[go: up one dir, main page]

JP5429043B2 - Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same - Google Patents

Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same Download PDF

Info

Publication number
JP5429043B2
JP5429043B2 JP2010114400A JP2010114400A JP5429043B2 JP 5429043 B2 JP5429043 B2 JP 5429043B2 JP 2010114400 A JP2010114400 A JP 2010114400A JP 2010114400 A JP2010114400 A JP 2010114400A JP 5429043 B2 JP5429043 B2 JP 5429043B2
Authority
JP
Japan
Prior art keywords
photocatalyst
water
film
hydrophilic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010114400A
Other languages
Japanese (ja)
Other versions
JP2011208113A (en
Inventor
友博 井上
学 古舘
吉次 栄口
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010114400A priority Critical patent/JP5429043B2/en
Publication of JP2011208113A publication Critical patent/JP2011208113A/en
Application granted granted Critical
Publication of JP5429043B2 publication Critical patent/JP5429043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、親水性被膜形成用光触媒塗工液およびそれを用いた親水性光触媒被膜に関する。更に詳しくは、一般的な光触媒のバインダー、もしくはアンダーコートとして使用可能な、水溶性カゴ型シルセスキオキサン及び水溶性ジルコニウム化合物を含有する水性かつ低温硬化性の親水性被膜形成用光触媒塗工液、並びに該塗工液の硬化物からなる親水性光触媒被膜に関する。 The present invention relates to a photocatalyst coating solution for forming a hydrophilic film and a hydrophilic photocatalyst film using the same. More specifically, it is a photocatalyst coating solution for forming an aqueous and low-temperature curable hydrophilic film containing a water-soluble cage silsesquioxane and a water-soluble zirconium compound, which can be used as a binder or undercoat of a general photocatalyst. And a hydrophilic photocatalyst film comprising a cured product of the coating solution.

種々の基体表面に形成された光触媒コーティング膜は、その中に含まれる酸化チタン等の光触媒性金属化合物が光の照射により有機物の分解力及び親水性を発揮することから、基体表面の清浄化、脱臭、抗菌等の用途に活用されている。現在、このような光触媒コーティングは、外装用タイル、ガラス、外壁塗装、空気清浄機内部のフィルター、無機系の基体(セラミック、金属等)への応用が主体であるものの、プラスティック材料等の有機材料への応用も近年盛んに検討されている(特許文献1及び2)。   The photocatalyst coating films formed on various substrate surfaces are such that the photocatalytic metal compound such as titanium oxide contained therein exhibits the decomposing power and hydrophilicity of organic substances by irradiation with light. It is used for deodorizing and antibacterial applications. Currently, such photocatalytic coatings are mainly applied to exterior tiles, glass, exterior wall coating, filters inside air cleaners, inorganic substrates (ceramics, metals, etc.), but organic materials such as plastic materials. In recent years, the application to is also actively studied (Patent Documents 1 and 2).

このような光触媒を有機基体に塗工する場合、光触媒作用による基体の損傷を避けるため、光触媒層と基体の間にアンダーコート層を設けるのが一般的な施行法である。ところが、現行の光触媒用アンダーコート液、もしくは光触媒層用バインダー液は、(1)150℃を超える高温で焼成しないと十分な性能を持つ膜が形成できない、(2)比較的低温で硬化するものの有機溶剤を使用しているため、溶剤耐性の無い基体に塗布できない、(3)低温で硬化し、基体損傷の少ない溶媒を使用しているものの、塗工液自体の寿命が短く、2〜3液混合型にして調製し、調合直後に使い切る必要がある、のいずれかの欠点を有している。更に、これら市販液による塗布膜は光触媒の効果が有る内は超親水性となり高いセルフクリーニング性を示すが、悪天候が続くなどして十分な日照が得られない場合には親水性が低下しセルフクリーニング性が低下するのが現状である。   When such a photocatalyst is applied to an organic substrate, it is a common practice to provide an undercoat layer between the photocatalyst layer and the substrate in order to avoid damage to the substrate due to photocatalytic action. However, the current undercoat liquid for photocatalyst or binder liquid for photocatalyst layer (1) can not form a film with sufficient performance unless it is baked at a high temperature exceeding 150 ° C. (2) It is cured at a relatively low temperature. Because it uses an organic solvent, it cannot be applied to a substrate that is not solvent resistant. (3) Although it is cured at a low temperature and uses a solvent that does not damage the substrate, the life of the coating solution itself is short. It has one of the disadvantages that it must be prepared as a liquid mixing type and used up immediately after compounding. In addition, these commercially available coating films are superhydrophilic while exhibiting a photocatalytic effect and exhibit high self-cleaning properties. However, if sufficient sunshine cannot be obtained due to bad weather, etc., the hydrophilicity decreases and self-cleaning is not possible. The current situation is that the cleaning property is lowered.

したがって、(1)低温硬化性であり、(2)安全かつ基体ダメージの無い溶媒溶液からなり、(3)得られる被膜は硬度および透明性が高く、かつ常時親水性であり、(4)ポットライフおよびシェルフライフが十分長いといった条件を全て満たす塗工液及びバインダー材料が求められていた。   Therefore, (1) it is low-temperature curable, (2) consists of a solvent solution that is safe and free of substrate damage, (3) the resulting coating has high hardness and transparency, and is always hydrophilic, (4) pot There has been a demand for a coating solution and a binder material that satisfy all of the conditions that the life and shelf life are sufficiently long.

特開2006-116461号公報JP 2006-116461 A 特開2006-272757号公報JP 2006-272757 A

本発明は、上記問題点に鑑みなされたもので、上記条件(1)〜(4)を効果的に満足することができる親水性被膜形成用光触媒塗工液、及びそれを用いた親水性光触媒被膜を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and is capable of effectively satisfying the above conditions (1) to (4), and a hydrophilic photocatalyst using the same, and a hydrophilic photocatalyst using the same The object is to provide a coating.

本発明者らは、鋭意検討を行った結果、下記の親水性被膜形成用光触媒塗工液および親水性光触媒被膜により上記目的が達成できることを見出し、本発明を完成するに至った。
即ち、本発明は第一に、
光触媒粒子、
水溶性カゴ型シルセスキオキサン 光触媒粒子に対して0.01〜100質量%、及び
水溶性ジルコニウム化合物 光触媒粒子に対して0.01〜100質量%
を含有する、親水性被膜形成用光触媒塗工液を提供する。
本発明は第二に、上記の塗工液の硬化物からなり、光触媒性を有し、水に対する接触角が20度以下であり、暗所に1ヶ月放置した後に水に対する接触角が20度以下を保持していることを特徴とする親水性光触媒被膜を提供する。
As a result of intensive studies, the present inventors have found that the above object can be achieved by the following photocatalyst coating solution for forming a hydrophilic film and a hydrophilic photocatalyst film, and have completed the present invention.
That is, the present invention firstly
Photocatalytic particles,
Water-soluble cage-type silsesquioxane 0.01 to 100% by mass with respect to the photocatalyst particles, and 0.01 to 100% by mass with respect to the water-soluble zirconium compound photocatalyst particles
The photocatalyst coating liquid for hydrophilic film formation containing this is provided.
Secondly, the present invention consists of a cured product of the above coating solution, has photocatalytic properties, has a contact angle with water of 20 degrees or less, and has a contact angle with water of 20 degrees after standing in a dark place for 1 month. Provided is a hydrophilic photocatalyst film characterized by maintaining the following.

本発明の光触媒塗工液は、水、アルコールまたはこれらの混合物を溶媒として使用することができ、安全かつ基体へのダメージが無い塗工液を形成できる。また、本発明の光触媒塗工液は、90℃程度の低温でも短時間で硬化し、得られる被膜は透明度および硬度に優れ、その表面は暗所1ヶ月放置の前後いずれにおいても親水性を示す。形成される被膜は全て無機物で構成されているため、光触媒による被膜劣化も起こりにくい。また、光触媒による超親水性に依存せず、被膜自体が水濡れ性を示すため、暗所においても親水性が継続し、セルフクリーニング性が低下しにくい。したがって、本発明の光触媒塗工液は性能および取扱い性ともに優れている。   The photocatalyst coating liquid of the present invention can use water, alcohol or a mixture thereof as a solvent, and can form a coating liquid that is safe and has no damage to the substrate. In addition, the photocatalyst coating solution of the present invention is cured in a short time even at a low temperature of about 90 ° C., and the resulting coating is excellent in transparency and hardness, and its surface exhibits hydrophilicity both before and after being left in the dark for 1 month. . Since all of the formed films are made of an inorganic material, film deterioration due to the photocatalyst hardly occurs. In addition, the coating itself exhibits water wettability without depending on the superhydrophilicity by the photocatalyst, so that the hydrophilicity continues even in a dark place and the self-cleaning property is unlikely to deteriorate. Therefore, the photocatalyst coating liquid of the present invention is excellent in both performance and handleability.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る親水性被膜形成用光触媒塗工液は、光触媒粒子と、所定量の水溶性カゴ型シルセスキオキサンと、所定量の水溶性ジルコニウム化合物とを含有するものであり、通常、光触媒粒子は溶媒に分散され、水溶性カゴ型シルセスキオキサン及び水溶性ジルコニウム化合物は溶媒に溶解した状態で該塗工液中に存在している。   The photocatalyst coating solution for forming a hydrophilic film according to the present invention contains photocatalyst particles, a predetermined amount of a water-soluble cage silsesquioxane, and a predetermined amount of a water-soluble zirconium compound, and is usually a photocatalyst. The particles are dispersed in a solvent, and the water-soluble cage silsesquioxane and the water-soluble zirconium compound are present in the coating solution in a state of being dissolved in the solvent.

[水溶性カゴ型シルセスキオキサン]
カゴ型シルセスキオキサンとは、3官能性シロキサン単位(いわゆるT単位)のみからなり、その構造中のケイ素原子が多面体の頂点を形成しているようなシルセスキオキサンをいう。本発明の塗工液には、水溶性である限りいかなるカゴ型シルセスキオキサンも用いることができる。水溶性カゴ型シルセスキオキサンは、単体で水のみならずアルコールにも可溶性であることが好ましい。水溶性カゴ型シルセスキオキサンは1種単独で用いても2種以上を併用してもよい。水溶性カゴ型シルセスキオキサンとしては、例えば、下記構造式(1):
[Water-soluble cage silsesquioxane]
The cage-type silsesquioxane refers to a silsesquioxane in which only a trifunctional siloxane unit (so-called T unit) is formed, and a silicon atom in the structure forms a vertex of a polyhedron. Any cage-type silsesquioxane can be used in the coating solution of the present invention as long as it is water-soluble. The water-soluble cage silsesquioxane is preferably soluble alone as well as in water. The water-soluble cage silsesquioxane may be used alone or in combination of two or more. Examples of the water-soluble cage silsesquioxane include the following structural formula (1):

Figure 0005429043

(式中、Rは独立に水素原子または官能基である。)
で表されるT3 8構造を有するカゴ型シルセスキオキサン、下記構造式(2):
Figure 0005429043

(In the formula, R is independently a hydrogen atom or a functional group.)
A cage-type silsesquioxane having a T 3 8 structure represented by the following structural formula (2):

Figure 0005429043

(式中、Rは前記のとおりである)
で表されるT3 10構造を有するカゴ型シルセスキオキサン、下記構造式(3):
Figure 0005429043

(Wherein R is as defined above)
A cage-type silsesquioxane having a T 3 10 structure represented by the following structural formula (3):

Figure 0005429043

(式中、Rは前記のとおりである)
で表されるT3 12構造を有するカゴ型シルセスキオキサンが挙げられる。これらのうち、上記T3 8構造を有するカゴ型シルセスキオキサンが好適に使用できる。
Figure 0005429043

(Wherein R is as defined above)
And cage-type silsesquioxane having a T 3 12 structure represented by: Of these, the cage silsesquioxane having the T 3 8 structure can be preferably used.

上記Rは独立に水素原子または官能基である。Rは互いに同一であっても、異なっていてもよい。官能基であるRが、例えば、ヒドロキシ基、またはその塩として式:-O-M+(式中、Mはカチオン、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム等の第4級アンモニウムイオン;アンモニウムイオン;ナトリウムイオン等のアルカリ金属イオンを示す。)で表される基;1,2-プロパンジオール基(-CH2CH(OH)CH2OH);1,2-プロパンジオールオキシプロピル基(-C3H6OCH2CH(OH)CH2OH);シクロヘキサンジオール基(-Cy(OH)2、Cyはシクロヘキサン環であり、Cy上任意の位置にOHが結合);シクロヘキサンジオールエチル基(-C2H4Cy(OH)2、Cyは前記のとおり);カルボキシ基、またはその塩として式:-COO-M+(式中、Mは前記のとおりである。)で表される基;スルホ基(-SO3H)、またはその塩として式:-SO3 -M+(式中、Mは前記のとおりである。)で表される基;ホスホノ基(-P(OH)2O)、またはその塩として式:-P(OH)2O-M+(式中、Mは前記のとおりである。)で表される基;メチロール基(-CH2OH)、エチロール基(-CH2CH2OH)等のアルキロール基;ポリエーテル基(例えば、式:-(OR1)n-OR2(式中、R1はエチレン基(-CH2CH2-)等のアルキレン基であり、R2は水素原子、またはメチル基等のアルキル基である)で表される基、式:-(R1O)n-R2(式中、R1およびR2は前記のとおりである)で表される基など);メルカプト基;メルカプトプロピル基(-CH2CH2CH2SH);アミノ基;アミノエチル基(-CH2CH2NH2);置換アミノプロピル基(-CH2CH2CH2N+HxR3 3-xA-;xは1〜3の整数、R3はメチル基、エチル基、プロピル基、ブチル基等のアルキル基、AはCl、OH等のアニオン);2-アミノエチル-3-アミノプロピル基(-C3H6NHC2H4NH2);アミノフェニル基(-PhNH2、ただし、Phはフェニル基);N-フェニルアミノプロピル基(-CH2CH2CH2NHPh、Phは前記のとおり);グリシジル基;グリシジルオキシプロピル基(-C3H6OG、ただし、Gはグリシジル基);エポキシシクロヘキシル基等の脂環式エポキシ基;式:-C2H4-Eまたは式:-CH2-E(式中、Eはエポキシシクロヘキシル基等の脂環式エポキシ基)で表される基;プロピルアミック酸基(-C3H6NHCOCHCHCO(OH));トリフルオロプロピル基(-CH2CH2CF3);クロロプロピル基(-C3H6Cl);クロロフェニル基(-PhCl、ただし、Phはフェニル基);クロロフェニルエチル基(-C2H4PhCl、ただし、Phはフェニル基);クロロベンジル基(-BnCl、ただし、Bnはベンジル基);クロロベンジルエチル基(-C2H4BnCl、ただし、Bnはベンジル基);マレイミドプロピル基(-C3H6-N(C1OCHCHC2O)、ただし、N(C1OCHCHC2O)の部分においてC1とC2の炭素原子が同一のN原子に結合して環状マレイミドが形成される);アクリロイルオキシプロピル基(-C3H6OCOCHCH2);メタクリロイルオキシプロピル基(-C3H6OCOC(CH3)CH2);メチル基、エチル基等のアルキル基;フェニル基、フェニルエチル基(-C2H4Ph、ただし、Phはフェニル基)等の芳香族含有基;ウレイド基(-NHCONH2);ウレイドプロピル基(-C3H6NHCONH2);シアノ基(-CN)、シアノプロピル基(-C3H6CN)、イソシアネートプロピル基(-C3H6NCO)等の基である上記構造式(1)〜(3)のいずれかで表されるカゴ型シルセスキオキサンが材料として最適に使用し得る。 R is independently a hydrogen atom or a functional group. R may be the same as or different from each other. R is a functional group, for example, as a hydroxy group or a salt thereof: —O M + (wherein M is a cation, for example, a quaternary ammonium ion such as tetramethylammonium or tetraethylammonium; an ammonium ion; A group represented by an alkali metal ion such as sodium ion); 1,2-propanediol group (—CH 2 CH (OH) CH 2 OH); 1,2-propanediol oxypropyl group (—C 3 H 6 OCH 2 CH (OH) CH 2 OH); cyclohexanediol group (—Cy (OH) 2 , Cy is a cyclohexane ring, OH is bonded to any position on Cy); cyclohexanediol ethyl group (—C 2 H 4 Cy (OH) 2 , Cy is as described above; a carboxy group or a salt thereof as a group represented by the formula: —COO M + (wherein M is as described above); a sulfo group as (-SO 3 H), or a salt thereof formula: -SO 3 - M + (wherein, M is the . A cage) a group represented by; phosphono group (-P (OH) 2 O) , or Formula :-P salt thereof (OH) 2 O - M + ( wherein, M is as the Group); an alkylol group such as a methylol group (—CH 2 OH), an ethylol group (—CH 2 CH 2 OH); a polyether group (for example, the formula: — (OR 1 ) n —OR 2 Wherein R 1 is an alkylene group such as an ethylene group (—CH 2 CH 2 —), and R 2 is a hydrogen atom or an alkyl group such as a methyl group, a formula: — ( R 1 O) n -R 2 (wherein R 1 and R 2 are as defined above, etc.); mercapto group; mercaptopropyl group (—CH 2 CH 2 CH 2 SH); amino Group: aminoethyl group (—CH 2 CH 2 NH 2 ); substituted aminopropyl group (—CH 2 CH 2 CH 2 N + H x R 3 3-x A ; x is an integer of 1 to 3 , R 3 is Alkyl groups such as methyl, ethyl, propyl and butyl; One); 2-aminoethyl-3-aminopropyl group (-C 3 H 6 NHC 2 H 4 NH 2); aminophenyl group (-PhNH 2, however, Ph is phenyl group); N-phenyl-aminopropyl group ( -CH 2 CH 2 CH 2 NHPh, Ph is as described above); glycidyl group; glycidyloxypropyl group (-C 3 H 6 OG, where G is glycidyl group); alicyclic epoxy group such as epoxycyclohexyl group; A group represented by the formula: -C 2 H 4 -E or the formula: -CH 2 -E (wherein E is an alicyclic epoxy group such as an epoxycyclohexyl group); a propylamic acid group (-C 3 H 6 NHCOCHCHCO (OH)); trifluoropropyl group (—CH 2 CH 2 CF 3 ); chloropropyl group (—C 3 H 6 Cl); chlorophenyl group (—PhCl, where Ph is a phenyl group); chlorophenylethyl group ( -C 2 H 4 PhCl, however, Ph is phenyl group); chlorobenzyl group (-BnCl, however, Bn is a benzyl group); click B benzyl ethyl group (-C 2 H 4 BnCl, however, Bn is a benzyl group); maleimide propyl (-C 3 H 6 -N (C 1 OCHCHC 2 O), however, N of (C 1 OCHCHC 2 O) In the moiety, C 1 and C 2 carbon atoms are bonded to the same N atom to form a cyclic maleimide); acryloyloxypropyl group (—C 3 H 6 OCOCHCH 2 ); methacryloyloxypropyl group (—C 3 H 6 OCOC (CH 3 ) CH 2 ); alkyl group such as methyl group and ethyl group; aromatic group such as phenyl group and phenylethyl group (-C 2 H 4 Ph, where Ph is phenyl group); ureido group (—NHCONH 2 ); ureidopropyl group (—C 3 H 6 NHCONH 2 ); cyano group (—CN), cyanopropyl group (—C 3 H 6 CN), isocyanate propyl group (—C 3 H 6 NCO), etc. The cage silsesquioxane represented by any one of the structural formulas (1) to (3), which is a group of

水溶性カゴ型シルセスキオキサンとしては、市販品を使用しうる。市販品としては、例えば、MS0860(商品名)等のHybrid Plastics製の製品が挙げられる。   A commercially available product can be used as the water-soluble cage silsesquioxane. As a commercial item, the product made from Hybrid Plastics, such as MS0860 (brand name), is mentioned, for example.

[水溶性ジルコニウム化合物]
水溶性ジルコニウム化合物には、酸化ジルコニウム系化合物およびその前駆体が包含される。水溶性ジルコニウム化合物は1種単独で用いても2種以上を併用してもよい。水溶性ジルコニウム化合物としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、酸塩化ジルコニウム(オキシ塩化ジルコニウム)、硫酸ジルコニウム、硝酸ジルコニウム、塩酸ジルコニウム、酢酸ジルコニウム、ギ酸ジルコニウム、炭酸ジルコニウム、塩基性炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、オクチル酸ジルコニウム、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレート等、これらの加水分解物または部分加水分解物が挙げられる。水溶性ジルコニウム化合物としては、市販品を使用しうる。
[Water-soluble zirconium compound]
The water-soluble zirconium compound includes a zirconium oxide compound and a precursor thereof. A water-soluble zirconium compound may be used individually by 1 type, or may use 2 or more types together. Examples of the water-soluble zirconium compound include zirconium oxide, zirconium hydroxide, zirconium oxychloride (zirconium oxychloride), zirconium sulfate, zirconium nitrate, zirconium hydrochloride, zirconium acetate, zirconium formate, zirconium carbonate, basic zirconium carbonate, zirconium carbonate. Ammonium, potassium zirconium carbonate, zirconium octylate, zirconium tetranormal propoxide, zirconium tetraacetylacetonate, zirconium tributoxymonoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), zirconium tetraacetylacetonate, zirconium These hydrolysates or partial hydrolysates such as tributoxy monostearate And the like. A commercial item can be used as a water-soluble zirconium compound.

[溶媒]
本発明の塗工液を得るための溶媒としては、水が好適であるが、メタノール、エタノール、イソプロパノール等のアルコール、または水とアルコールとの混合物を使用してもよい。該アルコールは1種単独で使用しても2種以上を併用してもよい。
[solvent]
As the solvent for obtaining the coating liquid of the present invention, water is suitable, but alcohols such as methanol, ethanol and isopropanol, or a mixture of water and alcohol may be used. These alcohols may be used alone or in combination of two or more.

[光触媒粒子]
光触媒粒子としては、従来知られているいずれのものも使用することができる。光触媒粒子は1種単独で使用しても2種以上を併用してもよい。光触媒粒子としては、例えば、現在上市されている酸化チタン系光触媒粒子、酸化タングステン系光触媒粒子、酸化亜鉛系光触媒粒子、酸化ニオブ系光触媒粒子等の、n型半導体である金属酸化物の結晶微粒子が挙げられる。より具体的には、例えば、アナターゼ型の二酸化チタン(TiO2)、ルチル型の二酸化チタン、三酸化タングステン(WO3)、酸化亜鉛(ZnO)、Gaドープ酸化亜鉛(GZO)、酸化ニオブ(Nb2O5)等が挙げられる。
[Photocatalyst particles]
Any conventionally known photocatalyst particles can be used. A photocatalyst particle may be used individually by 1 type, or may use 2 or more types together. Examples of the photocatalyst particles include metal oxide crystal particles that are n-type semiconductors such as titanium oxide photocatalyst particles, tungsten oxide photocatalyst particles, zinc oxide photocatalyst particles, and niobium oxide photocatalyst particles that are currently on the market. Can be mentioned. More specifically, for example, anatase type titanium dioxide (TiO 2 ), rutile type titanium dioxide, tungsten trioxide (WO 3 ), zinc oxide (ZnO), Ga-doped zinc oxide (GZO), niobium oxide (Nb) 2 O 5 ).

更に、可視光活性の高い光触媒微粒子としては、例えば、上記金属酸化物の結晶内に窒素、硫黄、リン、炭素等のドーパント元素をドーピングしたもの、または上記金属酸化物の表面に銅、鉄、ニッケル、金、銀、白金、炭素等の異種元素もしくは該異種元素の化合物、例えば、水酸化物、塩化物、窒化物、硫化物等を担持したものが挙げられる。更に詳しくは、白金を担持したルチル型酸化チタン、鉄を担持したルチル型酸化チタン、銅を担持したルチル型酸化チタン、水酸化銅を担持したルチル型酸化チタン、金を担持したアナターゼ型酸化チタン、白金を担持した三酸化タングステン等が挙げられる。   Furthermore, as the photocatalyst fine particles having high visible light activity, for example, the metal oxide crystal doped with a dopant element such as nitrogen, sulfur, phosphorus, or carbon, or the surface of the metal oxide with copper, iron, Examples include nickel, gold, silver, platinum, carbon and other different elements or compounds of the different elements such as hydroxide, chloride, nitride, sulfide and the like. More specifically, rutile-type titanium oxide carrying platinum, rutile-type titanium oxide carrying iron, rutile-type titanium oxide carrying copper, rutile-type titanium oxide carrying copper hydroxide, anatase-type titanium oxide carrying gold And tungsten trioxide carrying platinum.

光触媒粒子としては、一次粒子径が微細なもの、即ち、一次粒子径が好ましくは1nm〜100nmの範囲にあるものが、更に好ましくは1nm〜50nmの範囲にあるものが好適に使用される。一次粒子径が100nmより大きいと、光触媒被膜の透明度が低下し外観を損ねることがある。なお、本明細書において、「平均粒子径」とは、動的光散乱法を用いた粒度分布測定装置により求めた累積分布の50%に相当する体積基準の平均粒子径をいう。   As the photocatalyst particles, those having a fine primary particle diameter, that is, those having a primary particle diameter of preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm are preferably used. When the primary particle size is larger than 100 nm, the transparency of the photocatalyst film may be lowered and the appearance may be impaired. In the present specification, the “average particle diameter” refers to a volume-based average particle diameter corresponding to 50% of the cumulative distribution obtained by a particle size distribution measuring apparatus using a dynamic light scattering method.

可視光活性が高い光触媒微粒子の市販品としては、MPT-623(商品名、可視光応答光触媒、粉体状、白金化合物を担持したルチル型二酸化チタン、石原産業製)、MPT-625(商品名、可視光応答光触媒、粉体状、鉄化合物を担持したルチル型二酸化チタン、石原産業製)等が挙げられる。   Commercially available photocatalyst particles with high visible light activity include MPT-623 (trade name, visible light responsive photocatalyst, powder, rutile titanium dioxide carrying a platinum compound, manufactured by Ishihara Sangyo), MPT-625 (trade name) , Visible light responsive photocatalyst, powder, rutile titanium dioxide carrying an iron compound, manufactured by Ishihara Sangyo) and the like.

[光触媒塗工液]
本発明の光触媒塗工液においては、上記の光触媒粒子が分散され、かつ水溶性カゴ型シルセスキオキサンおよび水溶性ジルコニウム化合物が溶解している。該光触媒塗工液は、例えば、あらかじめ溶媒に光触媒粒子を分散させた光触媒分散液を調製し、水溶性カゴ型シルセスキオキサンを溶解した溶液および水溶性ジルコニウム化合物を溶解した溶液と混合し攪拌することで調製される。このようにして調製された塗工液においては、カゴ型シルセスキオキサン-ジルコニア複合体が形成されていることが推定される。
[Photocatalyst coating solution]
In the photocatalyst coating solution of the present invention, the above-mentioned photocatalyst particles are dispersed, and the water-soluble cage silsesquioxane and the water-soluble zirconium compound are dissolved. The photocatalyst coating liquid is prepared by, for example, preparing a photocatalyst dispersion liquid in which photocatalyst particles are dispersed in a solvent in advance, and mixing and stirring the solution in which the water-soluble cage silsesquioxane is dissolved and the solution in which the water-soluble zirconium compound is dissolved. To be prepared. In the coating solution thus prepared, it is presumed that a cage-type silsesquioxane-zirconia complex is formed.

上記光触媒塗工液中の光触媒粒子の含有量は、該光触媒塗工液全体に対し0.01〜10質量%であり、好ましくは0.1〜5質量%である。該含有量が0.01質量%より少ないと光触媒による防汚活性が低下することがあり、10質量%より多いと透明性が低下し外観をそこねることがある。   Content of the photocatalyst particle in the said photocatalyst coating liquid is 0.01-10 mass% with respect to this whole photocatalyst coating liquid, Preferably it is 0.1-5 mass%. When the content is less than 0.01% by mass, the antifouling activity due to the photocatalyst may be lowered.

また、塗工液中の水溶性カゴ型シルセスキオキサンの含有量は、光触媒粒子に対して0.01〜100質量%であり、このましくは0.1〜90質量%である。0.01質量%より少ないと膜の強度が低く剥離、割れが生じることがあり、100質量%より多いと光触媒粒子が完全に被覆され防汚活性が低下することがある。   Further, the content of the water-soluble cage silsesquioxane in the coating solution is 0.01 to 100% by mass, preferably 0.1 to 90% by mass with respect to the photocatalyst particles. If the amount is less than 0.01% by mass, the strength of the film may be low and peeling or cracking may occur. If the amount is more than 100% by mass, the photocatalyst particles may be completely covered and the antifouling activity may be reduced.

塗工液中の水溶性ジルコニウム化合物の含有量は、光触媒粒子に対して0.01〜100質量%、好ましくは0.01〜80質量%、更に好ましくは0.01〜50質量%である。0.01質量%より少ないと膜の強度が低く剥離、割れが生じることがある。100質量%より多いとジルコニアによると考えられる高い屈折率のために被膜表面で光の反射量が多くなり、被膜の全光線透過率の低下およびヘイズ率の上昇を招き被膜透明度が低下する場合がある。さらに、光触媒粒子が完全に被覆され、防汚活性が低下することがある。
The content of the water-soluble zirconium compound in the coating solution is 0.01 to 100% by mass, preferably 0.01 to 80% by mass, and more preferably 0.01 to 50% by mass with respect to the photocatalyst particles. If it is less than 0.01% by mass, the strength of the film is low, and peeling or cracking may occur. If the amount is more than 100% by mass, the amount of light reflected on the coating surface increases due to the high refractive index considered to be due to zirconia, leading to a decrease in the total light transmittance of the coating and an increase in the haze ratio, which may lead to a decrease in coating transparency. is there. Further, the photocatalyst particles are completely covered, and the antifouling activity may be lowered.

[基体]
本発明の親水性光触媒被膜形成用塗工液が塗布される基体は、親水性光触媒被膜を形成することができる限り、特に制限されない。基体の材料としては、例えば有機材料、無機材料が挙げられ、無機材料には、例えば、非金属無機材料、金属無機材料が包含される。これらはそれぞれの目的、用途に応じた様々な形状を有することができる。
[Substrate]
The substrate to which the hydrophilic photocatalyst film-forming coating solution of the present invention is applied is not particularly limited as long as the hydrophilic photocatalyst film can be formed. Examples of the base material include organic materials and inorganic materials. Examples of inorganic materials include non-metallic inorganic materials and metallic inorganic materials. These can have various shapes according to their purposes and applications.

有機材料としては、例えば、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリル樹脂、ポリアセタール、フッ素樹脂、シリコーン樹脂、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリル-ブタジエンゴム(NBR)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリビニルブチラール(PVB)、エチレンービニルアルコール共重合体(EVOH)、ポリイミド樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルエーテルイミド(PEEI)、ポリエーテルエーテルケトン(PEEK)、メラミン樹脂、フェノール樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の合成樹脂材料;天然、合成もしくは半合成の繊維材料及び繊維製品が挙げられる。これらは、フィルム、シート、その他の成型品、積層体などの所要の形状、構成に製品化されていてもよい。   Examples of organic materials include vinyl chloride resin, polyethylene, polypropylene, polycarbonate, acrylic resin, polyacetal, fluorine resin, silicone resin, ethylene-vinyl acetate copolymer (EVA), acrylonitrile-butadiene rubber (NBR), polyethylene terephthalate ( PET), polyethylene naphthalate (PEN), polyvinyl butyral (PVB), ethylene-vinyl alcohol copolymer (EVOH), polyimide resin, polyphenylene sulfide (PPS), polyether imide (PEI), polyether ether imide (PEEI) And synthetic resin materials such as polyetheretherketone (PEEK), melamine resin, phenolic resin, acrylonitrile-butadiene-styrene (ABS) resin; natural, synthetic or semi-synthetic fiber materials and fiber products. These may be commercialized into required shapes and configurations such as films, sheets, other molded products, and laminates.

非金属無機材料としては、例えば、ガラス、セラミック、石材が挙げられる。これらは、タイル、硝子、ミラー、意匠材等の様々な形に製品化されていてもよい。   Examples of the nonmetallic inorganic material include glass, ceramic, and stone. These may be commercialized in various forms such as tiles, glass, mirrors, and design materials.

金属無機材料としては、例えば、鋳鉄、鋼材、鉄、鉄合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、亜鉛ダイキャスト等が挙げられ、これらはメッキが施されていてもよいし、有機材料が塗布されていてもよい。また、非金属無機材料または有機材料の表面に施された金属メッキ被膜であってもよい。   Examples of the metal inorganic material include cast iron, steel material, iron, iron alloy, aluminum, aluminum alloy, nickel, nickel alloy, zinc die cast, etc., and these may be plated or organic materials may be used. It may be applied. Moreover, the metal plating film provided on the surface of nonmetallic inorganic material or organic material may be sufficient.

[親水性光触媒被膜]
本発明の親水性光触媒被膜は、上記の塗工液の硬化物からなり、水接触角が20度以下であり、かつ、厚さが200nmであるとき、全光線透過率が85%以上、ヘイズ率が3.5%以下である親水性光触媒被膜である。本発明の親水性光触媒被膜の形成方法としては、例えば、
本発明の塗工液を基体の表面に塗布して塗膜を形成させ、
得られた塗膜を50〜200℃の温度で乾燥硬化させる
ことを含む方法が挙げられる。
[Hydrophilic photocatalytic coating]
The hydrophilic photocatalyst coating of the present invention comprises a cured product of the above coating solution, has a water contact angle of 20 degrees or less and a thickness of 200 nm, has a total light transmittance of 85% or more, haze It is a hydrophilic photocatalyst film having a rate of 3.5% or less. As a method for forming the hydrophilic photocatalyst film of the present invention, for example,
The coating liquid of the present invention is applied to the surface of the substrate to form a coating film,
The method of drying and hardening the obtained coating film at the temperature of 50-200 degreeC is mentioned.

上記塗工液を基体に塗布するには、従来公知のいずれの方法も用いることができる。具体的には、ディップコーティング法、スピンコーティング法、スプレーコーティング法、刷毛塗り法、含浸法、ロール法、ワイヤーバー法、ダイコーティング法、グラビア印刷法、インクジェット法等を利用して塗膜を基体上に形成させることができる。   Any conventionally known method can be used to apply the coating solution to the substrate. Specifically, the substrate is coated using a dip coating method, spin coating method, spray coating method, brush coating method, impregnation method, roll method, wire bar method, die coating method, gravure printing method, ink jet method, etc. Can be formed on top.

基体上の上記塗膜を乾燥硬化させるためには、50〜200℃の温度範囲で1〜120分間熱処理することが好ましく、特には60℃〜110℃の温度範囲で5〜60分間処理することが好ましい。   In order to dry and cure the coating film on the substrate, it is preferable to heat-treat for 1 to 120 minutes in a temperature range of 50 to 200 ° C., particularly in a temperature range of 60 to 110 ° C. for 5 to 60 minutes. Is preferred.

形成される親水性光触媒被膜の厚さは、1〜500nmの範囲にあることが好ましく、特には50〜300nmの範囲にあることが好ましい。親水性光触媒被膜は、薄すぎると強度が低い場合があり、また、厚すぎると割れが生じる場合がある。   The thickness of the hydrophilic photocatalyst film to be formed is preferably in the range of 1 to 500 nm, particularly preferably in the range of 50 to 300 nm. If the hydrophilic photocatalyst film is too thin, the strength may be low, and if it is too thick, cracks may occur.

本発明の親水性光触媒被膜は、室温において、水接触角が20度以下(0〜20度)であることが好ましく、0〜10度であることが好ましい。水接触角が20度を超えると、親水性光触媒被膜の防汚性および水性オーバーコート液に対するリコート性が低下することがある。更に、本発明の親水性光触媒被膜は、暗所に1ヶ月放置した後に水に対する接触角が20度以下(0〜20度)、好ましくは0〜10度を保持しているものである。なお、水接触角は接触角計を用いて測定することができる。   The hydrophilic photocatalytic coating of the present invention preferably has a water contact angle of 20 degrees or less (0 to 20 degrees) at room temperature, and preferably 0 to 10 degrees. When the water contact angle exceeds 20 degrees, the antifouling property of the hydrophilic photocatalyst film and the recoatability with respect to the aqueous overcoat liquid may be deteriorated. Furthermore, the hydrophilic photocatalyst film of the present invention has a contact angle with water of 20 degrees or less (0 to 20 degrees), preferably 0 to 10 degrees after being left in a dark place for 1 month. The water contact angle can be measured using a contact angle meter.

また、本発明の親水性光触媒被膜は、全光線透過率が好ましくは85%以上(85〜100%)であり、かつ、ヘイズ率が好ましくは3.5%以下(0〜3.5%)、より好ましくは0〜2.0%である。全光線透過率が85%未満の場合、もしくはヘイズ率が3.5%を超える場合、またはその両方の場合、親水性光触媒被膜は透明性が低下し外観を損ねることがある。なお、光線透過率およびヘイズ率は、ヘイズメーターを用いて測定することができる。   The hydrophilic photocatalyst coating of the present invention preferably has a total light transmittance of 85% or more (85 to 100%), and a haze ratio of preferably 3.5% or less (0 to 3.5%), more preferably 0 to 2.0%. In the case where the total light transmittance is less than 85%, the haze ratio exceeds 3.5%, or both, the hydrophilic photocatalyst film may deteriorate in transparency and impair the appearance. In addition, light transmittance and a haze rate can be measured using a haze meter.

以下、実施例及び比較例により本発明を具体的に説明する。ただし、本発明はこれらの例により制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited by these examples.

[実施例1〜3ならびに比較例1及び2]
表1に示す組成で光触媒分散液およびバインダ混合液を配合して、総固形分濃度1.50質量%の水系分散液を調製し、塗工液として用いた。なお、実施例1〜3ならびに比較例1及び2のいずれにおいても、溶媒として水を用いた。また、得られた塗工液内の光触媒微粒子の粒子径分布を日機装社製のマイクロトラックUPA-EXにて測定して、該光触媒微粒子の平均粒子径を算出した。その結果、実施例1〜3ならびに比較例1及び2のいずれについても平均粒子径は50nmであった。
・光触媒分散液
光触媒材料として、市販のMPT-623(商品名、白金担持二酸化チタン結晶微粒子/アナターゼ型、一次粒径約20nm、石原産業製)を純水に分散して得た固形分濃度1.50質量%の水系分散液を使用した。
・POSS
水溶性カゴ型シルセスキオキサンとして、MS0860(商品名、T3 8構造を有するオクタアニオン型のカゴ型シルセスキオキサンのテトラメチルアンモニウム塩、即ち、R=-O-N+(CH3)4である上記構造式(1)で表されるT3 8構造を有するカゴ型シルセスキオキサン、Hybrid Plastics製)を使用した。以下、これをPOSS(Polyhedral Oligomeric Silsesquioxaneの略)と表記する。
・AC-7
水溶性ジルコニウム化合物の水溶液としてジルコゾールAC-7(商品名、炭酸ジルコニウムアンモニウム水溶液、固形分濃度13質量%、第一稀元素科学工業製)を使用した。
・スノーテックスS
固体シリカゾル系バインダーとして、スノーテックスS(商品名、粒径8〜11nmのコロイダルシリカ、日産化学製)を使用した。
[Examples 1-3 and Comparative Examples 1 and 2]
A photocatalyst dispersion and a binder mixture were blended with the composition shown in Table 1 to prepare an aqueous dispersion having a total solid concentration of 1.50% by mass and used as a coating solution. In Examples 1 to 3 and Comparative Examples 1 and 2, water was used as a solvent. In addition, the particle size distribution of the photocatalyst fine particles in the obtained coating liquid was measured by Nikkiso Microtrac UPA-EX, and the average particle size of the photocatalyst fine particles was calculated. As a result, the average particle diameter of each of Examples 1 to 3 and Comparative Examples 1 and 2 was 50 nm.
・ Photocatalyst dispersion liquid As a photocatalyst material, a commercially available MPT-623 (trade name, platinum-supported titanium dioxide crystal particles / anatase type, primary particle size of about 20 nm, manufactured by Ishihara Sangyo Co., Ltd.) dispersed in pure water has a solid content concentration of 1.50. A mass% aqueous dispersion was used.
・ POSS
As water-soluble cage silsesquioxane, MS0860 (trade name, tetramethylammonium salt of octaanion cage silsesquioxane having T 3 8 structure, ie, R = —O N + (CH 3 ) 4 , a cage-type silsesquioxane having a T 3 8 structure represented by the above structural formula (1), manufactured by Hybrid Plastics, was used. Hereinafter, this is expressed as POSS (Polyhedral Oligomeric Silsesquioxane).
・ AC-7
As an aqueous solution of the water-soluble zirconium compound, Zircosol AC-7 (trade name, zirconium ammonium carbonate aqueous solution, solid content concentration: 13% by mass, manufactured by Daiichi Rare Elemental Science Co., Ltd.) was used.
・ Snowtex S
As a solid silica sol-based binder, Snowtex S (trade name, colloidal silica having a particle diameter of 8 to 11 nm, manufactured by Nissan Chemical Co., Ltd.) was used.

[被膜の評価方法]
上記実施例および比較例において調製した塗工液を用いて、下記の手法によりサンプルフィルムを作製し、被膜の性能を評価した。
・サンプルフィルムの作製
基体として、コロナ放電処理を施したPET(ポリエチレンテレフタレート)フィルム(厚さ50μm、A4サイズ(210mm×297mm))を用いた。前記PETフィルムの片面に前記塗工液を塗布し、90℃で15分間(光学特性の測定用に用いたサンプルフィルムについては1時間)加熱乾燥させて、該PETフィルムおよびその片面に形成された厚さ約200nmの被膜からなるサンプルフィルムを作製した。
・表面張力(静的または動的)
静的表面張力を評価するために、被膜の水接触角を接触角計CA-A(製品名、協和界面科学製)を用いて室温にて測定した。水接触角の測定は、暗所に1ヶ月放置したサンプルフィルムについても行った。
一方、動的表面張力を評価するために、被膜の濡れ張力を次のとおりに測定した。即ち、室温において、ぬれ張力試験用混合液No.22.6〜No73.0(和光純薬工業(株)製)を綿棒でサンプルフィルム中の被膜表面に塗布して液膜を形成させた後、その液膜が10秒間弾かれずに保持されるかどうかを確認した。液膜が保持された濡れ張力試験用混合液に対応する濡れ張力の値のうち最大のものを被膜の濡れ張力(mN/m)とした。結果を表1に示す。
・1kg荷重擦過試験
サンプルフィルム中の被膜上にキムワイプを載せ、そのキムワイプに1kgの荷重を掛けて、被膜を10往復擦った後、被膜表面の傷の有無を目視で確認した。結果を表1に示す。
・鉛筆硬度
被膜の鉛筆硬度は、JIS K 5600-5-4に準拠して、引っかき硬度(鉛筆法)試験器(コーテック(株)製)を用いて測定した。結果を表1に示す。
・外観(色相)
被膜の外観(色相)を目視で確認した。結果を表1に示す。
・厚さ
被膜の厚さは、薄膜測定装置F-20(製品名、FILMETRICS社製)及び走査型電子顕微鏡S-3400NX(製品名、日立ハイテクノロジーズ製)を用いて測定した。即ち、まず、上記の電子顕微鏡にて被膜の厚さが全体で均一であることを確認し、大まかな厚さを決定してから、上記薄膜測定装置にて正確な厚さを決定した。結果を表1に示す。
・光学特性
被膜の全光線透過率およびヘイズ率は、デジタルヘイズメーターNDH-20D(日本電色工業製)を用いて測定した。サンプルフィルム中の厚さ200nmの被膜を測定に用いた。結果を表1に示す。
・光触媒活性の評価方法
メチレンブルーの1.0mmol/L水溶液をサンプルフィルム中の光触媒被膜上に塗布し、60℃で乾燥させることで該被膜表面に充分量のメチレンブルーを吸着させた。その後、このようにしてメチレンブルーを吸着させたサンプルフィルムに紫外線(波長:190〜400nm、1mW/cm2)または可視光(波長400〜600nm、1mW/cm2)を照射し、光触媒評価チェッカーPCC-2(商品名、ULVAC理工社製)を用い、メチレンブルー吸着面における青色色素の吸光度(波長664nm)の減少を測定した。結果を表1に示す。
[Evaluation method of film]
Using the coating liquids prepared in the above Examples and Comparative Examples, sample films were prepared by the following method, and the performance of the coating was evaluated.
-Preparation of sample film A PET (polyethylene terephthalate) film (thickness 50 μm, A4 size (210 mm × 297 mm)) subjected to corona discharge treatment was used as a substrate. The coating solution was applied to one side of the PET film and dried by heating at 90 ° C. for 15 minutes (1 hour for the sample film used for measuring the optical properties) to form the PET film and one side thereof. A sample film consisting of a coating having a thickness of about 200 nm was prepared.
・ Surface tension (static or dynamic)
In order to evaluate the static surface tension, the water contact angle of the coating was measured at room temperature using a contact angle meter CA-A (product name, manufactured by Kyowa Interface Science). The water contact angle was also measured for a sample film left in a dark place for 1 month.
On the other hand, in order to evaluate the dynamic surface tension, the wetting tension of the coating was measured as follows. That is, at room temperature, a wet film test mixture No. 22.6 to No. 73.0 (manufactured by Wako Pure Chemical Industries, Ltd.) was applied to the surface of the film in the sample film with a cotton swab to form a liquid film. It was confirmed whether the liquid film was held without being repelled for 10 seconds. The maximum value of the wet tension corresponding to the liquid mixture for wet tension test in which the liquid film was held was taken as the wet tension (mN / m) of the film. The results are shown in Table 1.
-1 kg load rubbing test A Kim wipe was placed on the coating in the sample film, a 1 kg load was applied to the Kim wipe, the coating was rubbed 10 times, and the presence or absence of scratches on the coating surface was visually confirmed. The results are shown in Table 1.
-Pencil hardness The pencil hardness of the film was measured using a scratch hardness (pencil method) tester (manufactured by Cortec Co., Ltd.) in accordance with JIS K 5600-5-4. The results are shown in Table 1.
・ Appearance (Hue)
The appearance (hue) of the coating was visually confirmed. The results are shown in Table 1.
-Thickness The thickness of the coating was measured using a thin film measuring apparatus F-20 (product name, manufactured by FILMETRICS) and a scanning electron microscope S-3400NX (product name, manufactured by Hitachi High-Technologies). That is, first, it was confirmed that the thickness of the coating was uniform as a whole with the above-mentioned electron microscope, the rough thickness was determined, and then the accurate thickness was determined with the above-mentioned thin film measuring apparatus. The results are shown in Table 1.
Optical characteristics The total light transmittance and haze ratio of the coating were measured using a digital haze meter NDH-20D (manufactured by Nippon Denshoku Industries Co., Ltd.). A 200 nm thick coating in the sample film was used for the measurement. The results are shown in Table 1.
Evaluation Method of Photocatalytic Activity A 1.0 mmol / L aqueous solution of methylene blue was applied on the photocatalyst coating in the sample film and dried at 60 ° C. to adsorb a sufficient amount of methylene blue on the coating surface. Thereafter, the sample film on which methylene blue was adsorbed in this way was irradiated with ultraviolet rays (wavelength: 190 to 400 nm, 1 mW / cm 2 ) or visible light (wavelengths 400 to 600 nm, 1 mW / cm 2 ), and the photocatalyst evaluation checker PCC- 2 (trade name, manufactured by ULVAC Riko Co., Ltd.), the decrease in the absorbance (wavelength 664 nm) of the blue dye on the methylene blue adsorption surface was measured. The results are shown in Table 1.

Figure 0005429043

※1:光触媒活性は、測定開始10分後のメチレンブルー吸光度の変化量×103を表す。
Figure 0005429043

* 1: Photocatalytic activity represents the amount of change in methylene blue absorbance × 10 3 10 minutes after the start of measurement.

表1の結果から、実施例1-3の複合体が最も被膜特性が良い。比較例より、スノーテックスのみまたは水溶性ジルコニウム化合物のみで形成した被膜は、耐傷性不足、または、外観不良および光触媒活性低下が発生していた。   From the results of Table 1, the composite of Example 1-3 has the best coating properties. From the comparative example, the film formed with only Snowtex or only the water-soluble zirconium compound had insufficient scratch resistance or poor appearance and decreased photocatalytic activity.

Claims (8)

(a)光触媒粒子、
(b)水溶性カゴ型シルセスキオキサン:光触媒粒子に対して0.01〜100質量%、
(c)水溶性ジルコニウム化合物:光触媒粒子に対して0.01〜100質量%、及び
(d)(d1)水及び(d2)水とアルコールとの混合物から選ばれる溶媒
から成る、親水性被膜形成用水性光触媒塗工液。
(A) photocatalytic particles,
(B) Water-soluble cage silsesquioxane: 0.01 to 100% by mass with respect to the photocatalyst particles,
(C) Water-soluble zirconium compound: 0.01 to 100% by mass with respect to the photocatalyst particles, and (d) (d1) water and (d2) a hydrophilic film formed of a solvent selected from a mixture of water and alcohol Aqueous photocatalyst coating solution.
上記光触媒粒子が、n型半導体である金属酸化物の結晶微粒子であることを特徴とする請求項1に係る塗工液。   2. The coating liquid according to claim 1, wherein the photocatalyst particles are metal oxide crystal particles which are n-type semiconductors. 上記光触媒粒子の含有量が光触媒塗工液全体の0.01〜10質量%であることを特徴とする請求項1または2に係る塗工液。 Content of the said photocatalyst particle is 0.01-10 mass% of the whole photocatalyst coating liquid, The coating liquid which concerns on Claim 1 or 2 characterized by the above-mentioned. 前記水溶性カゴ型シルセスキオキサンがT3 8構造を有することを特徴とする請求項1〜のいずれか1項に係る塗工液。 Coating liquid according to any one of claims 1 to 3, wherein the water-soluble cage silsesquioxane characterized by having a T 3 8 structure. 前記水溶性ジルコニウム化合物が炭酸ジルコニウムアンモニウム水溶液であることを特徴とする請求項1〜のいずれか1項に係る塗工液。 Coating liquid according to any one of claims 1 to 4, wherein the water-soluble zirconium compound is ammonium zirconium carbonate solution. 前記溶媒が水である請求項1〜の記載のいずれか1項に係る塗工液。 The said solvent is water, The coating liquid which concerns on any one of Claims 1-5 . 請求項1〜のいずれか1項に記載の塗工液の硬化物からなり、光触媒性を有し、水接触角が20度以下であることを特徴とする親水性光触媒被膜。 A hydrophilic photocatalyst film comprising a cured product of the coating liquid according to any one of claims 1 to 6 , having a photocatalytic property, and having a water contact angle of 20 degrees or less. 前記硬化物が50〜200度の温度で乾燥硬化されることを特徴とする請求項7記載の親水性光触媒被膜。

7. Symbol mounting hydrophilic photocatalyst film wherein the cured product is characterized in that it is dried and hardened at a temperature of 50 to 200 degrees.

JP2010114400A 2010-03-09 2010-05-18 Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same Active JP5429043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114400A JP5429043B2 (en) 2010-03-09 2010-05-18 Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010052408 2010-03-09
JP2010052408 2010-03-09
JP2010114400A JP5429043B2 (en) 2010-03-09 2010-05-18 Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same

Publications (2)

Publication Number Publication Date
JP2011208113A JP2011208113A (en) 2011-10-20
JP5429043B2 true JP5429043B2 (en) 2014-02-26

Family

ID=44939493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114400A Active JP5429043B2 (en) 2010-03-09 2010-05-18 Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same

Country Status (1)

Country Link
JP (1) JP5429043B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321677B2 (en) 2014-01-29 2016-04-26 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180011A (en) * 2000-12-12 2002-06-26 Dainippon Toryo Co Ltd Aqueous paint composition
JP4410443B2 (en) * 2001-09-28 2010-02-03 パナソニック電工株式会社 Antifouling film forming product
JP4716776B2 (en) * 2005-04-18 2011-07-06 旭化成ケミカルズ株式会社 Photocatalyst
JP5434776B2 (en) * 2009-04-30 2014-03-05 信越化学工業株式会社 Photocatalyst coating liquid and coating film

Also Published As

Publication number Publication date
JP2011208113A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP6305462B2 (en) Sulfonate functional coatings and methods
US8932397B2 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near infrared shielding film using same, and manufacturing method therefor
US10377904B2 (en) Inorganic hydrophilic coating solution, hydrophilic coating film obtained therefrom, and member using same
Li et al. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings
JP4995428B2 (en) Titanium oxide coating formation method
JP5874266B2 (en) Photocatalyst coating liquid and photocatalytic thin film obtained therefrom
KR101176247B1 (en) Titanium oxide coating agent, and method for titanium oxide coating film formation
JP5434778B2 (en) Cage-type silsesquioxane-peroxotitanium composite photocatalyst aqueous coating liquid and coating film for hydrophilic film formation
JP5434775B2 (en) Hydrophilic film-forming coating solution and coating film
JP5429043B2 (en) Photocatalyst coating liquid for forming hydrophilic film and hydrophilic photocatalyst film using the same
JP5915717B2 (en) Room temperature curable highly active photocatalyst coating liquid and photocatalytic thin film obtained therefrom
JP5434776B2 (en) Photocatalyst coating liquid and coating film
JP5434777B2 (en) Cage-type silsesquioxane-peroxotitanium composite aqueous coating solution and coating for hydrophilic film formation
JP7424867B2 (en) Silicate-based aqueous solution
JP5429042B2 (en) Hydrophilic film-forming coating solution and hydrophilic film using the same
WO2012053566A1 (en) Photocatalytic coating solution and photocatalytic thin film produced from same
JP4783699B2 (en) Method for producing low-contamination metal resin laminate and low-contamination metal resin laminate
WO2020129456A1 (en) Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20111227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150