[go: up one dir, main page]

JP5441813B2 - Joining method and joining apparatus - Google Patents

Joining method and joining apparatus Download PDF

Info

Publication number
JP5441813B2
JP5441813B2 JP2010111583A JP2010111583A JP5441813B2 JP 5441813 B2 JP5441813 B2 JP 5441813B2 JP 2010111583 A JP2010111583 A JP 2010111583A JP 2010111583 A JP2010111583 A JP 2010111583A JP 5441813 B2 JP5441813 B2 JP 5441813B2
Authority
JP
Japan
Prior art keywords
tool
laser
pressure
laser light
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010111583A
Other languages
Japanese (ja)
Other versions
JP2011240346A (en
Inventor
努 櫻井
一之 渡辺
典行 松川
和也 船崎
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010111583A priority Critical patent/JP5441813B2/en
Priority to CN201110128797.XA priority patent/CN102240850B/en
Publication of JP2011240346A publication Critical patent/JP2011240346A/en
Application granted granted Critical
Publication of JP5441813B2 publication Critical patent/JP5441813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、レーザ光の照射により第1部材と第2部材とを接合する接合方法および接合装置ならびに接合体に関する。   The present invention relates to a joining method, a joining apparatus, and a joined body for joining a first member and a second member by laser light irradiation.

従来から、リード等の被ボンディング体と電極パッド等とのレーザ接合に関する技術が色々と提案されている。その一つとして、レーザ光を中実透明部材からなる光導波路で被ボンディング部材の表面に照射して、被ボンディング体を直接レーザで加熱して発熱させると共に加圧して電極パットと被ボンディング体を接合する方法が提案されている。   Conventionally, various techniques relating to laser bonding between a bonding target body such as a lead and an electrode pad have been proposed. As one of them, the surface of the member to be bonded is irradiated with laser light through an optical waveguide made of a solid transparent member, and the object to be bonded is directly heated by a laser to generate heat and pressurize the electrode pad and the object to be bonded. A method of joining has been proposed.

以下、従来の接合方法について図9を用いて説明する。
図9は従来の接合方法および接合装置を説明する概略断面図である。
例えば、図9に示すように、超音波ホーン116にとりつけられた透明なボンディングツール115の上端面117からレーザ光を導入し、レーザ出口でもある加圧面118で板状のリード103をレーザ光による加熱アシストすると共に、電極パット105とリード103を超音波ホーン116から入力する超音波による摩擦熱で、効率良く接合し、接合品質をあげることができる(例えば、特許文献1参照)。
Hereinafter, a conventional bonding method will be described with reference to FIG.
FIG. 9 is a schematic cross-sectional view for explaining a conventional joining method and joining apparatus.
For example, as shown in FIG. 9, a laser beam is introduced from an upper end surface 117 of a transparent bonding tool 115 attached to an ultrasonic horn 116, and a plate-like lead 103 is moved by a laser beam on a pressing surface 118 that is also a laser exit. In addition to assisting in heating, the electrode pad 105 and the lead 103 can be efficiently bonded by the frictional heat generated by the ultrasonic waves input from the ultrasonic horn 116 to improve the bonding quality (for example, see Patent Document 1).

特開平5−259220号公報JP-A-5-259220

しかしながら、従来のレーザアシストによる超音波ホーンによる接合方法では、下記の問題があった。
まず、接合される部材は通常銅板や金メッキ板等のレーザの高反射体であることが多く、これらの材料はレーザが表面で殆ど反射してあまり加熱されないので熱による接合品質はあがらない。そこでレーザ光を強くして接合される部材の温度をあげようとすると反射したレーザ光が周囲に多く飛び散り、周辺の熱に弱い樹脂パッケージ等にダメージを起こしたり、レーザ発振器にレーザが戻り、戻り光でレーザ発振器が破損することがあった。
However, the conventional laser-assisted joining method using an ultrasonic horn has the following problems.
First, the member to be joined is usually a high reflector of a laser such as a copper plate or a gold-plated plate, and since these materials are hardly heated because the laser is almost reflected on the surface, the joining quality by heat does not improve. Therefore, if you try to raise the temperature of the parts to be joined by strengthening the laser light, a lot of reflected laser light will scatter around, causing damage to the surrounding heat-sensitive resin package, etc., or returning the laser to the laser oscillator and returning The laser oscillator may be damaged by light.

また、レーザのみならず高価で大きな超音波ホーンが必要であるため、装置が複雑になるばかりか、摩擦によって加圧部の形状が変化することもあり、接合品質が安定しないという問題も発生していた。   Moreover, since not only a laser but also an expensive and large ultrasonic horn is necessary, not only the apparatus becomes complicated, but also the shape of the pressurizing part may change due to friction, resulting in a problem that the bonding quality is not stable. It was.

そこで、本発明は、上記問題に鑑みて、簡便な構成で、レーザ反射率が高い金メッキや銅などの様々な接合材料をも、高速かつ高品質・高安定に接合することを目的とする。   In view of the above problems, an object of the present invention is to bond various bonding materials such as gold plating and copper having high laser reflectivity with high speed, high quality and high stability with a simple configuration.

上記目的を達成するために、本発明の接合装置は、レーザ光の一部を吸収し、前記レーザ光の残りを透過して第1部材に照射する加圧ツールと、前記第1部材と第2部材とが載置される保持台とを有し、前記第1部材を前記加圧ツールと前記第2部材とで挟みこんだ状態で、前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧することにより、前記第1部材を加熱、加圧して押しつぶし、前記第1部材と前記第2部材との接触面積を拡大した状態で前記第1部材と前記第2部材とを熱拡散接合させることを特徴とする。   In order to achieve the above object, a bonding apparatus according to the present invention absorbs a part of laser light, transmits the remainder of the laser light and irradiates the first member, the first member, and the first member. A holding table on which two members are placed, and the laser beam is transmitted through the pressing tool in a state where the first member is sandwiched between the pressing tool and the second member. While irradiating one member and pressurizing the first member with the pressurizing tool, the first member was heated, pressed and crushed to enlarge the contact area between the first member and the second member. The first member and the second member are heat diffusion bonded in a state.

また、前記加圧ツールの加圧面または前記保持台表面に、予め前記保持台より熱伝導率が低い材料をコートすることが好ましい。
さらに、本発明の接合方法は、保持台上に第2部材を載置し、前記第2部材上に第1部材を載置する工程と、レーザ光の一部を吸収し、前記レーザ光の残りを透過する加圧ツールと前記第2部材とで前記第1部材を挟みこむ工程と、前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧する工程とを有し、前記レーザ光の一部を吸収することにより加熱された前記加圧ツールの熱と圧力により前記第1部材を押しつぶしながら、前記第1部材と前記第2部材とを熱拡散接合させることを特徴とする。
Moreover, it is preferable to coat a material having a lower thermal conductivity than the holding table in advance on the pressing surface of the pressing tool or the surface of the holding table.
Furthermore, the bonding method of the present invention includes a step of placing the second member on the holding table, placing the first member on the second member, absorbing a part of the laser beam, A step of sandwiching the first member between a pressure tool that transmits the remainder and the second member; and irradiating the first member with the laser light through the pressure tool; and Pressurizing the first member, and crushing the first member with heat and pressure of the pressurizing tool heated by absorbing a part of the laser beam, and pressing the first member and the first member The two members are heat diffusion bonded.

また、前記加圧ツールの前記レーザ光の吸収率が10〜40%であることが好ましい。
また、前記第1部材は樹脂がコートされたワイヤであり、前記加熱によって前記樹脂が熱分解した後、前記ワイヤと前記第2部材とを接合することができる。
Moreover, it is preferable that the absorption rate of the said laser beam of the said pressurization tool is 10 to 40%.
The first member is a wire coated with a resin, and the wire and the second member can be joined after the resin is thermally decomposed by the heating.

また、前記加圧ツールの加圧面または前記保持台表面に、前記保持台より熱伝導率が低い材料または前記樹脂がコートされていることが好ましい。
また、前記レーザ光の照射を、前記レーザ光のパワーを徐々に上げるように行うことが好ましい。
また、前記加圧の前に、前記第2部材の前記第1部材に接触する面に対する裏面を加熱することが好ましい。
Moreover, it is preferable that the pressing surface or the holding table surface of the pressing tool is coated with a material having a lower thermal conductivity than the holding table or the resin.
Further, it is preferable that the laser beam irradiation is performed so as to gradually increase the power of the laser beam.
Moreover, it is preferable to heat the back surface with respect to the surface which contacts the said 1st member of the said 2nd member before the said pressurization.

また、前記レーザ光の照射の際に、前記第1部材の加熱部の周囲に不活性ガスを供給することが好ましい。
また、前記第2部材として前記第1部材より融点の低い材料を用い、前記加熱によって前記第2部材のみを融解させ、前記第1部材を前記第2部材に埋め込んで接合しても良い。
Moreover, it is preferable to supply an inert gas around the heating part of the first member during the irradiation of the laser beam.
Alternatively, a material having a lower melting point than the first member may be used as the second member, only the second member is melted by the heating, and the first member may be embedded in the second member and joined.

また、前記第2部材が錫ないし錫合金であり、前記第1部材がワイヤであっても良い。
また、前記第1部材を載置する際に、前記第1部材より融点の低い材料の半田を介して前記第2部材上に前記第1部材を載置し、前記加熱によって前記半田のみを融解させ、前記第1部材を前記半田に埋め込んで接合しても良い。
The second member may be tin or a tin alloy, and the first member may be a wire.
Further, when the first member is placed, the first member is placed on the second member via a solder having a lower melting point than the first member, and only the solder is melted by the heating. The first member may be embedded in the solder and bonded.

また、前記加熱に際し、前記第1部材と前記加圧ツールの界面で発生する前記レーザ光の戻り光も用いても良い。
さらに、本発明の接合体は、前記接合方法で接合された接合体であって、前記第1部材であるワイヤと前記第2部材である金属板とが接合され、前記ワイヤと前記金属板との接合界面における前記ワイヤの表面粗さが、前記ワイヤの加圧面の表面粗さより粗いことを特徴とする。
Further, in the heating, return light of the laser beam generated at the interface between the first member and the pressing tool may be used.
Furthermore, the joined body of the present invention is a joined body joined by the joining method, wherein the wire as the first member and the metal plate as the second member are joined, and the wire and the metal plate are joined together. The surface roughness of the wire at the bonding interface is rougher than the surface roughness of the pressing surface of the wire.

また、前記接合方法で接合された接合体であって、前記第1部材であるワイヤと前記第2部材とが接合され、前記第2部材に埋め込まれた前記ワイヤ表面の一部が前記第2部材から露出しても良い。   Moreover, it is a joined body joined by the joining method, wherein the wire which is the first member and the second member are joined, and a part of the surface of the wire embedded in the second member is the second. You may expose from a member.

レーザ光の吸収により加熱された加圧ツールを用いて、一方の部材を押しつぶしながらレーザ照射し、2つの部材を接合することにより、接合面積を拡大した状態で熱拡散接合をさせることが可能となるため、簡便な構成で、レーザ反射率が高い金メッキや銅などの様々な接合材料をも、高速かつ高品質・高安定に接合することが可能となる。   Using a pressing tool heated by absorption of laser light, laser irradiation is performed while crushing one member, and by joining the two members, it is possible to perform thermal diffusion bonding with the bonding area expanded Therefore, it is possible to bond various bonding materials such as gold plating and copper having high laser reflectivity with high speed, high quality and high stability with a simple configuration.

実施の形態1における接合方法を示す工程断面図Process sectional drawing which shows the joining method in Embodiment 1 実施の形態1の接合方法における接合中の熱伝導を説明する図The figure explaining the heat conduction in joining in the joining method of Embodiment 1 実施の形態1におけるビームモードを説明する図The figure explaining the beam mode in Embodiment 1 実施の形態2における加圧ツールを介したレーザ照射を説明する図The figure explaining the laser irradiation through the pressurization tool in Embodiment 2 実施の形態3における接合方法を示す工程断面図Process sectional drawing which shows the joining method in Embodiment 3 実施の形態4における接合方法を示す工程断面図Process sectional drawing which shows the joining method in Embodiment 4 実施の形態5における接合体の構成を説明する図FIG. 6 illustrates a structure of a joined body in Embodiment 5. 実施の形態6における接合体の構成を説明する図FIG. 6 illustrates a structure of a joined body in Embodiment 6. 従来の接合方法および接合装置を説明する概略断面図Schematic sectional view for explaining a conventional joining method and joining apparatus

まず、発明の要点について説明する。
本発明に係わる接合方法は、第1部材と第2部材とを接合する際に、レーザ光を10〜40%吸収して発熱する熱伝導性の良いセラミック系加圧部材と銅板等の第2部材とで銅ワイヤ等の第1部材を挟み込んだ状態で、加圧部材にレーザを照射して、加圧部材を通過したレーザ光によって、第1部材と第2部材を加熱すると同時に、レーザ光で加圧部材を加熱し、加圧部材からの伝熱で第1部材を加熱して軟化させた上で加圧することにより、第1部材を扁平状に変形させ、第1部材と第2部材の接触面積を増加させて接合するものである。
First, the main points of the invention will be described.
In the joining method according to the present invention, when joining the first member and the second member, a ceramic pressure member that absorbs 10 to 40% of the laser light and generates heat and a second material such as a copper plate are used. In a state where the first member such as a copper wire is sandwiched between the members, the pressing member is irradiated with laser, and the first member and the second member are heated by the laser beam that has passed through the pressing member, and at the same time, the laser beam The pressure member is heated by heating, the first member is heated and softened by heat transfer from the pressure member, and then pressurized, thereby deforming the first member into a flat shape, and the first member and the second member The contact area is increased for bonding.

これにより、加圧部材からの伝熱で第1部材を加熱することにより第1部材を軟化させた状態で第1部材を加圧して扁平状に変形させることで、第1部材と第2部材の接触面積が増加するので、第2部材への熱伝導量を増やすことができ、第1部材と第2部材とを強固に熱拡散接合させることができ、強固で安定した高品質の接合が実現できる。   Thus, the first member is heated and deformed into a flat shape by pressing the first member while the first member is softened by heating the first member by heat transfer from the pressure member. Since the contact area of the second member increases, the amount of heat conduction to the second member can be increased, the first member and the second member can be strongly heat diffusion bonded, and a strong and stable high-quality bonding can be achieved. realizable.

この時、銅ワイヤ等の第1部材が扁平状に変形して第2部材への熱伝導が増加すると共に、通過したレーザ光を95%以上反射する銅を第1部材として用いる場合には、接合界面におけるレーザ光反射にて、加圧部材の加圧面を再加熱する構成とすることもできる。   At this time, when the first member such as a copper wire is deformed into a flat shape and heat conduction to the second member is increased, and copper that reflects 95% or more of the laser beam that has passed is used as the first member, It can also be set as the structure which reheats the pressurization surface of a pressurization member by the laser beam reflection in a joining interface.

この構成により、第2部材への熱伝導による放熱効果を補い安定した接合が可能となる。また、レーザを一部通過する加圧部材は通過しながらレーザパワーが減衰するため、どうしても加圧面での温度上昇が低下するが、これを補ういわゆるダブルパス加熱となり、セラミック系加圧部材の熱勾配による歪を減らし長寿命化させることにより、接合品質を長期に渡り安定させることができる。   With this configuration, the heat dissipation effect due to heat conduction to the second member is compensated and stable bonding is possible. In addition, since the laser power attenuates while passing through the pressure member that partially passes the laser, the temperature rise on the pressure surface inevitably decreases, but so-called double-pass heating compensates for this, and the thermal gradient of the ceramic pressure member By reducing the strain caused by this and extending the service life, the bonding quality can be stabilized over a long period of time.

また、第1部材として樹脂コートされた銅ワイヤを用いることができ、レーザ光を吸収して発熱する加圧部材からの加熱によりコートされた樹脂が熱分解した後、ワイヤと第2部材とを接合する。   Also, a resin-coated copper wire can be used as the first member. After the resin coated by heating from the pressure member that absorbs laser light and generates heat, the wire and the second member are bonded together. Join.

この場合、ポリウレタン線やエナメル線の被覆をレーザ部分吸収により発熱したセラミック系加圧部材からの熱伝導と熱線、更に通過したレーザ光により、コートされた樹脂を一気に気化させ、樹脂こげがないピュアな銅線をむきださせ品質の高い安定した接合ができる。   In this case, the coated resin is vaporized at a stretch by heat conduction and heat rays from the ceramic pressure member that generated heat by the partial absorption of the polyurethane wire or enamel wire, and the laser beam that passed therethrough, and there is no pure resin. Strips of copper wire and enables high quality and stable bonding.

また、加圧部材の加圧面または、第2部材を支える保持台表面に、接合部の温度が周囲に逃げる事を防ぎ、接合部の温度が高熱になるように、熱伝導率が低い材料または、樹脂コートされたワイヤと同質の樹脂を予めコートすることも可能である。   Further, a material having a low thermal conductivity or a material having a low thermal conductivity so as to prevent the temperature of the joint from escaping to the surroundings on the pressure surface of the pressure member or the holding table surface supporting the second member, It is also possible to pre-coat a resin having the same quality as the resin-coated wire.

加圧を受ける第2部材の保持表面を、予めポリウレタン等が気化した樹脂と同じ樹脂コート等の低熱伝導体でコートすることにより、第2部材の熱が奪われることを抑制し、強固で安定した接合品質が維持できる。   By coating the holding surface of the second member under pressure with a low thermal conductor such as the same resin coat as the resin that has been vaporized in advance, the heat of the second member is suppressed and is strong and stable. The bonded quality can be maintained.

また、加圧部材へレーザ光を照射する時のレーザパワーにおいて、加熱部材の熱伝導時間に合わせて、時間が許せる限り全体が均質な温度になるように徐々にレーザパワーをあげる等、第1部材の加圧部材による変形開始前の第1のレーザパワーより、変形開始後の第2のレーザパワーの方が大きくしても良い。   Further, in the laser power when irradiating the pressure member with the laser beam, the laser power is gradually increased so that the entire temperature becomes a uniform temperature as long as the time permits, according to the heat conduction time of the heating member. The second laser power after the start of deformation may be larger than the first laser power before the start of deformation by the pressure member of the member.

レーザパワーを徐々にあげていくことにより、加圧部材がレーザ光出口側へ熱伝導するのに必要な時間を確保することができ、レーザ光入口側との極端な温度差を防止すると共に、加圧部材から第1部材に放熱していくことにより、加圧部材のレーザ光入口面での急激な温度上昇による溶融を防止できるので安定した接合品質が維持できる。   By gradually increasing the laser power, it is possible to secure the time required for the pressure member to conduct heat to the laser light exit side, while preventing an extreme temperature difference from the laser light entrance side, By dissipating heat from the pressure member to the first member, melting due to a rapid temperature rise at the laser light entrance surface of the pressure member can be prevented, so that stable bonding quality can be maintained.

また、第1部材が第2部材を加熱してから接合界面の温度が接合に必要な温度に達する時間を短縮するために、予め第2部材の第1部材に接触する面と反対の面をレーザやヒータ等で加熱することも可能である。   In addition, in order to shorten the time for the temperature of the bonding interface to reach the temperature required for bonding after the first member heats the second member, a surface opposite to the surface of the second member that contacts the first member in advance is provided. Heating with a laser, a heater or the like is also possible.

第1部材に対し、第2部材が遥かに大きくて、第1部材からの伝熱による加熱だけでは、熱拡散接合を起こすのに必要な温度が得られない場合でも、第2部材をアシスト加熱することにより強固で高品質な接合が維持できる。   Even if the second member is much larger than the first member and the temperature required to cause thermal diffusion bonding cannot be obtained only by heating by heat transfer from the first member, the second member is assisted heated. By doing so, it is possible to maintain strong and high-quality bonding.

さらに、加圧部材を通過したレーザ光によって加熱される第1部材の加熱部の周囲に不活性ガスを供給することもできる。
加圧部材のレーザ受光面に窒素ガス等の不活性ガスをふきつけることにより、セラミックの酸化を防止して長寿命化するばかりでなく、レーザ部分透過型のセラミックといえども、レーザ受光面が最も高熱になるので、その高熱部を不活性ガスで冷却でき、また溶融防止でき、さらにセラミック系加圧部材のレーザ出入口の温度勾配を減らすことができるので、熱疲労を削減でき長期に渡り安定した接合品質が維持できる。
Furthermore, an inert gas can also be supplied around the heating portion of the first member that is heated by the laser light that has passed through the pressure member.
By spraying an inert gas such as nitrogen gas on the laser light receiving surface of the pressure member, the laser light receiving surface not only prevents the oxidation of the ceramic and prolongs its life, but even a laser partially transmissive ceramic has a Because it becomes the highest temperature, the hot part can be cooled with inert gas, can be prevented from melting, and the temperature gradient at the laser inlet / outlet of the ceramic pressure member can be reduced, reducing thermal fatigue and stable for a long time The bonded quality can be maintained.

上述した接合方法で接合された第1部材であるワイヤと第2部材である金属板とを接合した接合体であって、ワイヤの加圧変形部の表面あらさが、レーザ光による熱影響を受け、非加圧部の表面あらさより荒い接合体とする。   A joined body in which a wire as a first member and a metal plate as a second member joined by the joining method described above are joined, and the surface roughness of the pressurizing deformed portion of the wire is affected by the thermal effect of the laser beam. The joined body is rougher than the surface roughness of the non-pressurized part.

このような接合体によると、ワイヤがレーザ光を一部吸収して加熱された加圧部材にて押しあてられることで形成されたエッジにより、透過したレーザ光の集光効果で、押し当てられて形成されたエッジ部の曲率が加圧部材より大きくなるか、表面荒さが小さくなることにより、接合体自体の引張強度が高くなり、高い接合品質が得られる。   According to such a joined body, the wire is pressed by the condensing effect of the transmitted laser light by the edge formed by being pressed by a heated pressure member that partially absorbs the laser light. When the curvature of the edge portion formed in this way is larger than that of the pressure member or the surface roughness is reduced, the tensile strength of the joined body itself is increased, and high joining quality is obtained.

また、加圧部材からの伝熱で第1部材を加熱し、第1部材より融点が低い第2部材を軟化させて第1部材を第2部材に埋め込むように接合しても良い。
レーザ光を一部吸収する加圧部材と半田等の第2部材とでリード線等の第1部材を挟み込み、加熱部材にレーザを照射して、加圧部材を通過したレーザ光によって、第1部材と第2部材を加熱すると同時に、レーザ光で加圧部材を加熱し、加圧部材からの伝熱で第1部材を加熱し、第1部材であるリード線より融点が低い半田等の第2部材を軟化させて第1部材を第2部材に埋め込んでいくことにより、接触不良の無い高い品質の接合ができる。
Alternatively, the first member may be heated by heat transfer from the pressure member, and the second member having a melting point lower than that of the first member may be softened so that the first member is embedded in the second member.
A first member such as a lead wire is sandwiched between a pressure member that partially absorbs the laser light and a second member such as solder, the laser is irradiated to the heating member, and the first light is irradiated by the laser light that has passed through the pressure member. At the same time as heating the member and the second member, the pressure member is heated with laser light, the first member is heated by heat transfer from the pressure member, and the first member such as solder having a melting point lower than that of the lead wire as the first member. By softening the two members and embedding the first member in the second member, high-quality joining without contact failure can be achieved.

この時、第2部材として半田等の錫ないし錫合金を用い、第1部材としてポリウレタン等で被膜された銅ワイヤ等のリード線を用い、被膜分解温度まで第2部材を第1部材からの伝熱で昇温させても良い。   At this time, tin or a tin alloy such as solder is used as the second member, and a lead wire such as copper wire coated with polyurethane or the like is used as the first member, and the second member is transmitted from the first member to the coating decomposition temperature. The temperature may be raised with heat.

また、第2部材が錫ないし半田であり、第1部材がポリウレタン等被覆されたリード線であって、第2部材を加圧部材からの熱伝導と通過レーザ光よりポリウレタン等の被覆材の融点より高く加熱しすることにより、被覆が剥げ、表面酸化があまり進んでいない銅線を半田内に埋め込むことにより接触不良の無い高い品質の接合ができる。   Further, the second member is tin or solder, the first member is a lead wire coated with polyurethane, etc., and the second member is heated from the pressure member and the melting point of the coating material such as polyurethane from the passing laser beam. By heating higher, a high quality joint without contact failure can be achieved by embedding a copper wire in which the coating is peeled off and the surface oxidation is not so advanced.

上述した接合方法で接合された第1部材であるワイヤと第2部材とを接合した接合体であって、第2部材に埋め込まれたワイヤ表面の一部が、第1部材に接触しながら押されて第2部材に埋め込まれる為、第1部材の一部が外部に露出している接合体とすることも可能である。   A joined body obtained by joining the wire, which is the first member joined by the joining method described above, and the second member, and a part of the surface of the wire embedded in the second member is pressed while contacting the first member. Since it is embedded in the second member, it is possible to make a joined body in which a part of the first member is exposed to the outside.

前記第2の接合方法で接合された第1部材であるワイヤと第2部材との接合体であって、被接合体が錫ないし錫合金であり、ワイヤが塑性変形せずに接合または、被接合体に埋め込まれ、加圧部材の表面形状が転写されるので、外観検査により、埋め込みや被覆の剥離等が確認でき、高い接合品質を外観で確認できる。   A joined body of a wire, which is a first member joined by the second joining method, and a second member, wherein the joined body is tin or a tin alloy, and the wire is joined or joined without plastic deformation. Since it is embedded in the joined body and the surface shape of the pressure member is transferred, it is possible to confirm the embedding, the peeling of the coating, and the like by the appearance inspection, and the high joining quality can be confirmed from the appearance.

以下、図面を用いて本発明の各実施の形態について説明する。
本発明は、2つの部材を接合する際に、レーザ光を一部透過し、一部を吸収する加圧ツールを用い、第1の部材を加圧ツールと第2の部材とで挟みこんで圧力を加えながら、加圧ツールを介して部材にレーザ光を照射することにより、レーザ光の吸収により加圧ツールが加熱され、加圧ツールからの圧力と熱とにより第1の部材を押しつぶすことにより、第1の部材と第2の部材との接触面積を拡大した状態で、レーザ光の照射による発熱を加えて、第1の部材と第2の部材とを熱拡散接合するものである。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, when joining two members, a pressure tool that partially transmits laser light and absorbs a part is used, and the first member is sandwiched between the pressure tool and the second member. By irradiating a member with a laser beam through a pressing tool while applying pressure, the pressing tool is heated by absorption of the laser beam, and the first member is crushed by the pressure and heat from the pressing tool. Thus, in the state where the contact area between the first member and the second member is enlarged, heat is generated by laser light irradiation, and the first member and the second member are bonded by thermal diffusion.

以下の各実施の形態では、銅線と銅板、あるいはフレキ基板のランドどうしの接合等を例に、様々な部材を接合する本発明の接合方法等を説明する。
(実施の形態1)
以下まず、図1〜図3を用いて、実施の形態1について説明する。
In each of the following embodiments, the joining method of the present invention for joining various members will be described, taking as an example the joining of copper wires and copper plates, or lands of a flexible substrate.
(Embodiment 1)
The first embodiment will be described below with reference to FIGS.

図1は実施の形態1における接合方法を示す工程断面図、図2は実施の形態1の接合方法における接合中の熱伝導を説明する図、図3は実施の形態1におけるビームモードを説明する図である。   FIG. 1 is a process cross-sectional view illustrating a bonding method according to the first embodiment, FIG. 2 is a diagram illustrating heat conduction during bonding in the bonding method according to the first embodiment, and FIG. 3 illustrates a beam mode according to the first embodiment. FIG.

本実施の形態における接合方法では、図1に示すように、レーザ光1を一部吸収する加圧ツール2と銅板3でポリウレタン線4を挟み込み、加圧ツール2にレーザ光1を照射して、加圧ツール2を通過したレーザ光6によって、ポリウレタン線4と銅板3を加熱すると同時に、レーザ光1で加圧ツール2を加熱し、加圧ツール2からの伝熱でポリウレタン線4を加熱変形させながら、ポリウレタン被覆7を溶融・気化させて表面が酸化されていない銅線8をむきださせ、銅線8を加圧と加熱により扁平させて銅板3との接触面積を増加させ、銅線8と銅板3を熱拡散接合している。このように、銅線8や銅板3がレーザ光1をほとんど反射するとしても、加圧ツール2がレーザ光1の一部を吸収して加熱されるので、照射されるレーザ光1と加圧ルール2からの熱により、銅線8が十分に高温となり、容易な方法で、熱拡散結合に必要な温度に銅線8を熱することができる。同時に、加圧ツール2によって銅線8を加圧するので、高温で軟化した銅線8を扁平状に変形させることができ、銅線8と銅板3との接合面積を向上させることができ、容易に接合強度を向上させることができる。   In the joining method in the present embodiment, as shown in FIG. 1, a polyurethane wire 4 is sandwiched between a pressing tool 2 that partially absorbs laser light 1 and a copper plate 3, and the pressing tool 2 is irradiated with the laser light 1. The polyurethane wire 4 and the copper plate 3 are heated by the laser beam 6 that has passed through the pressing tool 2, and at the same time, the pressing tool 2 is heated by the laser beam 1, and the polyurethane wire 4 is heated by heat transfer from the pressing tool 2. While deforming, the polyurethane coating 7 is melted and vaporized to expose the copper wire 8 whose surface is not oxidized, and the copper wire 8 is flattened by pressing and heating to increase the contact area with the copper plate 3. The wire 8 and the copper plate 3 are joined by thermal diffusion bonding. Thus, even if the copper wire 8 or the copper plate 3 reflects the laser beam 1 almost, the pressing tool 2 absorbs a part of the laser beam 1 and is heated, so that the irradiated laser beam 1 and the pressurization are pressed. The copper wire 8 is heated to a sufficiently high temperature by the heat from the rule 2, and the copper wire 8 can be heated to a temperature necessary for thermal diffusion bonding by an easy method. At the same time, since the copper wire 8 is pressed by the pressing tool 2, the copper wire 8 softened at a high temperature can be deformed into a flat shape, and the bonding area between the copper wire 8 and the copper plate 3 can be improved easily. In addition, the bonding strength can be improved.

なお、5は加圧ツール2からの加圧力を受ける保持台である。
ここで、加圧ツール2として、レーザ光を部分吸収するセラミックスを材料として用いることができ、セラミック材料としてはレーザの吸収率が10〜40%になる配合が適しており、ツールのサイズや形状により最適な吸収率は変わり、加圧対象からの戻り光を加味して、全体が出来るだけ均質に加熱できるように最適な設計パラメータとして吸収率を定める。
Reference numeral 5 denotes a holding table that receives pressure from the pressing tool 2.
Here, as the pressurizing tool 2, ceramics that partially absorb laser light can be used as a material, and as the ceramic material, a blending with a laser absorption rate of 10 to 40% is suitable, and the size and shape of the tool Thus, the optimum absorption rate changes, and the absorption rate is determined as the optimum design parameter so that the whole can be heated as homogeneously as possible by taking the return light from the object to be pressurized into account.

以下、接合工程を図1(a)から図1(d)を用いて説明する。
図1(a)は加圧状態でレーザ照射開始時の図である。通常のセラミックではレーザ照射面9でレーザ光1の大半を吸収ないし反射するが、加圧ツール2はレーザ光1を部分的にしか吸収しない。従って、加圧面10までレーザ光1の例えば半分以上が通過し全体を加熱できるので加圧面10を1000℃以上等の高温にすることができる。また、ポリウレタン線4の周囲の銅板3も少し加熱される。
Hereinafter, the bonding process will be described with reference to FIGS. 1 (a) to 1 (d).
FIG. 1A is a diagram at the start of laser irradiation in a pressurized state. In ordinary ceramics, the laser irradiation surface 9 absorbs or reflects most of the laser light 1, but the pressing tool 2 only partially absorbs the laser light 1. Therefore, for example, more than half of the laser beam 1 passes to the pressing surface 10 and the whole can be heated, so that the pressing surface 10 can be heated to a high temperature such as 1000 ° C. or more. In addition, the copper plate 3 around the polyurethane wire 4 is also slightly heated.

本実施の形態では銅線8の融点近くまで加圧ツール2の加圧面10が加熱されるため、銅線8が熱と圧力により変形を開始する。
図1(b)では、ポリウレタン線4が変形する途中で、被膜7が溶融・気化し、銅線8がむき出しになる。その状態で加熱が進行するので、直接銅板3が加熱される。
In the present embodiment, since the pressing surface 10 of the pressing tool 2 is heated to near the melting point of the copper wire 8, the copper wire 8 starts to be deformed by heat and pressure.
In FIG. 1B, the coating 7 is melted and vaporized while the polyurethane wire 4 is deformed, and the copper wire 8 is exposed. Since the heating proceeds in this state, the copper plate 3 is directly heated.

図1(c)に示すように、更なるレーザ光1照射で銅線8は温度上昇し、軟化点を超え扁平体11になり、銅板3との接触面積12が増加して熱抵抗が減り、銅板3が効率良く加熱され銅板3の接合界面13も扁平体11と同等な温度まで上昇する。   As shown in FIG. 1 (c), the temperature of the copper wire 8 rises as a result of further irradiation with the laser beam 1, becomes a flat body 11 beyond the softening point, increases the contact area 12 with the copper plate 3, and reduces the thermal resistance. The copper plate 3 is efficiently heated, and the bonding interface 13 of the copper plate 3 rises to a temperature equivalent to that of the flat body 11.

最後に、図1(d)にて接合界面13における銅線8と銅板3とが共に融点に近くなると熱拡散接合起きる。このように、図1(b)から熱拡散接合が開始し、図1(d)にて熱拡散接合が完了している。   Finally, when both the copper wire 8 and the copper plate 3 at the bonding interface 13 are close to the melting point in FIG. Thus, the thermal diffusion bonding starts from FIG. 1B, and the thermal diffusion bonding is completed in FIG.

なお、熱拡散接合を起こすには、扁平体11と銅板3との接合界面13で銅原子が相互に熱拡散移動を起こして一体化させる為に高圧を印加することが必要である。そして、銅線8および銅板3の表面には凹凸形成されているが、凹凸の凸部どうしが接触し、その接触部には高圧が印加されるので共に変形して一体化する為、接触部で熱拡散接合が起きる。   In order to cause thermal diffusion bonding, it is necessary to apply a high pressure in order for copper atoms to cause thermal diffusion movement and integration at the bonding interface 13 between the flat body 11 and the copper plate 3. And although the unevenness | corrugation is formed in the surface of the copper wire 8 and the copper plate 3, since the uneven | corrugated convex part contacts and the high voltage is applied to the contact part, since it deform | transforms and integrates together, a contact part Thermal diffusion bonding occurs.

ここで、保持台5に熱が奪われると、銅板3の接合界面13の温度が銅の融点近くまで上昇せず極端に接合強度が低下するので、保持台5には予めポリウレタンコート等断熱材14をコートしておく方が好適である。   Here, when the holding table 5 is deprived of heat, the temperature of the bonding interface 13 of the copper plate 3 does not rise to near the melting point of copper and the bonding strength is extremely lowered. It is preferable to coat 14.

なお、保持台5も予め加熱しておくと、銅板3も熱拡散接合を起こすのに必要な温度に達しやすくなり、より良好な接合が早くできるのは自明である。
また、加圧ツール2を長時間高温条件下にさらすと加圧ツール2の劣化が促進される。そこで、本接合工程においてポリウレタン線4と銅板3の温度上昇に時間を要するので、レーザ1のパワーを徐々に上げていくことが可能となり、加熱ツール1のレーザ照射面9と加圧面10との温度勾配を小さくすることができ、加圧ツール2のレーザ照射面9の温度上昇を抑えることができるので加熱ツール2の長寿命化がはかれる。図において、図1(a)〜(d)に行くにつれレーザ1を濃く示しており、この濃さはレーザパワー強度Ptの変化を示している。
It is obvious that if the holding table 5 is also heated in advance, the copper plate 3 is likely to reach a temperature necessary for causing the thermal diffusion bonding, and a better bonding can be performed quickly.
Further, when the pressure tool 2 is exposed to a high temperature condition for a long time, the deterioration of the pressure tool 2 is promoted. Therefore, since it takes time to raise the temperature of the polyurethane wire 4 and the copper plate 3 in the main joining process, the power of the laser 1 can be gradually increased, and the laser irradiation surface 9 and the pressure surface 10 of the heating tool 1 can be increased. Since the temperature gradient can be reduced and the temperature rise of the laser irradiation surface 9 of the pressurizing tool 2 can be suppressed, the life of the heating tool 2 can be extended. In the figure, the laser 1 is shown darker as it goes to FIGS. 1A to 1D, and this darkness shows the change in the laser power intensity Pt.

また、加圧ツール2に照射するレーザ1の照射面9におけるビームモードとして、レーザ強度Pが照射面9の中心に行く程強くなるガウシアンモード(図2(a))、レーザ強度Pが均一なトップハット(図2(b))、あるいは、中心部のレーザ強度Pが低くなるドーナッツ状(図2(c))等を用いることが可能である。この中で、中心部のレーザ強度Pが低いドーナッツ状のビームモードを用いると、照射面9の中心部分の温度の上昇が抑制され、加圧ツール2の寿命を長くすることができ、好適である。   Further, as a beam mode on the irradiation surface 9 of the laser 1 that irradiates the pressurizing tool 2, a Gaussian mode (FIG. 2A) in which the laser intensity P increases toward the center of the irradiation surface 9, and the laser intensity P is uniform. It is possible to use a top hat (FIG. 2 (b)), or a donut shape (FIG. 2 (c)) in which the laser intensity P at the center is low. Among these, use of a donut-shaped beam mode with a low laser intensity P at the center part is preferable because the temperature rise at the center part of the irradiation surface 9 is suppressed and the life of the pressing tool 2 can be extended. is there.

なお、レーザ1の照射幅NAは加圧面10の最も長い部分の長さとほぼ同じになるように調整するのが効率良く、側面からのレーザ漏れを少なくできるので、周辺の樹脂等のダメージを起こしにくく好適である。   In addition, it is efficient to adjust the irradiation width NA of the laser 1 so as to be almost the same as the length of the longest portion of the pressure surface 10, and laser leakage from the side surface can be reduced. It is difficult and suitable.

ここで、銅線8がポリウレタン線4である場合を例に説明したが、被膜7を形成しない銅線であっても本発明の接合方法および接合装置を同様に適応することが可能である。また、以下の各実施の形態においても同様である。   Here, the case where the copper wire 8 is the polyurethane wire 4 has been described as an example, but the joining method and joining device of the present invention can be similarly applied even to a copper wire that does not form the coating 7. The same applies to the following embodiments.

図3はポリウレタン線4と銅板3との接合における生産開始時と安定生産時の熱伝導の状態変化を示す。
図3(a)は生産開始時であり、被接合部材が銅の場合は、銅のレーザの反射率が95%以上あるため、銅ワイヤ20からの反射レーザ光により主に加圧ツール2からの熱伝導で扁平された銅ワイヤ20の加圧受け面16が加熱され、更に扁平された銅ワイヤ20の熱伝導で銅板3の表面17が融点近くまで加熱されて熱拡散接合が起きるが、この時、保持台5に熱を奪われることになり、レーザ1のパワーをあげ、より高温に加熱ツール2の温度をあげる必要がある。
FIG. 3 shows a change in the state of heat conduction at the start of production and stable production in joining the polyurethane wire 4 and the copper plate 3.
FIG. 3A shows the start of production. When the member to be joined is copper, the reflectance of the copper laser is 95% or more, so the reflected laser light from the copper wire 20 is mainly used from the pressurizing tool 2. Although the pressure receiving surface 16 of the flattened copper wire 20 is heated by the heat conduction, and the surface 17 of the copper plate 3 is heated to near the melting point by the heat conduction of the flattened copper wire 20, the thermal diffusion bonding occurs. At this time, the holder 5 is deprived of heat, and it is necessary to increase the power of the laser 1 and raise the temperature of the heating tool 2 to a higher temperature.

図3(b)に示すような安定生産にはいった状態でも、ポリウレタン被膜7(図1参照)が気化し、気化したポリウレタン蒸気である気化物34が拡散して、加圧ツール2や保持台5に付着していき、接合品質が変化する懸念がある。そのため、図3(c)に示すように、加圧ツール2に付着したポリウレタン19を所定ショット毎にペーパを自動的にかけることで除去し、接合品質を安定化することが好ましい。さらに、保持台5に付着したポリウレタン層は銅板3との断熱材14として作用するため、接合温度の低化を抑制でき、生産開始して100ショットを超えるあたりから、接合強度が一段と高くなり、より安定することが観察された。よって、保持台5あるいは加圧ツール2は新品時から予めポリウレタンやシリコン等の保持台5より熱伝導率の低い材料をコートすることが好適である。   Even in a state of stable production as shown in FIG. 3 (b), the polyurethane coating 7 (see FIG. 1) is vaporized, and the vaporized material 34, which is vaporized polyurethane vapor, diffuses to form the pressurizing tool 2 and the holding base. There is a concern that the bonding quality will change. Therefore, as shown in FIG. 3C, it is preferable to remove the polyurethane 19 attached to the pressing tool 2 by automatically applying paper every predetermined shot to stabilize the joining quality. Furthermore, since the polyurethane layer adhered to the holding base 5 acts as a heat insulating material 14 with the copper plate 3, it is possible to suppress a decrease in the bonding temperature, and since the production starts and exceeds 100 shots, the bonding strength is further increased. It was observed to be more stable. Therefore, it is preferable to coat the holding table 5 or the pressurizing tool 2 with a material having a lower thermal conductivity than the holding table 5 such as polyurethane or silicon in advance from the time of a new article.

なお、加圧ツール2はペーパかけで先端がすり減る心配があったが、ポリウレタン層19が残る状態で自動的にペーパかけをすることにより、摩耗なく殆どメンテフリーにできる。尚、ポリウレタン層19はレーザ光を殆ど透過するので、通過したレーザ光の影響の変化は殆どない。   Although there was a concern that the tip of the pressurizing tool 2 was worn away by paper application, by automatically applying paper while the polyurethane layer 19 remains, it can be made almost maintenance-free without wear. Since the polyurethane layer 19 transmits almost all laser light, there is almost no change in the influence of the passed laser light.

また、加圧ツール2のレーザ受光面27の酸化による劣化を防止するために、不活性ガスをレーザ受光面27に吹きつけながらレーザ照射することが好適である。
(実施の形態2)
次に、図4を用いて実施の形態2の接合方法および接合装置について説明する。
In order to prevent the laser light receiving surface 27 of the pressurizing tool 2 from being deteriorated due to oxidation, it is preferable to perform laser irradiation while blowing an inert gas onto the laser light receiving surface 27.
(Embodiment 2)
Next, the joining method and joining apparatus of Embodiment 2 are demonstrated using FIG.

図4は実施の形態2における加圧ツールを介したレーザ照射を説明する図である。
図4(a)は加圧ツール2の1実施例の具体形状である。レーザ1を効率良く受光する為に、レーザスポット24より大きな受光面には加熱ツール2を保持する為のツバ25を有し、レーザ1の透過部より少し大きな光導波路22を途中に形成することで、光ファイバのように壁面反射される為、加圧面10以外の周囲23へのレーザ漏れを殆どなくし、周囲の樹脂等へのレーザによるダメージをなくしている。
FIG. 4 is a diagram for explaining laser irradiation through the pressurizing tool in the second embodiment.
FIG. 4A shows a specific shape of one embodiment of the pressure tool 2. In order to receive the laser 1 efficiently, a light receiving surface larger than the laser spot 24 has a flange 25 for holding the heating tool 2 and an optical waveguide 22 slightly larger than the transmission part of the laser 1 is formed in the middle. Thus, since the light is reflected on the wall surface like an optical fiber, laser leakage to the surroundings 23 other than the pressing surface 10 is almost eliminated, and damage to the surrounding resin and the like by the laser is eliminated.

図4(b)は加圧ツール2を通過したレーザ光は、通常の加工に用いる近赤外の800nm〜1100nmでは銅板表面で98%近く反射される為、扁平体11になった銅線8と銅板3からの反射で殆どのレーザ光が戻り、加圧ツール2の加圧面10を戻りレーザ光26で再レーザ加熱することになり、発熱量が倍近くに増加して効率良く加熱できることを示している。   FIG. 4 (b) shows that the laser beam that has passed through the pressing tool 2 is reflected by the surface of the copper plate in the near-infrared range of 800 nm to 1100 nm, which is used for normal processing, by nearly 98%. Most of the laser light is returned by reflection from the copper plate 3 and the pressing surface 10 of the pressurizing tool 2 is returned and re-laser heated by the laser light 26, so that the amount of generated heat increases nearly twice and can be heated efficiently. Show.

図4(c)、(d)のP−Xグラフはツバ5からレーザ照射方向への位置X(mm)におけるレーザ吸収量P(W)の変化を示しており、図4(d)のA部は戻りレーザ光26によりレーザ吸収量P(W)が増加していることを示す。   PX graphs in FIGS. 4C and 4D show changes in the laser absorption amount P (W) at the position X (mm) from the flange 5 in the laser irradiation direction. The part indicates that the laser absorption amount P (W) is increased by the return laser beam 26.

このようにレーザ光1は戻り光の多くは加圧ツール2に吸収されて再加熱に使われるので、周辺に漏れるレーザ光は極めて小さくなり、特殊なレーザ安全カバーを設けなくてもJIS6802:2005のCLASS1M等のレーザ安全基準を容易に満足させることができる。   As described above, since most of the return light is absorbed by the pressurizing tool 2 and used for reheating, the laser light leaking to the periphery becomes extremely small, and JIS 6802: 2005 is provided without providing a special laser safety cover. Laser safety standards such as CLASS1M can be easily satisfied.

なお、ピンフォトダイオード28でレーザ漏れ29を常時監視しておき、万一、加圧ツール2が破損してレーザ光が漏れた場合は、レーザ安全レベルを超える前にレーザを停止するようにすることも可能である。
(実施の形態3)
次に図5を用いて実施の形態3の接合方法について説明する。
The laser leakage 29 is constantly monitored by the pin photodiode 28. If the pressurizing tool 2 is broken and the laser beam leaks, the laser is stopped before the laser safety level is exceeded. It is also possible.
(Embodiment 3)
Next, the joining method of Embodiment 3 is demonstrated using FIG.

図5は実施の形態3における接合方法を示す工程断面図である。
図5は、上記各実施の形態において、レーザ光1を一部吸収する加圧ツール2と基板30のランド31とでプリコート半田32とポリウレタン線4を挟み込み、加圧ツール2にレーザ光1を照射して、加圧ツール2を通過したレーザ光6によって、ポリウレタン銅線4とプリコート半田32を加熱してポリウレタン被膜7を溶融物33と気化物34に分解させると共に、レーザ光1で加圧ツール2を加熱し、加圧ツール2を介して銅線8とプリコート半田32を加熱してポリウレタン被膜7を完全に除去し、銅線8より融点が低いプリコート半田32を軟化・溶融させて銅線8をそのままの形状でプリコート半田32に埋め込んでいく接合方法を示す。
FIG. 5 is a process cross-sectional view illustrating the bonding method according to the third embodiment.
In FIG. 5, in each of the above embodiments, the precoat solder 32 and the polyurethane wire 4 are sandwiched between the pressure tool 2 that partially absorbs the laser light 1 and the land 31 of the substrate 30, and the laser light 1 is applied to the pressure tool 2. The polyurethane copper wire 4 and the precoat solder 32 are heated by the laser beam 6 that has been irradiated and passed through the pressurizing tool 2 to decompose the polyurethane coating 7 into a melt 33 and a vaporized product 34, and pressurize with the laser beam 1. The tool 2 is heated, the copper wire 8 and the precoat solder 32 are heated via the pressurizing tool 2 to completely remove the polyurethane film 7, and the precoat solder 32 having a melting point lower than that of the copper wire 8 is softened and melted to obtain copper. A joining method in which the wire 8 is embedded in the precoat solder 32 in the same shape is shown.

図5(a)は加圧とレーザ照射を開始した時の図であり、図5(b)の様に加圧・レーザ照射が進むにつれ、ポリウレタン被膜7は溶融物33と気化物34に分解していきながら、剥きだされた銅線8が軟化を始めたプリコート半田35にくい込み始める。   FIG. 5A is a diagram when pressurization and laser irradiation are started. As shown in FIG. 5B, as the pressurization / laser irradiation proceeds, the polyurethane film 7 is decomposed into a melt 33 and a vaporized product 34. Then, the stripped copper wire 8 begins to be hard to be hardened with the pre-coated solder 35 which has started to soften.

図5(c)は、ポリウレタン被膜7が完全に除去されて銅線8が剥きだしになり、半田融点より十分に温度が高い状態に加熱された状態で、表面酸化が余り進んでいない銅線8が溶融半田36内に埋め込まれた状態を示す。この時、銅と半田は合金接合をしている。   FIG. 5 (c) shows a copper wire in which the surface of the polyurethane film 7 is not sufficiently advanced in a state where the polyurethane film 7 is completely removed and the copper wire 8 is exposed and heated to a temperature sufficiently higher than the solder melting point. 8 shows a state of being embedded in the molten solder 36. At this time, copper and solder are alloyed.

図5(d)はレーザ光1の照射を終え、加圧ツール2を戻した状態であり、この状態で、プリコート半田35は加圧ツール形状が転写された形状を有する固化半田37になる。この時、埋め込まれた銅線38の加圧された表面が外から見えるので、ポリウレタン被膜7が剥離しているかをX線断面検査しなくても外観検査できるので高品質の接合の維持確認ができる。   FIG. 5D shows a state where the irradiation of the laser beam 1 is finished and the pressing tool 2 is returned. In this state, the precoat solder 35 becomes a solidified solder 37 having a shape to which the pressing tool shape is transferred. At this time, since the pressurized surface of the embedded copper wire 38 can be seen from the outside, it is possible to inspect the appearance of the polyurethane film 7 without peeling, without checking the X-ray cross section, so that high quality bonding can be maintained. it can.

なお、加圧ツール2を戻し始めた時にもレーザ照射しつづけることにより、通過したレーザ光で表面を再半田溶融して埋め込まれた銅線38を半田で覆い隠すこともできる。
(実施の形態4)
次に図6を用いて実施の形態4の接合方法について説明する。
In addition, by continuing laser irradiation even when the pressing tool 2 starts to be returned, the embedded copper wire 38 can be covered with solder by re-soldering and melting the surface with the laser beam that has passed.
(Embodiment 4)
Next, the joining method of Embodiment 4 is demonstrated using FIG.

図6は実施の形態4における接合方法を示す工程断面図である。
図6は加圧ツール2で2つのフレキ基板50、53を加圧・加熱して接合する1実施例である。
FIG. 6 is a process cross-sectional view illustrating the bonding method according to the fourth embodiment.
FIG. 6 shows an embodiment in which the pressurizing tool 2 joins the two flexible substrates 50 and 53 by pressing and heating.

図6において第1部材であるフレキ基板50のランド51、第2部材であるフレキ基板53のランド54に予めリフロー時に形成したプリコート半田52である。
なお、フレキ基板50、53の樹脂シート55、57は600〜1500nmの通常の半導体レーザの波長に対してレーザ透過性とレーザ部分吸収特性を有する。
In FIG. 6, the precoat solder 52 is formed in advance on the land 51 of the flexible substrate 50 as the first member and the land 54 of the flexible substrate 53 as the second member during reflow.
The resin sheets 55 and 57 of the flexible substrates 50 and 53 have laser transmittance and laser partial absorption characteristics with respect to the wavelength of a normal semiconductor laser of 600 to 1500 nm.

次に接合工程を図6(a),図6(b)を用いて説明する。
図6(a)は加圧ツール2がフレキ基板53とでフレキ基板50を挟み込む際に、レーザ1を加圧ツール2に照射する直前の図である。
Next, the joining process will be described with reference to FIGS. 6 (a) and 6 (b).
FIG. 6A is a view immediately before the pressing tool 2 is irradiated with the laser 1 when the pressing tool 2 sandwiches the flexible substrate 50 with the flexible substrate 53.

図6(b)は加圧ツール2がレーザ光1を部分吸収して、半田融点以上に高温になると共に、加圧ツール2を通過したレーザ光は、フレキ基板53の樹脂シート57で部分吸収されると共に、熱伝導と透過したレーザ光でランド51を半田溶融に十分な温度に上昇させ、更にプリコート半田された半田52とランド54、樹脂シート55とをレーザ光と熱伝導と放射熱で加圧状態にて加熱するので、プリコート半田52が溶融し2つのランド51と53とを半田で接合する。   FIG. 6B shows that the pressing tool 2 partially absorbs the laser beam 1 and becomes a temperature higher than the melting point of the solder, and the laser beam passing through the pressing tool 2 is partially absorbed by the resin sheet 57 of the flexible substrate 53. At the same time, the land 51 is raised to a temperature sufficient for melting the solder by the laser light transmitted through the heat conduction, and the solder 52, the land 54, and the resin sheet 55 that are pre-coated by the laser light, the heat conduction, and the radiant heat. Since heating is performed in a pressurized state, the precoat solder 52 is melted and the two lands 51 and 53 are joined by solder.

なお、樹脂シート55,57は自ら発熱し、ランド51,54を加熱するので濡れ性が向上し、高品質の半田接合ができる。
また、加圧する前にレーザ光1を照射し始めて加圧ツール2、フレキ基板50,53を予熱して良いし、別の方法でフレキ基板50,53を加熱してからレーザ照射を始めても良く、フレキ基板50,53を予熱することによりロバストかつ簡単に接合できる。
In addition, since the resin sheets 55 and 57 generate heat themselves and heat the lands 51 and 54, wettability is improved, and high-quality solder bonding can be performed.
Further, before pressing, the laser beam 1 may be started to preheat the pressurizing tool 2 and the flexible substrates 50 and 53, or laser irradiation may be started after the flexible substrates 50 and 53 are heated by another method. The flexible substrates 50 and 53 can be joined robustly and easily by preheating.

更に加圧ツール2に熱電対56の様な温度センサーを組み込むことにより、正確に温度管理もできるので、通常のレーザ半田で問題になるフレキ基板のこげを防止して、極めて品質の高い接合を安定維持できる。   In addition, by incorporating a temperature sensor such as a thermocouple 56 into the pressurizing tool 2, temperature control can be accurately performed. This prevents the flex board from becoming a problem with ordinary laser soldering, and enables extremely high quality bonding. It can be kept stable.

なお、2つのフレキ基板53,50を入れ替えてもフレキ基板53と50のランドどうしが半田接合されるのは自明である。
(実施の形態5)
次に、上記各実施の形態の接合装置あるいは接合方法を用いた接合体について、図7を用いて説明する。
It is obvious that the lands of the flexible boards 53 and 50 are soldered together even if the two flexible boards 53 and 50 are replaced.
(Embodiment 5)
Next, a joined body using the joining apparatus or joining method of each of the above embodiments will be described with reference to FIG.

図7は実施の形態5における接合体の構成を説明する図であり、図7(a)は上面図、図7(b)は側面図、図7(c)はR部の拡大図である。
図7は、銅版3にポリウレタン線4を接合した接合体を示しており、ポリウレタン線4の接合箇所近傍は加熱により皮膜7が除去され、剥き出しになった銅線8は加圧により変形して扁平部46が形成されている。扁平部46は加圧ツール2により十分に薄く扁平に変形している部分である。
7A and 7B are diagrams for explaining the structure of the joined body in the fifth embodiment, in which FIG. 7A is a top view, FIG. 7B is a side view, and FIG. 7C is an enlarged view of an R portion. .
FIG. 7 shows a joined body in which the polyurethane wire 4 is joined to the copper plate 3, the coating 7 is removed by heating in the vicinity of the joined portion of the polyurethane wire 4, and the exposed copper wire 8 is deformed by pressurization. A flat portion 46 is formed. The flat portion 46 is a portion that is sufficiently thinly deformed flat by the pressing tool 2.

以上のように、銅線の接合箇所を扁平にすることにより、接合面積を拡大した状態で熱拡散接合をさせることが可能となるため、簡便な構成で、レーザ反射率が高い金メッキや銅などの様々な接合材料をも、高速かつ高品質・高安定に接合することが可能となる。また、接合部分の温度を接合材の融点より高くすることが容易となり、液面形状での接合が可能となるため、傷や微細なクラックの少ない高品質な接合体を形成することが可能となる。   As described above, by flattening the copper wire joints, it becomes possible to perform thermal diffusion bonding in a state where the joint area is enlarged, so gold plating, copper, etc. with high laser reflectivity with a simple configuration These various bonding materials can be bonded at high speed, high quality and high stability. In addition, it becomes easy to make the temperature of the joint part higher than the melting point of the joining material, and it becomes possible to join in a liquid surface shape, so it is possible to form a high-quality joined body with few scratches and fine cracks. Become.

なお、本加熱方法では、加圧ツール2のエッジ部rにレーザ光1が集光するため、rの曲率も大きくなり、表面が溶融して表面あらさが小さくなり、破断強度が大きくなるのでより信頼性の高い強固な接合が実現できる。   In this heating method, since the laser beam 1 is focused on the edge r of the pressurizing tool 2, the curvature of r is increased, the surface is melted, the surface roughness is reduced, and the breaking strength is increased. Highly reliable and strong bonding can be realized.

溶融した被覆7は気化すると同時に収縮し銅線8のむきだし部と収縮したポリウレタン収縮部65として観察されている。
加圧ツール2のr部は内部を通過したレーザ光を凸レンズの様にR部に集光するので、扁平部46は銅板3の接合界面47で既に熱拡散接合が起きる融点近傍まで温度上昇しており、R部は部分的に銅の融点を超え、滑らかなRを有する液面形状になり、傷や微細なクラックがなくR部の引張強度が増すので、接合体としての品質が向上する。
(実施の形態6)
次に、上記各実施の形態の接合装置あるいは接合方法を用いた接合体の別の構成について、図8を用いて説明する。
The melted coating 7 is observed as a polyurethane shrinking portion 65 which shrinks as it evaporates and shrinks when the copper wire 8 is exposed.
Since the r portion of the pressurizing tool 2 condenses the laser beam that has passed through the inside to the R portion like a convex lens, the temperature of the flat portion 46 rises to the vicinity of the melting point where the thermal diffusion bonding has already occurred at the bonding interface 47 of the copper plate 3. The R part partially exceeds the melting point of copper and becomes a liquid surface shape having a smooth R. Since there is no scratch or fine crack and the tensile strength of the R part is increased, the quality as a joined body is improved. .
(Embodiment 6)
Next, another structure of the joined body using the joining device or joining method of each of the above embodiments will be described with reference to FIG.

図8は実施の形態6における接合体の構成を説明する図であり、実施の形態3の接合方法で接合したポリウレタン線4とプリコート半田35との接合体の実施例を示す。
実施の形態6の接合体は、プリコート半田35に埋め込まれた銅線38の表面の一部のむき出し部43が外部から観察できることが特徴である。
FIG. 8 is a diagram for explaining the configuration of the joined body in the sixth embodiment, and shows an example of a joined body of the polyurethane wire 4 and the precoat solder 35 joined by the joining method of the third embodiment.
The bonded body of the sixth embodiment is characterized in that a part of the exposed portion 43 on the surface of the copper wire 38 embedded in the precoat solder 35 can be observed from the outside.

なお、実施の形態としては、以下の様に種々の形態でも良い。
以上の実施の形態として同種金属である銅どうしの接合を銅の融点以下の半田を用いて熱拡散接合している例を示したが、銅とニッケル等異種金属を接合する場合でも、半田の融点より高い融点の材料どうしを熱拡散接合ができる。また、加圧ツール2を高温にすることで、銅の融点を超える温度に加熱することで、半田を用いずに、溶融した銅に銅線を埋め込むように溶接しても良いし、同様に異種金属でも加圧状態で融点ないし、融点を超えるまで加熱できる場合には、溶融した一方の金属に他方の金属を埋め込むように接合できる。勿論、ポリウレタン等の被覆がなくても接合できる。
In addition, as embodiment, various forms may be sufficient as follows.
As an example of the above embodiment, an example in which copper of the same kind of metal is bonded by thermal diffusion using a solder having a melting point of copper or lower is shown. However, even when different metals such as copper and nickel are bonded, Thermal diffusion bonding can be performed between materials having melting points higher than the melting point. In addition, by heating the pressurizing tool 2 to a temperature exceeding the melting point of copper, welding may be performed so as to embed a copper wire in the molten copper without using solder. When different metals can be heated to a melting point or higher than the melting point under pressure, they can be joined so as to embed the other metal in one molten metal. Of course, bonding is possible without a polyurethane coating.

また、樹脂やガラス等の非金属でも、一方を加圧状態で融点近傍に達することができる場合には、加圧+熱で接合できる。
また、第2部材としてポリウレタン被覆線で説明したが、エナメル線等の絶縁被覆でも良く、また薄板でも接合に加熱ツール2から必要な温度を供給すれば接合できる。
Further, even when a non-metal such as resin or glass can reach the vicinity of the melting point in a pressurized state, it can be joined by applying pressure and heat.
Further, although the polyurethane-coated wire has been described as the second member, an insulating coating such as an enameled wire may be used, and even a thin plate can be joined by supplying a necessary temperature from the heating tool 2 for joining.

また、プリコート半田に銅線を挟んで加圧ツールで加熱と加圧をする例を示したが、プリコート半田の代わりに半田メッキや錫メッキでも良いし、銅線以外の金属でも、合金接合しない金属でも機械的に埋め込まれているので電気伝導は確保されているので接合として有効である。   In addition, although an example in which a copper wire is sandwiched between precoat solder and heated and pressed with a pressure tool has been shown, solder plating or tin plating may be used in place of precoat solder, and alloys other than copper wires will not be alloyed Since metal is mechanically embedded, electrical conduction is ensured, so it is effective as a joint.

本発明は、簡便な構成で、レーザ反射率が高い金メッキや銅などの様々な接合材料をも、高速かつ高品質・高安定に接合することができ、レーザ光の照射により第1部材と第2部材とを接合する接合方法および接合装置ならびに接合体等に有用である。   The present invention is capable of bonding various bonding materials such as gold plating and copper having a high laser reflectivity with a simple structure at high speed, high quality and high stability. This is useful for a joining method, a joining apparatus, a joined body, and the like for joining two members.

1・・・レーザ光
2・・・加圧ツール
3・・・銅板
4・・・ポリウレタン線
5・・・保持台
6・・・レーザ光
7・・・被覆
8・・・銅線
9・・・レーザ照射面
10・・・加圧面
11・・・扁平体
13・・・接合界面
14・・・断熱材
15・・・ポリウレタン層
16・・・面
17・・・面
19・・・ポリウレタン
20・・・銅ワイヤ
22・・・光導波路
24・・・レーザスポット
25・・・ツバ
26・・・戻りレーザ光
27・・・レーザ受光面
28・・・ピンフォトダイオード
29・・・レーザ漏れ
30・・・基板
31・・・ランド
32・・・プリコート半田
33・・・溶融物
34・・・気化物
35・・・プリコート半田
36・・・溶融半田
37・・・固化半田
38・・・銅線
46・・・扁平部
47・・・接合界面
50、53・・・フレキ基板
51、54・・・ランド
52・・・半田
55,57・・・樹脂シート
56・・・熱伝対
65・・・ポリウレタン収縮部
103・・・リード
105・・・電極パット
115・・・ボンディングツール
116・・・超音波ホーン
117・・・上端面
118・・・加圧面
DESCRIPTION OF SYMBOLS 1 ... Laser beam 2 ... Pressing tool 3 ... Copper plate 4 ... Polyurethane wire 5 ... Holding stand 6 ... Laser beam 7 ... Coating 8 ... Copper wire 9 ... Laser irradiation surface 10 ... Pressure surface 11 ... Flat body 13 ... Junction interface 14 ... Heat insulation 15 ... Polyurethane layer 16 ... Surface 17 ... Surface 19 ... Polyurethane 20・ ・ ・ Copper wire 22 ・ ・ ・ Optical waveguide 24 ・ ・ ・ Laser spot 25 ・ ・ ・ Head 26 ・ ・ ・ Return laser beam 27 ・ ・ ・ Laser light receiving surface 28 ... Pin photodiode 29 ... Laser leakage 30 ... Substrate 31 ... Land 32 ... Precoat solder 33 ... Mold 34 ... Vaporized 35 ... Precoat solder 36 ... Mold solder 37 ... Solidified solder 38 ... Copper Wire 46 ... Flat part 47 ... Bonding interface 5 53 ... Flexible boards 51, 54 ... Land 52 ... Solder 55, 57 ... Resin sheet 56 ... Thermocouple 65 ... Polyurethane shrinkage 103 ... Lead 105 ... Electrode pad 115 ... Bonding tool 116 ... Ultrasonic horn 117 ... Upper end surface 118 ... Pressure surface

Claims (9)

レーザ光の一部を吸収し、前記レーザ光の残りを透過して第1部材に照射する加圧ツールと、
前記第1部材と第2部材とが載置される保持台と
を有し、前記第1部材を前記加圧ツールと前記第2部材とで挟みこんだ状態で、前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧することにより、前記第1部材を加熱、加圧して押しつぶし、前記第1部材と前記第2部材との接触面積を拡大した状態で前記第1部材と前記第2部材とを熱拡散接合させ、前記加圧ツールの前記レーザ光の吸収率が10〜40%であることを特徴とする接合装置。
A pressure tool that absorbs part of the laser light and transmits the remainder of the laser light to irradiate the first member;
A holding table on which the first member and the second member are placed, and the first member is sandwiched between the pressing tool and the second member via the pressing tool; While irradiating the first member with the laser beam and pressurizing the first member with the pressurizing tool, the first member is heated, pressed and crushed, and the first member and the second member the contact area is thermally diffused bonding the second member and the first member in enlarged state, welding apparatus wherein the laser beam absorption rate of the pressure tool, characterized in 10-40% der Rukoto .
レーザ光の一部を吸収し、前記レーザ光の残りを透過して第1部材に照射する加圧ツールと、
前記第1部材と第2部材とが載置される保持台と
を有し、前記第1部材を前記加圧ツールと前記第2部材とで挟みこんだ状態で、前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧することにより、前記第1部材を加熱、加圧して押しつぶし、前記第1部材と前記第2部材との接触面積を拡大した状態で前記第1部材と前記第2部材とを熱拡散接合させ、前記加圧ツールの加圧面または前記保持台表面に、予め前記保持台より熱伝導率が低い材料をコートすることを特徴とする接合装置。
A pressure tool that absorbs part of the laser light and transmits the remainder of the laser light to irradiate the first member;
A holding table on which the first member and the second member are placed, and the first member is sandwiched between the pressing tool and the second member via the pressing tool; While irradiating the first member with the laser beam and pressurizing the first member with the pressurizing tool, the first member is heated, pressed and crushed, and the first member and the second member The first member and the second member are bonded by thermal diffusion in a state where the contact area is expanded, and a material having a lower thermal conductivity than the holding table is previously applied to the pressing surface of the pressing tool or the holding table surface. joining apparatus according to claim coat to Rukoto.
保持台上に第2部材を載置し、前記第2部材上に第1部材を載置する工程と、
レーザ光の一部を吸収し、前記レーザ光の残りを透過する加圧ツールと前記第2部材とで前記第1部材を挟みこむ工程と、
前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧する工程と
を有し、前記レーザ光の一部を吸収することにより加熱された前記加圧ツールの熱と圧力により前記第1部材を押しつぶしながら、前記第1部材と前記第2部材とを熱拡散接合させ、前記加圧ツールの前記レーザ光の吸収率が10〜40%であることを特徴とする接合方法。
Placing the second member on the holding table and placing the first member on the second member;
A step of sandwiching the first member between a pressure tool that absorbs part of the laser light and transmits the remainder of the laser light and the second member;
Irradiating the first member with the laser beam through the pressurizing tool and pressurizing the first member with the pressurizing tool, and heating by absorbing a part of the laser beam. While the first member is crushed by the heat and pressure of the applied pressure tool, the first member and the second member are bonded by thermal diffusion, and the absorption rate of the laser light of the pressure tool is 10 to 40. bonding wherein the% der Rukoto.
保持台上に第2部材を載置し、前記第2部材上に第1部材を載置する工程と、
レーザ光の一部を吸収し、前記レーザ光の残りを透過する加圧ツールと前記第2部材とで前記第1部材を挟みこむ工程と、
前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧する工程と
を有し、前記レーザ光の一部を吸収することにより加熱された前記加圧ツールの熱と圧力により前記第1部材を押しつぶしながら、前記第1部材と前記第2部材とを熱拡散接合させ、前記第1部材は樹脂がコートされたワイヤであり、前記加熱によって前記樹脂が熱分解した後、前記ワイヤと前記第2部材とを接合することを特徴とする接合方法。
Placing the second member on the holding table and placing the first member on the second member;
A step of sandwiching the first member between a pressure tool that absorbs part of the laser light and transmits the remainder of the laser light and the second member;
Irradiating the first member with the laser beam through the pressurizing tool and pressurizing the first member with the pressurizing tool, and heating by absorbing a part of the laser beam. The first member and the second member are heat diffusion bonded while crushing the first member by the heat and pressure of the pressed tool, and the first member is a wire coated with a resin, after the resin is thermally decomposed by heating, bonding wherein that you bonding the said wire second member.
前記加圧ツールの加圧面または前記保持台表面に、前記保持台より熱伝導率が低い材料または前記樹脂がコートされていることを特徴とする請求項記載の接合方法。 The bonding method according to claim 4 , wherein the pressure surface of the pressure tool or the surface of the holding table is coated with a material having a lower thermal conductivity than the holding table or the resin. 保持台上に第2部材を載置し、前記第2部材上に第1部材を載置する工程と、
レーザ光の一部を吸収し、前記レーザ光の残りを透過する加圧ツールと前記第2部材とで前記第1部材を挟みこむ工程と、
前記加圧ツールを介して前記レーザ光を前記第1部材に照射すると共に、前記加圧ツールで前記第1部材を加圧する工程と
を有し、前記レーザ光の一部を吸収することにより加熱された前記加圧ツールの熱と圧力により前記第1部材を押しつぶしながら、前記第1部材と前記第2部材とを熱拡散接合させ、前記レーザ光の照射を、前記レーザ光のパワーを徐々に上げることを特徴とする接合方法。
Placing the second member on the holding table and placing the first member on the second member;
A step of sandwiching the first member between a pressure tool that absorbs part of the laser light and transmits the remainder of the laser light and the second member;
Irradiating the first member with the laser beam through the pressurizing tool and pressurizing the first member with the pressurizing tool, and heating by absorbing a part of the laser beam. While the first member is crushed by the heat and pressure of the pressed tool, the first member and the second member are bonded by thermal diffusion bonding, and the laser beam irradiation is gradually performed. bonding wherein the raised Rukoto.
前記加圧の前に、前記第2部材の前記第1部材に接触する面に対する裏面を加熱することを特徴とする請求項〜請求項のいずれかに記載の接合方法。 The joining method according to any one of claims 3 to 6 , wherein a back surface of the second member with respect to a surface in contact with the first member is heated before the pressurization. 前記レーザ光の照射の際に、前記第1部材の加熱部の周囲に不活性ガスを供給することを特徴とする請求項〜請求項のいずれかに記載の接合方法。 The bonding method according to any one of claims 3 to 7 , wherein an inert gas is supplied around the heating portion of the first member when the laser beam is irradiated. 前記加熱に際し、前記第1部材と前記加圧ツールの界面で発生する前記レーザ光の戻り光も用いることを特徴とする請求項〜請求項のいずれかに記載の接合方法。 The joining method according to any one of claims 3 to 8 , wherein a return light of the laser light generated at an interface between the first member and the pressing tool is also used during the heating.
JP2010111583A 2010-05-14 2010-05-14 Joining method and joining apparatus Expired - Fee Related JP5441813B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010111583A JP5441813B2 (en) 2010-05-14 2010-05-14 Joining method and joining apparatus
CN201110128797.XA CN102240850B (en) 2010-05-14 2011-05-11 Joint method and engagement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111583A JP5441813B2 (en) 2010-05-14 2010-05-14 Joining method and joining apparatus

Publications (2)

Publication Number Publication Date
JP2011240346A JP2011240346A (en) 2011-12-01
JP5441813B2 true JP5441813B2 (en) 2014-03-12

Family

ID=44959195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111583A Expired - Fee Related JP5441813B2 (en) 2010-05-14 2010-05-14 Joining method and joining apparatus

Country Status (2)

Country Link
JP (1) JP5441813B2 (en)
CN (1) CN102240850B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833957B (en) * 2011-06-16 2015-10-07 富士康(昆山)电脑接插件有限公司 The welding method of magnetic coil
JP5838116B2 (en) * 2012-04-11 2015-12-24 株式会社日立製作所 Laser bonding method
CN103349371B (en) * 2013-07-08 2016-01-20 旗牌王(中国)纺织服饰有限公司 Carbon fiber heating part of a kind of heated clothing and preparation method thereof
JP7325021B2 (en) * 2018-03-05 2023-08-14 パナソニックIpマネジメント株式会社 Joining structure and joining method
JP7331478B2 (en) * 2018-12-03 2023-08-23 株式会社ジェイテクト Welding equipment
CN113798666A (en) * 2021-09-07 2021-12-17 武汉锐科光纤激光技术股份有限公司 Method, device, apparatus, storage medium, and electronic device for welding material
CN114682872A (en) * 2022-05-18 2022-07-01 南京航空航天大学 Precise temperature control device and method for laser heat source assisted metal-ceramic reflow soldering

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534811A (en) * 1983-12-30 1985-08-13 International Business Machines Corporation Apparatus for thermo bonding surfaces
EP0423433A1 (en) * 1989-09-28 1991-04-24 International Business Machines Corporation Method and apparatus for bonding component leads to pads located on a non-rigid substrate
JPH0732177A (en) * 1993-07-22 1995-02-03 Nippon Avionics Co Ltd Laser spot welder
JP2809198B2 (en) * 1996-05-31 1998-10-08 日本電気株式会社 Bonding tool
JPH1051065A (en) * 1996-08-02 1998-02-20 Matsushita Electron Corp Semiconductor laser device
JP3330037B2 (en) * 1996-11-29 2002-09-30 富士通株式会社 Method and apparatus for joining chip components
DK1366890T3 (en) * 2002-05-16 2004-12-20 Leister Process Tech Method and apparatus for connecting plastic materials with high welding speed
CN100475418C (en) * 2005-07-15 2009-04-08 华中科技大学 Welding equipment for bimetal composite saw blades
JP2008264820A (en) * 2007-04-19 2008-11-06 Nissan Motor Co Ltd Structure and method for joining different kind metals
CN101323051A (en) * 2008-06-03 2008-12-17 江苏大学 A method and device for preparing and forming micro-composite materials
JP2010051989A (en) * 2008-08-27 2010-03-11 Sharp Corp Laser joining method
JP5597946B2 (en) * 2008-10-03 2014-10-01 日産自動車株式会社 Low-temperature metal joining method

Also Published As

Publication number Publication date
JP2011240346A (en) 2011-12-01
CN102240850A (en) 2011-11-16
CN102240850B (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5441813B2 (en) Joining method and joining apparatus
KR101187940B1 (en) Repair apparatus and method for electronic component and heat-transfer cap
US8283592B2 (en) Laser welding method
JP4894528B2 (en) Wiring bonding method of semiconductor element
KR101703561B1 (en) Solder reflow equipment
JP6861706B2 (en) A method of joining two components with at least one laser beam in the area of the joining area and a method of forming a continuous joining seam.
TW201729928A (en) Laser soldering repair process, laser soldering process and laser soldering system
JP4739063B2 (en) Laser bonding method
KR20110090767A (en) Laser bonding method of resin member and laser bonding body of resin member
JP2008153366A (en) Jointing method by jointer
JP7052708B2 (en) How to remove the sealing member, how to remove the light emitting element, and the removal jig
WO2022050073A1 (en) Joint structure
JP5163568B2 (en) Semiconductor device wiring joining method and heating tool
JPH0671135B2 (en) IC chip soldering method
JPH02213075A (en) Jointing method for lead
TWI866259B (en) Joining method
US12023754B2 (en) Method for foil coating using a laser
JP7566212B2 (en) Joining Method
JP2697865B2 (en) Electronic component mounting method
CN113714644A (en) Laser welding method for brass and red copper
JPS62253778A (en) Method for cladding noble metal to copper member
JP3152449B2 (en) Lead bonding apparatus and method for IC parts
JP2008227409A (en) Joining device and joining method
JP2005339988A (en) Manufacturing method of vehicular lighting fixture
WO2025062759A1 (en) Preliminary solder forming method and preliminary solder forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5441813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees