[go: up one dir, main page]

JP5436926B2 - 半透過性膜 - Google Patents

半透過性膜 Download PDF

Info

Publication number
JP5436926B2
JP5436926B2 JP2009116245A JP2009116245A JP5436926B2 JP 5436926 B2 JP5436926 B2 JP 5436926B2 JP 2009116245 A JP2009116245 A JP 2009116245A JP 2009116245 A JP2009116245 A JP 2009116245A JP 5436926 B2 JP5436926 B2 JP 5436926B2
Authority
JP
Japan
Prior art keywords
film
semi
electrode
gate
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009116245A
Other languages
English (en)
Other versions
JP2010266571A (ja
Inventor
直樹 津村
展昭 石賀
顕祐 長山
和式 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009116245A priority Critical patent/JP5436926B2/ja
Publication of JP2010266571A publication Critical patent/JP2010266571A/ja
Application granted granted Critical
Publication of JP5436926B2 publication Critical patent/JP5436926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は半透過性膜、表示デバイス、及びパターン基板の製造方法に関する。
液晶表示パネルは、薄型で低消費電力であるという特徴を生かして、テレビ、パーソナルコンピュータなどのOA機器や、携帯電話や電子手帳等の携帯情報機器、あるいは液晶モニターを備えたカーナビゲーションシステムやデジタルカメラ等に広く用いられている。
また、上記表示パネルに搭載する液晶表示パネルとしては、透過型液晶表示パネルがよく用いられている。液晶表示パネルは、自らは発光しない。このため、透過型液晶表示パネルには、バックライトと呼ばれる蛍光管からなる照明装置がその背面又は側方に設置される。そして、透過型液晶表示パネルは、このバックライトからの光の透過量を制御して画像表示を行う。
透過型液晶表示パネルは周囲光が非常に明るい場合、周囲に比べて表示光が暗く見えるために表示を認識することが困難であった。
透過型液晶表示パネルとは別に、屋外や常時携帯して使用する機会の多い携帯情報機器などに用いられる反射型液晶表示パネルが考案されている。反射型液晶表示パネルには、基板の画素部に反射板が設置される。そして、バックライトからの光の代わりに、周囲からの外光を反射板表面で反射させることにより表示を行う。反射型液晶表示パネルについては、例えば特許文献1の図1、図2に開示されている。
周囲光の反射光を利用する反射型液晶表示パネルは、周囲光が暗い場合には視認性が極端に低下するという欠点を有する。
このような反射型や透過型の液晶表示パネルの問題点を解消するために、半透過型液晶表示パネルが考案されている。半透過型液晶表示パネルでは、ひとつの画素電極内に、バックライトからの光を透過させる透過電極膜と共に、周囲光を反射させるような反射電極膜を部分的に設ける。これにより、透過型表示と反射型表示の両方を一つの液晶表示パネルにて実現することができる。半透過型液晶表示パネルについては、例えば特許文献2の図1、図2に開示されている。
特開平6−175126号公報 特開平11−101992号公報 特開平7−333598号公報 特開平11−281993号公報 特開2003−50389号公報 特開2002−372721号公報
一般的に液晶表示パネルに使用される透明導電膜には従来公知の酸化インジウム(In)と酸化スズ(SnO)を混合させたITOが使用される。
液晶表示装置のテレビの普及にともない、液晶表示パネルの大型化が望まれる。この大型化によりTFTを形成する材料の消費量が増加している。特に、従来公知の透明導電膜としてのITOの主成分であるインジウム(In)は希少金属(レアメタル)である。このため、今後、需要が急速に伸びていくと、材料の不足あるいは枯渇等の問題が懸念される。また、これらにともなう大幅な価格上昇等によって、材料の安定供給に対する問題が懸念される。
一方で特許文献3には、入射光をある反射率と透過率で反射および透過させる半透過反射膜を設けることによって反射型表示機能と透過型表示機能とを有する半透過型液晶表示パネルの構成が開示されている。さらに半透過反射膜として、アルミニウム(Al)金属膜またはAl合金膜、あるいはITO膜等の透明導電膜と金属膜との積層膜として形成する例が示されている(特許文献3の段落0044)。
しかしながら、Al金属膜またはAl合金膜等で半透過反射膜を形成する場合、ITOを用いる必要がないという利点を有する一方で、表示不良を発生させやすいという欠点があった。Al金属膜またはAl合金膜等の半透過反射膜は、反射及び透過させるために、膜厚を10nm前後の極薄い膜としなければならない。このため、下地に段差があるとその部分で膜が断線する、いわゆる段切れを発生し、表示不良が発生しやすかった。
また、半透過反射膜をITO膜等の透明導電膜と金属膜との積層膜として形成する場合は、成膜プロセスを複雑化させてしまう。また、金属膜としてAl金属膜またはAl合金膜を用いる場合、特許文献4、5に記載のように、画素電極のパターン加工において、レジストパターニング時に使用される有機アルカリ現像液処理中でITOとAlを電極とする電池反応が起こる。これにより、Alの酸化腐食とITOの還元腐食が発生してパターン不良を引き起こすという問題があった。さらに、ITO成膜時にAlとITOの界面拡散による酸化Al層の形成により、ITO/Al界面で電気信号遮断層が形成され、画素電極としての電気的抵抗値が充分に低減されないという問題もあった。
従来の半透過型液晶表示パネルを製造する場合、ITOからなる透過電極や端子部をもつ液晶表示パネルにさらに反射電極となるAlを成膜し、パターニングを行う。この場合、ITO膜とAl膜の少なくとも二種類の画素電極膜を形成するために、ITOとAlの材料源をもつ成膜室が必要である。また、パターン加工において各膜を別々の薬液と設備を用いてエッチングしなければならず、生産性が低下する。また上述したようにITOの主成分のIn材料の安定供給への懸念を考えるとITO膜の代替となるプロセス技術の開発も重要になっている。
このように限定された状況において、画素電極の材料をITOではなくAlNに置き換える技術も知られている。例えば、特許文献6の図4に示されるように、AlNを成膜する際のArガスと窒素ガスとの流量比を調整することにより特定の透過率と反射率を有するAlN膜が得られる。そして、このAlN膜によって画素電極を形成する。しかし、一般にAlN膜自体は絶縁性を示すこともあり、信号遅延による表示不良が問題であった。
本発明は、上記の問題を解決するためになされたものであり、生産性が向上し、かつ特性が良好な半透過性膜、表示デバイス、及びパターン基板の製造方法を提供することを目的とする。
本発明にかかる半透過性膜は、光学特性として光の透過特性と反射特性とを有する半透過性膜であって、アルミニウム又はアルミニウムを主成分とする合金のいずれかに少なくとも40mol%以上50mol%未満の窒素を含む窒素含有膜である。
また、本発明にかかる半透過性膜は、光学特性として光の透過特性と反射特性とを有する半透過性膜であって、アルミニウム又はアルミニウムを主成分とする合金のいずれかに少なくとも窒素を含む窒素含有膜と、アルミニウム又はアルミニウムを主成分とする合金のいずれかの金属膜とを交互に積層した積層膜である。
本発明にかかるパターン基板の製造方法は、光学特性として光の透過特性と反射特性とを有する半透過性膜を備えるパターン基板の製造方法であって、アルミニウム又はアルミニウムを主成分とする合金のいずれかに少なくとも40mol%以上50mol%未満の窒素を含む、前記半透過性膜としての窒素含有膜を成膜する工程を備えるものである。
また、本発明にかかるパターン基板の製造方法は、光学特性として光の透過特性と反射特性とを有する半透過性膜を備えるパターン基板の製造方法であって、アルミニウム又はアルミニウムを主成分とする合金のいずれかに少なくとも窒素を含む窒素含有膜を成膜する工程と、アルミニウム又はアルミニウムを主成分とする合金のいずれかの金属膜を成膜する工程とを備えるものである。前記半透過性膜は、前記窒素含有膜と前記金属膜とを交互に積層した積層膜である。
本発明によれば、生産性が向上し、かつ特性が良好な半透過性膜、表示デバイス、及びパターン基板の製造方法を提供することができる。
実施の形態1にかかるTFTアレイ基板の構成を示す平面図である。 実施の形態1にかかるTFTアレイ基板の要部の構成を示す平面図である。 図2のA−A'線、B−B'線、及びC−C'線での構成を示す断面図である。 実施の形態1にかかるTFTアレイ基板の製造方法を示すフローチャート図である。 実施の形態1にかかるAl−45mol%N合金膜の光の透過率と反射率の分光特性を示すグラフである。 実施の形態1にかかるTFTアレイ基板の他の構成を示す断面図である。 実施の形態1にかかる膜厚を10〜100nmの間で振り分けたAl−N合金膜の光の波長550nmにおける透過率を膜のN組成比に対してプロットしたグラフである。 実施の形態1にかかる膜厚100nmで測定したAl−N合金膜の比抵抗値のN組成比依存性を示すグラフである。 実施の形態1にかかるAl−N合金膜の光の波長550nmにおける透過率と反射率のN組成比依存性を示すグラフである。 実施の形態2にかかるTFTアレイ基板の構成を示す断面図である。 実施の形態2にかかる画素電極の半透過性導電膜の構成を示す断面図である。 実施の形態2にかかる半透過性導電膜の光の透過率と反射率の分光特性を示すグラフである。 実施の形態2にかかる画素電極の半透過性導電膜の他の構成を示す断面図である。 実施の形態3にかかるTFTアレイ基板の構成を示す平面図である。 図14のA−A'線、B−B'線、C−C'線での構成を示す断面図である。
実施の形態1
本発明にかかる半透過性膜は、液晶表示装置、有機EL表示装置等の表示デバイスの画素電極として用いることができる。例えば、反射型と透過型の併用型である半透過型、又は微反射型の液晶表示装置の画素電極として用いることができる。始めに、図1を参照して、表示デバイスに用いるTFTアレイ基板について説明する。図1は、TFTアレイ基板の構成を示す平面図である。ここでは、半透過型の液晶表示装置に用いるアクティブマトリックス型のTFTアレイ基板を例にとって詳しく説明する。
TFTアレイ基板100は、薄膜トランジスタ(TFT:Thin Film Transistor)108がアレイ状に配列したTFT基板である。TFTアレイ基板100には、表示領域101と表示領域101を囲むように設けられた額縁領域102とが設けられている。この表示領域101には、複数のゲート配線(走査信号線)3、複数の補助容量電極5、及び複数のソース配線(表示信号線)12が形成されている。
複数のゲート配線3及び複数の補助容量電極5は、平行に設けられている。補助容量電極5は、隣接するゲート配線3間にそれぞれ設けられている。すなわち、ゲート配線3と補助容量電極5とは、交互に配置されている。そして、複数のソース配線12は平行に設けられている。ゲート配線3とソース配線12とは、互いに交差するように形成されている。同様に、補助容量電極5とソース配線12とは、互いに交差するように形成されている。また、ゲート配線3とソース配線12とは直交している。同様に、補助容量電極5とソース配線12とは直交している。そして、隣接するゲート配線3と補助容量電極5、及び隣接するソース配線12に囲まれた領域が画素105となる。TFTアレイ基板100では、画素105がマトリクス状に配列される。
さらに、TFTアレイ基板100の額縁領域102には、走査信号駆動回路103と表示信号駆動回路104とが設けられる。ゲート配線3は、表示領域101から額縁領域102まで延設されている。そして、ゲート配線3は、TFTアレイ基板100の端部で、走査信号駆動回路103に接続される。ソース配線12も同様に表示領域101から額縁領域102まで延設されている。そして、ソース配線12は、TFTアレイ基板100の端部で、表示信号駆動回路104と接続される。走査信号駆動回路103の近傍には、外部配線106が接続されている。また、表示信号駆動回路104の近傍には、外部配線107が接続されている。外部配線106、107は、例えば、FPC(Flexible Printed Circuit)などの配線基板である。
外部配線106、107を介して走査信号駆動回路103、及び表示信号駆動回路104に外部からの各種信号が供給される。走査信号駆動回路103は外部からの制御信号に基づいて、ゲート信号(走査信号)をゲート配線3に供給する。このゲート信号によって、ゲート配線3が順次選択されていく。表示信号駆動回路104は外部からの制御信号や、表示データに基づいて表示信号をソース配線12に供給する。これにより、表示データに応じた表示電圧を各画素105に供給することができる。なお、走査信号駆動回路103と表示信号駆動回路104は、TFTアレイ基板100上に配置される構成に限られるものではない。例えば、TCP(Tape Carrier Package)により駆動回路を接続してもよい。
画素105内には、少なくとも1つのTFT108と補助容量109とが形成されている。画素105内において、TFT108と補助容量109は直列に接続されている。TFT108はソース配線12とゲート配線3の交差点近傍に配置される。例えば、このTFT108が画素電極に表示電圧を供給するためのスイッチング素子となる。TFT108のゲート電極はゲート配線3に接続され、ゲート端子から入力されるゲート信号によってTFT108のONとOFFを制御している。TFT108のソース電極はソース配線12に接続されている。ゲート電極に電圧を印加され、TFT108がONされると、ソース配線12から電流が流れるようになる。これにより、ソース配線12から、TFT108のドレイン電極に接続された画素電極に表示電圧が印加される。そして、画素電極と、対向電極との間に、表示電圧に応じた電界が生じる。
一方、補助容量109は、TFT108だけでなく、補助容量電極5を介して対向電極とも電気的に接続されている。従って、補助容量109は、画素電極と対向電極との間の容量と並列接続されていることになる。補助容量109によって画素電極に印加される電圧を一定時間保持することができる。TFTアレイ基板100の表面には、配向膜(不図示)が形成される。TFTアレイ基板100は、以上のように構成される。
さらに、液晶表示装置の場合、TFTアレイ基板100には、対向基板が対向して配置されている。対向基板は、例えばカラーフィルタ基板であり、視認側に配置される。対向基板には、カラーフィルタ、ブラックマトリクス(BM)、対向電極、及び配向膜等が形成されている。なお、例えば、IPS方式の液晶表示装置の場合、対向電極は、TFTアレイ基板100側に配置される。TFTアレイ基板100と対向基板とは、一定の間隙(セルギャップ)を介して貼り合わされる。そして、この間隙に液晶が注入・封止される。すなわち、TFTアレイ基板100と対向基板との間に液晶層が挟持される。さらに、TFTアレイ基板100と対向基板との外側の面には、偏光板、及び位相差板等が設けられる。また、以上のように構成された液晶表示パネルの反視認側には、バックライトユニット等が配設される。そして、半導体デバイスであって、ディスプレイ用途の光学表示用装置である液晶表示装置が構成される。
画素電極と対向電極との間の電界によって、液晶が駆動される。すなわち、基板間の液晶の配向方向が変化する。これにより、液晶層を通過する光の偏光状態が変化する。すなわち、偏光板を通過して直線偏光となった光は液晶層によって、偏光状態が変化する。具体的には、バックライトユニットからの光又は外部から入射した外光は、TFTアレイ基板100側の偏光板によって直線偏光になる。そして、この直線偏光が液晶層を通過することによって、偏光状態が変化する。
従って、偏光状態によって、対向基板側の偏光板を通過する光量が変化する。すなわち、バックライトユニットから液晶表示パネルを透過する透過光のうち、視認側の偏光板を通過する光の光量が変化する。また、液晶表示パネルの視認側から入射した外光であって画素電極で反射する反射光のうち、視認側の偏光板を通過する光の光量が変化する。液晶の配向方向は、印加される表示電圧によって変化する。従って、表示電圧を制御することによって、視認側の偏光板を通過する光量を変化させることができる。すなわち、画素毎に表示電圧を変えることによって、所望の画像を表示することができる。なお、これら一連の動作で、補助容量109においては画素電極と対向電極との間の電界と並列に電界を形成させることにより、表示電圧の保持に寄与する。
次に、図2、3を参照して、TFTアレイ基板100の要部の構成について説明する。図2は、本実施の形態1に係るTFTアレイ基板100の要部の構成を示す平面図である。図3は、図2のA−A'線、B−B'線、及びC−C'線での構成を示す断面図である。ここで、A−A'線は画素105の構成を示しており、B−B'線はソース端子部の構成を示しており、C−C'線はゲート端子部の構成を示している。なお、図3では、左から順に、ゲート端子部、ソース端子部、及び画素105の構成を示している。
TFTアレイ基板100には、ゲート配線3、ソース配線12、及び補助容量電極5が形成される。図2においては、ゲート配線3が横方向に形成され、ソース配線12が縦方向に形成されている。さらに、補助容量電極5は、ゲート配線3と平行に形成されている。また、補助容量電極5の一部は、ソース配線12に沿って延設されている。ゲート配線3と、補助容量電極5と、2本のソース配線12とで囲まれた矩形状の領域が画素105となる。
図3に示されるように、絶縁性基板1上には、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量電極5が形成される。絶縁性基板1としては、ガラスやプラスチック等からなる透明絶縁性基板を用いることができる。ゲート電極2、ゲート配線3、及びゲート端子4は一体的に形成される。ゲート配線3の端部にゲート端子4が形成される。ゲート端子4は、図1に示された走査信号駆動回路103に接続され、走査信号が入力される。
そして、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量電極5を覆うように、ゲート絶縁膜6が形成される。ゲート絶縁膜6上には、半導体膜7が形成される。ゲート電極2と半導体膜7とは、ゲート絶縁膜6を介して対向配置される。すなわち、図2に示されるように、半導体膜7は、ゲート電極2の近傍に形成される。
半導体膜7上には、オーミックコンタクト膜8が形成される。オーミックコンタクト膜8には、不純物が導入され、半導体膜7と比較して低抵抗化されている。オーミックコンタクト膜8は、ゲート電極2上の中央部には形成されない。このオーミックコンタクト膜8が形成されない領域の半導体膜7がチャネル領域11である。
オーミックコンタクト膜8は、半導体膜7の両端に形成される。補助容量電極5側のオーミックコンタクト膜8がドレイン領域、補助容量電極5とは反対側のオーミックコンタクト膜8がソース領域を形成する。ここで、チャネル領域11とは、ゲート電極2にゲート電圧を印加した際に、チャネルが形成される領域を示す。これにより、ゲート電極2にゲート電圧を印加すると、チャネル領域11における、ゲート絶縁膜6との界面近傍には、チャネルが形成される。そして、ソース領域とドレイン領域との間に所定の電圧を与えた状態でゲート電圧を印加すると、ソース領域とドレイン領域の間にはゲート電圧に応じたドレイン電流が流れる。
オーミックコンタクト膜8上には、ソース電極9及びドレイン電極10が形成される。ソース領域上に、ソース電極9が形成される。ソース領域とソース電極9とは直接接する。また、ソース電極9は、ソース配線12及びソース端子13と一体的に形成される。ソース配線12の端部にソース端子13が形成される。ソース端子13は、図1に示された表示信号駆動回路104に接続され、表示信号(映像信号)が入力される。また、TFT108の部分以外のソース配線12及びソース端子13は、ゲート絶縁膜6上に形成される。
そして、ドレイン領域上に、ドレイン電極10が形成される。ドレイン領域とドレイン電極10とは直接接する。ドレイン電極10は、ゲート電極2上から補助容量電極5側に向けてはみ出すように形成される。TFT108は、ゲート電極2、ゲート絶縁膜6、半導体膜7、オーミックコンタクト膜8、ソース電極9、ドレイン電極10等から構成される。
ソース電極9、ドレイン電極10、ソース配線12、及びソース端子13の上には、層間絶縁膜14が形成される。層間絶縁膜14は、チャネル領域11を含む基板全体を覆うように形成される。ドレイン電極10上の層間絶縁膜14には、画素ドレインコンタクトホール15が形成される。すなわち、画素ドレインコンタクトホール15は、ドレイン電極10に達するように形成される。また、ゲート端子4上のゲート絶縁膜6及び層間絶縁膜14には、ゲート端子部コンタクトホール16が形成される。すなわち、ゲート端子部コンタクトホール16は、ゲート端子4に達するように形成される。さらに、ソース端子13上の層間絶縁膜14には、ソース端子部コンタクトホール17が形成される。すなわち、ソース端子部コンタクトホール17は、ソース端子13に達するように形成される。
層間絶縁膜14上には、画素電極18、ゲート端子パッド19、及びソース端子パッド20が形成される。画素電極18、ゲート端子パッド19、及びソース端子パッド20は、単層の半透過性導電膜から形成される。半透過性導電膜は、光学特性として光の透過特性と反射特性とを有する半透過性膜である。すなわち、半透過性導電膜は、半透過性導電膜に入射した一部の光を透過し、それ以外の光を反射する半透過性膜である。従って、画素電極18は、半透過の画素電極となり、半透過型液晶表示パネルを構成することができる。具体的には、半透過性導電膜は、Al−45mol%N(=Al−45at%N)合金膜である。Al−45mol%N合金膜とは、45mol%の組成比で窒素(N)を添加したAl−N合金膜のことである。換言すると、半透過性導電膜は窒素含有膜である。
画素電極18は、画素105の略全体に形成される。また、画素電極18は、少なくとも、ドレイン電極10及び補助容量電極5と重なるように形成される。画素電極18と補助容量電極5とは、ゲート絶縁膜6と層間絶縁膜14を介して重なる。これにより、画素電極18に印加される電圧を一定時間保持する補助容量109が構成される。画素電極18は、画素ドレインコンタクトホール15に埋設される。これにより、画素ドレインコンタクトホール15を介して、画素電極18とドレイン電極10とが電気的に接続される。
図2に示されるように、ゲート端子パッド19は、例えば、矩形状のゲート端子部コンタクトホール16より一回り大きい矩形状に形成される。ゲート端子パッド19の内側に、ゲート端子部コンタクトホール16が形成される。ソース端子パッド20及びソース端子部コンタクトホール17も同様に構成される。
図3に示されるように、ゲート端子パッド19は、ゲート端子4上に形成される。ゲート端子パッド19は、ゲート端子部コンタクトホール16に埋設される。これにより、ゲート端子部コンタクトホール16を介して、ゲート端子4とゲート端子パッド19とが接続される。ソース端子パッド20は、ソース端子13上に形成される。ソース端子パッド20は、ソース端子部コンタクトホール17に埋設される。これにより、ソース端子部コンタクトホール17を介して、ソース端子13とソース端子パッド20とが電気的に接続される。TFTアレイ基板100は、以上のように構成される。
本実施の形態1では、半透過性導電膜として、光の半透過特性と電気的導電性を兼ね備えた単層のAl−45mol%N合金膜を用いる。一般的に、Al−N合金膜は絶縁性を示すのに対して、本実施の形態1で用いたAl−45mol%N合金膜は電気的導電性を有する。このように、特性が良好なAl−45mol%N合金膜を半透過型液晶表示装置等の画素電極18として用いることにより表示特性が向上する。
また、本実施の形態1にかかる半透過性導電膜には、従来公知の透明導電膜であるITOを用いる必要がない。すなわち、希少金属のInを用いる必要がなく、材料の不足あるいは枯渇等の問題や、これらにともなう大幅な価格上昇等によって、材料の安定供給に対する問題等が生じにくくなる。
次に、図4を参照して、TFTアレイ基板100の製造方法を説明する。図4は、TFTアレイ基板100の製造方法を示すフローチャート図である。
始めに、図4に示されたA工程を行う。具体的には、まず、ガラス基板などの絶縁性基板1を洗浄液又は純水を用いて洗浄する(a)。そして、絶縁性基板1上に第1の金属薄膜を成膜する(b)。第1の金属薄膜としては、例えばCr、Mo、Ti、Al、Cuや、これらに他の物質を微量に添加した合金等からなる金属膜を成膜する。
そして、第1の金属薄膜上に、感光性樹脂であるフォトレジストをスピンコートによって塗布し、塗布したフォトレジストを露光、現像する第1回目の写真製版工程を行う(c)。これにより、所望の形状にフォトレジストがパターニングされる。その後、フォトレジストパターンをマスクとして、第1の金属薄膜をウエットエッチングし、所望の形状にパターニングする(d)。これにより、第1の金属薄膜のパターンを得る。その後、フォトレジストパターンの除去、純水洗浄を行う(e)。以上の工程により、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量電極5を同時に形成する。
好適な実施例として、まず、公知のアルゴン(Ar)ガスまたはクリプトン(Kr)ガスを用いたスパッタリング法により、第1の金属薄膜としてAlNi合金膜を約200nmの厚さに成膜する。なお、ターゲットとしては、2mol%のNiを含むAlNi合金ターゲットを用いる。また、DCマグネトロンスパッタリング装置を用いてスパッタリングを行う。次に、第1回目の写真製版工程でフォトレジストパターンを形成する。次に、公知のリン酸+硝酸+酢酸系からなる薬液を用いてAlNi合金膜をウエットエッチングする。その後、フォトレジストパターンを除去して、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量電極5を形成する。
次に、図4に示されたB工程を行う。まず、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量電極5を覆うように、ゲート絶縁膜6、半導体膜7、及びオーミックコンタクト膜8を順次成膜する(f)。そして、第2回目の写真製版工程により、半導体膜7及びオーミックコンタクト膜8をパターニングするためのフォトレジストパターンをオーミックコンタクト膜8上に形成する(g)。フォトレジストパターンをマスクとして、半導体膜7及びオーミックコンタクト膜8のドライエッチングを行い、パターニングする(h)。そして、フォトレジストパターンの除去、純水洗浄を行う(i)。以上の工程により、半導体パターンとして半導体膜7及びオーミックコンタクト膜8からなる半導体層が形成される。
好適な実施例として、ここでは化学的気相成膜(CVD)法を用い、約300℃の基板加熱条件下で成膜を行う。そして、ゲート絶縁膜6として窒化シリコン(SiN)膜を400nm、半導体膜7としてアモルファスシリコン(a−Si)膜を150nm、オーミックコンタクト膜8としてリン(P)を不純物として添加したn型アモルファスシリコン(na−Si)膜を50nmの厚さに順次成膜する。次に、第2回目の写真製版工程でフォトレジストパターンを形成する。そして、公知のフッ素系ガスを用いて半導体膜7及びオーミックコンタクト膜8をドライエッチングする。その後、フォトレジストパターンを除去して、TFT108の構成要素となる半導体層を形成する。すなわち、半導体膜7及びオーミックコンタクト膜8が順次積層された島状の半導体パターンが形成される。
次に、図4に示されたC工程を行う。まず、オーミックコンタクト膜8上に、第2の金属薄膜を成膜する(j)。そして、第3回目の写真製版工程により、第2の金属薄膜上にフォトレジストパターンを形成する(k)。その後、フォトレジストパターンをマスクとして、第2の金属薄膜のウエットエッチングを行い、パターニングする(l)。これにより、ソース電極9、ドレイン電極10、ソース配線12、及びソース端子13を同時に形成する。
次に、これらの電極をマスクとして、ソース電極9とドレイン電極10に挟まれた領域のオーミックコンタクト膜8のドライエッチングを行う(m)。これにより、TFT108のチャネル領域11が形成される。そして、フォトレジストパターンの除去、純水洗浄を行う(n)。本工程に用いる第2の金属薄膜としては、電気的比抵抗が低いこと、オーミックコンタクト膜8との良好なコンタクト特性を示すこと、及び画素電極18に用いる半透過性導電膜との良好なコンタクト特性(特に電気的コンタクト抵抗が低いこと)等の利点を有するCr、Mo等を用いることが好ましい。
好適な実施例として、ここでは、公知のArガスを用いたスパッタリング法により、第2の金属薄膜としてCr膜を200nmの厚さに成膜する。なお、ターゲットとしては、Crターゲットを用いる。また、DCマグネトロンスパッタリング装置を用いてスパッタリングを行う。次に、第3回目の写真製版工程でフォトレジストパターンを形成する。そして、フォトレジストパターンをマスクとしてCr膜をウエットエッチングする。これにより、ソース電極9、ドレイン電極10、ソース配線12、及びソース端子13を形成する。次に、ソース電極9とドレイン電極10の間のオーミックコンタクト膜8を、フッ素系ガスを含むエッチングガスを用いてドライエッチングする。その後、フォトレジストパターンを除去して、TFT108のチャネル領域11を形成する。
次に、図4に示されたD工程を行う。まず、ソース電極9、ドレイン電極10、チャネル領域11、ソース配線12、及びソース端子13を覆うように、パッシベーション膜として層間絶縁膜14を成膜する(o)。そして、第4回目の写真製版工程により、フォトレジストパターンを層間絶縁膜14上に形成する(p)。フォトレジストパターンをマスクとして、層間絶縁膜14のドライエッチングを行い、パターニングする(q)。そして、フォトレジストパターンの除去、純水洗浄を行う(r)。以上の工程により、少なくとも、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17を同時に形成する。
画素ドレインコンタクトホール15は、ドレイン電極10の表面まで貫通する。すなわち、ドレイン電極10上の層間絶縁膜14が除去され、ドレイン電極10が露出する。ゲート端子部コンタクトホール16は、ゲート端子4の表面まで貫通する。すなわち、ゲート端子4上のゲート絶縁膜6及び層間絶縁膜14が除去され、ゲート端子4が露出する。ソース端子部コンタクトホール17は、ソース端子13の表面まで貫通する。すなわち、ソース端子13上の層間絶縁膜14が除去され、ソース端子13が露出する。
好適な実施例として、ここでは化学的気相成膜(CVD)法を用い、約300℃の基板加熱条件下で成膜を行う。そして、層間絶縁膜14として窒化シリコン(SiN)膜を300nmの厚さに成膜する。次に、第4回目の写真製版工程でフォトレジストパターンを形成する。そして、公知のフッ素系ガスを用いてSiN膜をドライエッチングする。その後、フォトレジストパターンを除去して、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17を形成する。
最後に、図4に示されたE工程を行う。まず、層間絶縁膜14上に、半透過性導電膜を成膜する(s)。半透過性導電膜は、Ar又はKrの不活性ガスに少なくとも窒素を含むガスを添加した混合ガスを用いたスパッタリング法により成膜される。そして、第5回目の写真製版工程により、半透過性導電膜上にフォトレジストパターンを形成する(t)。その後、フォトレジストパターンをマスクとして、半透過性導電膜のウエットエッチングを行い、パターニングする(u)。その後、フォトレジストパターンを除去する(v)。以上の工程により、画素電極18、ゲート端子パッド19、及びソース端子パッド20が形成される。
また、画素電極18は、画素ドレインコンタクトホール15に埋設される。これにより、画素ドレインコンタクトホール15を介して、画素電極18とドレイン電極10とが電気的に接続される。また、ゲート端子パッド19は、ゲート端子部コンタクトホール16に埋設される。これにより、ゲート端子部コンタクトホール16を介して、ゲート端子パッド19とゲート端子4とが電気的に接続される。そして、ソース端子パッド20は、ソース端子部コンタクトホール17に埋設される。これにより、ソース端子部コンタクトホール17を介して、ソース端子パッド20とソース端子13とが電気的に接続される。
以上の工程により、本実施の形態1に係る液晶表示装置用途として好適に用いられるアクティブマトリックス型のTFTアレイ基板100が完成する。なお、完成したTFTアレイ基板100は、約200〜300℃の温度で熱処理を加えることが好ましい。これによって、基板全体に蓄積された静電荷や応力等が除去あるいは緩和され、さらに金属薄膜の電気的比抵抗を下げることができる。そして、TFT特性を向上して安定化させることができる。
好適な実施例として、ここでは、公知のArガスにNガスを混合したガスを用いた反応性スパッタリング法により、半透過性導電膜としてAl−45mol%N合金膜を25nmの厚さに成膜する。また、DCマグネトロンスパッタリング装置を用いてスパッタリングを行う。
次に、第5回目の写真製版工程でフォトレジストパターンを形成する。そして、公知のリン酸+硝酸+酢酸系からなる薬液を用いて半透過性導電膜をウエットエッチングする。その後、フォトレジストパターンを除去して、画素電極18、ゲート端子パッド19、及びソース端子パッド20を形成する。その後、基板を大気中で、約300℃で30分間保持して熱処理を行って、所望のTFTアレイ基板100が完成する。
上記のように、本実施の形態1にかかるTFTアレイ基板100は、Al−45mol%N合金膜により、画素電極18等が形成される。Al−45mol%N合金膜は、図5に示されるような特性を有する。図5は、Al−45mol%N合金膜の光の透過率と反射率の分光特性を示すグラフである。図5において縦軸は透過率又は反射率(%)、横軸は光の波長(nm)を示す。また、膜厚は、好適な実施例として説明した膜厚と同様の25nmとする。
図5に示されるように、Al−45mol%N合金膜は、光の波長300〜800nmの範囲において、20〜30%程度の透過率を有する。また、Al−45mol%N合金膜は、光の波長300〜800nmの範囲において、30〜40%程度の反射率を有する。例えば、Al−45mol%N合金膜は、光の波長550nmにおいて、透過率が24.5%、反射率が37.5%である。このように、Al−45mol%N合金膜は、半透過性を有する。さらに、Al−45mol%N合金膜は、電気的比抵抗値が2780μΩcmの導電性を有する。
このように、本実施の形態1では、光の半透過特性と電気的導電性を兼ね備えた単層のAl−45mol%N合金膜によって画素電極18を形成する。したがって、従来公知の構成のように、Al合金膜からなる反射画素電極とITO等の透明画素電極とを別々に形成することなく、半透過型液晶表示パネルを実現することができる。従って、従来のように、ITOとAlの材料源をもつ成膜室を用いる必要がない。さらに、パターン加工において各膜を別々の薬液と設備を用いてエッチングする必要がない。このため、工程を削減して高い生産能力で、しかも高歩留りで製造することが可能である。また、本実施の形態1の半透過性導電膜は、Alを主成分とするものであり、従来公知のAlエッチング薬液でウエットエッチングすることが可能なので、製造コストを低減することができる。
なお、図3に示されたTFTアレイ基板100では、画素電極18の下層にゲート絶縁膜6と層間絶縁膜14とを残す構造としたが、図6に示すように除去した構造としてもよい。図6は、TFTアレイ基板100の他の構成を示す断面図である。図6に示されるように、画素電極18の下層の大部分では、ゲート絶縁膜6と層間絶縁膜14とが除去されている。そして、画素電極18は、絶縁性基板1上に直接形成される。また、ドレイン電極10上では、層間絶縁膜14が形成されている。このため、図3に示されたTFTアレイ基板100と同様、画素ドレインコンタクトホール15を介して、画素電極18とドレイン電極10とが電気的に接続される。
また、補助容量電極5上には、ゲート絶縁膜6及び層間絶縁膜14が形成されている。このため、図3に示されたTFTアレイ基板100と同様、画素電極18と補助容量電極5とは、ゲート絶縁膜6及び層間絶縁膜14を介して、対向配置される。このように、画素電極18の下層のゲート絶縁膜6及び層間絶縁膜14を除去することによって、基板背面から画素電極18の半透過性導電膜に入射するバックライト光の透過光量を増やすことができ、明るい透過表示画像を得ることが可能となる。
図6に示されたTFTアレイ基板100は、第4回目の写真製版工程において、コンタクトホール15、16、17と同時に画素電極18の形成領域におけるゲート絶縁膜6及び層間絶縁膜14を除去することにより形成される。
半透過性導電膜の変形例1
上記実施例では、半透過性導電膜としてAl−45mol%N合金膜を用いたが、これに限定されるものではない。光学特性(透過率、反射率)及び電気特性(比抵抗値)を満たす範囲内で任意のAl−N合金膜を用いることが可能である。以下に変形例について説明する。
一般的にスパッタリング法を用いた金属膜においては、膜厚を薄くすることによって光の透過性が現れることが知られている。しかしながら、Al膜の場合、5〜10nm程度の極薄い膜厚で1〜5%の透過率が現れる程度である。従って、Al膜の場合、半透過性膜として実用的な少なくとも5%以上の透過率を得るためには膜厚を10nm以下にする必要がある。
このような極薄い金属薄膜による光の透過性は、膜が成長する過程で存在する島状金属粒の隙間や、膜の孔欠陥に由来するものである。このため、成膜する基板下地の材質や清浄度等によって透過率特性が左右され、透過率をばらつきなく制御することが困難であるという欠点がある。さらには、基板下地に配線パターン等による段差や凹凸がある場合に、膜がこれらの部分で断線する、いわゆる段切れが起こり、導電不良を発生させやすいという欠点がある。これらの問題点をなくすために、膜厚は少なくとも10nm以上、より好ましくは20nm以上とする必要がある。
図7は、膜厚を10〜100nmの間で振り分けたAl−N合金膜の光の波長550nmにおける透過率を膜のN組成比に対してプロットしたグラフである。図7において、縦軸は光の波長550nmにおける透過率(%)、横軸はAl−N膜のN組成比(mol%)を示す。図7においては、膜厚が10nm、25nm、50nm、100nmにおける、透過率とN組成比の関係を示す。図7に示されるように、N組成比が増加するにつれて透過率が高くなる。すなわち、N組成比が増加するにつれて反射率が低くなる。また、透過率は膜厚にも大きく依存し、膜厚が厚くなるにつれて透過率が低くなる。少なくとも40mol%以上のN組成比であれば膜厚が100nmの場合でも5%以上の透過率を得ることができるので好ましいといえる。
図8は、膜厚100nmで測定したAl−N合金膜の比抵抗値のN組成比依存性を示すグラフである。図8において、縦軸は比抵抗(Ωcm)、横軸はAl−N合金膜のN組成比(mol%)を示す。図8に示されるように、N組成比が増加するにつれて比抵抗値が大きくなる。例えば、N組成比が40mol%の場合、比抵抗値は約0.00025Ω・cm(=250μΩ・cm)となる。一方で、N組成比がAl−Nの化学量論組成比となる50mol%近傍では比抵抗値が10Ω・cmを超え、実用的な導電性領域からはずれる。このため、N組成比は50mol%を超えないようにすることが好ましい。また、N組成比を50mol%未満にすることによって、従来公知のAlエッチング薬液を用いてエッチング残を発生させることなくウエットエッチングが可能になる。
以上のことから、実用可能な光学特性及び電気特性を満たすためには、Al−N合金膜のN組成比は、40mol%以上50%未満であることが好ましい。また、上記の例では、半透過性導電膜として、Alに40mol%以上50mol%未満のNを含有させた膜を用いたが、これに限らない。Al又はAlを主成分とする合金のいずれかに少なくとも40mol%以上50mol%未満の窒素を含んでいればよい。
また、上記の範囲内において、半透過性導電膜の比抵抗値は、250μΩ・cm以上10Ω・cm以下となり、例えば画素電極18として実用可能となる。また、半透過性導電膜に段切れ等の不良を抑えるため、膜厚は少なくとも10nm以上、より好ましくは20nm以上とする。
図9は、Al−N合金膜の光の波長550nmにおける透過率と反射率のN組成比依存性を示すグラフである。図9(a)ではAl−N合金膜の膜厚を25nm、図9(b)ではAl−N合金膜の膜厚を50nm、図9(c)ではAl−N合金膜の膜厚を100nmに固定したときのグラフである。図9において、縦軸は光の波長550nmにおける反射率又は透過率(%)、横軸はAl−N合金膜のN組成比(mol%)を示す。
N組成比を40mol%以上50mol%未満の範囲内で振り分けることによって、膜の透過率と反射率を振り分けることが可能である。そして、要求される特性に応じて膜厚、組成比を任意に設定すればよい。すなわち、Alを主成分とし、これにNを添加していくことによって、Al膜に光透過性を付与し、その組成比やプロセスパラメーターを制御することにより、光透過性、光反射性、及び電気的導電性を同時に兼ね備えた半透過導電性膜が得られる。以上に得られた知見をもとに、本実施の形態1に好適に用いることができる半透過性導電膜(単層膜)の一例とその光学特性及び電気特性を後述する表1の実施例1に示す。
実施の形態2
上述の実施の形態1においては、半透過性導電膜とこれを用いた半透過性画素電極としてAl−N系合金膜の単層膜を用いた例を示した。従来の透過型あるいは半透過型液晶表示装置の透過性画素電極として用いられている酸化インジウム(In)系や酸化すず(SnO)系及び酸化亜鉛(ZnO)系の酸化物透明性導電膜の比抵抗値は高くても1000μΩcm以下である。
比較的小型サイズの液晶表示装置の画素電極として用いる場合には実施の形態1に示した、比抵抗値が数Ωcm以下のAl−N系合金膜の単層膜を用いることが可能である。しかしながら、比較的大型サイズのディスプレイ(画素数による画素面積とも関係するが概ね20インチ以上)の画素電極として用いる場合には、その比抵抗値が上記の従来酸化物透明性導電膜と同等の1000μΩcm以下であることがより好ましい。Al−N系合金膜の単層膜でこのような大型サイズに対応する場合、後述する表1の実施例1をみると分かるように、N組成比が40mol%前後に限定されてしまうことになる。本実施の形態2は、Al−N系半透過性導電膜の比抵抗値を、従来の酸化物透明性導電膜と同等もしくはそれ以下にするための構成例を示すものである。
本実施の形態2は、画素電極18の半透過性導電膜が積層膜で構成されている点が実施の形態1とは異なり、他の構成は実施の形態1と同じである。したがって、重複する説明は、適宜省略又は簡略化する。まず、図10、11を参照して、本実施の形態2にかかるTFTアレイ基板100について説明する。図10は、本実施の形態2にかかるTFTアレイ基板100の断面図である。なお、TFTアレイ基板100の平面図は、図2と同様である。図10は、図2のA−A'線、B−B'線、及びC−C'線での構成を示す断面図である。なお、図10では、左から順に、ゲート端子部、ソース端子部、及び画素105の構成を示している。図11は、画素電極18の半透過性導電膜の構成を示す断面図である。
図10、11に示されるように、画素電極18は、窒素含有膜と金属膜とを交互に積層した積層膜である半透過性膜によって形成される。具体的には、画素電極18は、窒素含有膜18a、金属薄膜18b、窒素含有膜18cが順次積層された3層構造を有する。すなわち、3層構造の半透過性導電膜によって画素電極18は形成される。
下層と上層の窒素含有膜18a、18cは、互いに略同一の組成及び膜厚を有する。もちろん、これに限らず、窒素含有膜18a、18cは、互いに異なる組成及び膜厚を有してもよい。また、窒素含有膜18a、18cとしては、実施の形態1で示したものを適宜用いることができる。すなわち、実施の形態1における半透過性導電膜の変形例1で示された範囲内の半透過性導電膜を用いることができる。
中間層の金属薄膜18bは、窒素含有膜18a、18cよりも膜厚が薄くなっている。金属薄膜18bは、Al又はAlを主成分とする合金のいずれかの金属膜である。また、金属薄膜18bは、比抵抗値の低減に寄与するものであってNを含んでいても含んでいなくてもよい。ただし、窒素含有膜18a、18cよりも少なくとも比抵抗が小さい膜を用いる。
本実施の形態2によっても、実施の形態1と同様の効果を奏することができる。また、本実施の形態2にかかる半透過性導電膜は、中間層として金属薄膜18bを形成している。このため、実施の形態1の半透過性導電膜と比較して、比抵抗値を低減させることができる。
次に、上記のTFTアレイ基板100の製造方法について説明する。まず、実施の形態1と同様、図4のD工程までを行う。すなわち、画素電極18となる半透過性導電性膜の成膜前まで実施の形態1と同様に行う。
そして、層間絶縁膜14上に、窒素含有膜と金属膜を交互に積層する。具体的には、層間絶縁膜14上に、窒素含有膜18a、金属薄膜18b、及び窒素含有膜18cを順次成膜し、3層の積層膜を形成する。窒素含有膜18a、18cとしては、AlにNを添加したAl−N合金膜を成膜する。また、実施の形態1の半透過性導電膜と同様、窒素含有膜18a、18cは、Ar又はKrの不活性ガスに少なくとも窒素を含むガスを添加した混合ガスを用いたスパッタリング法により成膜される。金属薄膜18bとしては、Alの金属薄膜を成膜する。
この後に、第5回目の写真製版工程及びエッチングにより、窒素含有膜18a、金属薄膜18b、及び窒素含有膜18cをパターニングする。これにより、画素電極18、ゲート端子パッド19、及びソース端子パッド20を形成する。なお、本実施の形態2においても実施の形態1と同様に、画素電極18の下層のゲート絶縁膜6と層間絶縁膜14とを除去した構造としてもよい。
好適な実施例として、公知のArガスにNガスを混合したガスを用いた反応性スパッタリング法により窒素含有膜18aとしてAl−45mol%N合金膜を10nmの厚さに成膜する。ターゲットとしては、Alターゲットを用いる。また、DCマグネトロンスパッタリング装置を用いてスパッタリングを行う。
次に、Arガスのみを用いたスパッタリング法により金属薄膜18bとしてAl金属薄膜を厚さ5nmに成膜する。さらに連続して、再びArガスにNガスを混合させたガスを用い反応性スパッタリング法により窒素含有膜18cとしてAl−45mol%N合金膜を10nmの厚さに成膜する。
これにより、半透過性導電膜として総膜厚25nmの3層積層膜が形成される。次に、第5回目の写真製版工程で半透過性導電膜上にフォトレジストパターンを形成する。そして、公知のリン酸+硝酸+酢酸系からなる薬液を用いて半透過性導電膜をウエットエッチングし、フォトレジストパターンを除去する。これにより、画素電極18、ゲート端子パッド19、及びソース端子パッド20を形成する。その後、基板を大気中で、約300℃で30分間程度保持して熱処理を行って、本実施の形態2にかかるTFTアレイ基板100を完成させる。
本実施の形態2で適用した3層積層の半透過性導電膜は、図12に示されるような特性を有する。図12は、本実施の形態2における半透過性導電膜の光の透過率と反射率の分光特性を示すグラフである。図12において縦軸は透過率又は反射率(%)、横軸は光の波長(nm)を示す。また、膜厚は、好適な実施例として説明した膜厚と同様、上層及び下層のAl−45mol%N合金膜をそれぞれ10nm、中間層のAl金属薄膜を5nmとする。
図12に示されるように、半透過性導電膜としてのAl−45mol%N/Al/Al−45mol%N膜は、光の波長300〜800nmの範囲において、10〜20%程度の透過率を有する。また、Al−45mol%N/Al/Al−45mol%N膜は、光の波長300〜800nmの範囲において、30〜50%程度の反射率を有する。例えば、Al−45mol%N/Al/Al−45mol%N膜は、光の波長550nmにおいて、透過率が14.8%、反射率が46.3%である。このように、Al−45mol%N/Al/Al−45mol%N膜は、半透過性を有する。さらに、Al−45mol%N/Al/Al−45mol%N膜は、電気的比抵抗値が101μΩcmの導電性を有する。
このように、本実施の形態2にかかる半透過性導電膜によれば、中間層として金属薄膜18bを形成することにより、実施の形態1と比較して、比抵抗値を下げることができる。
また、Al系金属薄膜を中間層として挟む積層構造は、ターゲットを替えることなく、成膜ガスを切り替えることで成膜できる。このため、容易に半透過性導電膜を形成することができる。さらに、半透過性導電膜は公知のリン酸+硝酸+酢酸系からなる薬液を用いて一括でエッチング可能である為、単層膜と比較して工程を増やすことなく生産することができる。
半透過性導電膜の変形例2
上記の実施例では、半透過性導電膜としてAl−45mol%N/Al/Al−45mol%N膜を用いたがこれに限らない。光学特性(透過率、反射率)及び電気特性(比抵抗値)を満たす範囲内で任意の膜を用いることが可能である。
表1は、それぞれのAl−N合金膜のN組成比及び膜厚における光学特性(透過率及び反射率)及び電気特性(比抵抗値)を示した表である。表1の実施例1は、実施の形態1に好適に用いることができる半透過性導電膜(単層膜)の一例を示す。表1の実施例2は、本実施の形態2に好適に用いることができる半透過性導電膜(3層積層膜)の一例を示す。また、比較例としては、Al−50mol%N合金膜(単層膜)を示す。
Figure 0005436926
ここで、実施例1、2の半透過性導電膜について比較する。実施例1としては、膜厚25nmの単層のAl−45mol%N合金膜を用いる。そして、本実施の形態2としては、膜厚10nmのAl−45mol%N合金膜、膜厚5nmのAl金属薄膜、膜厚10nmのAl−45mol%N合金膜が順次積層された積層膜を用いる。すなわち、全膜厚は、いずれの半透過性導電膜においても25nmである。また、N組成比は、いずれのAl−N合金膜においても45mol%である。
まず、波長550nmにおける透過率と反射率について比較する。透過率は、実施例1では24.5%となり、実施例2では14.8%となる。反射率は、実施例1では37.4%となり、実施例2では46.3%となる。このように、全膜厚が25nmと同じであっても、実施例2ではその中間層として5nm厚のAl金属薄膜を挟んであるので、反射率が増加し、その分透過率が低減する。
次に、導電性について比較する。電気的比抵抗値は、実施例1では2780μΩcmとなり、実施例2では101μΩcmとなる。すなわち、実施例1と比較して、実施例2では電気的比抵抗値を大幅に低減させることができる。すなわち、Al−N合金膜と低抵抗Al合金膜との積層構造とすることによって、単層のAl−N合金膜に比べて比抵抗値を大幅に低減する。換言すると、実施例1と比較して実施例2では、導電性を大幅に向上させることができる。なお、比較例に示されたAl−50%N合金膜は、いずれの膜厚についても導電性不良が生じる。
このように、半透過性導電膜を実施例2のようなAl−N合金膜の間に、中間層としてAl金属薄膜を挟む積層構造とすれば、各層の膜厚、特に中間層としてのAl金属薄膜の膜厚を調整することによって、光の透過特性と反射特性を任意に変化させることができるとともに、比抵抗値を大幅に低減することができるという利点がある。
なお、中間層としてのAl金属薄膜が厚くなると、透過率が低下してしまうので、Al金属薄膜の厚さは、10nm未満であることが好ましい。また、表1に示されるように、Al−N合金膜のN組成比が高くなれば、Al金属薄膜の厚さを10nmとしても5%以上の透過率を有する。例えば、N組成比が45mol%の場合、Al金属薄膜の厚さを10nmとしても6.5%の透過率を有する。このため、N組成比を高くすれば、Al金属薄膜の厚さを10nmとしても画素電極18として用いることができる。また、実施の形態1で説明したように、総膜厚は、少なくとも10nm以上、より好ましくは20nm以上とする。
本実施の形態2では、好適な実施例として、画素電極18となる半透過性導電膜を、Al−45mol%N合金膜/Al金属薄膜/Al−45mol%N合金膜の3層積層膜とした。そして、各層の膜厚を10nm/5nm/10nmの総厚25nmとした。これに限らず、表1の実施例2に示した他の半透過性導電膜を用いてもよい。
もちろん、表1に示した場合に限定されることなく、任意のAl系合金膜と、これらAl系合金膜にNを含有させたAl−N系合金膜とをベースにして、所望の光学特性、電気特性が得られる範囲で任意に組み合わせて適用することが可能である。すなわち、金属薄膜18bとしてAlを主成分とする合金膜を用い、窒素含有膜18a、18cとしてAlを主成分とする合金膜にNを含有させた合金膜を用いてもよい。この場合でも、Al系合金膜(Al系金属薄膜)の厚さは、10nm未満であることが好ましい。そして、総膜厚は、少なくとも10nm以上、より好ましくは20nm以上とする。
また、3層積層膜に限定されることなく、例えば図13に示すような5層積層膜としてもよい。図13は、画素電極18の半透過性導電膜の他の構成を示す断面図である。
図13においては、画素電極18は、窒素含有膜18a、金属薄膜18b、窒素含有膜18c、金属薄膜18d、窒素含有膜18eが順次積層される5層積層膜から形成される。すなわち、5層の半透過性導電膜によって画素電極18が形成される。なお、窒素含有膜18a、18c、18eにおいて、組成及び膜厚は略同一である。また、金属薄膜18b、18dにおいて、組成及び膜厚は略同一である。もちろん、窒素含有膜18a、18c、18eは、互いに組成及び膜厚が異なってもよい。同様に、金属薄膜18b、18dは、互いに組成及び膜厚が異なってもよい。また、このとき、金属薄膜18b、18dの合計膜厚が10nm未満であることが好ましい。そして、半透過性導電膜を構成する5層の合計膜厚は少なくとも10nm以上、より好ましくは20nm以上とする。
また、図11、図13では、半透過性導電膜の積層膜構造として、最下層と最上層をともにAl−N合金膜等の窒素含有膜としたがこれに限らない。例えば、最下層及び最上層のいずれか又は両方をAl系金属薄膜等の金属薄膜とした積層膜構造としてもよい。ただし、この場合、Al系金属薄膜の膜厚次第では、最下層または最上層からの光の反射特性が勝り、透過率が大幅に低下する場合がある。光の透過特性と反射特性とをバランスよく有する半透過性導電膜を得る場合には、図11、図13に示すように、金属薄膜を上下層から半透過性膜としての窒素含有膜で挟むような積層構造とすることがより好ましい。
実施の形態3
本実施の形態3は、新たな層間絶縁膜として有機樹脂膜を設ける。なお、その他の構成等については実施の形態1と同様である。したがって、重複する説明は、適宜省略又は簡略化する。図14は本実施の形態3に係るTFTアレイ基板100の構成を示す平面図である。図15は、図14のA−A'線、B−B'線、C−C'線での構成を示す断面図である。ここで、A−A'線は画素105の構成を示しており、B−B'線はソース端子部の構成を示しており、C−C'線はゲート端子部の構成を示している。なお、図15では、左から順に、ゲート端子部、ソース端子部、及び画素105の構成を示している。
図15に示されるように、層間絶縁膜14上に、有機樹脂膜21が形成される。また、コンタクトホール15、16、17では、有機樹脂膜21も除去される。有機樹脂膜21には、凹凸形状22が形成される。凹凸形状22は、TFT108の部分を除いて、画素105の略全体に複数形成される。そして、画素電極18は、有機樹脂膜21の凹凸形状22上に形成される。このように、画素領域に凹凸形状22を形成することにより、反射光を散乱させることができる。
本実施の形態3によっても、実施の形態1と同様の効果を奏することができる。また、本実施の形態3では、画素電極18の下層に設けられた有機樹脂膜21に凹凸を形成する。そして、画素電極18の表面を光散乱面とすることによって、反射光による画像表示の観察者には、鏡面反射による観察者自身の顔やその背景の外部像が写りにくくなる。これにより、高品質の反射画像表示をすることができるという利点がある。
次に、本実施の形態3にかかるTFTアレイ基板100の製造方法について説明する。まず、実施の形態1と同様、図4のC工程までを行う。そして、ソース電極9、ドレイン電極10、チャネル領域11、ソース配線12、及びソース端子13を覆うように、層間絶縁膜14及び有機樹脂膜21を順次成膜する。そして、第4回目の写真製版工程により、有機樹脂膜21をパターニングする。これにより、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17が形成される部分の有機樹脂膜21が除去される。同時に、有機樹脂膜21の表面に凹凸形状22が形成される。
そして、有機樹脂膜21をマスクとして、層間絶縁膜14及びゲート絶縁膜6をエッチングする。これにより、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17が形成される。
好適な実施例として、ここでは化学的気相成膜(CVD)法を用い、約300℃の基板加熱条件下で成膜を行う。そして、層間絶縁膜14として窒化シリコン(SiN)膜を100nmの厚さに成膜する。その後、有機樹脂膜21として感光性有機樹脂膜をスピン塗布法を用いて平均3.5μm前後の厚さに成膜する。なお、有機樹脂膜21の表面はほぼ平坦面となる。すなわち、下層に凹凸や段差があると厳密にいえば部分的に膜厚は異なっている。感光性有機樹脂膜としては、高い光透過性を有するアクリル系樹脂、例えばJSR社製のPC335等を好適に用いることができる。
その後、写真製版工程により、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17を形成するためのフォトマスクパターンを用いて第1の露光を行う。次いで感光性有機樹脂膜の画素領域の表面に光散乱用の凹凸形状22を形成するためのフォトマスクを用いて第2の露光を行う。ここで第2の露光は、第1の露光の20%から40%程度の露光量とする。その後、有機アルカリ現像液を用いて感光性有機樹脂膜を現像する。これにより、感光性有機樹脂膜に、画素ドレインコンタクトホールパターン、ゲート端子部コンタクトホールパターン、及びソース端子部コンタクトホールパターンと、光散乱用の凹凸形状22とを同時に形成する。
この凹凸形状22の深さや平面形状を変えることによって光の反射散乱特性を変化させることができる。したがって所望の散乱特性が得られるように凹凸形状22を任意に設計すればよい。実用的な散乱特性を得るためには、凹凸形状22の凹凸高さは概略0.05μmから1μmの範囲に設定することが好ましい。この凹凸形状22の高さは、第2の露光の露光量を調節することによって調整することが可能である。次に公知のフッ素系ガスを用いて、コンタクトホールパターンの下層のゲート絶縁膜6及び層間絶縁膜14をドライエッチングにより除去する。これにより、画素ドレインコンタクトホール15、ゲート端子部コンタクトホール16、及びソース端子部コンタクトホール17を形成する。
そして、実施の形態1で説明した図3のE工程と同様の工程により、画素電極18、ゲート端子パッド19、及びソース端子パッド20を形成する。その後、基板を大気中で約200℃で30分間保持して熱処理を行う。これにより、本実施の形態3にかかるTFTアレイ基板100を完成させる。
本実施の形態3では、画素電極18の下層に設けられた有機樹脂膜21に凹凸を形成する。これにより、高品質の反射画像表示をすることができるという利点がある。また、本実施の形態3においては約200℃で熱処理を行ったが、これは使用する有機樹脂膜21の耐熱性によって変更してよい。有機樹脂膜21の耐熱性より高い温度で熱処理すると、有機樹脂膜21が変色し、透過率を低下させる原因となる。
また、図15においては、実施の形態1と同様、単層の半透過性導電膜から形成された画素電極18を図示したがこれに限らない。実施の形態2のように、複数の膜が積層された半透過性導電膜により画素電極18を形成してもよい。また、半透過性導電膜の組成や膜厚は、これらの実施の形態の変形例で示された範囲内の半透過性導電膜を用いることができる。
以上の実施の形態1〜3においては、半透過性導電膜としてAlにN元素を添加したAl−N合金膜について説明したが、これに限らない。N元素以外にもヒロック等の耐熱性向上や薬液に対する耐腐食性を向上させるために他の元素Mを添加したAl−M−N系合金であってもよい。この場合でもAl−M合金ターゲットを用いたAr+N混合ガス中での反応性スパッタリング法により、光透過性を有するAl−M−N合金膜を容易に成膜することが可能である。
さらに、実施の形態1〜3においては、液晶を用いた液晶表示装置用のアクティブマトリックス型のTFTアレイ基板について説明したが、画素電極として用いた本発明の半透過性導電膜はこのデバイス用途に限定されることはない。例えば、一般的な半透過性膜、半透過板、及びハーフミラーとして他のデバイスにも好適に用いることが可能である。特に、電気的導電性が求められる用途に関してはより好適に用いることが可能である。
1 絶縁性基板、2 ゲート電極、3 ゲート配線、4 ゲート端子、
5 補助容量電極、6 ゲート絶縁膜、7半導体膜、8 オーミックコンタクト膜、
9 ソース電極、10 ドレイン電極、11 チャネル領域、12 ソース配線、
13 ソース端子、14 層間絶縁膜、15 画素ドレインコンタクトホール、
16 ゲート端子部コンタクトホール、17 ソース端子部コンタクトホール、
18 画素電極、18a 窒素含有膜、18b 金属薄膜、18c 窒素含有膜、
18d 金属薄膜、18e 窒素含有膜、19 ゲート端子パッド、
20 ソース端子パッド、21 有機樹脂膜、22 凹凸形状、
100 TFTアレイ基板、101 表示領域、102 額縁領域、
103 走査信号駆動回路、104 表示信号駆動回路、105 画素、
106 外部配線、107 外部配線、108 TFT、109 補助容量

Claims (5)

  1. 光学特性として光の透過特性と反射特性とを有する半透過性膜であって、
    アルミニウム又はアルミニウムを主成分とする合金のいずれかに少なくとも40mol%以上、50mol%未満の窒素を含む窒素含有膜と、
    アルミニウム又はアルミニウムを主成分とする合金のいずれかの金属膜とを交互に積層した積層膜であり、
    前記窒素含有膜は、300〜800nmの範囲において25nmの膜厚で20〜30%の透過率を有し、かつ、30〜40%程度の反射率を有する半透過性膜。
  2. 前記窒素含有膜の比抵抗値が250μΩcm以上であることを特徴とする請求項1に記載の半透過性膜。
  3. 前記窒素含有膜の比抵抗値が10Ωcm以下であることを特徴とする請求項1又は2に記載の半透過性膜。
  4. 前記金属膜の膜厚が10nm未満であることを特徴とする請求項1〜3のいずれか1項に記載の半透過性膜。
  5. 膜厚が10nm以上であることを特徴とする請求項1〜4のいずれか1項に記載の半透過性膜。
JP2009116245A 2009-05-13 2009-05-13 半透過性膜 Active JP5436926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116245A JP5436926B2 (ja) 2009-05-13 2009-05-13 半透過性膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116245A JP5436926B2 (ja) 2009-05-13 2009-05-13 半透過性膜

Publications (2)

Publication Number Publication Date
JP2010266571A JP2010266571A (ja) 2010-11-25
JP5436926B2 true JP5436926B2 (ja) 2014-03-05

Family

ID=43363611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116245A Active JP5436926B2 (ja) 2009-05-13 2009-05-13 半透過性膜

Country Status (1)

Country Link
JP (1) JP5436926B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280352A (ja) * 1988-09-14 1990-03-20 Central Glass Co Ltd 車輛用窓ガラス
JP2990719B2 (ja) * 1990-01-11 1999-12-13 ぺんてる株式会社 サーマルヘッド
JPH06103817A (ja) * 1992-09-17 1994-04-15 Hitachi Ltd 導電性薄膜
TWI282874B (en) * 2001-06-06 2007-06-21 Chi Mei Optoelectronics Corp Transflective liquid crystal display
JP4763568B2 (ja) * 2006-10-05 2011-08-31 株式会社神戸製鋼所 トランジスタ基板

Also Published As

Publication number Publication date
JP2010266571A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
KR100698988B1 (ko) 액정 표시 장치와 그 제조 방법
US8159749B2 (en) Antireflection coating and display device
US8520173B2 (en) Display device
CN102239440B (zh) 液晶显示装置
JP2009020199A (ja) 表示パネル及びその製造方法
KR101386577B1 (ko) 면적이 최소화된 액정표시소자
JP2009111201A (ja) 積層導電膜、電気光学表示装置及びその製造方法
JP2004240268A (ja) 液晶表示装置
JP4884864B2 (ja) Tftアレイ基板及びその製造方法、並びにこれを用いた表示装置
KR20060100872A (ko) 반투과 액정 표시 장치 패널 및 그 제조 방법
JP2007004182A (ja) 液晶表示装置
JP4863758B2 (ja) 液晶表示システム
KR20110068563A (ko) 액정표시장치
CN100517034C (zh) 显示装置和薄膜晶体管阵列基板及其制造方法
JP2009139853A (ja) 液晶表示装置
JP4764871B2 (ja) 半透過型液晶表示パネル及びその製造方法
JP4875702B2 (ja) 半透過型液晶表示装置及びその製造方法
JP2007226245A (ja) 液晶表示装置
US20090091679A1 (en) Liquid crystal display
JPH1062816A (ja) 液晶表示装置用電極板
JP5436926B2 (ja) 半透過性膜
KR100719333B1 (ko) 반사-투과형 박막트랜지스터 액정 표시 장치 및 그 제조방법
JP2003255399A (ja) 液晶表示装置
JP5393071B2 (ja) 電子デバイス、及びその製造方法、並びに電子機器
JP2004109797A (ja) 半透過型液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R151 Written notification of patent or utility model registration

Ref document number: 5436926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250