましい。 In the present invention, a polyfunctional liquid crystalline monomer may be added in addition to the polymerizable liquid crystal compound (III). As this polyfunctional liquid crystalline monomer, acryloyloxy group, methacryloyloxy group, acrylamide group, methacrylamide group, epoxy group, vinyl group, vinyloxy group, ethynyl group, mercapto group, maleimide group, ClCH = CHCONH-, CH 2 = CCl-, CHCl = CH-, RCH = CHCOO- ( wherein R is chlorine, fluorine, or a hydrocarbon group having 1 to 18 carbon atoms), but can be exemplified acryloyl among these An oxy group, a methacryloyloxy group, an epoxy group, a mercapto group, and a vinyloxy group are preferable, a methacryloyloxy group or an acryloyloxy group is particularly preferable, and an acryloyloxy group is most preferable.
多官能液晶性モノマーの分子構造としては、2つ以上の環構造を有することを特徴とする液晶骨格、重合性官能基、さらに液晶骨格と重合性官能基を連結する柔軟性基を少なくとも2つ有するものが好ましく、3つの柔軟性基を有するものがさらに好ましい。柔軟性基としては、−(CH2)n−(ここでnは整数を表す)で表されるようなアルキレンスペーサー基や−(Si(CH3)2−O)n−(ここでnは整数を表す)で表されるようなシロキサンスペーサー基を挙げることができ、この中ではアルキレンスペーサー基が好ましい。これらの柔軟性基と液晶骨格、もしくは重合性官能基との結合部分には、−O−、−COO−、−CO−のような結合が介在していても良い。 As the molecular structure of the polyfunctional liquid crystalline monomer, there are at least two liquid crystal skeletons having two or more ring structures, a polymerizable functional group, and a flexible group for connecting the liquid crystal skeleton and the polymerizable functional group. Those having three flexible groups are more preferable. Examples of the flexible group include an alkylene spacer group represented by — (CH 2 ) n — (where n represents an integer) or — (Si (CH 3 ) 2 —O) n — (where n is Siloxane spacer groups represented by the formula (representing an integer), among which an alkylene spacer group is preferred. Bonds such as —O—, —COO—, and —CO— may be present in the bonding portion between these flexible groups and the liquid crystal skeleton or polymerizable functional group.
液晶骨格は、通常この技術分野で液晶骨格(メソゲン)と認識されるものであれば、特に制限なく使用することができるが、少なくとも2つ以上の環構造を有するものが好ましい。
環構造としては使用できる環は、ベンゼン、ピリジン、ピラジン、ピリダジン、ピリミジン、1,2,4−トリアジン、1,3,5−トリアジン、テトラジン、ジヒドロオキサジン、シクロヘキサン、シクロヘキセン、シクロヘキサジエン、シクロヘキサノン、ピペリジン、ピペラジン、テトラヒドロピラン、ジオキサン、テトラヒドロチオピラン、ジチアン、オキサチアン、ジオキサボリナン、ナフタレン、ジオキサナフタレン、テトラヒドロナフタレン、キノリン、クマリン、キノキサリン、デカヒドロナフタレン、インダン、ベンゾオキサゾール、ベンゾチアゾール、フェナンスレン、ジヒドロフェナンスレン、パーヒドロフェナンスレン、ジオキサパーヒドロフェナンスレン、フルオレン、フルオレノン、シクロヘプタン、シクロヘプタトリエンオン、コレステン、ビシクロ[2.2.2]オクタンやビシクロ[2.2.2]オクテン、1,5−ジオキサスピロ(5.5)ウンデカン、1,5−ジチアスピロ(5.5)ウンデカン、トリフェニレン、トルクセン、ポルフィリン、フタロシアニンを挙げることができる。これらの中でも、ベンゼン、シクロヘキサン、フェナントレン、ナフタレン、テトラヒドロネフタレン、デカヒドロネフタレンが好ましい。
The liquid crystal skeleton can be used without particular limitation as long as it is generally recognized as a liquid crystal skeleton (mesogen) in this technical field, but those having at least two or more ring structures are preferable.
The ring that can be used as the ring structure is benzene, pyridine, pyrazine, pyridazine, pyrimidine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, dihydrooxazine, cyclohexane, cyclohexene, cyclohexadiene, cyclohexanone, piperidine , Piperazine, tetrahydropyran, dioxane, tetrahydrothiopyran, dithiane, oxathiane, dioxaborinane, naphthalene, dioxanaphthalene, tetrahydronaphthalene, quinoline, coumarin, quinoxaline, decahydronaphthalene, indane, benzoxazole, benzothiazole, phenanthrene, dihydrophenance Len, perhydrophenanthrene, dioxaperhydrophenanthrene, fluorene, fluorenone, cycloheptane, cyclohexane Tatrienone, cholesterol, bicyclo [2.2.2] octane, bicyclo [2.2.2] octene, 1,5-dioxaspiro (5.5) undecane, 1,5-dithiaspiro (5.5) undecane, triphenylene, Examples include torquesen, porphyrin, and phthalocyanine. Among these, benzene, cyclohexane, phenanthrene, naphthalene, tetrahydronephthalene, and decahydronephthalene are preferable.
これらの環は、炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、又はシアノ基、ハロゲン原子で一つ以上置換されていても良い。アルキル基としてはメチル基、エチル基、n−プロピル基、n−ブチル基が望ましく、メチル基とエチル基が特に好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましく、アルカノイル基としてはアセチル基、プロピオニル基、ブチロイル基が好ましく、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子が好ましく、フッ素原子と塩素原子が特に好ましい。また、多官能液晶性モノマーに加えて、単官能液晶性モノマーを添加しても良い。何れも、低分子液晶が示す一軸配向性やチルト角、駆動電圧等の電気光学特性が応用製品の仕様(動作温度、駆動電圧、コントラスト、透過率、信頼性等)に合致するように低分子液晶組成物と同様に高分子前駆体の組成の調整を行うことが好ましい。 One or more of these rings may be substituted with an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, or a halogen atom. As the alkyl group, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are desirable, and a methyl group and an ethyl group are particularly preferable. As an alkoxy group, a methoxy group, an ethoxy group, a propoxy group, and a butoxy group are preferable. As an alkanoyl group, an acetyl group, a propionyl group, and a butyroyl group are preferable. As a halogen atom, a fluorine atom, a bromine atom, and a chlorine atom are preferable. A fluorine atom and a chlorine atom are particularly preferable. In addition to the polyfunctional liquid crystalline monomer, a monofunctional liquid crystalline monomer may be added. In any case, the low molecular weight liquid crystal is low molecular weight so that the uniaxial orientation, tilt angle, driving voltage, and other electro-optical characteristics of the low molecular liquid crystal match the specifications of the applied product (operating temperature, driving voltage, contrast, transmittance, reliability, etc.). It is preferable to adjust the composition of the polymer precursor in the same manner as the liquid crystal composition.
これらの液晶組成物は不純物等を除去する、又は比抵抗値を更に高くする目的で、シリカ、アルミナ等による精製処理を施しても良い。比抵抗値としては1012Ω・cm以上が好ましく、1013Ω・cm以上がより好ましい。更に、目的に応じて液晶組成物中に、キラル化合物、染料等のドーパントを添加することもできる。
その他、必要に応じて酸化防止剤、紫外線吸収剤、非反応性のオリゴマーや無機充填剤、有機充填剤、重合禁止剤、消泡剤、レベリング剤、可塑剤、シランカップリング剤等を適宜添加しても良い。
These liquid crystal compositions may be subjected to a purification treatment with silica, alumina or the like for the purpose of removing impurities or the like or further increasing the specific resistance value. The specific resistance value is preferably 10 12 Ω · cm or more, and more preferably 10 13 Ω · cm or more. Furthermore, dopants such as chiral compounds and dyes can be added to the liquid crystal composition according to the purpose.
In addition, antioxidants, UV absorbers, non-reactive oligomers and inorganic fillers, organic fillers, polymerization inhibitors, antifoaming agents, leveling agents, plasticizers, silane coupling agents, etc. are added as necessary. You may do it.
本発明の高分子安定化液晶組成物は、化合物(II)で表される非重合性低分子液晶化合物と、カイラル化合物(IV)と、重合性化合物(I)及び重合性化合物(III)で表される重合性化合物で構成されるが、高分子安定化液晶組成物を重合させる場合、重合開始剤を含有していることが好ましい。重合開始剤を含有させる場合の含有量は、重合開始剤以外の材料を98%〜99.9%含有し、重合開始剤を0.1%〜2%含有していることが好ましい。
本発明の光学素子は、上述した考え方で使用する液晶組成物に対する最適条件(周波数、印加電圧、温度)を探して作製することができる。
The polymer-stabilized liquid crystal composition of the present invention comprises a non-polymerizable low-molecular liquid crystal compound represented by compound (II), a chiral compound (IV), a polymerizable compound (I), and a polymerizable compound (III). Although comprised with the polymeric compound represented, when polymerizing a polymer stabilized liquid crystal composition, it is preferable to contain a polymerization initiator. When the polymerization initiator is contained, the content other than the polymerization initiator is preferably 98% to 99.9%, and the polymerization initiator is preferably 0.1% to 2%.
The optical element of the present invention can be produced by searching for the optimum conditions (frequency, applied voltage, temperature) for the liquid crystal composition used in the above-described way of thinking.
(高分子安定化液晶光学素子の作製、及び評価法)
中の高分子安定化液晶表示素子は以下の方法で作製した。
高分子安定化液晶組成物の等方相―ネマチック相転移温度以上(80℃)に加熱して真空注入方で注入した。スメクチックA相―ネマチックC*相転移温度近辺の73℃から69℃範囲で1℃/分の降温速度で徐冷してネマチック*相の螺旋ピッチが解けた状態でスメクチックA相へ転移させて配向欠陥の無い一軸配向が得られるようにした。更に、ジグザグ配向欠陥発生を抑制するため69℃から65℃まで2℃/分の降温速度で徐冷してスメクチックC*相へ転移させた。液晶セルは、セルギャップ3μm、又は5μmのポリイミド配向膜を塗布したITO付きアンチパラレルラビングの配向セルを用いた。ポリイミド配向膜は、日産化学社製のRN-1199を使用した。
(Production and evaluation method of polymer-stabilized liquid crystal optical element)
The polymer-stabilized liquid crystal display element was produced by the following method.
The polymer-stabilized liquid crystal composition was injected by vacuum injection after heating to an isotropic phase-nematic phase transition temperature or higher (80 ° C.). Smectic A phase-Nematic C * Slow cooling at a rate of 1 ° C / min in the range of 73 ° C to 69 ° C near the phase transition temperature, and transition to the smectic A phase with the helical pitch of the nematic * phase unraveled. A defect-free uniaxial orientation was obtained. Furthermore, in order to suppress the occurrence of zigzag alignment defects, the film was gradually cooled from 69 ° C. to 65 ° C. at a rate of temperature decrease of 2 ° C./min, and transferred to the smectic C * phase. As the liquid crystal cell, an anti-parallel rubbing alignment cell with ITO coated with a polyimide alignment film having a cell gap of 3 μm or 5 μm was used. As the polyimide alignment film, RN-1199 manufactured by Nissan Chemical Co., Ltd. was used.
液晶組成物、ラジカル重合性組成物、光重合開始剤及び微量の重合禁止剤からなる調光層形成材料を真空注入法でガラスセル内に注入した。真空度は2パスカルとなるよう設定した。注入後ガラスセルを取り出し、注入口を封口剤3026E(スリーボンド社製)で封止した。直交ニコルスの偏光顕微鏡で二軸配向であることを確認した後、周波数70Hz、又は2kHzで3V/μmの電界強度のパルス波(矩形波)を印加してスイッチングさせながら、紫外線を露光した。25℃でセルサンプル表面の照射強度が5mW/cm2となるように調整した。ランプは、紫外線発光ダイオード(発光中心波長:365nm)を用いて600秒間照射し、高分子安定化液晶組成物の重合性化合物を重合させて高分子分安定化液晶表示素子を得た。紫外線露光後は、印加した電圧を切り、配向状態を偏光顕微鏡で観察して高分子による配向安定化された一軸配向が無電界で維持されている状態を調べた。更に、液晶セルの一軸配向方向と偏光顕微鏡の直交ニコルに於ける検光子の偏光方向に合わせることにより暗視野にしてから60Hzの矩形波を印加して電気光学特性を測定した。透過率は、二枚の偏光板を直行した時を0%、平行にした時を100%とした。 A light control layer forming material comprising a liquid crystal composition, a radical polymerizable composition, a photopolymerization initiator, and a small amount of a polymerization inhibitor was injected into the glass cell by a vacuum injection method. The degree of vacuum was set to be 2 Pascals. After the injection, the glass cell was taken out and the inlet was sealed with a sealing agent 3026E (manufactured by ThreeBond). After confirming the biaxial orientation with a crossed Nichols polarizing microscope, ultraviolet rays were exposed while switching by applying a pulse wave (rectangular wave) having an electric field intensity of 3 V / μm at a frequency of 70 Hz or 2 kHz. It adjusted so that the irradiation intensity of the cell sample surface might be 5 mW / cm <2> at 25 degreeC. The lamp was irradiated for 600 seconds using an ultraviolet light emitting diode (emission center wavelength: 365 nm) to polymerize the polymerizable compound of the polymer stabilized liquid crystal composition to obtain a polymer component stabilized liquid crystal display device. After the ultraviolet exposure, the applied voltage was turned off, and the alignment state was observed with a polarizing microscope, and the state in which the uniaxial alignment stabilized by the polymer was maintained without an electric field was examined. Further, the electro-optical characteristics were measured by applying a rectangular wave of 60 Hz after adjusting the uniaxial alignment direction of the liquid crystal cell and the polarization direction of the analyzer in the crossed Nicols of the polarizing microscope to make the dark field. The transmittance was 0% when the two polarizing plates were orthogonal, and 100% when they were parallel.
(高分子安定化液晶組成物の調整)
化合物郡(X)と化合物郡(IV)のキラル液晶化合物を含む図1の強誘電性液晶組成物(FLC−1)へ該液晶組成物のネマチック*相に於いてコレステリックの螺旋が解けるように化合物郡(VI−i)のキラル化合物(IV−1)を添加して等方相にて加熱溶解した。更に、化合物群(I)及び(III)をそれぞれ少なくとも一種含む光重合性アクリレート組成物を配合して加熱溶解して高分子安定化液晶組成物(PSV−1)を調整した。
(Adjustment of polymer stabilized liquid crystal composition)
1 to the ferroelectric liquid crystal composition (FLC-1) containing the chiral liquid crystal compound of compound group (X) and compound group (IV) so that the cholesteric helix can be dissolved in the nematic * phase of the liquid crystal composition. The chiral compound (IV-1) of the compound group (VI-i) was added and dissolved by heating in an isotropic phase. Further, a photopolymerizable acrylate composition containing at least one compound group (I) and (III) was blended and dissolved by heating to prepare a polymer stabilized liquid crystal composition (PSV-1).
強誘電性液晶の相系列は、等方相 76℃ ネマチック*相 71℃ スメクチックA相 67℃ スメクチックC*相 <-20℃ 結晶 で、各成分の構造および組成を次に示す。
又、化合物郡(X)と化合物郡(IV)のキラル液晶化合物を含む図3の強誘電性液晶組成物(FLC−2)を調整し、該液晶組成物のスメクチックC*相に於ける螺旋が5μmセルで存在するように化合物郡(VI−j)のキラル化合物(VI−2)を添加し、化合物群(I)及び(III)をそれぞれ少なくとも一種含む光重合性アクリレート組成物を配合して高分子安定化液晶組成物(PSV−2)を調整した。該キラル化合物は、J. Mater. Chem.,1994, 4(3), p449−456に記載されている方法を用いて合成した。
化合物郡(X)と化合物郡(IV)を含有する組成物(FLC−1)を次に示す。
The phase sequence of the ferroelectric liquid crystal is isotropic phase 76 ° C nematic * phase 71 ° C smectic A phase 67 ° C smectic C * phase <-20 ° C crystal. The structure and composition of each component are shown below.
Further, the ferroelectric liquid crystal composition (FLC-2) of FIG. 3 containing the chiral liquid crystal compounds of the compound group (X) and the compound group (IV) is prepared, and the spiral in the smectic C * phase of the liquid crystal composition is prepared. Is added to the compound group (VI-j) chiral compound (VI-2) so as to exist in a 5 μm cell, and a photopolymerizable acrylate composition containing at least one compound group (I) and (III) is blended. Thus, a polymer stabilized liquid crystal composition (PSV-2) was prepared. The chiral compound is described in J. Org. Mater. Chem. , 1994, 4 (3), p449-456.
A composition (FLC-1) containing compound group (X) and compound group (IV) is shown below.
(実施例1)
強誘電性液晶組成物(FLC−1)を97%、(IV−1)を1%、(III−UC1)及び(III−UC2)の混合比が1:1を0.196%、(I−AM1)を1.764%、イルガキュア651(Irg651)を0.04%の比率で配合して高分子安定化液晶組成物を調製。調整した該組成物に於けるスメクチックC*相の螺旋ピッチは、0℃で0.9μm、25℃で1.8μm、50℃で2.3μmであった。
Example 1
The ferroelectric liquid crystal composition (FLC-1) is 97%, (IV-1) is 1%, the mixing ratio of (III-UC1) and (III-UC2) is 1: 1 to 0.196%, (I -A polymer stabilized liquid crystal composition was prepared by blending AM1) at a ratio of 1.764% and Irgacure 651 (Irg651) at a ratio of 0.04%. The helical pitch of the smectic C * phase in the prepared composition was 0.9 μm at 0 ° C., 1.8 μm at 25 ° C., and 2.3 μm at 50 ° C.
上述の高分子安定化光学液晶素子の作製方法に於いて、セル厚3μmの液晶セルに調整した液晶組成物を80℃の等方相で注入して、2℃/minで徐冷して71.5℃でネマチック*相のコレステリック螺旋ピッチが解けるの待ち、直交ニコル下で一軸配向による暗視野が得られた所で、徐冷を再開してスメクチックA相に転移させ、偏光顕微鏡でスメクチックA相にてラビング方向で暗視野(一軸配向)になることと、配向欠陥の無いことを確認した。更に徐冷を続け、67℃でスメクチックC*相へ転移させ温度25℃でスメクチックC*相の配向状態を偏光顕微鏡で観察すると螺旋構造が無い二軸性配向であった。直交ニコルを回転させて二軸配向の何れかの一方の配向軸に検光子を合わせ配向状態を観察すると暗視野部分に複屈折色の着色が若干見られ捩れ配向状態であった。0℃迄冷やすと螺旋構造を表す縞模様が観察された。このような上述の配向状態は、強誘電性液晶の特徴を示した。これに、25℃のスメクチックC*相にて周波数2kHzで15Vo-pの矩形波を印加しながら紫外線を露光して高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。偏光顕微鏡で重合後の配向を観察した所、露光後、電圧を切り、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。電極部分全体は、紫外線露光前に見られたスメクチックC*相の特徴であった二軸配向は消失して略ラビング配向処理方向に消光位を示し一軸配向であった。電極周囲は、矩形波が印加されないためスメクチックC*相の二軸配向が観察された。作製したセルを−10℃迄冷却してスメクチックC*相に於いて螺旋ピッチに由来する縞模様の発現が無くモノドメインスイッチングしていることを偏光顕微鏡で確認した。
顕微分光器で作製したセルの波長分散を測定して、以下の式を用いてカーブフィッティングからセルのΔnを求めた。
In the above-described method for producing a polymer-stabilized optical liquid crystal element, a liquid crystal composition prepared in a liquid crystal cell having a cell thickness of 3 μm is injected in an isotropic phase of 80 ° C., and slowly cooled at 2 ° C./min. Waiting for the cholesteric helical pitch of the nematic * phase to be dissolved at 5 ° C, and when dark field was obtained by uniaxial orientation under crossed Nicols, slow cooling was resumed to transfer to the smectic A phase. It was confirmed that there was a dark field (uniaxial orientation) in the rubbing direction in the phase and that there were no orientation defects. Further cooling was continued, transitioning to a smectic C * phase at 67 ° C., and observation of the orientation state of the smectic C * phase at a temperature of 25 ° C. with a polarizing microscope revealed a biaxial orientation without a helical structure. When rotating the crossed Nicols and aligning the analyzer with one of the biaxially oriented orientation axes and observing the orientation state, the dark field portion was slightly colored with a birefringent color and was in a twisted orientation state. When cooled to 0 ° C., a stripe pattern representing a spiral structure was observed. Such an alignment state described above showed the characteristics of the ferroelectric liquid crystal. A liquid crystal optical element is produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition by exposing it to ultraviolet light while applying a rectangular wave of 15 Vo-p at a frequency of 2 kHz in a smectic C * phase at 25 ° C. did. When the alignment after polymerization was observed with a polarizing microscope, the voltage was turned off after exposure, and the sample stage of the microscope was rotated with a polarizing microscope to observe the alignment state. The entire electrode portion disappeared from the biaxial orientation characteristic of the smectic C * phase observed before the ultraviolet exposure, and showed a quenching position in the rubbing orientation treatment direction and was uniaxially oriented. Since no rectangular wave was applied around the electrode, a biaxial orientation of the smectic C * phase was observed. The produced cell was cooled to −10 ° C., and it was confirmed with a polarizing microscope that the smectic C * phase did not show a stripe pattern derived from the helical pitch and was monodomain switched.
The wavelength dispersion of the cell produced by the microspectroscope was measured, and Δn of the cell was obtained from curve fitting using the following equation.
前記消光の位置(暗視野)にて電圧を0Vとから徐々に上げて印加すると暗視野から明視野へ電極部分全体が一様に変化して透過率が連続的に増加する。このことは連続階調表示が可能であることを意味する。60Hzの矩形波を印加して電圧―透過率特性を測定した所、図1のV字型電圧―透過率特性を示し、応答は、立ち上がり時間が190μs、立ち下り時間が250μs、駆動電圧V90は6.9V(V90の電界強度:2.3V/μm)、傾斜角(チルト角)が25度、最小透過率Toは0.09%、最大透過率は40.2%、コントラストが1:315の特性が得られた。
When the voltage is gradually increased from 0 V and applied at the extinction position (dark field), the entire electrode portion changes uniformly from the dark field to the bright field, and the transmittance continuously increases. This means that continuous tone display is possible. When the voltage-transmittance characteristics were measured by applying a 60 Hz rectangular wave, the V-shaped voltage-transmittance characteristics shown in FIG. 1 were shown. The response was a rise time of 190 μs, a fall time of 250 μs, and a drive voltage V90 of 6.9V (V90 electric field strength: 2.3V / μm), tilt angle (tilt angle) is 25 degrees, minimum transmittance To is 0.09%, maximum transmittance is 40.2%, contrast is 1: 315 The characteristics were obtained.
(比較例1)
電圧を無印加で紫外線露光した以外は実施例1と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。スメクチックC*相の特徴である二軸配向を示し、二方向の配向状態である二つドメインが高分子安定化された。目的の一軸配向及びV字型電圧−透過率特性は得られなかった。
(Comparative Example 1)
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 1 except that UV exposure was performed without applying voltage. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. The biaxial orientation characteristic of the smectic C * phase was exhibited, and the two domains in the bi-directional orientation state were stabilized. The desired uniaxial orientation and V-shaped voltage-transmittance characteristics were not obtained.
(実施例2)
セル厚が2.5μm以外は、実施例1と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。露光後電圧を切ると、電極部分全体は、紫外線露光前に見られたスメクチックC*相の特徴であった二軸配向は消失して略ラビング配向処理方向に消光位を示し一軸配向であった。電極周囲は、矩形波が印加されないためスメクチックC*相の二軸配向が観察された。
顕微分光器で作製したセルの波長分散を測定して、実施例1記載の式を用いて同様にカーブフィッティングからセルのΔnを求めた。電圧0Vの一軸配向のΔnは、0.183、電圧9Vo−pは0.169であった。
(Example 2)
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 1 except that the cell thickness was 2.5 μm. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. When the voltage after exposure was cut, the entire electrode part disappeared from the biaxial orientation that was characteristic of the smectic C * phase seen before UV exposure, and was extinction in the rubbing orientation treatment direction and was uniaxially oriented. . Since no rectangular wave was applied around the electrode, a biaxial orientation of the smectic C * phase was observed.
The wavelength dispersion of the cell produced by the microspectroscope was measured, and Δn of the cell was similarly obtained from curve fitting using the formula described in Example 1. The uniaxial orientation Δn of voltage 0V was 0.183, and the voltage 9Vo-p was 0.169.
前記消光の位置(暗視野)にて電圧を0Vとから徐々に上げて印加すると暗視野から明視野へ電極部分全体が一様に変化して透過率が連続的に増加する。このことは連続階調表示が可能であることを意味する。60Hzの矩形波を印加して電圧―透過率特性を測定した所、V字型電圧―透過率特性を示し、駆動電圧V90は6.3V(V90の電界強度:2.5V/μm)、傾斜角(チルト角)が24.9度、最小透過率Toは0.47%、最大透過率は50.1%、コントラストが1:106の特性が得られた。 When the voltage is gradually increased from 0 V and applied at the extinction position (dark field), the entire electrode portion changes uniformly from the dark field to the bright field, and the transmittance continuously increases. This means that continuous tone display is possible. When voltage-transmittance characteristics were measured by applying a 60 Hz rectangular wave, V-shaped voltage-transmittance characteristics were shown, drive voltage V90 was 6.3 V (V90 electric field strength: 2.5 V / μm), slope The angle (tilt angle) was 24.9 degrees, the minimum transmittance To was 0.47%, the maximum transmittance was 50.1%, and the contrast was 1: 106.
(実施例3)
セル厚が2.0μm以外は、実施例1と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。露光後電圧を切ると、電極部分全体は、紫外線露光前に見られたスメクチックC*相の特徴であった二軸配向は消失して略ラビング配向処理方向に消光位を示し一軸配向であった。電極周囲は、矩形波が印加されないためスメクチックC*相の二軸配向が観察された。
前記消光の位置(暗視野)にて電圧を0Vとから徐々に上げて印加すると暗視野から明視野へ電極部分全体が一様に変化して透過率が連続的に増加する。このことは連続階調表示が可能であることを意味する。60Hzの矩形波を印加して電圧―透過率特性を測定した所、V字型電圧―透過率特性を示し、駆動電圧V90は5.9V(V90の電界強度:3V/μm)、最小透過率Toは0.49%、最大透過率は50.3%、コントラストが1:102の特性が得られた。
(Example 3)
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 1 except that the cell thickness was 2.0 μm. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. When the voltage after exposure was cut, the entire electrode part disappeared from the biaxial orientation that was characteristic of the smectic C * phase seen before UV exposure, and was extinction in the rubbing orientation treatment direction and was uniaxially oriented. . Since no rectangular wave was applied around the electrode, a biaxial orientation of the smectic C * phase was observed.
When the voltage is gradually increased from 0 V and applied at the extinction position (dark field), the entire electrode portion changes uniformly from the dark field to the bright field, and the transmittance continuously increases. This means that continuous tone display is possible. When voltage-transmittance characteristics were measured by applying a 60Hz rectangular wave, V-shaped voltage-transmittance characteristics were shown, drive voltage V90 was 5.9V (V90 electric field strength: 3V / μm), minimum transmittance A characteristic of To of 0.49%, maximum transmittance of 50.3%, and contrast of 1: 102 was obtained.
(実施例4)
セル厚が1.8μm以外は、実施例1と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。露光後電圧を切ると、電極部分全体は、紫外線露光前に見られたスメクチックC*相の特徴であった二軸配向は消失して略ラビング配向処理方向に消光位を示し一軸配向であった。電極周囲は、矩形波が印加されないためスメクチックC*相の二軸配向が観察された。
前記消光の位置(暗視野)にて電圧を0Vとから徐々に上げて印加すると暗視野から明視野へ電極部分全体が一様に変化して透過率が連続的に増加する。このことは連続階調表示が可能であることを意味する。60Hzの矩形波を印加して電圧―透過率特性を測定した所、V字型電圧―透過率特性を示し、駆動電圧V90は6.4V(V90の電界強度:3.5V/μm)、最小透過率Toは0.31%、最大透過率は46.9%、コントラストが1:150の特性が得られた。
Example 4
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 1 except that the cell thickness was 1.8 μm. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. When the voltage after exposure was cut, the entire electrode part disappeared from the biaxial orientation that was characteristic of the smectic C * phase seen before UV exposure, and was extinction in the rubbing orientation treatment direction and was uniaxially oriented. . Since no rectangular wave was applied around the electrode, a biaxial orientation of the smectic C * phase was observed.
When the voltage is gradually increased from 0 V and applied at the extinction position (dark field), the entire electrode portion changes uniformly from the dark field to the bright field, and the transmittance continuously increases. This means that continuous tone display is possible. When voltage-transmittance characteristics were measured by applying a 60 Hz rectangular wave, V-shaped voltage-transmittance characteristics were shown, drive voltage V90 was 6.4 V (V90 electric field strength: 3.5 V / μm), minimum The transmittance To was 0.31%, the maximum transmittance was 46.9%, and the contrast was 1: 150.
(実施例5)
液晶組成物(FLC−2)を92.15%キラル化合物(IV−2)を4.85%、。(III−UC1)及び(III−UC2)の混合比が1:1を2.94%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製。セル厚5μmに於いてスメクチックC*相の縞模様が観察され螺旋構造を示した。高分子安定化光学液晶素子の作製方法に於いて、セル厚5μmの液晶セルに調整した液晶組成物を注入して、徐冷してスメクチックA相にて一軸配向であることを偏光顕微鏡で確認した。67℃のスメクチックC*相転移温度から25℃の温度範囲でスメクチックC*相の配向状態を観察すると縞模様で表される螺旋ピッチ間隔が小さくなる様子が観察され、25℃にて螺旋ピッチが1.3μmを示した。これに螺旋が解ける条件である電界強度8V/μm、及び70Hzの矩形波を印加して螺旋を消失させ、この状態で電圧条件以外は、実施例1と同様の方法でで紫外線を露光した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。電極部分は、電圧を印加しない場合は、略ラビング配向処理方向に消光位を示し一軸配向であった。前記消光の位置にて電圧を0Vとから徐々に上げて印加すると暗視野から明視野へ電極部分全体が一様に変化して透過率が連続的に増加して連続階調表示が可能であることが確認された。60Hzの矩形波を印加して電圧―透過率特性を測定した所、図2のV字型電圧―透過率特性を示し、駆動電圧V90は19V(V90の電界強度:3.8V/μm)、最小透過率Toは1.82%、最大透過率は8.9%、コントラストが1:23の特性が得られた。強誘電性液晶は、螺旋構造を解くためセル厚を薄くして螺旋を解くことで二軸配向が得ることでディスプレイへ応用されているが、セル厚5μmでは螺旋になることが多く一軸配向が得ることは困難であったが螺旋を解く電圧条件で液晶の配向を高分子で安定化させることにより一軸配向を得ることができた。透過率が低いのはセルのリターデイション(Δnd)の影響を強く受け低くなった。液晶のΔnを小さくしてリターデイションを調整することで解決される。
(Example 5)
92.15% of the liquid crystal composition (FLC-2) and 4.85% of the chiral compound (IV-2). A mixing ratio of (III-UC1) and (III-UC2) is 1: 1, 2.94%, and Irgacure 651 (Irg651) is blended at a ratio of 0.06% to prepare a polymer stabilized liquid crystal composition. A smectic C * phase stripe pattern was observed at a cell thickness of 5 μm, indicating a helical structure. In the preparation method of polymer-stabilized optical liquid crystal elements, the prepared liquid crystal composition was injected into a liquid crystal cell having a cell thickness of 5 μm, and slowly cooled and confirmed to be uniaxially aligned in the smectic A phase with a polarizing microscope. did. When the orientation state of the smectic C * phase is observed in the temperature range from the smectic C * phase transition temperature of 67 ° C to 25 ° C, it is observed that the helical pitch interval represented by the striped pattern is reduced. It showed 1.3 μm. A rectangular wave with an electric field intensity of 8 V / μm and 70 Hz, which is a condition for unraveling the spiral, was applied to disappear the spiral, and in this state, ultraviolet rays were exposed in the same manner as in Example 1 except for the voltage condition. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. When no voltage was applied, the electrode portion exhibited a quenching position substantially in the rubbing alignment treatment direction and was uniaxially aligned. When the voltage is gradually increased from 0 V and applied at the extinction position, the entire electrode portion changes uniformly from the dark field to the bright field, and the transmittance is continuously increased to enable continuous gradation display. It was confirmed. When the voltage-transmittance characteristics were measured by applying a 60 Hz rectangular wave, the V-shaped voltage-transmittance characteristics shown in FIG. 2 were shown. The drive voltage V90 was 19 V (V90 electric field strength: 3.8 V / μm). The minimum transmittance To was 1.82%, the maximum transmittance was 8.9%, and the contrast was 1:23. Ferroelectric liquid crystals are applied to displays by obtaining a biaxial orientation by thinning the cell thickness and solving the spiral to solve the helical structure. However, when the cell thickness is 5 μm, the ferroelectric liquid crystal is often helical and has a uniaxial orientation. Although it was difficult to obtain, uniaxial orientation could be obtained by stabilizing the orientation of the liquid crystal with a polymer under the voltage condition of unwinding the spiral. The low transmittance was strongly affected by the retardation (Δnd) of the cell and became low. This can be solved by adjusting retardation by reducing Δn of the liquid crystal.
(比較例1)
電圧を無印加で紫外線露光した以外は実施例1と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。スメクチックC*相の特徴である二軸配向を示し、二方向の配向状態である二つのドメインが高分子安定化された。目的の一軸配向及びV字型電圧−透過率特性は得られなかった。
(Comparative Example 1)
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 1 except that UV exposure was performed without applying voltage. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. The biaxial orientation characteristic of the smectic C * phase was exhibited, and the two domains in the bi-directional orientation state were stabilized. The desired uniaxial orientation and V-shaped voltage-transmittance characteristics were not obtained.
(比較例2)
電圧を無印加で紫外線露光した以外は実施例5と同様の方法で高分子安定化液晶組成物中のアクリレート化合物を重合させて液晶光学素子を作製した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。1.3μmの螺旋構造示す縞模様の状態で高分子安定化されて光散乱が起きた。目的の一軸配向及びV字型電圧−透過率特性は得られなかった。
(Comparative Example 2)
A liquid crystal optical element was produced by polymerizing the acrylate compound in the polymer-stabilized liquid crystal composition in the same manner as in Example 5 except that UV exposure was performed without applying voltage. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. The polymer was stabilized in a striped pattern having a spiral structure of 1.3 μm and light scattering occurred. The desired uniaxial orientation and V-shaped voltage-transmittance characteristics were not obtained.
(比較例3)
セル厚5μmに於いてスメクチックC*相で螺旋を巻くように調整した液晶組成物(FLC−2)にキラル化合物(IV−2)を5%添加した液晶組成物を97%、(III−UC1)及び(III−UC2)の混合比が1:1を2.94%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製。偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。上述の高分子安定化光学液晶素子の作製方法に於いて、セル厚5μmの液晶セルに調整した液晶組成物を注入して、徐冷してスメクチックA相にて一軸配向であることを偏光顕微鏡で確認した。67℃のスメクチックC*相転移温度から25℃でスメクチックC*相の配向状態を観察すると螺旋ピッチを示す縞模様が観察され、降温と供に間隔が小さくなり25℃にて螺旋ピッチが1.3μmを示した。これに電界強度8V/μmで2kHzの矩形波を印加して螺旋ピッチを示す縞模様が見られ完全に螺旋が解けない状態であった。この状態で上述の条件で紫外線を露光した。露光後、偏光顕微鏡で顕微鏡の試料台を回転させて配向状態を観察した。電極部分で、螺旋構造示す縞模様が観察され一軸配向は得られなかった。
(Comparative Example 3)
97% of a liquid crystal composition obtained by adding 5% of a chiral compound (IV-2) to a liquid crystal composition (FLC-2) prepared so as to be spirally wound in a smectic C * phase at a cell thickness of 5 μm, (III-UC1 ) And (III-UC2) are mixed at a ratio of 1: 1 of 2.94% and Irgacure 651 (Irg651) at a ratio of 0.06% to prepare a polymer stabilized liquid crystal composition. The orientation state was observed by rotating the sample stage of the microscope with a polarizing microscope. In the above-described method for producing a polymer-stabilized optical liquid crystal device, the prepared liquid crystal composition is injected into a liquid crystal cell having a cell thickness of 5 μm, slowly cooled, and uniaxially oriented in the smectic A phase. Confirmed with. When the orientation state of the smectic C * phase is observed at 25 ° C from the smectic C * phase transition temperature of 67 ° C, a striped pattern indicating a helical pitch is observed, and the interval decreases with decreasing temperature, and the helical pitch becomes 1. 3 μm was indicated. A rectangular wave of 2 kHz with an electric field strength of 8 V / μm was applied thereto, and a striped pattern showing a helical pitch was seen, and the spiral could not be completely unwound. In this state, ultraviolet rays were exposed under the above conditions. After exposure, the sample state of the microscope was rotated with a polarizing microscope, and the alignment state was observed. A striped pattern having a spiral structure was observed at the electrode portion, and uniaxial orientation was not obtained.
(比較例4)
強誘電性液晶組成物(FLC−1)を80℃の等方相で注入して、2℃/minで徐冷して71℃でネマチック*相のコレステリック螺旋ピッチが解けるの待ってから、2℃/minで徐冷してスメクチックA相にてラビング方向暗視野になることを確認した。67℃のスメクチックC*相転移温度から25℃でスメクチックC*相の配向状態を観察すると螺旋構造が無い表面安定化強誘電性液晶(SSFLC)特有の二軸性配向であった。温度を−5℃にするとスメクチックC*相の配向状態を観察すると螺旋ピッチを示す縞模様が観察され、スメクチックC*相特有の螺旋構造が発現した。高分子安定化させていないため低温で螺旋ピッチが小さくなる物性の変化に由来して螺旋構造が発現した。
(Comparative Example 4)
The ferroelectric liquid crystal composition (FLC-1) was injected in an isotropic phase of 80 ° C., slowly cooled at 2 ° C./min, and after waiting for the cholesteric helical pitch of the nematic * phase to be dissolved at 71 ° C., 2 It was confirmed that a dark field in the rubbing direction was obtained in the smectic A phase by gradually cooling at 0 ° C./min. When the orientation state of the smectic C * phase was observed at 25 ° C. from the smectic C * phase transition temperature of 67 ° C., it was a biaxial orientation peculiar to the surface-stabilized ferroelectric liquid crystal (SSFLC) having no helical structure. When the temperature was set to −5 ° C., when the orientation state of the smectic C * phase was observed, a striped pattern indicating a helical pitch was observed, and a spiral structure peculiar to the smectic C * phase was developed. Since the polymer was not stabilized, the helical structure was expressed due to a change in physical properties where the helical pitch was reduced at low temperatures.
(比較例5)
強誘電性液晶組成物(FLC−1)を97%、(IV−1)を1%、(III−UC1)及び(III−UC2)の混合比が1:1を2.646%、(I−AM1)を0.294%、イルガキュア651(Irg651)を0.06%の比率で配合して高分子安定化液晶組成物を調製。上述の高分子安定化光学液晶素子の作製方法に於いて、セル厚1.4μmの液晶セルに調整した液晶組成物を注入して、徐冷しスメクチックA相にて一軸配向であることを偏光顕微鏡で確認した。67℃のスメクチックC*相転移温度から25℃でスメクチックC*相の配向状態を観察すると二軸配向が観察された。これに電界強度3.5V/μmで2kHzの矩形波を印加して紫外線露光した。電圧を切り、偏光顕微鏡で観察すると、電極部分全体が一軸配向を示した。60Hzの矩形波を印加して電圧―透過率特性を測定した所、V字型電圧―透過率特性を示し、駆動電圧V90は5.7V、最小透過率Toは0.35%、最大透過率は37.1%、コントラストが1:107の特性が得られた。しかし、透過率は低くなりV90の電界強度が4.1V/μmと実施例1−5に比べて高い。
(Comparative Example 5)
The ferroelectric liquid crystal composition (FLC-1) is 97%, (IV-1) is 1%, the mixing ratio of (III-UC1) and (III-UC2) is 1: 1, 2.646%, (I -A polymer stabilized liquid crystal composition was prepared by blending AM1) at a ratio of 0.294% and Irgacure 651 (Irg651) at a ratio of 0.06%. In the above-described method for producing a polymer-stabilized optical liquid crystal device, the prepared liquid crystal composition is injected into a liquid crystal cell having a cell thickness of 1.4 μm, and is slowly cooled to be uniaxially oriented in the smectic A phase. Confirmed with a microscope. When the orientation state of the smectic C * phase was observed at 25 ° C. from the smectic C * phase transition temperature of 67 ° C., biaxial orientation was observed. A rectangular wave of 2 kHz with an electric field strength of 3.5 V / μm was applied thereto and exposed to ultraviolet rays. When the voltage was turned off and observed with a polarizing microscope, the entire electrode portion showed uniaxial orientation. When voltage-transmittance characteristics were measured by applying a 60 Hz rectangular wave, V-shaped voltage-transmittance characteristics were shown, drive voltage V90 was 5.7 V, minimum transmittance To was 0.35%, maximum transmittance The characteristics of 37.1% and contrast of 1: 107 were obtained. However, the transmittance is low, and the electric field intensity of V90 is 4.1 V / μm, which is higher than that of Example 1-5.
以上の実施例、及び比較例の一覧表を表1の組成、及び表2の作製条件及びV字型電圧−透過率特性を示す。実施例1−5、及び比較例1に於けるセル厚と最大透過率T100を見ると1.8μmから3μm範囲で大きく、この範囲から外れると最大透過率は小さくなる。最大透過率が小さくなる理由は、二つある。一つは、セル厚が増すと、実施例1記載の式において関連付けられるリターデイションの影響で最大透過率が減少する。二つめは、セル厚を薄くするとセル基板界面からの配向規制力の影響を強く受け高い電界強度でも動かなくなる液晶の割合が増えるため最大透過率が低くなる。これは、V90の電界強度とセル厚で比較すると、表2に示すように、セル厚が薄くなるとV90の電界強度が増加することが一つの証拠である。即ち、本発明は、螺旋ピッチP ≦セル厚dの条件に於いては基板界面からの配向規制力が弱まる領域で強誘電性液晶を高分子安定化させて一軸配向を得ることにより最大透過率の向上、及び駆動電圧の電界強度を下げることが出来る。これにより、フルカラーディスプレイの表示材料とし応用することができ、しかも量産可能なセル厚に適応させることができる。 The list of the above Examples and Comparative Examples shows the composition of Table 1, the production conditions of Table 2, and the V-shaped voltage-transmittance characteristics. The cell thickness and the maximum transmittance T100 in Example 1-5 and Comparative Example 1 are large in the range of 1.8 μm to 3 μm, and the maximum transmittance is small if it is out of this range. There are two reasons why the maximum transmittance is small. For one, as the cell thickness increases, the maximum transmission decreases due to the retardation effect associated with the formula described in Example 1. Second, when the cell thickness is reduced, the maximum transmittance is lowered because the proportion of liquid crystal that is strongly influenced by the alignment regulating force from the cell substrate interface and does not move even at high electric field strength increases. This is one proof that the electric field strength of V90 increases as the cell thickness decreases, as shown in Table 2, when compared with the electric field strength of V90 and the cell thickness. That is, according to the present invention, the maximum transmittance can be obtained by stabilizing the ferroelectric liquid crystal in a region where the alignment regulating force from the substrate interface is weakened under the condition of the helical pitch P ≦ cell thickness d and obtaining uniaxial alignment. And the electric field strength of the driving voltage can be lowered. As a result, it can be applied as a display material for a full-color display and can be adapted to a cell thickness capable of mass production.
Claims (15)
螺旋ピッチ≦セル厚 Between a substrate having a pair of electrode layers, a liquid crystal layer comprising a liquid crystal composition containing an optically active compound and a transparent solid material comprising a polymer precursor is provided, and the liquid crystal composition is optical in the liquid crystal layer. The polymer is stabilized in a uniaxially oriented state, and the helical pitch (the pitch (μm) of the helical structure that appears when no voltage is applied to the liquid crystal composition) and the cell thickness (the thickness of the liquid crystal layer (μm) )) Satisfies the following relationship:
Spiral pitch ≦ cell thickness
螺旋ピッチ≦セル厚
該液晶組成物の発現する螺旋構造を外部電界、又は加熱により螺旋を解き、該高分子前駆体を硬化(架橋)させることにより高分子安定化させることにより無電界状態に於いて一軸性の配向状態を示し、これに電界を印加することにより電界強度に依存して消光位が連続的に変化する液晶素子の製造方法。 A liquid crystal composition containing an optically active compound and a polymer precursor that forms a transparent solid substance are sandwiched between a substrate having a pair of electrode layers to form a liquid crystal layer, and the helical pitch of the liquid crystal composition (the liquid crystal The pitch (μm) of the helical structure that appears in the voltage-free state of the composition and the cell thickness (thickness (μm) of the liquid crystal layer) satisfy the following relationship:
Spiral Pitch ≦ Cell Thickness The helical structure expressed by the liquid crystal composition is released from an external electric field or heated to release the helix, and the polymer precursor is cured (cross-linked) to stabilize the polymer, thereby eliminating the electric field. A liquid crystal device manufacturing method in which a uniaxial alignment state is exhibited, and an extinction position is continuously changed depending on the electric field strength by applying an electric field thereto.
載の製造方法。 The production method according to claim 11, wherein the phase that is exhibited when the liquid crystal layer is heated is a liquid crystal phase exhibiting optically uniaxial alignment.
載の製造方法。 The production method according to claim 12, wherein the optically uniaxial orientation is a chiral nematic phase or a smectic A phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008173298A JP5453739B2 (en) | 2008-07-02 | 2008-07-02 | Liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008173298A JP5453739B2 (en) | 2008-07-02 | 2008-07-02 | Liquid crystal element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010014869A JP2010014869A (en) | 2010-01-21 |
JP5453739B2 true JP5453739B2 (en) | 2014-03-26 |
Family
ID=41701049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008173298A Active JP5453739B2 (en) | 2008-07-02 | 2008-07-02 | Liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5453739B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010196015A (en) * | 2009-02-27 | 2010-09-09 | Mitsubishi Electric Corp | Resin composition and resin cured product |
WO2013065100A1 (en) * | 2011-10-31 | 2013-05-10 | 株式会社ビジョンマルチメディアテクノロジ | Polymerizable composition and liquid crystal display element |
JP5954701B2 (en) * | 2012-01-30 | 2016-07-20 | 国立大学法人京都大学 | Liquid crystal / polymer composite element and manufacturing method thereof |
KR20220164699A (en) * | 2020-04-06 | 2022-12-13 | 디아이씨 가부시끼가이샤 | Curable resin, curable resin composition, and cured product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3491926B2 (en) * | 1992-09-01 | 2004-02-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light modulator |
EP0844293B1 (en) * | 1996-11-21 | 2002-01-16 | Rolic AG | Bistable ferroelectric liquid crystal cell |
JP4509856B2 (en) * | 2005-05-19 | 2010-07-21 | 大日本印刷株式会社 | Liquid crystal display element and method for manufacturing liquid crystal display element |
-
2008
- 2008-07-02 JP JP2008173298A patent/JP5453739B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010014869A (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4360444B2 (en) | Polymer-stabilized liquid crystal composition, liquid crystal display element, and method for producing liquid crystal display element | |
JP5509569B2 (en) | Polymer-stabilized ferroelectric liquid crystal composition, liquid crystal element, and method for producing the display element | |
CN105121597B (en) | Nematic liquid-crystal composition and use its liquid crystal display element | |
JP5040400B2 (en) | Polymer stabilized liquid crystal composition and polymer stabilized liquid crystal display device | |
KR20120004328A (en) | Liquid crystal display device | |
JP6278013B2 (en) | Liquid crystal composition | |
JP5505566B2 (en) | Liquid crystal display element | |
CN103732638B (en) | Multipolymer and comprise the liquid crystal aligning layer of cured article of this multipolymer | |
JP5560532B2 (en) | Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device | |
JP5309645B2 (en) | Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device | |
JP5725260B2 (en) | Liquid crystal light modulator | |
JP5240486B2 (en) | Polymer stabilized liquid crystal display element composition and polymer dispersed liquid crystal display element | |
JP5453739B2 (en) | Liquid crystal element | |
JP6318528B2 (en) | Liquid crystal / polymer composite material, optical element, method for manufacturing optical element, and method for manufacturing liquid crystal / polymer composite material | |
TW201930566A (en) | Liquid-crystal composition and liquid-crystal display element | |
JP5892291B2 (en) | Difluorophenyl liquid crystal composition | |
JP5239194B2 (en) | Liquid crystal display element and manufacturing method thereof | |
JPWO2018216485A1 (en) | Liquid crystal display device and method of manufacturing the same | |
JP4862281B2 (en) | Liquid crystal display element | |
JP2002348319A (en) | Optical anisotropic manufacturing method | |
JP2012053491A (en) | Liquid crystal display element and manufacturing method of liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131223 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5453739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |