[go: up one dir, main page]

JP5443248B2 - セルロースおよびリグニンの糖化処理剤。 - Google Patents

セルロースおよびリグニンの糖化処理剤。 Download PDF

Info

Publication number
JP5443248B2
JP5443248B2 JP2010089814A JP2010089814A JP5443248B2 JP 5443248 B2 JP5443248 B2 JP 5443248B2 JP 2010089814 A JP2010089814 A JP 2010089814A JP 2010089814 A JP2010089814 A JP 2010089814A JP 5443248 B2 JP5443248 B2 JP 5443248B2
Authority
JP
Japan
Prior art keywords
lignin
cellulose
hydrogen peroxide
saccharification
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089814A
Other languages
English (en)
Other versions
JP2011200213A (ja
Inventor
直 岩附
一 小谷
実 根来
Original Assignee
直 岩附
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直 岩附 filed Critical 直 岩附
Priority to JP2010089814A priority Critical patent/JP5443248B2/ja
Publication of JP2011200213A publication Critical patent/JP2011200213A/ja
Application granted granted Critical
Publication of JP5443248B2 publication Critical patent/JP5443248B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

技術の分野
本発明は、セルロースおよびリグニンをオルトリン酸と過酸化水素、パイナップル酵素との混合溶液により、酸化リン酸エステル化と加水分解を同時併行的に処理する糖化処理剤および糖化方法に関する。詳しくは、糖化方法によって得られる単糖類の生成経路に関するものである。
リグノセルロースは、高等植物の草木樹の構成成分としてセルロース、ヘミセルロース、リグニンを含んでいます。そして、木質繊維や木粉のようなリグニンを含んだリグノセルロース構造性多糖のセルロースは35〜50%、ヘミセルロースは20〜35%、芳香族化合物の重合体である難分解性リグニンは15〜35%から構成される生体高分子の高次網目構造を形成した無定型結合体である。その構造は複雑で、リグニンはフェニルプロパノイドを起源とするフェニルプロパンが複数縮合化合物の誘導体であり、ポリフェノールの一種である。その構造は現在、解明されていない。このように生体高分子構造を形成しているため、草木樹のセルロース成分は比較的容易に単分子化されるが、リグニン成分は分解することが極めて困難で、リグニンの分解技術は取り残された多くの課題がある。
セルロース系物質に二酸化チタンを添加したリン酸溶液に紫外線を照射する単糖類製造方法が[特許文献1]に開示されている。また、セルロースを250℃以上の高温熱水に過酸化水素やオゾンを用いて処理した後、酵素を添加する糖化方法が[特許文献2][特許文献3]に開示されている。
更に、リグニン系物質を食塩または塩素もしくは次亜塩素酸を含む無機酸を電気分解するリグニン物質の分解方法が[特許文献4]に開示されている。
つづいてリン酸エステル製造方法が、[特許参考文献、特開2007−195401号公報]に挙げられている。
特許第4134250号公報 特開2007−74992号公報 特開2007−74993号公報 特開2000−144592号公報
特許参考文献
特開2007−195401号公報
しかしながら、前記[特許文献1]に記載する方法は、セルロースを二酸化チタン含有リン酸溶液中で、紫外線照射して二酸化チタンの光触媒活性により生成した活性酸素の酸化作用をセルロースの分解に応用したもので、紫外線照射装置を要する設備負担が増大する課題がある。
また、[特許文献2][特許文献3]に記載の方法は、高圧装置容器の中で高温245℃下の亜臨界領域で過酸化水素水やオゾンを含有するリン酸アルミニウム熱水を用いたセルロースとリグニンの糖化方法で、高温高圧下における臨界状態の酸化加水分解反応を用いたもので、高圧装置作製に多大なるコストを必要とする他、過臨界状態となり酸化が進み過ぎるため、グルコース製造量が制限される。また安全性と高コストという課題があることに着目すべきである。
更に、上記[特許文献4]に記載の方法は、食塩水の電気分解装置により次亜塩素酸生成による酸化加水分解反応を用いたもので、電極板にセルロース等の 夾雑物が付着する為、分解効率の低下、次亜塩素酸とともに有害な塩素ガス対策など、環境問題が高コストとなる欠点がある。
これら従来技術には、セルロースおよびリグニン含有物質のリン酸エステル生成の後、単糖類の製造方法および製造される単糖類の組成分の生成経路に関し、開示した記述を示しものは全く見あたらない。
また、[特許参考文献]に記載する糖類のリン酸エステル製造方法は、PH3〜6制限領域で、酸性フォスファターゼとして、Aspergillus カビ、Saccharomycescerevisiae酵母、Enterobacter細菌等々に由来する存在が必要である。
本発明は、セルロースおよびリグニンの糖化処理について溶液とパイナップル酵素との混合液により、グルコースリン酸エステル生成と同時併行的に加水分解により、グルコースを生成する糖化方法としては基本的に異なる。
本発明の課題の達成に向けて更なる検討を行うため、これまで難分解性ハロゲンの湿式分解方法にオルトリン酸溶液と過酸化水素およびパイナップル酵素作用による酸化加水分解反応、特願2009−168236および特願2008−293888に提案した技術を応用し、リグニン含有籾殻粉砕微粉の溶解に試したところ、溶液中にグルコース、キシロース、マンノース等が生成することがわかった。
本発明は、籾殻粉砕微粉を糖化処理する際、過酸化水素含有リン酸溶液に籾殻粉砕微粉を投入して、攪拌中、激しくガス発砲することは、酸化反応によって炭酸ガス(CO)が発生しているものではないかと推測し、発砲ガス中の炭酸ガス(CO)を北川式ガス検知管により検べたところ、微量の炭酸ガスを含有することを検知し確認した。また、処理後液中の糖度を糖度計で測定したところ高い糖濃度の測定値を得た。糖度計は、株式会社アタゴ社、型式N3(Brix58〜90%)を用いた。
本発明は、安価な設備を用い、環境と安全性に考慮したセルロースおよびリグニンを過酸化水素含有リン酸溶液とパイナップル酵素の混合溶液により酸化リン酸エステル化・加水分解して、単糖類のグルコース(C12)、マンノース(C12)、フルクトース(C12)、キシロース(C10)を生成する糖化処理剤によって得られる単糖類の生成経路について提供するものである。
発明を解決するための手段
本発明は、上記問題について鋭意検討した結果、過酸化水素含有リン酸溶液とパイナップル酵素との混合溶液によってセルロースおよびリグニンを糖化処理する際、定温下において過酸化水素とパイナップル酵素による酸化とリン酸によるリン酸エステルを生成の後、該リン酸エステルがパイナップル酵素により加水分解して単糖類のグルコース(C12)、マンノース(C12)、フルクトース(C12)、キシロース(C10)等を得る生成経路を見出し、本発明を完成するに至った。
即ち、本発明は、以下の通りの構成から成り立っている。
(1)セルロースおよびリグニン含有物質を過酸化水素含有リン酸溶とパイナップル酵素との混合溶液に投入攪拌しつつ、定温範囲下で酸化リン酸エステル化・加水分解するセルロースおよびリグニンの糖化処理剤である。
(2)過酸化水素含有リン酸溶液が、オルトリン酸(HPO)20〜80%、過酸化水素(H)0.1〜5%からなる(1)に記載するセルロースおよびリグニンの糖化処理剤である。
(3)パイナップル酵素がパイナップル皮果汁液の主成分であるグルコースリン酸ハイドロゲナーゼ、トレハローズリン酸シンテクターゼ、トレハローズフォスファターゼ等を含むパイナップル皮果汁液の酸化触媒および加水分解触媒である(1)、(2)のいずれかに記載するセルロースおよびリグニンの糖化処理剤である。
(4)セルロースを過酸化水素含有リン酸溶液とパイナップル酵素 との混合溶液に投入攪拌しつつ、定温範囲下で酸化リン酸エステル化反応により、リン酸グルコースエステルを生成した後、該リン酸グルコースエステルを加水分解して、グルコースを得る(1)、(2)、(3)に記載するセルロースの糖化処理剤を用いる糖化方法である。
(5)リグニンを過酸化水素含有リン酸溶液とパイナップル酵素との混合溶液を投入攪拌しつつ、定温範囲下で酸化リン酸エステル化反応により、リン酸エステルを生成した後、グルコース、フルクトース、マンノースおよびキシロース等の単糖類を得る(1)、(2)、(3)、(4)に記載する糖化処理剤を用いる糖化処理方法である。
(6)リグニン含有物質20重量部、過酸化水素(H)1%含 有オルトリン酸(HPO・75%)溶液40重量部〜60重量部、パイナップル酵素0.5〜5重量部を混合、攪拌しつつ定温35〜55℃に加温、酸化リン酸エステル化・加水分解して、グルコース、フルクトース、マンノース、キシロース等の単糖類を得ることを特徴とする(1)、(2)、(3)、(4)、(5)に記載するセルロースおよびリグニンの糖化処理剤および糖化方法である。
発明の効果
本発明は、定温範囲下において、過酸化水素含有リン酸溶液とパイナップル酵素との混合溶液を用いて、セルロースおよびリグニン含有物質を高圧装置を用いることなく、開放状態で酸化リン酸エステル化・加水分解して単糖類を製造する糖化処理剤および糖化方法によりグルコース、フルクトース、マンノースおよびキシロース等の製造を、設備費用が少なく、しかも省エネルギーで危険性が少なく、短時間でセルロースおよびリグニン含有物質を容易に単糖化するアルコール中間体原料となり、エタノールの製造を可能にする効果があり、且つ、セルロースおよびリグニンからの単糖類生成経路を明確にし、開示することにより、バイオマスエネルギー産業への貢献は極めて多大となる。
更に、単糖類化処理液から、分離した再生オルトリン酸の再利用が可能となり、製造コスト低減効果は多大となる。
以上の説明からなるように、本発明にあたっては次に列挙する効果が得られる。
(1)([請求項1]の構成要件)とで構成されているので、ヘミセルロース,セルロースおよびリグニン含有物質を過酸化水素含有リン酸溶液とパイナップル酵素との混合溶液により、リグニン含有物質を酸化リン酸エステル化・加水分解することができる。
したがって、過酸化水素含有リン酸溶液とパイナップル酵素との混合溶液によりヘミセルロース、セルロースおよびリグニンの単糖類の糖化処理ができる。
(2)([請求項2]の構成要件)とで構成されているので、前記(1)によってヘミセルロース、セルロース、リグニンの糖化処理ができる。
(3)([請求項3]の構成要件)とで構成されているので、前記(1)〜(2)の加水分解酵素であり、糖化処理の促進効果が得られる。
(4)([請求項4]の構成要件)とで構成されているので、前記(1)〜(3)の方法によって得られたリン酸エステルを加水分解してキシロースを得られる。
(5)([請求項5]の構成要件)とで構成されているので、前記(1)〜(3)によって、D−グルコース、D−マンノース、D−フルクトース、D−キシロースの混合処理液が得られる。
(6)([請求項6]の構成要件)とで構成されているので、前記(1)〜(3)によってリン酸グルコースエステルを加水分解して、グルコースが得られる。
(7)([請求項7]の構成要件)とで構成されているので、前記(1)〜(6)によってグルコース、マンノース、フルクトース、キシロース等の単糖類が得られる。
本発明を実施するための最良の第1の形態の、セルロースおよびリグニン含有物質の糖化処理装置の省略図である。 本発明を実施するための最良の第1の形態の、オルトリン酸(HPO)溶液と過酸化水素(H)添加量、グルコース生成濃度との関係図である。 本発明をするための最良の第1の形態の、籾殻粉砕微粉の分解糖化時間と溶解率との関係図である。 本発明をするための最良の第1の形態の、パイナップル酵素添加量と溶解率との関係図である。
本発明は、セルロースおよびリグニンの糖化処理剤および糖化方法を実施する際、最も好ましい実施形態を詳しく説明する。
本発明は、セルロース含有物質およびリグニン含有物質であれば、穀物類の、米、麦、トウモロコシ、豆、その他の殻類、製紙、布切れ、古着衣料、廃棄衣料、稲藁、籾殻、大鋸屑、森林の間伐材、枝葉、根、雑草類等を用いることができる。(接着剤および表面樹脂塗料を使用した合板等の糖化処理は二次処理に費用が掛るため困難である。)
上記のセルロースおよびリグニン含有植物体は、気流打解方式粉砕機により微粉砕されるが、酸化リン酸エステル化・加水分解反応が50℃以下の加温でスムーズに進行させるために、本発明に於いては、微粉砕に際し、セルロースおよびリグニン含有植物体にアルカリ物質の貝殻焼成微粉末を混合して、同時粉砕することにより、アルカリ処理亀裂表面となって貝殻焼成微粉末を添加したセルロースおよびリグニン含有植物粉砕微粉となる。また粉砕の際、粉砕機内部の磁器部より発生する遠赤外線照射により50℃に加温しつつ粉砕したセルロースおよびリグニンは分解効率が向上する。
本発明は、上記セルロースおよびリグニン含有物質の他、試薬、セルロース(関東化学株式会社製:CAS No,900435−7)および試薬 リグニン(関東化学株式会社製:CAS,No,900553−2)を用い、糖化処理によって生成する単糖類とその生成経路を明らかにする。
全ての草木樹植物は、セルロースと共にリグニンが含有している。リグニンは、光合成による一次代謝により炭酸同化され、更なる二次代謝を受けることで合成されるフェニルプロパノイドのうちコニフェニルアルコール(C1012)、シナピルアルコール(C1114)、ρ−クマリルアルコール(C10)という3種類のリグニンモノマーが高度に重合し、高度網目構造を形成した巨大な高分子体を成している。その構造は複雑であることが知られている。
リン酸溶液中に、酸化剤として過酸化水素を含有する溶液で、セルロースおよびリグニン含有植物体の酸化リン酸エステル化・加水分解糖化(単糖類を生成する)技術は、従来技術には見あたらない。且つ、単糖類の生成経路を明確にしたのは、発明者による全く新規な知見である。
本発明の過酸化水素含有リン酸溶液は、セルロースおよびリグニン含有植物粉砕微粉の生体高分子の高次網目構造物質を過酸化水素とパイナップル酵素による酸化とオルトリン酸による加水分解を同時併行させることによって、過酸化水素を微少量用いても、これまでの難分解性リグニンを極めて短時間のうちに、単分子化することが可能である。
本発明の酸化リン酸エステル化反応と加水分解反応について説明する。
酸化リン酸エステル化反応は、微粉砕されたセルロースおよびリグニン含有植物体を過酸化水素含有リン酸溶液とパイナップル酵素との混合液を、30℃〜50℃加温、攪拌することにより、セルロースおよびリグニン含有植物体は、炭酸ガスを発生することを確認していることから、酸化とリン酸エステル化反応が同時併行的に行われ、単糖類のリン酸エステルと炭酸ガスと水を生成することが考えられる。
酸化リン酸エステル化反応式を[化1]式(1)、(2)に示す。
化1
リグニン含有組成中のコニフェリルアルコール(C1012)の酸化リン酸エステル生成について、[化1]式(1)構造式(2)に示す。
化2
リン酸エステルの加水分解反応により生成されたリン酸エステルは、パイナップル酵素触媒の加水分解反応により、単糖類のグルコースとリン酸を生成する。反応式を[化2]、式(3)に示す。
分解処理後液から分離したグルコースは、アルコール発酵原料となり、回収されたリン酸は再利用される。
リグニン成分シナピルアルコール(C1114)およびρ−クマリルアルコール(C10)の酸化リン酸エステル生成反応について、上記反応と同様に炭酸ガスが発生しリン酸エステルを生成する。反応式を[化3]式(4)、(5)に示す。
化3
マンノースリン酸エステル(C13P)の加水分解反応によるマンノース(C12)生成とリン酸(HPO)生成およびキシロースリン酸エステル(C11P)の加水分解反応によるキシロース(C10)とリン酸(HPO)を生成する。反応式を[化4]式(6)、(7)に示す。
上記反応式[化1][化2][化3][化4]に示した如く、リグニン成分のコニフエリルアルコール(C1012)はグルコース(C12)を生成、シナピルアルコール(C1114)はマンノース(C12)を生成、ρ−クマリルアルコール(C10)はキシロース(C10)を生成するとともに炭酸ガス(CO)生成することの経路を明らかにすることができた。
即ち、本発明は、試薬リグニン(関東化学株式会社製:CAS No,900553−2)から単糖類のグルコース(C12)、マンノース(C12)、キシロース(C10)が主成分として生成することを明らかにした。
過酸化水素(H)は、パイナップル酵素の酸化触媒作用を得て、理論的必要量の約10〜50分の1程度でも効果は向上する。
本発明者は、[図1]の装置を用い、供試料として試薬リグニン(関東化学株式会社製:CAS No,900553−2)と過酸化水素含有リン酸溶液とパイナップル酵素の混合液を投入し攪拌しつつ、発生する炭酸ガスをガス検知管(光明理化学株式会社製、北川式ガス検知管、型式126B)により、上記反応式の炭酸ガス発生を確認した。
本発明の過酸化水素含有リン酸溶液は、オルトリン酸(HPO)20〜80%、過酸化水素(H)0.1〜5%が好適である。
オルトリン酸20%以下、過酸化水素0.1%以下では、酸化リン酸エステル化反応は長時間(5時間以上)を要する。
本発明の最適な過酸化水素含有リン酘溶液は、オルトリン酸(HPO・75%)、過酸化水素(H)2.5%含有し、且つ、パイナップル酵素1%含有する混合用液を用いることにより短時間(2時間以内)で、酸化リン酸エステル化・加水分解反応は完了する。
過酸化水素含有リン酸溶液のオルトリン酸(HPO)80%以上、過酸化水素(H)5%以上を用いての難分解性リグニン含有植物粉砕微粉の糖化は、酸化分解反応が極めて激しく、攪拌中に溶液の黒変が起きる。
次に、本発明のパイナップル酵素の主成分含有組成について説明する。
パイナップル酵素は、パイナップル皮果汁中に含有することは公知である。パイナップル酵素中にはセルロース分解酵素の他、蛋白質およびアミノ酸分子分解酵素、各種有機酸分解酵素等30種以上の酵素成分が含まれている。パイナップル酵素は、脱水素(酸化)脱炭酸、脱アミン等の酵素を含んでおり、これらの複合作用により、セルロースやリグニンとの間において、酸化触媒として機能し、酸化リン酸エステル化・加水分解することが考えられる。この中で、セルロース分解酵素は5種類の主要な酵素が含まれることがわかっている。
表1
[表1]にパイナップル酵素の主要な成分を示す。
*パイナップル酵素は腐敗しやすいため、HSO、HPOを少量添加し酸性溶
本発明は、リグニン含有植物である籾殻粉砕微粉(300μm)に、過酸化水素含有リン酸溶液とパイナップル酵素との混合液を投入し、混合攪拌することにより容易に単分子化して、単糖類のグルコース、キシロース、マンノース等を得ることができるが、パイナップル酵素を添加しない過酸化水素含有リン酸溶液単独の場合は、単分子化して単糖類を得ることに長時間が必要である。パイナップル酵素の酸化、加水分解作用については複雑であるが、パイナップル酵素を用いることにより、効果は極度に向上する実績がある。
本発明のパイナップル酵素が酸化加水分解反応の促進効果としては、リグニンの成分であるコニフェリルアルコール(C1012)等から糖誘導体のリン酸エステル(C13P)等の酸化と加水分解反応の際、触媒作用に働くため重要な役割がある。
本発明に於いては、パイナップル酵素は酸化と加水分解反応の触媒として働くため、極めて少量であっても、その効果は多大である。
本発明の酸化加水分解反応促進効果としての好適なパイナップル酵素の添加量は、リグニン含有植物粉砕微粉100重量部に対し0.5〜5重量部が好ましい。最も好ましい添加量は1.0%である。
パイナップル酵素添加量が0.1%以下の場合、酸化加水分解反応による単糖類のグルコース、キシロース、マンノース等の生成量が低下し、且つ、反応時間を長時間行っても生成量は向上しない。
本発明を、更に詳しく実施例および図に基づき説明する。
[図1]の糖度処理装置を用い、試薬リグニン(関東化学株式会社製:CAS No,900553−2)2.5g、オルトリン酸(HPO,75%)(下関三井化学社製)20ml、試薬過酸化水素1級(H,34.5%)(関東化学(株))1.5ml、パイナップル酵素1.0mlをガラスビーカーに投入、ゴム栓で密封した。マグネットスターラーで攪拌しつつ、40℃に加温、3時間でNガスを流して、炭酸ガス(CO)を石灰乳(Ca(OH)溶液)で捕集し、糖化処理を行った。
糖化処理後、炉別、固液分離し、糖化処理液18.7ml、乾燥残渣0.08g(水分10%含有)を得た。糖処理後の糖成分の分析を行った。
糖化処理液中の糖成分分析は、静岡大学工学部の島津製作所製、型式LC−10ADvを用いた。(以下同じ)。
表2
結果を[表2]に示す。
[表2]より、試薬リグニンの殆どが酸化分解され単糖類のグルコース、キシロース、マンノース等が生成すると同時に、炭酸ガスが発生することがわかる。
比較例
[図1]の装置を用い、試薬リグニン(関東化学株式会社製:CAS No,900553−2)2.5gとオルトリン酸(HPO,75%)(下関三井化学社製)20mlをガラスビーカーに投入、ゴム栓で密封し、マグネットスターラーで攪拌、40℃で3時間、Nガスを流しつづけ石灰乳に吹き込んだ。石灰乳はわずかに懸濁した。炉別して、乾燥残渣2.03gを得た。処理液の分析は省略。
[図1]の糖化処理装置を用い、試薬セルロース(関東化学株式会社製:CAS No,900435−7)2.5g、オルトリン酸(HPO,75%)(下関三井化学社製)20ml、過酸化水素1級(H,34.5%)(関東化学株式会社製:34.5%)1.0mlをガラスビーカーに投入、ゴム栓で密封した。マグネットスターラーで攪拌しつつ、40℃に加温2時間N2ガスを流入し糖化処理を行った。
表3
糖化処理後、液を濾過し糖化処理液19.3mlを得た。残渣は秤量確認できなかった。結果を[表3]に示す。
[表−3]より、試薬セルロース(関東化学株式会社製:CAS No,900435−7)2.5gは、糖化処理液の糖成分分析の結果、グルコース(C12)83g/l、マンノース(C12)58g/lを得た。キシロース(C10)成分は確認されなかった。また、炭酸ガス(CO)捕集は確認されなかった。
[実施例1]に従い、[図1]の糖化処理装置(ゴム栓を外し)を用い、試薬リグニン(関東化学株式会社製:CAS No,900553−2)2.5g、オルトリン酸(HPO)(下関三井化学社製)60%、30%、20%各々20mlについて、試薬過酸化水素1級(H,34.5%)(関東化学株式会社製)0.2ml、1.2ml、パイナップル酵素は1.0ml全て一律。ガラスビーカーに投入、マグネットスターラーで攪拌しつつ、40℃に加温3時間攪拌し、糖化処理を個々のバッチ式で実施し、糖化処理後液の糖成分中のグルコース(C12)生成量を分析した。(分析機関前記)。結果を[図2]にオルトリン酸(HPO)濃度と過酸化水素(H)添加量とグルコース生成量との関係を示す。
[図2]より、試薬リグニンの糖化処理剤は、オルトリン酸(HPO)濃度60%と過酸化水素(H,34.5%)添加量は0.2mlで糖化率85%(グルコース36.2g/l)となり、過酸化水素(H,34.5%)添加量0.4ml添加で糟化率90%以上(グルコース38g/l)となる。また、オルトリン酸(HPO)20%のとき過酸化水素(H,34.5%)添加量1.2ml添加では糖化率40%以下(グルコース16.5g/l)となった。
これより、オルトリン酸(HPO)溶液濃度が30%以上のとき過酸化水素(H,34.5%)による糖化力がパイナップル酵素により促進され、糖化率が高くなることができる。
[図1]を用い、籾殻粉砕微粉2.5g、オルトリン酸(HPO,50%)20ml、過酸化水素(H,34.5%)1,0ml、パイナップル酵素1.0mlを投入40℃に加温して攪拌しつつ、糖化処理を20分、40分、60分、90分、150分バッチ毎に実施し、溶解残渣を計測して、溶解率を調べた。結果を[図3]に示す。
[図3]より、籾殻粉砕微粉(300μm)の糖化処理は、オルトリン酸(HPO,50%)20ml、過酸化水素(H,34.5%)1.0ml、パイナップル酵素1.0mlのとき、糖化処理時間60分以内で籾殻粉砕微粉は殆ど溶解することがわかる。尚、溶解後液、淡褐色透明液である。
[図1]の装置を用い、籾殻粉砕微粉(300μm)2.5g、オルトリン酸(HPO,60%)20ml、過酸化水素(H,34.5%)1.0mlの過酸化水素含有リン酸溶液に、パイナップル酵素0.3,0.5、1.0,1.5,2.0mlを添加し、それぞれバッチ毎に2時間攪拌し溶解率を調べた。結果を[図4]に示す。
[図4]より、パイナップル酵素と溶解率との関係は、籾殻粉砕微粉は、過酸化水素(H,34.5%)1.73%含有オルトリン酸(HPO,75%)20ml溶液に、パイナップル酵素1.0ml以上添加することにより、攪拌時間2時間以内で溶解率80%以上となることが分かる。
[図1]の装置を用い、籾殻粉砕微粉と大鋸屑粉砕微粉(300μm)を供試料として、各々2.5gと試薬、(関東化学株式会社製)過酸化水素(H,34.5%)0.5,1.0,1.5,2.0ml、オルトリン酸(HPO,75%)(下関三井化学(株)社製)20ml、パイナップル酵素0.5,1.0mlを各々に投入し、40℃に加温して2時間攪拌して糖化処理を実施した。結果を[表3]に示す。
表3
[表3]よりオルトリン酸(HPO)・75%)中の過酸化水素濃度が高濃度になると酸化反応が激しく供試料が溶液中で黒変する。即ち、酸化加水分解処理のオルトリン酸溶液の過酸化水素好適濃度は1.6%(1.0ml)〜3.%(2.0ml)であることがわかる。
本発明は、高温で高圧装置を用いることなく、定温35℃〜60℃において、低設備費の開放容器を用いて、セルロースおよびリグニン含有物質を過酸化水素含有リン酸溶液と少量のパイナップル酵素との混合液によって、開放状態で、酸化リン酸エステル化・加水分解して単糖類の製造が可能であり、省エネルギーで危険性が少なく、短時間でアルコール中間体の原料のグルコース、マンノース、キシロース等が低コストで産生が可能であり、バイオマス産生への利用の可能性は極めて高いといえる。
[図1]に基づく符号。
(1)ガラスビーカー
(2)ウォーターバス
(3)マグネットスターラー
(4)回転端子
(5)CO2捕集ビン
(6)ゴム密栓
(7)Ca(OH)溶解液
(8)N2ガス注入パイプ
(9)CO2+N2吸引パイプ
(10)供試料を投入した糖化処理液
(11)セルロースおよびリグニン含有植物粉砕微粉

Claims (2)

  1. ヘミセルロース、セルロースおよびリグニン含有物質を過酸化水素含有リン酸溶液とパイナップル酵素とを混合撹拌して、グルコース、キシロース、マンノースを得る単糖類糖化処理剤であって、
    リン酸濃度が30〜80%であり、
    過酸化水素濃度が1.6〜3.0%であり、
    前記パイナップル酵素がパイナップル皮果汁液であってその濃度が0.5%である、
    ことを特徴とする単糖類糖化処理剤
  2. 前記パイナップル酵素が主成分としてグルコースリン酸ハイドロゲナーゼ、トレハロースリン酸ゲナーゼ、トレハロースフォスフォアーゼを含むパイナップル皮果汁液の加水分解触媒である請求項1に記載するセルロース、ヘミセルロースおよびリグニンの単糖類糖化処理剤。
JP2010089814A 2010-03-24 2010-03-24 セルロースおよびリグニンの糖化処理剤。 Expired - Fee Related JP5443248B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089814A JP5443248B2 (ja) 2010-03-24 2010-03-24 セルロースおよびリグニンの糖化処理剤。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089814A JP5443248B2 (ja) 2010-03-24 2010-03-24 セルロースおよびリグニンの糖化処理剤。

Publications (2)

Publication Number Publication Date
JP2011200213A JP2011200213A (ja) 2011-10-13
JP5443248B2 true JP5443248B2 (ja) 2014-03-19

Family

ID=44877684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089814A Expired - Fee Related JP5443248B2 (ja) 2010-03-24 2010-03-24 セルロースおよびリグニンの糖化処理剤。

Country Status (1)

Country Link
JP (1) JP5443248B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055622A (zh) * 2018-08-24 2018-12-21 四川雅华生物有限公司 半纤维素固体酸水解反应装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2082185C (en) * 1991-11-26 2004-01-20 Alexander R. Pokora Protease catalyzed treatments of lignocellulose materials
EP0832276B1 (en) * 1995-06-07 2005-03-02 Arkenol, Inc. Method of strong acid hydrolysis
JP4064359B2 (ja) * 2004-02-27 2008-03-19 純一 根本 燐酸とリグノセルロース加水分解生成物とを分離する方法及びグルコースの製造方法
JP2007074992A (ja) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology セルロースを含むバイオマスの糖化方法、及びそれによって得られた糖
JP4565164B2 (ja) * 2006-08-31 2010-10-20 独立行政法人産業技術総合研究所 糖製造方法、エタノール製造方法及び乳酸製造方法
JP4984999B2 (ja) * 2007-03-16 2012-07-25 独立行政法人産業技術総合研究所 糖の製造方法
JP5099757B2 (ja) * 2007-07-23 2012-12-19 独立行政法人産業技術総合研究所 リグノセルロース系バイオマスから糖類を製造する方法

Also Published As

Publication number Publication date
JP2011200213A (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
Ong et al. A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds
Prasad et al. A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products
Jing et al. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid–solid ratio
Wright et al. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass
JP2009011218A (ja) セルロース系物質よる単糖類並びにエタノールの製造方法
Dhara et al. High-purity alkaline lignin extraction from Saccharum ravannae and optimization of lignin recovery through response surface methodology
Singh et al. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol
Kang et al. Enhanced methane production from anaerobic digestion of hybrid Pennisetum by selectively removing lignin with sodium chlorite
Romio et al. Digestate post-treatment strategies for additional biogas recovery: A review
Davaritouchaee et al. Persulfate oxidizing system for biomass pretreatment and process optimization
Treichel et al. Utilising biomass in biotechnology
Wang et al. Tyrosinase inhibitory performance of hydrolysate from post-washing liquor of steam exploded corn stalk and its fractionation enhancement
Lin et al. Microwave irradiation with dilute acid hydrolysis applied to enhance the saccharification rate of water hyacinth (Eichhornia crassipes)
Long et al. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery
JP5443248B2 (ja) セルロースおよびリグニンの糖化処理剤。
Di Mario et al. Waste Biomass Pretreatments for Biogas Yield Optimization and for the Extraction of Valuable High-Added-Value Products: Possible Combinations of the Two Processes toward a Biorefinery Purpose
Xie et al. A coupling strategy combined with acid-hydrothermal and novel DES pretreatment: Enhancing biomethane yield under solid-state anaerobic digestion and efficiently producing xylo-oligosaccharides and recovered lignin from poplar waste
Queirós et al. Tunning pectinase activity under the effects of electric fields in the enhanced clarification of wine must
Guo et al. Fenton-ultrasound treatment of corn stalks enhances humification during composting by stimulating the inheritance and synthesis of polyphenolic compounds—preliminary evidence from a laboratory trial
JP2011200214A (ja) 茸の廃床とセルロース・ヘミセルロース・リグニンの糖化処理剤および糖化方法。
JP5435387B2 (ja) 難分解性リグニン含有植物粉砕微粉のリグニン分解糖化方法
JP5007998B2 (ja) リグノセルロース系植物材料腐朽物を用いる糖化方法
JP6474150B2 (ja) バイオマス原料の糖化方法
Zhi-gou et al. Enhancement of the enzymatic hydrolysis of wheat straw by pretreatment with 1-allyl-3-methylimidazolium chloride ([Amim] Cl)
KR101254662B1 (ko) 그물말과 조류 바이오매스로부터 글루코오스 고함유 당화액의 제조방법

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5443248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees