[go: up one dir, main page]

JP5442360B2 - Method for producing silicone rubber fine particles coated with organic polymer fine particles - Google Patents

Method for producing silicone rubber fine particles coated with organic polymer fine particles Download PDF

Info

Publication number
JP5442360B2
JP5442360B2 JP2009195186A JP2009195186A JP5442360B2 JP 5442360 B2 JP5442360 B2 JP 5442360B2 JP 2009195186 A JP2009195186 A JP 2009195186A JP 2009195186 A JP2009195186 A JP 2009195186A JP 5442360 B2 JP5442360 B2 JP 5442360B2
Authority
JP
Japan
Prior art keywords
fine particles
silicone rubber
organic polymer
rubber fine
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009195186A
Other languages
Japanese (ja)
Other versions
JP2011046796A (en
Inventor
恒太 森
俊作 田中
直美 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2009195186A priority Critical patent/JP5442360B2/en
Publication of JP2011046796A publication Critical patent/JP2011046796A/en
Application granted granted Critical
Publication of JP5442360B2 publication Critical patent/JP5442360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、有機ポリマー微粒子で被覆されたシリコーンゴム微粒子およびその製造方法に関する。   The present invention relates to silicone rubber fine particles coated with organic polymer fine particles and a method for producing the same.

シリコーンゴム微粒子は、熱硬化性樹脂の内部応力緩和剤、有機樹脂フイルムの表面潤滑剤、光拡散剤、化粧品の進展性、感触改良剤などさまざまな用途に使用されている。このようなシリコーンゴム微粒子の製造方法として、硬化性液状シリコーン組成物の水系エマルジョンを調製し、該組成物を硬化させてシリコーンゴム微粒子の水分散液を調製する方法(例えば、特許文献1〜3参照)が知られている。   Silicone rubber fine particles are used in various applications such as an internal stress relaxation agent for a thermosetting resin, a surface lubricant for an organic resin film, a light diffusing agent, a progress of cosmetics, and a feel improver. As a method for producing such silicone rubber fine particles, a method of preparing an aqueous emulsion of a curable liquid silicone composition and curing the composition to prepare an aqueous dispersion of silicone rubber fine particles (for example, Patent Documents 1 to 3). See).

しかし、上記の方法において、シリコーンゴム微粒子の水分散液から水を除去する際、シリコーンゴム微粒子同士が凝集し易く、このため得られたシリコーンゴム微粒子は1次粒子の凝集物となるという問題があった。例えば、これらの方法で得られたシリコーンゴム微粒子は、流動性や分散性に劣り、アトマイザーやジェットミルなどによりある程度の解砕は可能であるが、やわらかい弾性ゴム粒子であるため完全に1次粒子にまで解砕することはできない。この問題を解決すべく、凝集や融着がなく、分散性、流動性のよいシリコーンゴム微粒子として、シリコーンゴムを無機質微粒子で被覆したもの(例えば、特許文献4参照)、ポリオルガノシルセスキオキサン樹脂で被覆したもの(例えば、特許文献5参照)などが提案されているが、無機質微粒子で被覆したものについては各種樹脂との相溶性が悪いという欠点を有しており、またポリオルガノシルセスキオキサン樹脂で被覆したものについては被覆の際にオルガノシランの加水分解、縮合反応を伴うことから系中でアルコールが生成されるためその分離液の廃棄処理が困難になるという問題がある。   However, in the above method, when water is removed from the aqueous dispersion of the silicone rubber fine particles, the silicone rubber fine particles are easily aggregated, and thus the obtained silicone rubber fine particles become an aggregate of primary particles. there were. For example, the silicone rubber fine particles obtained by these methods are inferior in fluidity and dispersibility and can be crushed to some extent by an atomizer or a jet mill, but are completely elastic primary particles because they are soft elastic rubber particles. It cannot be crushed. In order to solve this problem, silicone rubber coated with inorganic fine particles as a silicone rubber fine particle having no dispersibility and fluidity and having good dispersibility and fluidity (for example, see Patent Document 4), polyorganosilsesquioxane Resins coated with a resin (see, for example, Patent Document 5) have been proposed, but those coated with inorganic fine particles have the disadvantage of poor compatibility with various resins. In the case of coating with an oxan resin, there is a problem that disposal of the separated liquid becomes difficult because alcohol is generated in the system because organosilane is hydrolyzed and condensed during the coating.

特開昭63−77942号公報JP-A 63-77942 特開昭64−70558号公報JP-A 64-70558 特開昭63−309565号公報JP-A 63-309565 特開平4−348143号公報JP-A-4-348143 特開平7−196815号公報Japanese Patent Laid-Open No. 7-196815

本発明の課題は、有機ポリマー微粒子で被覆された流動性および分散性に優れたシリコーンゴム微粒子、およびその微粒子をアルコール等の副生物なしに生産性よく製造する方法を提供することにある。   An object of the present invention is to provide silicone rubber fine particles excellent in fluidity and dispersibility coated with organic polymer fine particles, and a method for producing the fine particles with high productivity without by-products such as alcohol.

本発明のシリコーンゴム微粒子は、体積平均粒子径が0.1〜200μmのシリコーンゴム微粒子が有機ポリマー微粒子で被覆されたものであり、1次粒子間の凝集、融着がなく、流動性、分散性に富むものである。この微粒子は平均粒径が0.1〜200μmであるシリコーンゴム微粒子の水分散液に有機ポリマー微粒子粉体または有機ポリマー微粒子エマルジョンを添加し、水分を除去することにより容易に生産性よく得ることができる。以下に詳細を説明する。   The silicone rubber fine particles of the present invention are obtained by coating silicone rubber fine particles having a volume average particle diameter of 0.1 to 200 μm with organic polymer fine particles, and there is no aggregation or fusion between primary particles, and fluidity and dispersion. It is rich in nature. These fine particles can be easily obtained with high productivity by adding organic polymer fine particle powder or organic polymer fine particle emulsion to an aqueous dispersion of silicone rubber fine particles having an average particle size of 0.1 to 200 μm and removing water. it can. Details will be described below.

本発明において用いられるシリコーンゴム微粒子は、その体積平均粒子径が0.1〜200μmのものであり、好ましくは0.5〜100μm、更に好ましくは1〜50μmのものである。   The silicone rubber fine particles used in the present invention have a volume average particle size of 0.1 to 200 μm, preferably 0.5 to 100 μm, more preferably 1 to 50 μm.

このシリコーンゴム微粒子の製造は、メトキシシリル基(≡SiOCH3)とヒドロキシシリル基(≡SiOH)などとの縮合反応、メルカプトシリル基(≡SiSH)とビニルシリル基(≡SiCH=CH2)とのラジカル反応、ビニルシリル基(≡SiCH=CH2)と≡SiH 基との付加反応によるものなどが例示されるが、反応性、反応工程上の点から付加反応により製造することが好ましく、さらに(a)ビニル基含有ポリジメチルシロキサンと(b)ポリメチルハイドロジェンシロキサンを(c)白金系触媒の存在下で付加反応させ、硬化させることが好ましい。 Silicone rubber fine particles are produced by condensation reaction of methoxysilyl group (≡SiOCH 3 ) and hydroxysilyl group (≡SiOH), radical of mercaptosilyl group (≡SiSH) and vinylsilyl group (≡SiCH = CH 2 ). Examples thereof include reaction, addition reaction of vinylsilyl group (≡SiCH═CH 2 ) and ≡SiH group, etc., but it is preferable to produce by addition reaction from the viewpoint of reactivity and reaction process, and (a) It is preferable that the vinyl group-containing polydimethylsiloxane and (b) polymethylhydrogensiloxane are subjected to an addition reaction in the presence of (c) a platinum-based catalyst and cured.

上記成分(a)はシリコーンゴム微粒子の主成分であり、成分(c)の触媒作用により成分(b)と付加反応して硬化する成分である。この成分(a)は1分子中にけい素原子に結合したビニル基を少なくとも2個有するものである。このビニル基は(a)の分子のどの部分に存在しても良いが、分子の末端に存在することが好ましい。また、本成分の25℃における粘度は100〜5000センチポイズの分子量のものが有利に使用でき、粘度の高いものほど柔らかいゴム粒子が得られるが、100〜600センチポイズのものが最適に使用でき、ゴム弾性を持った微粒子として取り扱い可能なゴム粒子が得られる。5000センチポイズを超えると柔らかいゲル状質となるため、粒子としての形状の維持が困難となる。   The component (a) is a main component of the silicone rubber fine particles, and is a component that is cured by addition reaction with the component (b) by the catalytic action of the component (c). This component (a) has at least two vinyl groups bonded to silicon atoms in one molecule. This vinyl group may be present in any part of the molecule (a), but is preferably present at the end of the molecule. The viscosity of this component at 25 ° C. can be advantageously used with a molecular weight of 100 to 5000 centipoise, and the higher the viscosity, the softer the rubber particles can be obtained. Rubber particles that can be handled as elastic fine particles are obtained. When it exceeds 5000 centipoise, it becomes a soft gel-like material, and it becomes difficult to maintain the shape as particles.

上記の成分(b)は成分(a)の架橋剤であり、本成分中のけい素原子に結合した水素原子が成分(c)の触媒作用により成分(a)中のビニル基と付加反応して硬化する。従ってこの成分(b)には1分子中にけい素原子に結合した水素原子を少なくとも2個有するものが使用される。さらに、この成分(b)は成分(a)との相溶性が良好であるものが望ましく、そのためには、25℃の粘度が1〜1000センチポイズであることが好ましく、1〜100センチポイズであることがより好ましい。また、この成分(b)の添加量は成分(a)中のビニル基1個に対し本成分のけい素原子に結合した水素原子が0.5個未満となるような量の場合には良好な硬化性を得にくく、水素原子が10個を超えるような量の場合には、硬化後のゴムの物理性性質が低下するので好ましくない。水素原子が0.5〜10個、好ましくは1.0〜3.0個となる量とするのがよい。   The component (b) is a crosslinking agent for the component (a), and a hydrogen atom bonded to a silicon atom in this component undergoes an addition reaction with the vinyl group in the component (a) by the catalytic action of the component (c). Harden. Therefore, the component (b) having at least two hydrogen atoms bonded to silicon atoms in one molecule is used. Further, it is desirable that this component (b) has good compatibility with the component (a). For this purpose, the viscosity at 25 ° C. is preferably 1 to 1000 centipoise, and 1 to 100 centipoise. Is more preferable. The amount of component (b) added is good when the amount of hydrogen atoms bonded to silicon atoms in this component is less than 0.5 per one vinyl group in component (a). If the amount is more than 10 hydrogen atoms, it is not preferable because the physical properties of the rubber after curing are lowered. The amount of hydrogen atoms is 0.5 to 10, preferably 1.0 to 3.0.

また成分(c)は、けい素原子に結合したビニル基と、けい素原子に結合した水素原子とを付加反応させる触媒であり、例えば塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体、白金−リン錯体、白金配位化合物等が例として挙げられる。この成分の使用量は成分(a)に対し白金として5ppm未満では硬化が遅くなるうえ触媒毒の影響も受けやすい一方、50ppmを超えても特に硬化速度の向上等を期待することができず経済性の面で好ましくないので、5〜50ppmとなる範囲が好ましい。なお、白金触媒の添加はシリコーン成分を水中に分散した後、分散液を撹拌しながら滴下するのが好ましい。   Component (c) is a catalyst for addition reaction of a vinyl group bonded to a silicon atom and a hydrogen atom bonded to a silicon atom. For example, chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, platinum Examples include phosphorus complexes and platinum coordination compounds. If the amount of this component used is less than 5 ppm as platinum relative to component (a), curing will be slow and susceptible to catalyst poisons, but if it exceeds 50 ppm, it will not be possible to expect an improvement in curing rate, etc. Since it is not preferable in terms of properties, a range of 5 to 50 ppm is preferable. The platinum catalyst is preferably added dropwise after stirring the dispersion after the silicone component is dispersed in water.

本発明におけるシリコーンゴム球状微粒子はシリコーン組成物の分散液滴を作成しその後、液滴中で硬化させることにより得られる。これについては上記した成分(a)としてのビニル基含有ポリジメチルシロキサンと成分(b)としてのポリメチルハイドロジェンシロキサンを所定量混合した後、水と界面活性剤を添加した上で、ホモミキサーなどを用いてこれを分散、液滴化する。この際、水分散液中のシリコーンゴム微粒子成分の含有量は、水分散液が流動性を失わない量であれば特に限定されず、具体的には、0.1〜90重量%であり、好ましくは0.1〜50重量%である。   The silicone rubber spherical fine particles in the present invention are obtained by preparing dispersed droplets of a silicone composition and then curing in the droplets. For this, after mixing a predetermined amount of the above-mentioned vinyl group-containing polydimethylsiloxane as component (a) and polymethylhydrogensiloxane as component (b), after adding water and a surfactant, a homomixer, etc. Is used to disperse and form droplets. At this time, the content of the silicone rubber fine particle component in the aqueous dispersion is not particularly limited as long as the aqueous dispersion does not lose fluidity, specifically, 0.1 to 90% by weight, Preferably it is 0.1 to 50 weight%.

使用する界面活性剤としては硬化反応に悪影響を及ぼすことの少ないポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステルおよびグリセリン脂肪酸エステルなどのノニオン系界面活性剤とすることが好ましく、HLBが10〜14のものが好適に用いられる。この界面活性剤の添加量は成分(a)と成分(b)の合計量に対して通常0.5〜10重量%、好ましくは1〜5重量%であるが、目的の粒子径、硬化反応時の安定性などを考慮して決定される。   As the surfactant to be used, nonionic surfactants such as polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester and glycerin fatty acid ester which have little adverse effect on the curing reaction may be used. Preferably, those having an HLB of 10 to 14 are preferably used. The addition amount of this surfactant is usually 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of component (a) and component (b). It is determined in consideration of time stability.

本発明の製造方法において使用される有機ポリマー微粒子は、シリコーンゴム微粒子に流動性、分散性を付与する成分であり、具体的には、ポリメタクリル酸メチル、ポリスチレン、メタクリル酸メチル−スチレン共重合体、ポリアミド、ポリウレタン等から成る微粒子が例示される。これらは水分散体としてシリコーンゴム微粒子と混合することができるし、粉体として混合することもできる。また、この有機ポリマー微粒子の体積平均粒子径はシリコーンゴム微粒子を被覆するのに十分な大きさのものが使用され、通常0.01〜10μmの範囲、好ましくは0.05〜2μmの範囲のものが使用される。また、被覆されるシリコーンゴム微粒子の体積平均粒子径に対して、通常1/5〜1/100、特に1/10〜1/50の体積平均粒子径を持つ有機ポリマー微粒子が好適に用いられる。
この有機ポリマー微粒子はシリコーンゴム微粒子の表面全面に均一に被覆していてもよいし、表面の一部を被覆していてもよく、本発明の製造方法において、有機ポリマー微粒子の配合量は、シリコーンゴム微粒子と有機ポリマー微粒子の混合物の水分散液が流動性を失わないまでの量であれば特に限定されず、具体的には、シリコーンゴム微粒子成分100重量部に対して0.5〜100重量部であり、好ましくは1〜50重量部である。
The organic polymer fine particles used in the production method of the present invention are components that impart fluidity and dispersibility to the silicone rubber fine particles. Specifically, polymethyl methacrylate, polystyrene, methyl methacrylate-styrene copolymer Examples thereof include fine particles made of polyamide, polyurethane and the like. These can be mixed with the silicone rubber fine particles as an aqueous dispersion, or can be mixed as a powder. The organic polymer fine particles have a volume average particle size that is large enough to coat the silicone rubber fine particles, and is usually in the range of 0.01 to 10 μm, preferably in the range of 0.05 to 2 μm. Is used. In addition, organic polymer fine particles having a volume average particle size of usually 1/5 to 1/100, particularly 1/10 to 1/50 of the volume average particle size of the silicone rubber fine particles to be coated are preferably used.
The organic polymer fine particles may be uniformly coated on the entire surface of the silicone rubber fine particles or may partially cover the surface. In the production method of the present invention, the amount of the organic polymer fine particles There is no particular limitation as long as the aqueous dispersion of the mixture of rubber fine particles and organic polymer fine particles does not lose fluidity, and specifically, 0.5 to 100 weights with respect to 100 parts by weight of the silicone rubber fine particle component. Part, preferably 1 to 50 parts by weight.

本発明で使用する有機ポリマー微粒子の製造方法としては、乳化重合法、分散重合法、微細懸濁重合法、懸濁重合法など、公知の技術を使用することができる。この有機ポリマー微粒子を製造する際には用途に応じて、耐熱性、耐溶剤性などの要求性能を付与するため、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート、アリルマレート、ジアリルフマレート、ジアリルイタコネート、トリアリルイソシアヌレート等の架橋性モノマーを共重合させることができる。さらには、シリコーンゴム微粒子とのなじみを向上させるため、β−メタクリロイルオキシエチルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルメトキシジメチルシラン、γ−メタクリロイルオキシプロピルジメトキシメチルシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルエトキシジエチルシラン、γ−メタクリロイルオキシプロピルジエトキシメチルシラン、δ−メタクリロイルオキシブチルジエトキシメチルシラン等の所謂シランカップリング剤を共重合させることもできる。また、粉体として取り出す場合には有機ポリマー微粒子水分散液に塩化カルシウム、塩化マグネシウム、硫酸マグネシウムなどの金属塩を添加する方法及び水分散液を凍結・融解することにより凝固、分離する方法等があげられる。また、スプレードライ法も使用できる。   As a method for producing the organic polymer fine particles used in the present invention, known techniques such as an emulsion polymerization method, a dispersion polymerization method, a fine suspension polymerization method and a suspension polymerization method can be used. When producing these organic polymer fine particles, divinylbenzene, ethylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, hexane are used to provide required performance such as heat resistance and solvent resistance depending on the application. Crosslinkable monomers such as diol di (meth) acrylate, diethylene glycol di (meth) acrylate, allyl (meth) acrylate, allyl malate, diallyl fumarate, diallyl itaconate and triallyl isocyanurate can be copolymerized. Furthermore, in order to improve compatibility with the silicone rubber fine particles, β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropyltrimethoxysilane, So-called silane coupling agents such as γ-methacryloyloxypropylethoxydiethylsilane, γ-methacryloyloxypropyldiethoxymethylsilane, and δ-methacryloyloxybutyldiethoxymethylsilane can also be copolymerized. In addition, when taking out as a powder, there are a method of adding a metal salt such as calcium chloride, magnesium chloride and magnesium sulfate to an organic polymer fine particle aqueous dispersion, and a method of solidifying and separating by freezing and thawing the aqueous dispersion. can give. A spray drying method can also be used.

シリコーンゴム微粒子表面に有機ポリマー微粒子を付着させる方法としては、シリコーンゴム微粒子粉体と有機ポリマー微粒子粉体をヘンシェルミキサー等により機械的に混合する方法もあげられるが、この方法ではシリコーンゴム微粒子表面を均一に有機ポリマー微粒子で被覆することが難しく長時間を要するため生産性に劣る。シリコーンゴム微粒子と有機ポリマー微粒子からなる均一な粉体混合物を生産性よく得るためには、シリコーンゴム微粒子と有機ポリマー微粒子からなる混合物の水分散液から水を除去する方法が好ましい。具体的な方法としては、シリコーンゴム微粒子と有機ポリマー微粒子からなる粉体混合物の水分散液をオーブン中で乾燥する方法、または該水分散液をスプレードライヤーで乾燥する方法等があげられる。   As a method of attaching the organic polymer fine particles to the surface of the silicone rubber fine particles, there is a method of mechanically mixing the silicone rubber fine particle powder and the organic polymer fine particle powder by a Henschel mixer or the like. Since it is difficult to uniformly coat with organic polymer fine particles and it takes a long time, productivity is inferior. In order to obtain a uniform powder mixture composed of silicone rubber fine particles and organic polymer fine particles with good productivity, a method of removing water from an aqueous dispersion of a mixture composed of silicone rubber fine particles and organic polymer fine particles is preferable. Specific examples include a method of drying an aqueous dispersion of a powder mixture composed of silicone rubber fine particles and organic polymer fine particles in an oven, a method of drying the aqueous dispersion with a spray dryer, and the like.

本発明によると、複雑な反応や副生物の発生等を伴うことなくシリコーンゴム微粒子表面に有機ポリマー微粒子を容易に被覆することが可能であり、得られた被覆微粒子は優れた流動性や分散性を有している。また、シリコーンゴム微粒子に被覆させる有機ポリマー微粒子の種類や被覆量を容易に調整できるため、分散させる樹脂との相溶性に優れたシリコーンゴム微粒子を製造することが可能である。このようにして得られたシリコーンゴム微粒子は、有機樹脂への分散、混和が極めて良好であり、有機樹脂の改質用粉体、塗料用粉体または化粧料粉体として優れたものである。   According to the present invention, it is possible to easily coat organic polymer fine particles on the surface of silicone rubber fine particles without complicated reaction and generation of by-products, and the obtained coated fine particles have excellent fluidity and dispersibility. have. In addition, since the type and amount of organic polymer fine particles to be coated on the silicone rubber fine particles can be easily adjusted, it is possible to produce silicone rubber fine particles having excellent compatibility with the resin to be dispersed. The silicone rubber fine particles obtained in this manner are very well dispersed and mixed in an organic resin, and are excellent as organic resin modifying powder, coating powder or cosmetic powder.

本発明を合成例、実施例、比較例をあげて具体的に説明する。なお、実施例中、粘度の値は25℃において測定した値であり、シリコーンゴム微粒子の平均粒子径はベックマン−コールター社のマルチサイザーIIIで測定した体積平均値である。また、有機ポリマー微粒子エマルジョンの平均粒子径は大塚電子社のELS−8000で測定した平均粒径値である。   The present invention will be specifically described with reference to synthesis examples, examples and comparative examples. In the examples, the viscosity value is a value measured at 25 ° C., and the average particle size of the silicone rubber fine particles is a volume average value measured by Multisizer III manufactured by Beckman-Coulter. The average particle size of the organic polymer fine particle emulsion is an average particle size value measured by ELS-8000 of Otsuka Electronics.

〔合成例1〕
シリコーンゴム微粒子の製造例1
セパラブルフラスコに両末端ジビニルポリジメチルシロキサン(分子量10000、粘度230mm/s、Si結合ビニル基含有量 0.5wt%)98部、ポリメチルハイドジェンシロキサン2部、(分子量2000、粘度25mm/s、Si結合水素含有量 1.5wt%)を仕込み、10分間攪拌、混合した。ついでホモミキサーにより、8000rpmの回転攪拌下、ポリオキシエチレンラウリルエーテル3.5部(HLB 13.8)とイオン交換水50部の溶解液を滴下し、20分間の乳化を行った後、イオン交換水200部を低攪拌下、滴下して溶解した。この乳化液に0.45wt%(白金含有量)白金錯体触媒トルエン溶液1.8mLのポリオキシエチレンラウリルエーテルによる乳化液を滴下し、室温(25℃)下に攪拌した後、70℃に昇温し、3時間の硬化反応を行った。得られた微粒子分散液の体積平均粒子径を測定したところ6.5μmであった。
[Synthesis Example 1]
Production example 1 of silicone rubber fine particles
In a separable flask, 98 parts by weight of divinylpolydimethylsiloxane at both ends (molecular weight 10000, viscosity 230 mm 2 / s, Si-bonded vinyl group content 0.5 wt%), 2 parts of polymethylhydrogensiloxane (molecular weight 2000, viscosity 25 mm 2 / s, Si-bonded hydrogen content 1.5 wt%) was added and stirred and mixed for 10 minutes. Next, with a homomixer, 3.5 parts of polyoxyethylene lauryl ether (HLB 13.8) and 50 parts of ion-exchanged water were added dropwise with rotary stirring at 8000 rpm, and after 20 minutes of emulsification, ion exchange was performed. 200 parts of water was dropped and dissolved under low stirring. To this emulsion, 0.45 wt% (platinum content) platinum complex catalyst toluene solution 1.8 mL of polyoxyethylene lauryl ether was added dropwise, stirred at room temperature (25 ° C.), and then heated to 70 ° C. Then, a curing reaction was performed for 3 hours. The volume average particle diameter of the obtained fine particle dispersion was measured and found to be 6.5 μm.

〔合成例2〕
シリコーンゴム微粒子の製造例2
セパラブルフラスコに両末端ジビニルポリジメチルシロキサン(分子量19000、粘度600mm/s、Si結合ビニル基含有量 0.35wt%)98部、ポリメチルハイドジェンシロキサン(分子量2000、粘度25mm/s、Si結合水素含有量 1.5wt%)2部、を仕込み、攪拌、混合した。ついでホモミキサーにより、6000rpmの回転攪拌下、ポリオキシエチレンラウリルエーテル3.5部(HLB 13.8)とイオン交換水50部の溶解液を滴下し、20分間の乳化を行った後、イオン交換水200部を低攪拌下、滴下して溶解した。この乳化液に0.45%(白金含有量)白金触媒トルエン溶液1.8mLのポリオキシエチレンラウリルエーテルによる乳化液を滴下し、室温攪拌後、70℃に昇温し、3時間の硬化反応を行った。得られた微粒子分散液の体積平均粒子径を測定したところ9.9μmであった。
[Synthesis Example 2]
Production example 2 of silicone rubber fine particles
In a separable flask, both ends divinylpolydimethylsiloxane (molecular weight 19000, viscosity 600 mm 2 / s, Si-bonded vinyl group content 0.35 wt%) 98 parts, polymethylhydrogen siloxane (molecular weight 2000, viscosity 25 mm 2 / s, Si 2 parts of hydrogen content (bonded hydrogen content 1.5 wt%) was charged, stirred and mixed. Then, a solution of 3.5 parts of polyoxyethylene lauryl ether (HLB 13.8) and 50 parts of ion-exchanged water was added dropwise with a homomixer while stirring at 6000 rpm, and after 20 minutes of emulsification, ion exchange was performed. 200 parts of water was dropped and dissolved under low stirring. To this emulsion, 0.45% (platinum content) platinum catalyst toluene solution 1.8 mL of polyoxyethylene lauryl ether emulsion was dropped, and after stirring at room temperature, the temperature was raised to 70 ° C. and the curing reaction was carried out for 3 hours. went. The volume average particle size of the obtained fine particle dispersion was measured and found to be 9.9 μm.

〔合成例3〕
ポリメタクリル酸メチル微粒子エマルジョンの製造例
セパラブルフラスコに、イオン交換水580部、ラウリル硫酸ナトリウム3.5部を仕込み、180rpmにて撹拌しながら70℃に昇温して窒素置換した。これに過硫酸ナトリウム0.9部を添加し、メタクリル酸メチルモノマー400部を5時間かけて滴下し、反応させた。その後、同温度で3時間熟成した。重合終了時のエマルジョンの固形分、平均粒子径を測定したところ、40.5%、290nmであった。
[Synthesis Example 3]
Production Example of Polymethyl Methacrylate Fine Particle Emulsion A separable flask was charged with 580 parts of ion-exchanged water and 3.5 parts of sodium lauryl sulfate, and the temperature was raised to 70 ° C. while stirring at 180 rpm, and the atmosphere was replaced with nitrogen. To this, 0.9 part of sodium persulfate was added, and 400 parts of methyl methacrylate monomer was added dropwise over 5 hours to react. Thereafter, aging was performed for 3 hours at the same temperature. The solid content and average particle diameter of the emulsion at the end of the polymerization were measured and found to be 40.5% and 290 nm.

〔合成例4〕
ポリスチレン微粒子エマルジョンの製造例
セパラブルフラスコに、イオン交換水550部、ドデシルベンゼンスルホン酸ナトリウム6部を仕込み、200rpmにて撹拌しながら80℃に昇温して窒素置換した。これに過硫酸カリウム0.8部を添加し、スチレンモノマー400部を4時間かけて滴下し、反応させた。その後、同温度で3時間熟成した。重合終了時のエマルジョンの固形分、平均粒子径を測定したところ、41.2%、380nmであった。
[Synthesis Example 4]
Production Example of Polystyrene Fine Particle Emulsion A separable flask was charged with 550 parts of ion-exchanged water and 6 parts of sodium dodecylbenzenesulfonate, and the temperature was raised to 80 ° C. while stirring at 200 rpm, and the atmosphere was replaced with nitrogen. To this, 0.8 part of potassium persulfate was added, and 400 parts of styrene monomer was added dropwise over 4 hours to react. Thereafter, aging was performed for 3 hours at the same temperature. The solid content and average particle size of the emulsion at the end of the polymerization were measured and found to be 41.2% and 380 nm.

〔合成例5〕
ポリメタクリル酸メチル−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子エマルジョンの製造例
メタクリル酸メチルモノマー400部にγ−メタクリロイルオキシプロピルトリメトキシシラン4部を加えた以外は応用例1と同様の操作を行いメタクリル酸メチルとγ−メタクリロイルオキシプロピルトリメトキシシランの共重合体エマルジョンを得た。得られたエマルジョンの固形分、平均粒子径を測定したところ、40.9%、270nmであった。
[Synthesis Example 5]
Production Example of Polymethyl Methyl Methacrylate-γ-Methacryloyloxypropyltrimethoxysilane Copolymer Fine Particle Emulsion The same operation as in Application Example 1 except that 4 parts of γ-methacryloyloxypropyltrimethoxysilane was added to 400 parts of methyl methacrylate monomer Then, a copolymer emulsion of methyl methacrylate and γ-methacryloyloxypropyltrimethoxysilane was obtained. The solid content and average particle diameter of the obtained emulsion were measured and found to be 40.9% and 270 nm.

〔合成例6〕
ポリスチレン‐γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子エマルジョンの製造例
スチレンモノマー400部にγ−メタクリロイルオキシプロピルトリメトキシシラン4部を加えた以外は応用例2と同様の操作を行いポリスチレン−γ−メタクリロイルオキシプロピルトリメトキシシランの共重合体エマルジョンを得た。得られたエマルジョンの固形分、平均粒子径を測定したところ、41.7%、350nmであった。
[Synthesis Example 6]
Polystyrene-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particle emulsion production example Polystyrene-γ was prepared in the same manner as in Application Example 2 except that 4 parts of γ-methacryloyloxypropyltrimethoxysilane was added to 400 parts of styrene monomer. -A copolymer emulsion of methacryloyloxypropyltrimethoxysilane was obtained. The solid content and average particle diameter of the obtained emulsion were measured and found to be 41.7% and 350 nm.

合成例1にて作成したシリコーンゴム微粒子分散液100部に、合成例3にて作成したポリメタクリル酸メチル微粒子エマルジョン7.2部を加え均一に混合した後、入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥を行った。得られた粉体混合物は、図1の走査型電子顕微鏡写真で示されるとおり、シリコーンゴム微粒子の表面がポリメタクリル酸メチル微粒子で被覆されていることが確認された。この粒体は1次粒子のままであり、極めて流動性に富んだものであった。   To 100 parts of the silicone rubber fine particle dispersion prepared in Synthesis Example 1, 7.2 parts of the polymethyl methacrylate fine particle emulsion prepared in Synthesis Example 3 was added and mixed uniformly, and then the inlet temperature was 140 ° C and the outlet temperature was 70 ° C. Drying was performed with a spray dryer set to 1. As shown in the scanning electron micrograph of FIG. 1, the obtained powder mixture was confirmed to have the surface of the silicone rubber fine particles coated with polymethyl methacrylate fine particles. The granules remained as primary particles and were extremely fluid.

合成例1にて作成したシリコーンゴム微粒子分散液100部に、合成例6にて作成したポリスチレン−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子エマルジョン7.4部を加え均一に混合した後、入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥を行った。得られた粉体混合物は、シリコーンゴム微粒子にポリスチレン‐γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子が被覆しており、流動性に富んだものであった。   After adding 7.4 parts of the polystyrene-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particle emulsion prepared in Synthesis Example 6 to 100 parts of the silicone rubber fine particle dispersion prepared in Synthesis Example 1 and mixing them uniformly, Drying was performed with a spray dryer set at an inlet temperature of 140 ° C and an outlet temperature of 70 ° C. The obtained powder mixture was rich in fluidity because the silicone rubber fine particles were coated with polystyrene-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particles.

合成例2にて作成したシリコーンゴム微粒子分散液100部に、合成例4にて作成したポリスチレン微粒子エマルジョン7.3部を加え均一に混合した後、入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥を行った。得られた粉体混合物は、シリコーンゴム微粒子にポリスチレン微粒子が被覆しており、流動性に富んだものであった。   After adding 7.3 parts of the polystyrene fine particle emulsion prepared in Synthesis Example 4 to 100 parts of the silicone rubber fine particle dispersion prepared in Synthesis Example 2 and mixing them uniformly, the inlet temperature was set to 140 ° C. and the outlet temperature was set to 70 ° C. Drying was performed with a spray dryer. The obtained powder mixture was a silicone rubber fine particle coated with polystyrene fine particles, and was rich in fluidity.

合成例2にて作成したシリコーンゴム微粒子分散液100部に、合成例5にて作成したポリメタクリル酸メチル−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子エマルジョン7.3部を加え均一に混合した後、入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥を行った。得られた粉体混合物は、シリコーンゴム微粒子にポリメタクリル酸メチル−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子が被覆しており、流動性に富んだものであった。   To 100 parts of the silicone rubber fine particle dispersion prepared in Synthesis Example 2, 7.3 parts of the polymethyl methacrylate-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particle emulsion prepared in Synthesis Example 5 was added and mixed uniformly. Then, drying was performed with a spray dryer set to an inlet temperature of 140 ° C and an outlet temperature of 70 ° C. The obtained powder mixture had high fluidity because the silicone rubber fine particles were coated with polymethyl methacrylate-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particles.

合成例1にて作成したシリコーンゴム微粒子分散液100部に、合成例6にて作成したポリスチレン−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子エマルジョン14.8部を加え均一に混合した後、入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥を行った。得られた粉体混合物は、シリコーンゴム微粒子にポリスチレン−γ−メタクリロイルオキシプロピルトリメトキシシラン共重合体微粒子が被覆しており、流動性に富んだものであった。   After adding 14.8 parts of the polystyrene-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particle emulsion prepared in Synthesis Example 6 to 100 parts of the silicone rubber fine particle dispersion prepared in Synthesis Example 1 and mixing them uniformly, Drying was performed with a spray dryer set at an inlet temperature of 140 ° C and an outlet temperature of 70 ° C. The obtained powder mixture was rich in fluidity because the silicone rubber fine particles were coated with polystyrene-γ-methacryloyloxypropyltrimethoxysilane copolymer fine particles.

〔比較例1〕
合成例1にて作成したシリコーンゴム微粒子分散液を入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥した。得られた粉体は、一部シリコーンゴム微粒子が凝集しており、流動性に乏しいものであった。
[Comparative Example 1]
The silicone rubber fine particle dispersion prepared in Synthesis Example 1 was dried with a spray dryer set at an inlet temperature of 140 ° C. and an outlet temperature of 70 ° C. The obtained powder was partially agglomerated with silicone rubber fine particles and had poor fluidity.

〔比較例2〕
合成例2にて作成したシリコーンゴム微粒子分散液を入口温度140℃、出口温度70℃に設定したスプレードライヤーにて乾燥した。得られた粉体は、一部シリコーンゴム微粒子が凝集しており、流動性に乏しいものであった。
[Comparative Example 2]
The silicone rubber fine particle dispersion prepared in Synthesis Example 2 was dried with a spray dryer set at an inlet temperature of 140 ° C. and an outlet temperature of 70 ° C. The obtained powder was partially agglomerated with silicone rubber fine particles and had poor fluidity.

〔試験例1〕
得られた粉体の流動性、分散性を評価するため、ロータップ式振動ふるい機 A型(アドバンテック東洋(株)製)にて回転振動数290rpm、打数156打/分の振動を180秒間与え、試料10gの篩200メッシュ(75μm)、100メッシュ(150μm)の篩過性を測定した。結果を表1に示す。
[Test Example 1]
In order to evaluate the fluidity and dispersibility of the obtained powder, a low tap type vibration sieve machine A type (manufactured by Advantech Toyo Co., Ltd.) was applied with a vibration frequency of 290 rpm and a vibration frequency of 156 strokes / min for 180 seconds. The sieving properties of 200 g (75 μm) and 100 mesh (150 μm) of 10 g of sample were measured. The results are shown in Table 1.

表1からも明らかなように、実施例1〜5の粉体は1次粒子のまま存在して2次粒子を形成しないので極めて流動性に富んだものであった。一方、比較例1および2の粉体はいずれも1次粒子が凝集して粒子径の大きな2次粒子を形成し、流動性も著しく低下した。 As is clear from Table 1, the powders of Examples 1 to 5 existed as primary particles and did not form secondary particles, so they were extremely fluid. On the other hand, in the powders of Comparative Examples 1 and 2, the primary particles aggregated to form secondary particles having a large particle size, and the fluidity was significantly reduced.

本発明の製造方法により、有機ポリマー微粒子で被覆されたシリコーンゴム微粒子を生産性よく製造することができ、得られた有機ポリマー微粒子で被覆されたシリコーンゴム微粒子は、1次粒子間の凝集、融着がなく、流動性、分散性に富むという特徴を有しているので、樹脂の応力緩和などの改質剤や光拡散剤、化粧品の伸展性、感触改良剤などさまざまな用途に好適に使用することができる。   By the production method of the present invention, silicone rubber fine particles coated with organic polymer fine particles can be produced with high productivity, and the obtained silicone rubber fine particles coated with organic polymer fine particles are aggregated and fused between primary particles. Since it has the characteristics that it is not worn and has excellent fluidity and dispersibility, it is suitable for various applications such as modifiers for lightening resin stress, light diffusing agents, extensibility of cosmetics, and touch modifiers. can do.

実施例1で製造したシリコーンゴム微粒子とポリメタクリル酸メチル微粒子からなる粉体混合物の走査型電子顕微鏡写真Scanning electron micrograph of a powder mixture comprising the silicone rubber fine particles and polymethyl methacrylate fine particles produced in Example 1

Claims (1)

体積平均粒子径が0.1〜200μmのシリコーンゴム微粒子(A)100重量部と、体積平均粒子径が0.01〜10μmのポリメタクリル酸メチル、ポリスチレン、メタクリル酸メチルとγ−メタクリロイルオキシプロピルトリメトキシシランの共重体及びスチレンとγ−メタクリロイルオキシプロピルトリメトキシシランの共重体から選ばれた有機ポリマー(B)0.5〜100重量部の混合物の水分散液をスプレードライヤーで水を除去する有機ポリマー微粒子で被覆されたシリコーンゴム微粒子の製造方法。 100 parts by weight of silicone rubber fine particles (A) having a volume average particle size of 0.1 to 200 μm and polymethyl methacrylate, polystyrene, methyl methacrylate and γ-methacryloyloxypropyltrimethyl having a volume average particle size of 0.01 to 10 μm Organic that removes water with spray dryer from aqueous dispersion of mixture of 0.5 to 100 parts by weight of organic polymer (B) selected from copolymer of methoxysilane and copolymer of styrene and γ-methacryloyloxypropyltrimethoxysilane A method for producing silicone rubber fine particles coated with polymer fine particles.
JP2009195186A 2009-08-26 2009-08-26 Method for producing silicone rubber fine particles coated with organic polymer fine particles Active JP5442360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195186A JP5442360B2 (en) 2009-08-26 2009-08-26 Method for producing silicone rubber fine particles coated with organic polymer fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195186A JP5442360B2 (en) 2009-08-26 2009-08-26 Method for producing silicone rubber fine particles coated with organic polymer fine particles

Publications (2)

Publication Number Publication Date
JP2011046796A JP2011046796A (en) 2011-03-10
JP5442360B2 true JP5442360B2 (en) 2014-03-12

Family

ID=43833460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195186A Active JP5442360B2 (en) 2009-08-26 2009-08-26 Method for producing silicone rubber fine particles coated with organic polymer fine particles

Country Status (1)

Country Link
JP (1) JP5442360B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322731A (en) * 1993-03-09 1994-06-21 Minnesota Mining And Manufacturing Company Adhesive beads
JP4289881B2 (en) * 2002-12-27 2009-07-01 東レ・ダウコーニング株式会社 Composite silicone rubber particles and method for producing the same
JP2005330467A (en) * 2004-04-19 2005-12-02 Mitsubishi Rayon Co Ltd A method for producing a graft polymerized powder, and a thermoplastic resin composition.
JP5342147B2 (en) * 2008-01-17 2013-11-13 アキレス株式会社 Adhesive film and method for producing adhesive film
JP5344848B2 (en) * 2008-04-09 2013-11-20 株式会社カネカ Resin molded body having good tactile sensation and method for producing the same

Also Published As

Publication number Publication date
JP2011046796A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
KR920010084B1 (en) Silica-core silicone-shell particles emulsion containing the same dispersed therein and process for producing the emulsion
JP5590539B2 (en) Silicone (meth) acrylate particles, methods for their preparation, and uses thereof
JP6926925B2 (en) Method for Producing Silica-Coated Silicone Elastomer Spherical Particles and Silica-Coated Silicone Elastomer Spherical Particles
JPH0330620B2 (en)
JP3044048B2 (en) Organopolysiloxane-based elastomer powder and method for producing the same
US9023473B2 (en) Silicone microparticle and method for producing the same
JPS62257939A (en) Method for manufacturing silicone elastomer spherical fine powder
JP5859478B2 (en) Silicone composite particles and method for producing the same
JP2009149880A5 (en)
JP2018131510A (en) Addition-curable silicone composition
CN116745331A (en) Novel silicone elastomer particles and cosmetic compositions and other uses
JP2004210944A (en) Composite silicone rubber particle
CN111372974A (en) Silicone resin-coated silicone elastomer particles and organic resin additives
WO2021220625A1 (en) Polyether/polysiloxane crosslinked rubber spherical particles and method for producing same, and polyether/polysiloxane crosslinked composite particles and method for producing same
JP5698444B2 (en) Composite cured silicone powder and method for producing the same
JPH03281536A (en) Production of emulsion type silicone composition and silicone fine particle
JP5442360B2 (en) Method for producing silicone rubber fine particles coated with organic polymer fine particles
JP2018177881A (en) Silicone particles and method for producing the same
TW200305614A (en) Preparation of macroreticular polymers
JP2010280783A (en) Method for producing silicone rubber fine particle free from fusion bonding between particles
JP2021055027A (en) Silicone rubber spherical particle, silicone compound particle, and method of producing them
JP7706959B2 (en) Liquid composition for silicone rubber spherical particles, silicone rubber spherical particles and method for producing the same, and silicone composite particles and method for producing the same
JP2006016414A (en) Method for producing ethylene/(meth)acrylic ester copolymer particle
TWI882148B (en) Rubber particles, composite particles and methods for producing the same
JP5415154B2 (en) Production method of silicone rubber fine particles without interparticle fusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250