JP5428990B2 - Deposition material for reflective film formation - Google Patents
Deposition material for reflective film formation Download PDFInfo
- Publication number
- JP5428990B2 JP5428990B2 JP2010070936A JP2010070936A JP5428990B2 JP 5428990 B2 JP5428990 B2 JP 5428990B2 JP 2010070936 A JP2010070936 A JP 2010070936A JP 2010070936 A JP2010070936 A JP 2010070936A JP 5428990 B2 JP5428990 B2 JP 5428990B2
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- reflective film
- film
- deposition material
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 37
- 230000008021 deposition Effects 0.000 title description 12
- 230000015572 biosynthetic process Effects 0.000 title description 8
- 238000007740 vapor deposition Methods 0.000 claims description 59
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 238000000151 deposition Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229910001316 Ag alloy Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、有機EL素子を用いた照明又はディスプレイ等の有機EL装置などに反射膜を形成するための蒸着材に関する。 The present invention relates to a vapor deposition material for forming a reflective film on an organic EL device such as an illumination or display using an organic EL element.
有機EL素子は、例えば、有機化合物からなる発光層、この発光層を挟んで陰極及び陽極の各電極に接する輸送層、これら輸送層の外側に配置される電極によって構成され、電極間に電圧をかけると電子と正孔とが各輸送層を通過して発光層で結合して発光材料が励起され、この励起状態から元の安定状態に戻る際に光を発生するものである。この有機EL素子は、面で発光し、発熱も少なく省エネルギー化が図れるなどの優れた特徴を有しているため、照明、ディスプレイへの実用化開発が進んでいる。 An organic EL element is composed of, for example, a light-emitting layer made of an organic compound, a transport layer in contact with each electrode of the cathode and the anode across the light-emitting layer, and an electrode disposed outside these transport layers, and a voltage is applied between the electrodes. When applied, electrons and holes pass through each transport layer and are combined in the light emitting layer to excite the light emitting material, and light is generated when the excited state returns to the original stable state. Since this organic EL element has excellent features such as light emission on the surface, less heat generation, and energy saving, development of practical application to lighting and displays is progressing.
この有機EL素子を用いた照明やディスプレイにおいて、発生した光を反射するため金属反射膜が形成される。この反射膜を形成する場合、有機物上への成膜となるため、金属を抵抗加熱によって溶融し蒸着することが行われる。
このような反射膜に用いる合金として、例えば特許文献1には、自然光の可視のスペクトル範囲における反射率>90%を有する反射膜のために使用することができ、かつ高い耐候性を有する、銀ベースの合金として、インジウムおよび/またはスズおよび/またはアンチモンおよび/またはビスマス0.01〜5.0質量%および銀残分からなる合金が開示されている。
In the illumination and display using this organic EL element, a metal reflective film is formed to reflect the generated light. In the case of forming this reflective film, since the film is formed on an organic material, the metal is melted and vapor-deposited by resistance heating.
As an alloy used for such a reflective film, for example, Patent Document 1 discloses silver that can be used for a reflective film having a reflectance of> 90% in the visible spectrum range of natural light and has high weather resistance. As the base alloy, an alloy consisting of 0.01 to 5.0% by weight of indium and / or tin and / or antimony and / or bismuth and a silver residue is disclosed.
ところで、有機物に反射膜を蒸着する場合、いわゆるバッチ式の真空蒸着では生産性が低いので、低コスト化のため、ロールに巻いた樹脂フィルムを連続的に供給する、いわゆるロール・ツー・ロール方式で樹脂フィルム上に連続成膜することが検討されている。この場合、樹脂フィルム表面には、水分等が吸着しているため、樹脂フィルムをロール・ツー・ロール方式で送り、蒸着すると、樹脂フィルム上の吸着ガスが放出されて蒸着雰囲気が悪化し、蒸着材に含まれるIn等により溶湯表面に酸化膜が形成されるため、蒸着状態が変化し、膜組成に変動を生じ、反射率のバラツキが大きくなるという問題がある。 By the way, when depositing a reflective film on an organic material, the so-called batch-type vacuum deposition is low in productivity, so the cost is reduced so that a resin film wound around a roll is continuously fed so-called roll-to-roll method. Therefore, continuous film formation on a resin film has been studied. In this case, since moisture or the like is adsorbed on the surface of the resin film, if the resin film is fed by a roll-to-roll method and vapor deposited, the adsorbed gas on the resin film is released and the vapor deposition atmosphere deteriorates. Since an oxide film is formed on the surface of the molten metal due to In or the like contained in the material, there is a problem that the deposition state changes, the film composition varies, and the variation in reflectance increases.
本発明は、このような事情に鑑みてなされたもので、ロール・ツー・ロール方式などにより樹脂フィルム上に反射膜を連続成膜する場合でも、蒸着状態を安定させ、膜組成の変動を防止し、反射率のバラツキを小さくすることができる反射膜形成用蒸着材を提供することを目的とする。 The present invention has been made in view of such circumstances, and even when a reflective film is continuously formed on a resin film by a roll-to-roll method or the like, the deposition state is stabilized and fluctuations in the film composition are prevented. And it aims at providing the vapor deposition material for reflective film formation which can make the dispersion | variation in a reflectance small.
本発明の反射膜形成用蒸着材は、真空チャンバ内において、溶融蒸発させられることにより、ロール・ツー・ロール方式で供給される樹脂フィルム上に反射膜を蒸着する反射膜形成用蒸着材であって、質量%で、Inを0.2〜2.0%、Mg、Ca、Srから選ばれる少なくとも1種を合計で0.004〜0.01%含有し、残部がAgと不可避不純物からなることを特徴とする。 The reflective film forming vapor deposition material of the present invention is a reflective film forming vapor deposition material that deposits a reflective film on a resin film supplied by a roll-to-roll method by being melted and evaporated in a vacuum chamber. In addition, it contains 0.004 to 0.01% in total of at least one selected from 0.2% to 2.0% In, Mg, Ca, and Sr in mass%, and the balance is made of Ag and inevitable impurities. It is characterized by that.
Agは、従来から記録媒体の反射膜として実績があり、幅広い波長域で反射率が高い。このAgに、Inと、Mg、Ca、Srから選ばれる少なくとも1種とを含有させた。
Inは、蒸着により形成された膜中の結晶粒を微細化し、膜の表面粗さを小さくする効果、およびAgに固溶して結晶粒の強度を高め、結晶粒の再結晶粒化を防止し、蒸着により形成された反射膜の反射率の低下を抑制する効果がある。Inの含有率が0.2%未満では、十分に結晶粒を微細化することができないとともに、結晶粒の再結晶粒化を防止することができないので、長期使用に伴う反射膜の反射率の低下を抑止することができず、一方、Inが2%を越えて含有すると、反射率の低いInの特性が現れるようになり、蒸着により形成されたAg合金反射膜の反射率が低下するので好ましくない。したがって、Ag合金反射膜およびこのAg合金反射膜を形成するための蒸着材に含まれるこれらInの含有量は0.2〜2.0%に定めた。
Ag has a proven record as a reflective film for recording media and has a high reflectance in a wide wavelength range. This Ag contained In and at least one selected from Mg, Ca, and Sr.
In refines the crystal grains in the film formed by vapor deposition, reduces the surface roughness of the film, and improves the strength of the crystal grains by dissolving in Ag to prevent recrystallization of the crystal grains In addition, there is an effect of suppressing a decrease in the reflectance of the reflective film formed by vapor deposition. If the In content is less than 0.2%, the crystal grains cannot be sufficiently refined, and recrystallization of the crystal grains cannot be prevented. On the other hand, when In exceeds 2%, the characteristics of In with low reflectivity appear, and the reflectivity of the Ag alloy reflective film formed by vapor deposition decreases. It is not preferable. Therefore, the content of In contained in the Ag alloy reflective film and the vapor deposition material for forming the Ag alloy reflective film is set to 0.2 to 2.0%.
また、前述したように、ロール・ツー・ロール方式で樹脂フィルムを供給しながら蒸着する方法では、樹脂フィルム表面に吸着している水等のガス成分の影響によって雰囲気が変動しやすいという問題がある。Mg、Ca、Srは、AgやInより蒸気圧が高くかつ活性であるので、抵抗加熱で溶解した際、先に蒸発して溶解雰囲気中のこれらの水分や酸素を除去し、これにより、溶湯表面でのIn等の酸化膜形成を防止し、蒸着雰囲気を安定にし、その結果蒸着膜中のInの組成のバラツキを低減し、反射率のバラツキを低減する効果がある。
Mg、Ca、Srの含有量が0.004%未満ではその効果が期待できないが、含有量が多過ぎると溶湯表面にこれらの酸化膜が形成され、Inの蒸発が阻害される結果、蒸着膜中のInの組成のバラツキが大きくなり、反射率のバラツキが大きくなる。このため、含有量を0.004〜0.01%とした。
In addition, as described above, in the method of vapor deposition while supplying the resin film by the roll-to-roll method, there is a problem that the atmosphere is likely to fluctuate due to the influence of gas components such as water adsorbed on the resin film surface. . Since Mg, Ca, and Sr have higher vapor pressures than Ag and In and are active, when they are dissolved by resistance heating, they first evaporate to remove these moisture and oxygen in the melting atmosphere. The formation of an oxide film of In or the like on the surface is prevented, and the deposition atmosphere is stabilized. As a result, the variation in the composition of In in the deposition film is reduced, and the variation in reflectance is reduced.
The effect cannot be expected if the content of Mg, Ca, Sr is less than 0.004%, but if the content is too large, these oxide films are formed on the surface of the molten metal, and the evaporation of In is inhibited. The variation in the composition of In increases, and the variation in reflectance increases. For this reason, content was made into 0.004-0.01%.
そして、本発明の反射膜は、前記蒸着材を抵抗加熱して蒸着することにより形成され、ロール・ツー・ロール方式のように連続的に成膜する場合でも、反射率のバラツキが小さい。
すなわち、本発明の反射膜の製造方法は、反射膜形成用蒸着材を用いて連続的に蒸着し反射膜を形成することを特徴とする。
And the reflective film of this invention is formed by carrying out resistance heating of the said vapor deposition material, and even when it forms into a film continuously like a roll-to-roll system, the variation in a reflectance is small.
That is, the reflective film manufacturing method of the present invention is characterized in that a reflective film is formed by continuous vapor deposition using a reflective film forming vapor deposition material.
本発明の反射膜形成用蒸着材によれば、AgにInを含有させたことにより、結晶粒を微細化して反射膜の反射率低下を抑制し、また、Mg、Ca、Srから選ばれる少なくとも1種を含有したことにより、蒸着雰囲気を安定にして、蒸着膜の組成の変動を防止することができ、ロール・ツー・ロール方式などにより樹脂フィルム上に連続成膜する場合でも、反射率のバラツキを小さくして、安定した品質の反射膜を形成することができる。 According to the reflective film-forming vapor deposition material of the present invention, by containing In in Ag, the crystal grains are refined to suppress a decrease in reflectance of the reflective film, and at least selected from Mg, Ca, and Sr By containing one kind, it is possible to stabilize the vapor deposition atmosphere and prevent the composition of the vapor deposition film from changing, and even when continuously forming a film on a resin film by a roll-to-roll method, etc. It is possible to reduce the variation and form a reflective film with stable quality.
以下、本発明の反射膜形成用蒸着材の一実施形態について説明する。
本発明の蒸着材により反射膜が形成される有機EL装置は、例えば図1に示すように、陰極1、電子輸送層2、発光層3、正孔輸送層4、陽極5からなる有機EL素子6が基板7の片面に積層され、その陽極1の上に反射膜8を積層した構成とされる。発光層3で発生した光を基板7を透過させて取り出すボトムエミッションタイプと、基板とは反対側でEL素子側から取り出すトップエミッションタイプとがある。図示例のものはボトムエミッションタイプの層構成を示しており、トップエミッションタイプの場合は、基板から反射膜、陽極、正孔輸送層、発光層、電子輸送層、陰極の順に積層される。
基板7としては、ガラス基板の他に、生産性向上のために樹脂フィルムが用いられており、樹脂フィルムとしては、透明性が高く、比較的安価なポリエチレンテレフタレート(PET)などのポリエステル樹脂が好適である。
また、反射膜8には、反射率の高いAgを主成分とし、Inを添加したAgIn合金膜が用いられる。
Hereinafter, an embodiment of the vapor deposition material for forming a reflective film of the present invention will be described.
An organic EL device in which a reflective film is formed by the vapor deposition material of the present invention includes an organic EL element comprising a cathode 1, an electron transport layer 2, a
As the
For the reflective film 8, an AgIn alloy film containing Ag having a high reflectivity as a main component and adding In is used.
反射膜8は、図1に示すボトムエミッションタイプの有機EL装置においては、基板7に積層したEL素子6の陰極1の上に形成されるが、トップエミッションタイプの有機EL装置においては、基板と陽極との間に配置され、有機EL素子を積層する前の基板に形成される。
以下の説明では、基板として樹脂フィルムを用い、ボトムエミッションタイプ、トップエミッションタイプを区別せずに、EL素子を積層した樹脂フィルム、又はEL素子を積層する前の樹脂フィルムをともに樹脂フィルムとして説明する。
In the bottom emission type organic EL device shown in FIG. 1, the reflective film 8 is formed on the cathode 1 of the
In the following description, a resin film is used as a substrate, and a resin film in which an EL element is laminated or a resin film before the EL element is laminated is described as a resin film without distinguishing between a bottom emission type and a top emission type. .
この樹脂フィルムに反射膜を形成する場合、例えば図2に示すロール・ツー・ロール方式の抵抗加熱型蒸着装置が使用される。
この蒸着装置11は、真空チャンバ12内が隔壁13により搬送室14と成膜室15とに分けられており、搬送室14内に配置した一対のロール16の間で樹脂フィルム17を繰り出しながら巻き取るとともに、その途中を支持ロール18により支持してマスク19の間から成膜室15内に臨ませた状態とし、成膜室15においてボート20上で抵抗加熱により蒸着材21を溶融蒸発させ、マスク19の間から樹脂フィルム17に蒸着させる装置である。また、蒸着材21はワイヤ状に形成され、リール22から繰り出しながら順次ボート20上に供給され、ロール16間で連続的に走行される樹脂フィルム17に連続して蒸着することができるようになっている。
When a reflective film is formed on this resin film, for example, a roll-to-roll type resistance heating type vapor deposition apparatus shown in FIG. 2 is used.
The
このような蒸着装置を使用して樹脂フィルムに前述したAgIn合金の反射膜を蒸着する場合、蒸着材としては、質量%で、Inを0.2〜2.0%、Mg、Ca、Srから選ばれる少なくとも1種を0.004〜0.01%含有し、残部がAgと不可避不純物からなる構成のものが用いられる。 When the above-described AgIn alloy reflective film is vapor-deposited on a resin film using such a vapor deposition apparatus, the vapor-depositing material is, by mass%, In 0.2 to 2.0%, Mg, Ca, Sr. A composition containing at least one selected from 0.004 to 0.01% and the balance of Ag and inevitable impurities is used.
Inは、蒸着により形成された膜中の結晶粒を微細化し、膜の表面粗さを小さくする効果、およびAgに固溶して結晶粒の強度を高め、結晶粒の再結晶粒化を防止し、蒸着により形成された反射膜の反射率の低下を抑制する効果がある。Inの含有率が0.2%未満では、十分に結晶粒を微細化することができないとともに、結晶粒の再結晶粒化を防止することができないので、長期使用に伴う反射膜の反射率の低下を抑止することができず、一方、Inが2%を越えて含有すると、反射率の低いInの特性が現れるようになり、蒸着により形成されたAg合金反射膜の反射率が低下するので好ましくない。したがって、Ag合金反射膜およびこのAg合金反射膜を形成するための蒸着材に含まれるこれらInの含有量は0.2〜2.0%に定めた。 In refines the crystal grains in the film formed by vapor deposition, reduces the surface roughness of the film, and improves the strength of the crystal grains by dissolving in Ag to prevent recrystallization of the crystal grains In addition, there is an effect of suppressing a decrease in the reflectance of the reflective film formed by vapor deposition. If the In content is less than 0.2%, the crystal grains cannot be sufficiently refined, and recrystallization of the crystal grains cannot be prevented. On the other hand, when In exceeds 2%, the characteristics of In with low reflectivity appear, and the reflectivity of the Ag alloy reflective film formed by vapor deposition decreases. It is not preferable. Therefore, the content of In contained in the Ag alloy reflective film and the vapor deposition material for forming the Ag alloy reflective film is set to 0.2 to 2.0%.
Mg、Ca、Srは、AgやInより蒸気圧が高くかつ活性であるので、抵抗加熱で溶解した際、AgやInより先に蒸発して溶解雰囲気中の水分や酸素を除去し、これにより、溶湯表面でIn等の酸化膜が形成されることを防止し、蒸着雰囲気を安定にする効果がある。
前述した蒸着装置は、樹脂フィルム表面に吸着している水等のガス成分の影響によって雰囲気が変動しやすいが、蒸着材にMg、Ca、Srを含有させておくことで、これらの水分や酸素を除去して蒸着雰囲気を安定させることができる。その結果、Inの蒸発を安定させて、蒸着膜中のInの組成のバラツキを低減し、反射率のバラツキを低減することができる。含有量が0.004%未満ではその効果が期待できないが、含有量が多過ぎると溶湯表面にこれらの酸化膜が形成され、Inの蒸発が阻害される結果、蒸着膜中のInの組成のバラツキが大きくなり、反射率のバラツキが大きくなる。このため、含有量を0.004〜0.01%とした。これらMg、Ca、Srは、いずれか1種又は2種以上が選択して添加される。2種以上選択する場合は、その合計の含有量が.004〜0.01%とされる。
Since Mg, Ca, and Sr have higher vapor pressures and are more active than Ag and In, when dissolved by resistance heating, they evaporate before Ag and In to remove moisture and oxygen in the dissolved atmosphere. In addition, it is possible to prevent the oxide film such as In from being formed on the surface of the molten metal and stabilize the vapor deposition atmosphere.
In the above-described vapor deposition apparatus, the atmosphere is likely to fluctuate due to the influence of gas components such as water adsorbed on the resin film surface, but by adding Mg, Ca, Sr to the vapor deposition material, these moisture and oxygen Can be removed to stabilize the deposition atmosphere. As a result, evaporation of In can be stabilized, variation in the composition of In in the deposited film can be reduced, and variation in reflectance can be reduced. If the content is less than 0.004%, the effect cannot be expected. However, if the content is too large, these oxide films are formed on the surface of the melt, and the evaporation of In is inhibited. As a result, the composition of In in the deposited film is reduced. The variation increases, and the variation in reflectance increases. For this reason, content was made into 0.004-0.01%. Any one or two or more of these Mg, Ca, and Sr are selected and added. When selecting two or more, the total content is. 004 to 0.01%.
このような蒸着材を用いて、図2に示す蒸着装置により樹脂フィルム上に反射膜を連続的に蒸着することにより、連続的に繰り出される樹脂フィルムにより不安定になり易い蒸着雰囲気をMg、Ca、Srが安定化し、その結果、蒸着材のInの蒸発を安定させて反射膜の組成の変動を防止することができ、ロールの最初から最後まで反射率のバラツキの小さい反射膜を形成することができる。
なお、Mg、Ca、Srも蒸発して雰囲気中で酸化するため、蒸着膜に一部取り込まれるが、もともと蒸着材への含有量が微量であり、またAgには固溶しないので、反射膜の品質低下を招くほどの影響はない。
By using such a vapor deposition material, the vapor deposition apparatus shown in FIG. 2 continuously deposits the reflective film on the resin film, so that the vapor deposition atmosphere that tends to become unstable due to the continuously drawn resin film is Mg, Ca. , Sr is stabilized, and as a result, it is possible to stabilize the evaporation of In of the vapor deposition material and prevent the reflection film from changing in composition, and to form a reflection film having a small variation in reflectance from the beginning to the end of the roll. Can do.
In addition, since Mg, Ca, and Sr are also evaporated and oxidized in the atmosphere, a part of the vapor deposition film is taken in, but originally the content in the vapor deposition material is very small, and since it does not dissolve in Ag, the reflective film There is no impact to the extent that it causes quality degradation.
また、この種のロール・ツー・ロール方式での蒸着の場合、通常の方法では、樹脂フィルムからの水分や酸素により雰囲気が汚染されるので、定期的に稼働を停止して真空チャンバ内を清掃することが求められるが、この蒸着材を使用することにより、蒸着雰囲気が安定するので、長時間の連続操業が可能となり、生産性が向上する。 In addition, in the case of this type of roll-to-roll deposition, the atmosphere is contaminated by moisture and oxygen from the resin film in the normal method, so operation is periodically stopped and the inside of the vacuum chamber is cleaned. However, by using this vapor deposition material, the vapor deposition atmosphere is stabilized, so that continuous operation for a long time becomes possible and productivity is improved.
次に、本発明の効果を確認するために行った実施例について説明する。
(1)蒸着材の製造
蒸着材の原料として純度:99.99質量%以上の高純度Ag、純度:99.9質量%以上のIn、及びAgにMg、Ca、Srのうちの1種を0.2質量%含有させた各母合金をそれぞれ用意した。
Agを高周波真空溶解炉にて溶解したのち、目的の組成になるようInおよび各種母合金をAg溶湯に添加し、溶解後炉内圧力が大気圧となるまでArガスを充填した後、黒鉛製鋳型に鋳造することによりインゴットを作製し、得られたインゴットを600℃、2時間加熱した後、溝型ロール圧延機で熱間圧延し、機械加工することにより直径:3mmの寸法を有するワイヤ状とし、表1に示される成分組成を有する実施例蒸着材、比較例蒸着材を作製した。
さらに、Mg、Ca、Srを含有させずに、Ag溶湯にInのみを添加して同様にして表1に示される成分組成を有する従来例蒸着材を製造した。
Next, examples performed for confirming the effects of the present invention will be described.
(1) Manufacture of vapor deposition material As a raw material of vapor deposition material, purity: High purity Ag of 99.99 mass% or more, purity: In of 99.9 mass% or more, and Ag, Mg, Ca, or Sr Each mother alloy containing 0.2% by mass was prepared.
After melting Ag in a high-frequency vacuum melting furnace, In and various master alloys are added to the Ag molten metal so as to have the desired composition, and after melting, it is filled with Ar gas until the furnace pressure reaches atmospheric pressure, and then made of graphite. An ingot is produced by casting into a mold, and the obtained ingot is heated at 600 ° C. for 2 hours, then hot-rolled by a grooved roll mill and machined to have a wire shape having a diameter of 3 mm. Example vapor deposition materials and comparative example vapor deposition materials having the component compositions shown in Table 1 were prepared.
Furthermore, the conventional example vapor deposition material which has the component composition shown in Table 1 was similarly manufactured by adding only In to Ag molten metal, without containing Mg, Ca, and Sr.
(2)蒸着
この表1に示す組成の各蒸着材を用い、図2に示すものと同様の蒸着装置を用いて、ロール・ツー・ロール方式により樹脂フィルムを連続して走行させ、その表面に反射膜を連続して形成した。樹脂フィルムには、厚さ50μm、幅100mmのPETフィルムを用いた。その他の成膜条件は次の通りである。
(成膜条件)
ボート加熱温度:1400〜1800℃
真空チャンバ内の真空度:1×10-3Pa以下
蒸着速度:40〜50nm/秒
反射膜の目標膜厚:100nm
(3)評価
連続的に反射膜が蒸着された樹脂フィルムについて、その幅方向の中心部を長さ50cmごとに8箇所サンプリングして試料とした。これら試料の成膜直後の波長650nmにおける反射率を分光光度計により測定した。また、その後、試料を温度:80℃、相対湿度:85%の恒温恒湿槽にて200時間保持した後、再度同じ条件で反射率を測定した。得られた反射率データから、波長650nmにおける各反射率を求め、8箇所の試料の平均値と標準偏差を求めた。その結果を表2に示す。Xが平均値、σが標準偏差を示す。
(2) Vapor deposition Each vapor deposition material having the composition shown in Table 1 was used, and a vapor deposition apparatus similar to that shown in FIG. 2 was used to continuously run the resin film by a roll-to-roll method. A reflective film was continuously formed. As the resin film, a PET film having a thickness of 50 μm and a width of 100 mm was used. Other film forming conditions are as follows.
(Deposition conditions)
Boat heating temperature: 1400-1800 ° C
Degree of vacuum in vacuum chamber: 1 × 10 −3 Pa or less Deposition rate: 40 to 50 nm / second Target film thickness of reflection film: 100 nm
(3) Evaluation With respect to the resin film on which the reflective film was continuously deposited, the central portion in the width direction was sampled at 8 locations every 50 cm in length to prepare a sample. The reflectance at a wavelength of 650 nm immediately after film formation of these samples was measured with a spectrophotometer. After that, the sample was held for 200 hours in a constant temperature and humidity chamber having a temperature of 80 ° C. and a relative humidity of 85%, and then the reflectance was measured again under the same conditions. From the obtained reflectance data, each reflectance at a wavelength of 650 nm was obtained, and an average value and standard deviation of eight samples were obtained. The results are shown in Table 2. X represents an average value, and σ represents a standard deviation.
この表2から明らかなように、本実施例の反射膜は、比較例及び従来例の反射膜に比べて、樹脂フィルムの長さ方向にわたって反射率がほぼ一定でバラツキが小さいことがわかる。しかも、成膜直後だけでなく、温度:80℃、相対湿度:85%の恒温恒湿槽にて200時間保持した後においても、長さ方向のバラツキは小さいまま、反射率の低下も少なく、高い品質を維持できていることがわかる。 As is apparent from Table 2, it can be seen that the reflective film of this example has a substantially constant reflectance and small variation over the length direction of the resin film, as compared with the reflective film of the comparative example and the conventional example. Moreover, not only immediately after film formation, but also after being held in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 85% for 200 hours, the variation in the length direction is small and the decrease in reflectance is small, It can be seen that high quality can be maintained.
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、樹脂フィルムを連続的に走行するロール・ツー・ロール方式の蒸着方法に本発明を適用したが、いわゆるバッチ式で平板状の基板に蒸着する場合に本発明の蒸着材を適用することを妨げるものではない。
また、本発明の蒸着材によって得られる反射膜は、トップエミッションタイプ、ボトムエミッションタイプのいずれのEL有機装置にも適用することができる。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, the present invention is applied to a roll-to-roll type vapor deposition method in which a resin film is continuously run. However, when vapor deposition is performed on a flat substrate in a so-called batch type, the vapor deposition material of the present invention. Does not preclude the application.
Moreover, the reflective film obtained by the vapor deposition material of the present invention can be applied to any of the top emission type and bottom emission type EL organic devices.
1 陰極
2 電子輸送層
3 発光層
4 正孔輸送層
5 陽極
6 有機EL素子
7 基板
8 反射膜
11 蒸着装置
12 真空チャンバ
13 隔壁
14 搬送室
15 成膜室
16 ロール
17 樹脂フィルム(基板)
18 支持ロール
19 マスク
20 ボート
21 蒸着材
22 リール
DESCRIPTION OF SYMBOLS 1 Cathode 2
18
Claims (3)
質量%で、Inを0.2〜2.0%、Mg、Ca、Srから選ばれる少なくとも1種を合計で0.004〜0.01%含有し、残部がAgと不可避不純物からなることを特徴とする反射膜形成用蒸着材。 In a vacuum chamber, a vapor deposition material for forming a reflective film that deposits a reflective film on a resin film supplied in a roll-to-roll manner by being melted and evaporated,
It contains at least one selected from 0.2 to 2.0% of In, Mg, Ca, and Sr in a total of 0.004 to 0.01% by mass, and the balance is made of Ag and inevitable impurities. A vapor deposition material for forming a reflective film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010070936A JP5428990B2 (en) | 2010-03-25 | 2010-03-25 | Deposition material for reflective film formation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010070936A JP5428990B2 (en) | 2010-03-25 | 2010-03-25 | Deposition material for reflective film formation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202234A JP2011202234A (en) | 2011-10-13 |
JP5428990B2 true JP5428990B2 (en) | 2014-02-26 |
Family
ID=44879177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010070936A Expired - Fee Related JP5428990B2 (en) | 2010-03-25 | 2010-03-25 | Deposition material for reflective film formation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5428990B2 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56144188A (en) * | 1980-04-10 | 1981-11-10 | Sadami Ito | Adhering method for vacuum evaporation film |
JP4240889B2 (en) * | 2001-02-01 | 2009-03-18 | キヤノン株式会社 | Method for forming transparent conductive film and method for producing photovoltaic element |
JP3855958B2 (en) * | 2001-03-16 | 2006-12-13 | 石福金属興業株式会社 | Sputtering target material |
JP2003262711A (en) * | 2002-03-08 | 2003-09-19 | Seiko Epson Corp | Reflector and method of manufacturing the same |
JP2004131747A (en) * | 2002-10-08 | 2004-04-30 | Sumitomo Metal Mining Co Ltd | Silver alloy for display device, and display device using electrode film or reflection film formed by using the silver alloy |
JP4379602B2 (en) * | 2003-08-20 | 2009-12-09 | 三菱マテリアル株式会社 | Optical recording medium having translucent reflective film or reflective film as constituent layer, and Ag alloy sputtering target used for forming said reflective film |
EP1736558A4 (en) * | 2003-12-10 | 2009-06-17 | Tanaka Precious Metal Ind | Silver alloy for reflective film |
JP2008138229A (en) * | 2006-11-30 | 2008-06-19 | Toppan Printing Co Ltd | Roll-to-roll type magnetron sputtering apparatus, laminate using the same, optical functional filter, and optical display apparatus |
JP5533545B2 (en) * | 2010-01-12 | 2014-06-25 | 三菱マテリアル株式会社 | Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same |
-
2010
- 2010-03-25 JP JP2010070936A patent/JP5428990B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011202234A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4487010B2 (en) | Manufacturing method of organic light emitting device | |
US7161171B2 (en) | Material for use in the manufacturing of luminous display devices | |
JP3797317B2 (en) | Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element | |
CN105206753B (en) | Organic light emitting element | |
JP5488849B2 (en) | Conductive film, method for producing the same, and sputtering target used therefor | |
CN103258966B (en) | For reflection anode electrode and the manufacture method thereof of organic light emitting apparatus | |
JP2015510220A (en) | Transparent anode for OLED | |
US8962382B2 (en) | Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method | |
JP5428990B2 (en) | Deposition material for reflective film formation | |
JPH11126689A (en) | Manufacture of organic electroluminescent element and organic el element | |
JPH1167460A (en) | Organic electroluminescent element and its manufacture | |
JP2005268616A (en) | Transparent conductive film and method for producing the same | |
JP4714477B2 (en) | Ag alloy film and manufacturing method thereof | |
JP2006028641A (en) | Sputtering target, silver alloy film, and method for producing the film | |
CN115528074A (en) | Display panel, display panel preparation method and display device | |
JP2013077547A (en) | Conductive film and manufacturing method thereof, and silver alloy sputtering target for conductive film formation and manufacturing method thereof | |
WO2005125284A1 (en) | Organic el element | |
JP5720816B2 (en) | Conductive film | |
JP5590258B2 (en) | Ag alloy film forming sputtering target, Ag alloy film, Ag alloy reflective film, Ag alloy conductive film, Ag alloy semi-transmissive film | |
JP4268161B2 (en) | Electrode substrate for organic electroluminescence device and organic EL light emitting device | |
WO2015037582A1 (en) | Reflective electrode film for organic el, multilayer reflective electrode film, and sputtering target for forming reflective electrode film | |
JPH0922782A (en) | Organic EL device and method of manufacturing the same | |
JPH1092583A (en) | EL element and manufacturing method thereof | |
JP2003257672A (en) | Organic el element | |
JP5742615B2 (en) | Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5428990 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |