JP5427143B2 - Aluminum alloy sheet for forming - Google Patents
Aluminum alloy sheet for forming Download PDFInfo
- Publication number
- JP5427143B2 JP5427143B2 JP2010187756A JP2010187756A JP5427143B2 JP 5427143 B2 JP5427143 B2 JP 5427143B2 JP 2010187756 A JP2010187756 A JP 2010187756A JP 2010187756 A JP2010187756 A JP 2010187756A JP 5427143 B2 JP5427143 B2 JP 5427143B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- mass
- concentration
- less
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 82
- 238000005204 segregation Methods 0.000 claims description 100
- 238000005259 measurement Methods 0.000 claims description 40
- 238000000465 moulding Methods 0.000 claims description 26
- 238000007493 shaping process Methods 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 description 60
- 229910045601 alloy Inorganic materials 0.000 description 41
- 239000000956 alloy Substances 0.000 description 41
- 238000005266 casting Methods 0.000 description 38
- 229910018134 Al-Mg Inorganic materials 0.000 description 36
- 229910018467 Al—Mg Inorganic materials 0.000 description 36
- 238000009749 continuous casting Methods 0.000 description 35
- 238000001816 cooling Methods 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 25
- 238000000137 annealing Methods 0.000 description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- 229910002804 graphite Inorganic materials 0.000 description 18
- 239000010439 graphite Substances 0.000 description 18
- 238000000265 homogenisation Methods 0.000 description 17
- 238000001556 precipitation Methods 0.000 description 15
- 239000013078 crystal Substances 0.000 description 14
- 229910000765 intermetallic Inorganic materials 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 11
- 238000005097 cold rolling Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/003—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/055—Cooling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0622—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
Description
本発明は、高Mg含有Al−Mg系合金板であって、高い成形性を有する成形用アルミニウム合金板に関するものである。 The present invention relates to a high-Mg-containing Al—Mg-based alloy plate, which relates to a forming aluminum alloy plate having high formability.
周知の通り、従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、各種アルミニウム合金板が、合金毎の各特性に応じて汎用されている。これらのアルミニウム合金板は、多くの場合、プレス成形などで成形されて、上記各用途の部材や部品とされる。この点、高成形性の点からは、アルミニウム合金のなかでも、強度・延性バランスに優れたAl−Mg系合金が有利である。このAl−Mg系合金としては、例えば、JISA5052、5182等が代表的な合金である。しかし、このAl−Mg系合金板は、従来の冷延鋼板と比較すると延性に劣り、成形性に劣っている。このため、従来から、Al−Mg系合金板に関して、成分系の検討や製造条件の最適化検討が行われている。 As is well known, various aluminum alloy plates have conventionally been used for each alloy for transporting machines such as automobiles, ships, airplanes or vehicles, machines, electrical products, architecture, structures, optical instruments, and components and parts of equipment. It is widely used depending on the characteristics. In many cases, these aluminum alloy plates are formed by press molding or the like, and are used as members and parts for the above-described applications. In this respect, from the viewpoint of high formability, among aluminum alloys, an Al—Mg-based alloy having an excellent balance between strength and ductility is advantageous. As this Al—Mg alloy, for example, JIS A5052, 5182 and the like are typical alloys. However, this Al—Mg alloy plate is inferior in ductility and inferior in formability as compared with a conventional cold-rolled steel plate. For this reason, conventionally, regarding the Al—Mg alloy plate, examination of component systems and optimization of manufacturing conditions have been performed.
例えば、Al−Mg系合金は、Mg含有量を増加させて、6質量%、できれば8質量%を超える高Mg化させると、強度延性バランスが向上する。しかし、このような高Mg含有Al−Mg系合金板は、DC鋳造などで鋳造した鋳塊を均熱処理後に熱間圧延を施す、通常の製造方法では、工業的に製造することは困難である。その理由は、鋳造の際に鋳塊にMgが偏析したり、通常の熱間圧延では、Al−Mg系合金の延性が著しく低下するために、割れが発生し易くなるからである。 For example, when the Al-Mg alloy is increased in Mg content to a high Mg content exceeding 6 mass%, preferably 8 mass%, the strength ductility balance is improved. However, it is difficult to industrially manufacture such a high Mg content Al—Mg alloy plate by a normal manufacturing method in which an ingot cast by DC casting or the like is subjected to hot rolling after soaking. . The reason is that Mg is segregated in the ingot at the time of casting, and the normal hot rolling significantly reduces the ductility of the Al—Mg alloy, so that cracking is likely to occur.
一方、高Mg含有Al−Mg系合金板を、割れの発生する温度域を避けて、低温での熱間圧延で製造することも困難である。その理由は、このような低温圧延では、高Mg含有Al−Mg系合金の材料の変形抵抗が著しく高くなり、現状の圧延機の能力では、製造できる製品サイズが極端に限定されるためである。また、高MgのAl−Mg系合金のMg含有許容量を増加させるために、FeやSi等の第三元素を添加する方法等も提案されている。しかし、これら第三元素の含有量が増えると、粗大な金属間化合物を形成しやすく、アルミニウム合金板の延性を低下させる。したがって、Mg含有許容量の増加には限界があり、Mgが8質量%を超える量を含有させることは困難であった。 On the other hand, it is difficult to produce a high Mg content Al—Mg alloy plate by hot rolling at a low temperature while avoiding a temperature range where cracks occur. The reason is that, in such low temperature rolling, the deformation resistance of the material of the high Mg content Al—Mg alloy becomes extremely high, and the product size that can be produced is extremely limited by the current rolling mill capability. . In addition, a method of adding a third element such as Fe or Si has been proposed in order to increase the Mg content allowable amount of the high Mg Al—Mg alloy. However, when the content of these third elements is increased, a coarse intermetallic compound is easily formed, and the ductility of the aluminum alloy plate is lowered. Therefore, there is a limit to the increase in the Mg content allowable amount, and it was difficult to contain an amount of Mg exceeding 8% by mass.
このため、高Mg含有Al−Mg系合金板を、双ロール式などの連続鋳造法で製造することが種々提案されている。
例えば、特許文献1では、6〜10質量%の高Mg含有Al−Mg系合金板を双ロール式連続鋳造法で製造し、Al−Mg系金属間化合物の平均サイズを10μm以下とした自動車用アルミニウム合金板が記載されている。
For this reason, various proposals have been made to produce a high Mg content Al—Mg alloy plate by a continuous casting method such as a twin roll type.
For example, in
また、特許文献2では、2.5〜8質量%の高Mg含有Al−Mg系合金板を連続鋳造法で製造し、10μm以上のAl−Mg系金属間化合物の個数を300個/mm2以下、平均結晶粒径が10〜70μmとした自動車ボディーシート用アルミニウム合金板が記載されている。
Moreover, in
また、特許文献3では、8〜14質量%の高Mg含有Al−Mg系合金板を双ロール式連続鋳造法で製造し、板厚方向にわたって測定された各Mg濃度と、これらを平均化した平均Mg濃度との関係において、平均Mg濃度からの各Mg濃度のずれ幅の最大値が絶対値で4質量%以下、平均値が絶対値で0.8質量%以下とすることによって、Al−Mg系金属間化合物の析出を抑制したアルミニウム合金板が記載されている。
Moreover, in
特許文献1、2に記載されているように、鋳造の際に晶出するAl−Mg系金属間化合物は、プレス成形の際に破壊の起点となりやすい。したがって、高Mg含有Al−Mg系合金板のプレス成形性を向上させるためには、Al−Mg系金属間化合物(β相とも言う)を、微細化させること、または、粗大なものを少なくすることが有効である。そして、特許文献1、2では、鋳造工程における冷却速度(鋳造速度)を速くして、鋳造の際に晶出するAl−Mg系金属間化合物を抑制している。ただ、高Mg含有量となるほど、鋳造工程における冷却速度制御だけで、高Mg含有Al−Mg系合金板のβ相を、プレス成形性に悪影響しない程度に低減することは難しいという問題がある。
As described in
特許文献3では、均質化熱処理と最終焼鈍条件により板厚方向にわたってのMgの偏析度合い(Mg濃度分布)を抑制して、Mgの偏析(濃度むら)に起因するAl−Mg系金属間化合物(β相)の析出を抑制している。しかし、従来技術の双ロール式連続鋳造法を用いて製造した高Mg含有Al−Mg系合金板は、板幅方向でもMgの偏析が発生するため、板厚方向にわたってのMgの偏析度合いを抑制しただけでは、高Mg含有Al−Mg系合金板のβ相を、プレス成形性に悪影響しない程度に低減することは難しいという問題がある。
In
したがって、鋳造工程における冷却速度、および、鋳造工程以降における均質化熱処理と最終焼鈍条件による板厚方向にわたってのMgの偏析度合いの抑制以外に、あるいは、これに加えて、更に、高Mg含有Al−Mg系合金板のβ相をプレス成形性に悪影響しない程度に低減できる技術が要望されている。 Therefore, in addition to or in addition to the suppression of the rate of Mg segregation in the sheet thickness direction due to the cooling rate in the casting process and the homogenization heat treatment and final annealing conditions after the casting process, a high Mg content Al- There is a demand for a technique that can reduce the β phase of the Mg-based alloy sheet to such an extent that it does not adversely affect the press formability.
本発明はこのような問題を解決するためになされたものであって、その課題は、高Mg含有Al−Mg系合金板の内部でのβ相の析出を低減して、プレス成形性を向上させた成形用アルミニウム合金板を提供することにある。 The present invention has been made to solve such problems, and the problem is to reduce the precipitation of β phase inside the high Mg-containing Al—Mg alloy plate and improve the press formability. An object of the present invention is to provide an aluminum alloy plate for forming.
前記課題を解決するために、本発明に係る成形用アルミニウム合金板は、Mg:6.0〜15.0質量%を含み、残部がAlおよび不純物とからなる成形用アルミニウム合金板であって、前記成形用アルミニウム合金板の表面に設定された全板幅を1辺とする正方形状の領域において、板幅方向および板長さ方向に所定の間隔で設定された複数の板幅方向測定点でMg濃度を測定し、それらのMg濃度の平均値を板幅方向平均Mg濃度(Co)とし、前記板幅方向測定点において、板厚方向に所定の間隔で全板厚にわたって設定された複数の板厚方向測定点でMg濃度を測定し、それらの平均値を板厚方向平均Mg濃度(Ci)としたとき、板厚方向平均Mg濃度(Ci)と板幅方向平均Mg濃度(Co)との差(Ci−Co)で定義される領域Mg偏析度(X)の絶対値は、その最大値が0.5質量%以下、かつ、その平均値が0.1質量%以下であることを特徴とする。 In order to solve the above-mentioned problem, a forming aluminum alloy plate according to the present invention is a forming aluminum alloy plate containing Mg: 6.0 to 15.0 mass%, with the balance being Al and impurities, In a square region having one side of the total plate width set on the surface of the forming aluminum alloy plate, at a plurality of plate width direction measurement points set at predetermined intervals in the plate width direction and the plate length direction. The Mg concentration is measured, and the average value of those Mg concentrations is defined as the plate width direction average Mg concentration (Co). At the measurement points in the plate width direction, a plurality of thicknesses set over the entire plate thickness at predetermined intervals in the plate thickness direction. When the Mg concentration is measured at the measurement point in the plate thickness direction, and the average value thereof is defined as the plate thickness direction average Mg concentration (Ci), the plate thickness direction average Mg concentration (Ci) and the plate width direction average Mg concentration (Co) Defined by the difference (Ci-Co) The absolute value of the frequency Mg segregation ratio (X) is the maximum value of 0.5 wt% or less, and the average value thereof is equal to or less than 0.1 wt%.
前記構成によれば、成形用アルミニウム合金板の板厚方向平均Mg濃度(Ci)と板幅方向平均Mg濃度(Co)との差で定義される領域Mg偏析度(X)が所定値以下の最大値および平均値であることによって、成形用アルミニウム合金板の板全体、すなわち、板厚方向および板幅方向の両方向でのMgの偏析が抑制されるため、成形用アルミニウム合金板の内部でのβ相の析出が低減されると共に、成形時の不均一変形、不均一変形に起因した歪み集中が抑制される。 According to the said structure, the area | region Mg segregation degree (X) defined by the difference of the board thickness direction average Mg density | concentration (Ci) and board width direction average Mg density | concentration (Co) of an aluminum alloy plate for shaping | molding is below predetermined value. By being the maximum value and the average value, the segregation of Mg in the entire thickness of the forming aluminum alloy plate, that is, in both the plate thickness direction and the plate width direction is suppressed. Precipitation of the β phase is reduced, and uneven deformation during molding and strain concentration due to nonuniform deformation are suppressed.
本発明に係る成形用アルミニウム合金板は、前記領域Mg偏析度(X)に加えて、当該領域Mg偏析度(X)の算出に際して、前記板幅方向測定点の少なくとも1つにおいて、板厚方向に所定の間隔で全板厚にわたって測定されたMg濃度を板厚方向Mg濃度(Ct)としたとき、板厚方向Mg濃度(Ct)と板厚方向平均Mg濃度(Ci)との差(Ct−Ci)で定義される板厚方向Mg偏析度(Y)の絶対値は、その最大値が4質量%以下、かつ、その平均値が0.8質量%以下であることが好ましい。 In the forming aluminum alloy sheet according to the present invention, in the calculation of the region Mg segregation degree (X) in addition to the region Mg segregation degree (X), at least one of the measurement points in the plate width direction, the plate thickness direction When the Mg concentration measured over the whole plate thickness at a predetermined interval is defined as the plate thickness direction Mg concentration (Ct), the difference between the plate thickness direction Mg concentration (Ct) and the plate thickness direction average Mg concentration (Ci) (Ct The absolute value of the thickness direction Mg segregation degree (Y) defined by -Ci) is preferably 4% by mass or less and the average value of 0.8% by mass or less.
前記構成によれば、前記領域Mg偏析度(X)に加えて、成形用アルミニウム合金板の板厚方向Mg濃度(Ct)と板厚方向平均Mg濃度(Ci)との差で定義される板厚方向Mg偏析度(Y)が所定値以下の最大値および平均値であることによって、Mgの偏析がさらに抑制されるため、成形用アルミニウム合金板の内部でのβ相の析出がさらに低減されると共に、成形時の不均一変形、不均一変形に起因した歪み集中がさらに抑制される。 According to the said structure, in addition to the said area | region Mg segregation degree (X), the board defined by the difference of the board thickness direction Mg density | concentration (Ct) and board thickness direction average Mg density | concentration (Ci) of the aluminum alloy plate for shaping | molding Since the thickness direction Mg segregation degree (Y) is a maximum value and an average value below a predetermined value, the segregation of Mg is further suppressed, so that the precipitation of β phase inside the forming aluminum alloy plate is further reduced. At the same time, non-uniform deformation during molding and strain concentration due to non-uniform deformation are further suppressed.
本発明に係る成形用アルミニウム合金板は、前記Mgの含有量が、8質量%を超えて14質量%以下であることが好ましい。
前記構成によれば、Mg含有量を所定範囲に規定することによって、成形用アルミニウム合金板の強度、延性が向上すると共に、成形用アルミニウム合金板の内部でのβ相の析出が低減される。
In the aluminum alloy sheet for forming according to the present invention, the Mg content is preferably more than 8% by mass and 14% by mass or less.
According to the said structure, by prescribing | regulating Mg content to a predetermined range, while the intensity | strength and ductility of an aluminum alloy plate for shaping | molding improve, precipitation of (beta) phase inside the aluminum alloy plate for shaping | molding is reduced.
本発明に係る成形用アルミニウム合金板は、前記不純物が、Fe:1.0質量%以下、Si:0.5質量%以下、Ti:0.1質量%以下、B:0.05質量%以下、Mn:0.3質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下、V:0.3質量%以下、Cu:1.0質量%以下、Zn:1.0%質量以下の少なくとも1種以上の元素であることが好ましい。 In the aluminum alloy sheet for molding according to the present invention, the impurities are Fe: 1.0 mass% or less, Si: 0.5 mass% or less, Ti: 0.1 mass% or less, B: 0.05 mass% or less. Mn: 0.3% by mass or less, Cr: 0.3% by mass or less, Zr: 0.3% by mass or less, V: 0.3% by mass or less, Cu: 1.0% by mass or less, Zn: 1. It is preferable that it is at least one element of 0% by mass or less.
前記構成によれば、不純物としてのFe、Siの含有量を規制することによって、成形用アルミニウム合金板の内部にAl−Mg−(Fe、Si)などからなるAl−Mg系金属間化合物や、Al−Fe、Al−SiなどからなるAl−Mg系以外の金属間化合物が析出することが抑制され、破壊靭性やプレス成形性が向上する。また、不純物としてのTi、B、Mn、Cr、Zr、V、Cu、Znの含有量を規制することによって、プレス成形性が阻害されない。 According to the above configuration, by regulating the content of Fe and Si as impurities, an Al—Mg-based intermetallic compound composed of Al—Mg— (Fe, Si) or the like inside the forming aluminum alloy plate, Precipitation of intermetallic compounds other than Al—Mg based materials such as Al—Fe and Al—Si is suppressed, and fracture toughness and press formability are improved. Moreover, press formability is not inhibited by regulating the contents of Ti, B, Mn, Cr, Zr, V, Cu, and Zn as impurities.
本発明に係る成形用アルミニウム合金板は、Mgの偏析を抑制することによってβ相の形成が低減され、優れたプレス成形性を得ることができる。また、成形用アルミニウム合金板は、Mg含有量をより狭い範囲に規制、または、Mg以外にFe、Si、Ti、B、Mn、Cr、Zr、V、Cu、Znの少なくとも1種以上の元素を不純物として含有し、その含有量を規制することによって、プレス成形性がさらに向上する。 In the aluminum alloy sheet for forming according to the present invention, formation of β phase is reduced by suppressing the segregation of Mg, and excellent press formability can be obtained. Further, the aluminum alloy sheet for forming is restricted to a narrower Mg content, or in addition to Mg, at least one element of Fe, Si, Ti, B, Mn, Cr, Zr, V, Cu, Zn Is contained as an impurity, and the press formability is further improved by regulating the content thereof.
本発明に係る成形用アルミニウム合金板の実施形態について、詳細に説明する。
本発明に係る成形用アルミニウム合金板(以下、アルミニウム合金板と称す)は、Mgを高含有量で含むアルミニウム合金からなり、板幅方向平均Mg濃度Coと板厚方向平均Mg濃度Ciで定義される領域Mg偏析度Xを所定値以下に規制したことを特徴とする。
An embodiment of an aluminum alloy sheet for forming according to the present invention will be described in detail.
The forming aluminum alloy plate according to the present invention (hereinafter referred to as an aluminum alloy plate) is made of an aluminum alloy containing a high content of Mg, and is defined by a plate width direction average Mg concentration Co and a plate thickness direction average Mg concentration Ci. The region Mg segregation degree X is restricted to a predetermined value or less.
まず、アルミニウム合金板の化学成分組成について、各合金元素の意義、および、その数値限定理由について説明する。
アルミニウム合金板は、Mg:6.0〜15.0質量%を含み、残部がAlおよび不純物とからなるアルミニウム合金、すなわち、高Mg含有Al−Mg系合金から構成される。また、アルミニウム合金板は、Mg以外の元素として、Fe:1.0質量%以下、Si:0.5質量%以下、Ti:0.1質量%以下、B:0.05質量%以下、Mn:0.3質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下、V:0.3質量%以下、Cu:1.0質量%以下、Zn:1.0%質量以下の少なくとも1種以上の元素を不純物として含有する高Mg含有Al−Mg系合金から構成されることが好ましい。
First, regarding the chemical component composition of the aluminum alloy plate, the significance of each alloy element and the reason for limiting the numerical value will be described.
The aluminum alloy plate is composed of an aluminum alloy containing Mg: 6.0 to 15.0% by mass and the balance being Al and impurities, that is, a high Mg-containing Al—Mg alloy. In addition, the aluminum alloy plate includes, as elements other than Mg, Fe: 1.0 mass% or less, Si: 0.5 mass% or less, Ti: 0.1 mass% or less, B: 0.05 mass% or less, Mn : 0.3 mass% or less, Cr: 0.3 mass% or less, Zr: 0.3 mass% or less, V: 0.3 mass% or less, Cu: 1.0 mass% or less, Zn: 1.0% It is preferably composed of a high Mg-containing Al—Mg-based alloy containing at least one element having a mass or less as an impurity.
(Mg)
MgはAl合金板の強度、延性を高める重要合金元素である。Mg含有量が6.0質量%未満であると、強度、延性が不足して、高Mg含有Al−Mg系合金の特徴が出ず、プレス成形性が不足する。一方、Mg含有量が15.0質量%を超えると、製造方法や条件の制御を行なっても、アルミニウム合金板のMgの偏析、すなわち、前記領域Mg偏析度を所定範囲内に規定することが難しくなる。この結果、アルミニウム合金板でのβ相の析出が多くなり、プレス成形性が著しく低下する。また、加工硬化量が大きくなり、冷間圧延性も低下させる。したがって、Mg含有量は、6.0〜15.0質量%、好ましくは8質量%を超え14質量%以下である。
(Mg)
Mg is an important alloy element that increases the strength and ductility of the Al alloy sheet. When the Mg content is less than 6.0% by mass, the strength and ductility are insufficient, the characteristics of the high Mg-containing Al—Mg alloy are not obtained, and the press formability is insufficient. On the other hand, if the Mg content exceeds 15.0% by mass, the segregation of Mg in the aluminum alloy plate, that is, the degree of Mg segregation in the region can be regulated within a predetermined range even if the manufacturing method and conditions are controlled. It becomes difficult. As a result, the precipitation of β phase on the aluminum alloy plate increases, and the press formability is remarkably lowered. In addition, the work hardening amount is increased and the cold rollability is also lowered. Therefore, Mg content is 6.0-15.0 mass%, Preferably it exceeds 8 mass% and is 14 mass% or less.
(Fe、Si)
FeとSiは、できるだけ少ない量に規制すべき元素である。FeとSiは、Al−Mg−(Fe、Si)などからなるAl−Mg系金属間化合物や、Al−Fe、Al−SiなどのAl−Mg系以外の金属間化合物となって析出する。Fe含有量が1.0質量%を超える場合、または、Si含有量が0.5質量%を超える場合には、これらの金属間化合物の析出量が過大となって、破壊靱性や成形性を大きく阻害する。その結果、プレス成形性が著しく低下する。したがって、Fe含有量は1.0質量%以下、好ましくは0.5質量%以下、Si含有量は0.5質量%以下、好ましくは0.3質量%以下である。
(Fe, Si)
Fe and Si are elements that should be regulated to the smallest possible amount. Fe and Si are precipitated as an Al—Mg-based intermetallic compound composed of Al—Mg— (Fe, Si) or an intermetallic compound other than Al—Mg based such as Al—Fe or Al—Si. When the Fe content exceeds 1.0% by mass, or when the Si content exceeds 0.5% by mass, the amount of precipitation of these intermetallic compounds becomes excessive, and fracture toughness and formability are reduced. It greatly inhibits. As a result, press formability is significantly reduced. Therefore, the Fe content is 1.0% by mass or less, preferably 0.5% by mass or less, and the Si content is 0.5% by mass or less, preferably 0.3% by mass or less.
(Ti、B、Mn、Cr、Zr、V、Cu、Zn)
Ti、Bには鋳板(鋳塊)組織の微細化効果、Mn、Cr、Zr、Vには圧延板組織の微細化効果がある。また、Cu、Znには、強度を向上させる効果もある。このため、これらの効果を狙って敢えて含有させる場合もあり、本発明の合金板の特性であるプレス成形性を阻害しない範囲で、これら元素を一種または二種以上含有させることは許容される。これらの許容量は、Ti:0.1質量%以下、B:0.05質量%以下、Mn:0.3質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下、V:0.3質量%以下、Cu:1.0質量%以下、Zn:1.0質量%以下が好ましい。
(Ti, B, Mn, Cr, Zr, V, Cu, Zn)
Ti and B have a refinement effect on the cast plate (ingot) structure, and Mn, Cr, Zr, and V have a refinement effect on the rolled plate structure. Cu and Zn also have an effect of improving strength. For this reason, it may be intentionally included with the aim of these effects, and it is allowed to contain one or more of these elements within a range that does not impair the press formability that is a characteristic of the alloy plate of the present invention. These allowable amounts are Ti: 0.1 mass% or less, B: 0.05 mass% or less, Mn: 0.3 mass% or less, Cr: 0.3 mass% or less, Zr: 0.3 mass% or less V: 0.3% by mass or less, Cu: 1.0% by mass or less, and Zn: 1.0% by mass or less are preferable.
次に、アルミニウム合金板の板幅方向平均Mg濃度Co、板厚方向平均Mg濃度Ci、および、板幅方向平均Mg濃度Coと板厚方向平均Mg濃度Ciで定義される領域Mg偏析度Xについて、図1を参照して詳細に説明する。 Next, with regard to the plate width direction average Mg concentration Co, the plate thickness direction average Mg concentration Ci, and the region Mg segregation degree X defined by the plate width direction average Mg concentration Co and the plate thickness direction average Mg concentration Ci of the aluminum alloy plate This will be described in detail with reference to FIG.
(板幅方向平均Mg濃度:Co)
図1(a)に示すように、板幅方向平均Mg濃度Coは、アルミニウム合金板の表面に設定された全板幅Wを1辺とする正方形状の領域、すなわち、全板幅Wとその全板幅Wと同じ長さの板長さLで囲まれた領域において、板幅方向に所定の間隔a、かつ、板長さ方向に所定の間隔bで設定された複数の板幅方向測定点Pxでアルミニウム合金板の表面でのMg濃度を測定し、それらのMg濃度を平均化したもの、すなわち、測定されたMg濃度の平均値である。そして、この板幅方向平均Mg濃度Coは、アルミニウム合金板の表面での板幅方向におけるMgの偏析度合いの指標となる。また、Mg濃度の測定には、線分析が可能なEPMA(電子線プローブマイクロアナライザ)を用い、アルミニウム合金板の板幅方向に走査してMg濃度を測定する。
(Average Mg concentration in the plate width direction: Co)
As shown in FIG. 1 (a), the plate width direction average Mg concentration Co is a square region having one side of the total plate width W set on the surface of the aluminum alloy plate, that is, the total plate width W and its In a region surrounded by a plate length L having the same length as the total plate width W, a plurality of plate width direction measurements set at a predetermined interval a in the plate width direction and at a predetermined interval b in the plate length direction The Mg concentration on the surface of the aluminum alloy plate is measured at the point Px, and the Mg concentration is averaged, that is, the average value of the measured Mg concentration. And this plate width direction average Mg density | concentration Co becomes a parameter | index of the degree of Mg segregation in the plate width direction in the surface of an aluminum alloy plate. In addition, the Mg concentration is measured by using an EPMA (electron probe microanalyzer) capable of line analysis and scanning in the plate width direction of the aluminum alloy plate.
また、アルミニウム合金板の板幅方向のMgの偏析度合いの再現性を得るために、アルミニウム合金板の表面に全板幅Wを1辺とする正方形状の領域を設定し、その領域内のアルミニウム合金板の表面でのMg濃度を測定する必要がある。そして、領域内に設定する板幅方向測定点Pxの個数(点数)は、板幅方向に板端を含まずに5点以上、かつ、板長さ方向に5点以上の合計25点以上が好ましい。そして、板幅方向測定点Pxの個数が25点以上となるように、板幅方向の間隔aおよび板長さ方向の間隔bを設定する。さらに、板長さ方向の間隔bは、板幅方向の間隔aの0.5〜2倍の間隔に設定することが好ましい。 In addition, in order to obtain reproducibility of the degree of Mg segregation in the plate width direction of the aluminum alloy plate, a square region with one side of the entire plate width W is set on the surface of the aluminum alloy plate, and aluminum in the region is formed. It is necessary to measure the Mg concentration on the surface of the alloy plate. The number (points) of the plate width direction measurement points Px set in the region is 5 points or more without including the plate end in the plate width direction and 25 points or more in total in the plate length direction. preferable. Then, the interval a in the plate width direction and the interval b in the plate length direction are set so that the number of measurement points Px in the plate width direction is 25 or more. Further, the interval b in the plate length direction is preferably set to 0.5 to 2 times the interval a in the plate width direction.
(板厚方向平均Mg濃度:Ci)
図1(b)に示すように、板厚方向平均Mg濃度Ciは、前記領域に設定された複数の板幅方向測定点Pxの全ての測定点において、板厚方向に所定の間隔cで全板厚Tにわたって設定された複数の板厚方向測定点Pyで板深さ位置でのMg濃度(後記する板厚方向Mg濃度Ctと同義)を測定し、それらのMg濃度を平均化したもの、すなわち、測定されたMg濃度の平均値である。そして、この板厚方向平均Mg濃度Ciは、アルミニウム合金板の板厚方向(板深さ方向)におけるMgの偏析度合いの指標となる。また、Mg濃度の測定は、前記と同様にEPMAを用いて、板幅方向の断面を板厚方向に走査して全板厚Tの範囲における各厚み位置部分でのMg濃度を測定する。
(Thickness direction average Mg concentration: Ci)
As shown in FIG. 1B, the plate thickness direction average Mg concentration Ci is calculated at a predetermined interval c in the plate thickness direction at all measurement points of the plurality of plate width direction measurement points Px set in the region. The Mg concentration at the plate depth position (synonymous with the plate thickness direction Mg concentration Ct to be described later) is measured at a plurality of plate thickness direction measurement points Py set over the plate thickness T, and those Mg concentrations are averaged. That is, the average value of the measured Mg concentration. The plate thickness direction average Mg concentration Ci is an index of the degree of Mg segregation in the plate thickness direction (plate depth direction) of the aluminum alloy plate. The Mg concentration is measured using EPMA in the same manner as described above to scan the cross section in the plate width direction in the plate thickness direction and measure the Mg concentration at each thickness position in the range of the total plate thickness T.
また、アルミニウム合金板の板厚方向におけるMgの偏析度合いの再現性を得るために、板厚方向の間隔cは0.2mm以下に設定することが好ましい。なお、板厚方向測定点Pyの初回測定点は、既に測定済の前記板幅方向測定点Pxとなる。 Further, in order to obtain reproducibility of the degree of segregation of Mg in the thickness direction of the aluminum alloy plate, the interval c in the thickness direction is preferably set to 0.2 mm or less. The first measurement point of the plate thickness direction measurement point Py is the already measured plate width direction measurement point Px.
(領域Mg偏析度:X)
領域Mg偏析度Xは、板厚方向平均Mg濃度(Ci)と板幅方向平均Mg濃度(Co)との差(Ci−Co)で定義されるもので、アルミニウム合金板の板全体、すなわち、板厚方向および板幅方向の両方でのMgの偏析度合いの指標となる。そして、本発明に係るアルミニウム合金板においては、領域Mg偏析度Xの絶対値が、その最大値で0.5質量%以下、かつ、その平均値で0.1質量%以下である。なお、板幅方向平均Mg濃度Co、板厚方向平均Mg濃度Ciおよび領域Mg偏析度Xは、アルミニウム合金板の化学成分組成、後記する製造条件、具体的には鋳造の際の冷却条件、鋳板板厚または面削量、均質化熱処理条件、最終焼鈍条件で制御される。
(Region Mg segregation degree: X)
The region Mg segregation degree X is defined by the difference (Ci-Co) between the plate thickness direction average Mg concentration (Ci) and the plate width direction average Mg concentration (Co). It is an index of the degree of Mg segregation in both the plate thickness direction and the plate width direction. And in the aluminum alloy plate which concerns on this invention, the absolute value of the area | region Mg segregation degree X is 0.5 mass% or less in the maximum value, and is 0.1 mass% or less in the average value. The sheet width direction average Mg concentration Co, the sheet thickness direction average Mg concentration Ci, and the region Mg segregation degree X are the chemical composition of the aluminum alloy sheet, the manufacturing conditions described later, specifically the cooling conditions during casting, the casting It is controlled by the plate thickness or the amount of face cutting, the homogenization heat treatment condition, and the final annealing condition.
領域Mg偏析度Xの最大値や平均値がプラス側に大きくなった場合、Mgの偏析に起因するβ相が析出しやすくなる。このため、破壊の起点となるβ相が増加して、強度、伸びが低下し、成形性が低下する。また、領域Mg偏析度Xの最大値や平均値がマイナス側に大きくなった場合、Mg濃度が大幅に低くなる部分が局部的に多く存在することとなるため、このようなMg濃度が大幅に低くなる部分では強度が低くなる。このため、成形における引張変形時には、このMg濃度が低くなる部分のみが優先的に変形する不均一変形が生じる。このため、成形の際の歪みが部分的に集中することとなり、特に伸びが低下して、成形性が低下する。 When the maximum value or average value of the region Mg segregation degree X becomes larger on the plus side, the β phase due to Mg segregation tends to precipitate. For this reason, the β phase that is the starting point of fracture increases, the strength and elongation decrease, and the moldability decreases. In addition, when the maximum value or the average value of the region Mg segregation degree X is increased to the minus side, there are many portions where the Mg concentration is significantly reduced, and thus such Mg concentration is greatly increased. In the lower part, the strength is lowered. For this reason, at the time of tensile deformation in molding, non-uniform deformation occurs in which only the portion where the Mg concentration becomes low is preferentially deformed. For this reason, the distortion at the time of shaping | molding will concentrate partially, especially elongation will fall and a moldability will fall.
したがって、領域Mg偏析度Xの最大値が絶対値で0.5質量%を超えるか、または、その平均値が絶対値で0.1質量%を超える場合、すなわち、前記のいずれかの要件を満たさない場合、あるいは、両方の要件を満たさない場合には、アルミニウム合金板における成形性が低下する。 Therefore, when the maximum value of the region Mg segregation degree X exceeds 0.5 mass% in absolute value, or the average value exceeds 0.1 mass% in absolute value, that is, any one of the above requirements is satisfied. When not satisfy | filling or when not satisfy | filling both requirements, the moldability in an aluminum alloy plate will fall.
本発明に係るアルミニウム合金板は、前記領域Mg偏析度Xに加えて、板厚方向Mg濃度Ctと板厚方向平均Mg濃度Ciで定義される板厚方向Mg偏析度Yを所定値以下に規制したものであることが好ましい。 In the aluminum alloy plate according to the present invention, in addition to the region Mg segregation degree X, the plate thickness direction Mg segregation degree Y defined by the plate thickness direction Mg concentration Ct and the plate thickness direction average Mg concentration Ci is restricted to a predetermined value or less. It is preferable that
(板厚方向Mg濃度:Ct、板厚方向平均Mg濃度:Ci)
板厚方向Mg濃度Ctは、前記したように、図1(b)に記載された複数の板厚方向測定点Pyで測定されたMg濃度であって、板厚方向平均Mg濃度Ciは測定された板厚方向Mg濃度Ctの平均値である。
(Thickness direction Mg concentration: Ct, thickness direction average Mg concentration: Ci)
The plate thickness direction Mg concentration Ct is the Mg concentration measured at the plurality of plate thickness direction measurement points Py described in FIG. 1B as described above, and the plate thickness direction average Mg concentration Ci is measured. It is the average value of Mg concentration Ct in the thickness direction.
ただし、板厚方向Mg濃度Ctおよび板厚方向平均Mg濃度Ciは、前記領域Mg偏析度Xを算出する際に、前記領域の板幅方向測定点Pxの少なくとも1つにおいて測定された板厚方向でのMg濃度である。そして、板幅中央部の板幅方向測定点Pxの1点において測定されたものが好ましく、板幅中央部と板幅両端部の近傍の3点において測定され、それらを平均化したものがさらに好ましい。 However, the plate thickness direction Mg concentration Ct and the plate thickness direction average Mg concentration Ci are the plate thickness directions measured at least one of the plate width direction measurement points Px of the region when calculating the region Mg segregation degree X. Mg concentration at And what was measured at one point of the plate width direction measurement point Px of the plate width center part is preferable, and what is measured at three points in the vicinity of the plate width center part and both ends of the plate width is further averaged. preferable.
(板厚方向Mg偏析度Y)
板厚方向Mg偏析度Yは、板厚方向Mg濃度(Ct)と板厚方向平均Mg濃度(Ci)との差(Ct−Ci)で定義されるもので、アルミニウム合金板の板厚方向のMgの偏析度合いの指標となるものであり、前記領域Mg偏析度Xとの併用によって、アルミニウム合金板の板全体のMgの偏析度合いを良好に再現するものである。そして、本発明に係るアルミニウム合金板においては、板厚方向Mg偏析度Yの絶対値が、その最大値で4質量%以下、かつ、その平均値で0.8質量%以下であることが好ましい。なお、板厚方向Mg濃度Ct、板厚方向平均Mg濃度Ciおよび板厚方向Mg偏析度Yは、アルミニウム合金板の化学成分組成、後記する製造条件、具体的には鋳造の際の冷却条件、鋳板板厚または面削量、均質化熱処理条件、最終焼鈍条件で制御される。
(Thickness direction Mg segregation degree Y)
The sheet thickness direction Mg segregation degree Y is defined by the difference (Ct−Ci) between the sheet thickness direction Mg concentration (Ct) and the sheet thickness direction average Mg concentration (Ci). This is an index of the degree of Mg segregation, and in combination with the region Mg segregation degree X, the degree of Mg segregation of the entire aluminum alloy plate is well reproduced. And in the aluminum alloy plate which concerns on this invention, it is preferable that the absolute value of sheet thickness direction Mg segregation degree Y is 4 mass% or less in the maximum value, and is 0.8 mass% or less in the average value. . The plate thickness direction Mg concentration Ct, the plate thickness direction average Mg concentration Ci, and the plate thickness direction Mg segregation degree Y are the chemical composition of the aluminum alloy plate, the manufacturing conditions described later, specifically, the cooling conditions during casting, It is controlled by the cast plate thickness or the amount of face cutting, the homogenization heat treatment condition, and the final annealing condition.
板厚方向Mg偏析度Yの最大値や平均値がプラス側に大きくなった場合、Mgの偏析に起因するβ相が析出しやすくなる。このため、破壊の起点となるβ相が増加して、強度、伸びが低下し、成形性が低下する。また、板厚方向Mg偏析度Yの最大値や平均値がマイナス側に大きくなった場合、Mg濃度が大幅に低くなる部分が局部的に多く存在することとなるため、このようなMg濃度が大幅に低くなる部分では強度が低くなる。このため、成形における引張変形時には、このMg濃度が低くなる部分のみが優先的に変形する不均一変形が生じる。このため、成形の際の歪みが部分的に集中することとなり、特に伸びが低下して、成形性が低下する。 When the maximum value or average value of the Mg segregation degree Y in the plate thickness direction becomes larger on the plus side, the β phase due to Mg segregation is likely to precipitate. For this reason, the β phase that is the starting point of fracture increases, the strength and elongation decrease, and the moldability decreases. Further, when the maximum value or average value of the Mg segregation degree Y in the plate thickness direction becomes larger on the minus side, there are many portions where the Mg concentration is significantly lowered, and thus such Mg concentration The strength is lowered in the portion where the temperature is significantly lowered. For this reason, at the time of tensile deformation in molding, non-uniform deformation occurs in which only the portion where the Mg concentration becomes low is preferentially deformed. For this reason, the distortion at the time of shaping | molding will concentrate partially, especially elongation will fall and a moldability will fall.
したがって、板厚方向Mg偏析度Yの最大値が絶対値で4質量%を超えるか、または、その平均値が絶対値で0.8質量%を超える場合、すなわち、前記のいずれかの要件を満たさない場合、あるいは、両方の要件を満たさない場合には、アルミニウム合金板における成形性が低下する。 Therefore, when the maximum value of the thickness direction Mg segregation degree Y exceeds 4 mass% in absolute value, or the average value exceeds 0.8 mass% in absolute value, that is, any one of the above requirements is satisfied. When not satisfy | filling or when not satisfy | filling both requirements, the moldability in an aluminum alloy plate will fall.
本発明に係るアルミニウム合金板は、その表面の平均結晶粒径が100μm以下であることが好ましい。
(平均結晶粒径)
アルミニウム合金板表面の平均結晶粒径を100μm以下に微細化させることによって、プレス成形性が向上する。平均結晶粒径が100μmを超えて粗大化した場合、プレス成形性が低下しやすく、成形時の割れや肌荒れなどの不良が生じ易くなる。一方、平均結晶粒径があまり細か過ぎても、5000系アルミニウム合金板に特有の、SS(ストレッチャーストレイン)マークがプレス成形時に発生するので、この観点からは、平均結晶粒径は20μm以上とすることが好ましい。
The aluminum alloy plate according to the present invention preferably has an average crystal grain size of 100 μm or less on the surface thereof.
(Average crystal grain size)
By reducing the average crystal grain size of the aluminum alloy plate surface to 100 μm or less, the press formability is improved. When the average crystal grain size exceeds 100 μm and becomes coarse, the press formability tends to decrease, and defects such as cracks and rough skin during molding tend to occur. On the other hand, even if the average crystal grain size is too small, an SS (stretcher strain) mark peculiar to a 5000 series aluminum alloy plate is generated during press molding. From this viewpoint, the average crystal grain size is 20 μm or more. It is preferable to do.
本発明で言う結晶粒径とは、板長さ(L)方向の結晶粒の最大径である。この結晶粒径は、アルミニウム合金板を0.05〜0.1mm機械研磨した後、電解エッチングした表面を100倍の光学顕微鏡を用いて観察し、前記L方向にラインインターセプト法で測定する。1測定ライン長さは0.95mmとし、1視野当たり各3本で合計5視野を観察することにより、全測定ライン長さを0.95×15mmとする。 The crystal grain size referred to in the present invention is the maximum diameter of crystal grains in the plate length (L) direction. The crystal grain size is measured by a line intercept method in the L direction by observing the electrolytically etched surface using a 100 × optical microscope after mechanically polishing the aluminum alloy plate by 0.05 to 0.1 mm. The length of one measurement line is 0.95 mm, and the total measurement line length is 0.95 × 15 mm by observing a total of five fields with three lines per field.
次に、前記したアルミニウム合金板の製造方法について説明する。
本発明のアルミニウム合金板は、溶解鋳造工程と、均質化熱処理工程と、冷間圧延工程と、最終焼鈍工程とを行うことによって、製造される。以下、各工程について説明する。
Next, a method for manufacturing the above-described aluminum alloy plate will be described.
The aluminum alloy sheet of the present invention is manufactured by performing a melting casting process, a homogenizing heat treatment process, a cold rolling process, and a final annealing process. Hereinafter, each step will be described.
<溶解鋳造工程>
溶解鋳造工程は、前記した化学成分組成を有する高Mg含有Al−Mg系合金を溶解し、薄板連続鋳造法を用いて溶湯から鋳板を製造する工程である。薄板連続鋳造法としては、黒鉛固定鋳型式連続鋳造法が好ましい。
<Melting casting process>
The melt casting process is a process of melting a high Mg content Al—Mg alloy having the above-described chemical composition and manufacturing a cast plate from the molten metal using a thin plate continuous casting method. As the thin plate continuous casting method, a graphite fixed mold type continuous casting method is preferable.
黒鉛固定鋳型式連続鋳造法は、図2に示すような薄板連続鋳造装置10を用いて行われ、保持炉1に貯溜した溶湯2を鋳込口1aから連続鋳型3(黒鉛固定鋳型4)の内部に注入し、水冷ジャケット5によって黒鉛固定鋳型4を冷却しながら溶湯2を黒鉛固定鋳型4で凝固させ、薄い板厚の鋳板6とする方法である。作製された鋳板6は、ロール7によって次工程に搬出される。この方法では、冷却速度がDC鋳造法に較べて大きいため、微細な鋳造組織が得られ、プレス成形性が向上する。板厚も比較的薄い5mm程度のものが得られるため、従来のDC鋳塊(厚さ200〜600mm)で実施していた鋳造後の熱間粗圧延、熱間仕上げ圧延等の工程が省略できる。
The graphite fixed mold type continuous casting method is performed using a thin plate
(冷却速度)
黒鉛固定鋳型式連続鋳造法では、鋳板6の板厚が5〜20mmの範囲であれば、鋳造における冷却速度は、15℃/sとする。冷却速度が遅いと、Mgの偏析度合いが大きくなり、Mg偏析度(前記した領域Mg偏析度Xおよび板厚方向Mg偏析度Yであって、以下ではMg偏析度と称す)を本発明の範囲内に抑制することが難しくなり、これに起因するβ相の析出を抑制できない可能性がある。また、β相全般が粗大化したり、多量に析出する傾向がある。この結果プレス成形性が著しく低下する可能性が高くなる。
(Cooling rate)
In the graphite fixed mold type continuous casting method, if the thickness of the
なお、この冷却速度は、直接の計測は難しいので、鋳造された鋳板6のデンドライトアームスペーシング(デンドライト二次枝間隔、:DAS)から公知の方法(例えば、軽金属学会、昭和63年8.20発行、「アルミニウムデンドライトアームスペーシングと冷却速度の測定方法」などに記載)により求める。すなわち、鋳造された鋳板6の鋳造組織における、互いに隣接するデンドライト二次アーム(二次枝)の平均間隔dを交線法で計測し(視野数3以上、交点数は10以上)、このdを用いて次式、d=62×C−0.337(但し、d:デンドライト二次アーム間隔mm、C:冷却速度℃/s)から求める。したがって、この冷却速度は、凝固速度であるとも言える。
In addition, since this cooling rate is difficult to measure directly, a method known from the dendrite arm spacing (Dendrite secondary branch interval: DAS) of the cast cast plate 6 (for example, Light Metal Society, 8.20, 1988). Published in “Methods of measuring aluminum dendrite arm spacing and cooling rate”). That is, the average interval d between adjacent dendrite secondary arms (secondary branches) in the cast structure of the
(注湯温度)
黒鉛固定鋳型式連続鋳造法では、溶湯2を黒鉛固定鋳型4に注湯する際の注湯温度は、液相線温度+50℃〜液相線温度+250℃の範囲とし、好ましくは液相線温度+100℃〜液相線温度+150℃とする。注湯温度が液相線温度+50℃未満の場合には、鋳型内で溶湯が凝固し、鋳板破断が発生しやすくなる。注湯温度が液相線温度+250℃を超える場合には、鋳造の際の冷却速度が遅くなり、Mgの偏析度合いが大きくなり、Mg偏析度を本発明の範囲内に抑制することが難しくなり、これに起因するβ相の析出や成形性の低下を抑制できない。
(Pouring temperature)
In the graphite fixed mold type continuous casting method, the pouring temperature when the
(引き抜き方法)
黒鉛固定鋳型式連続鋳造法では、鋳造の安定化を図るために、鋳造方向に鋳板6を送るロール7を周期的に鋳造方向とは反対方向に回転させて鋳板6を後退させる。後退ストローク長さは0.5〜5mmの範囲とし、好ましくは1〜3mmである。また、後退前に1s以下の保持時間を入れるとより鋳造性が安定する。
(Drawing method)
In the graphite fixed mold type continuous casting method, in order to stabilize the casting, the
後退ストローク長さが5mmを超える場合には、鋳板6の表面に生じる高Mg濃度の偏析層が後退時に板内部に侵入し、その部位で鋳板割れが発生するため破断する。一方、後退ストローク長さが0.5mm未満である場合には、固液共存部が圧縮されず、破断しやすい固液共存部領域で鋳板6が破断する。したがって、後退ストローク長さは0.5〜5mmの範囲とする。
When the retreat stroke length exceeds 5 mm, the segregation layer having a high Mg concentration generated on the surface of the
(平均鋳造速度)
黒鉛固定鋳型式連続鋳造法では、溶湯2を黒鉛固定鋳型4で鋳造する際、平均鋳造速度を100〜500mm/minの範囲とし、好ましくは250〜350mm/minである。平均鋳造速度が100mm/min未満である場合には、鋳込口1aの付近で溶湯2が急速に凝固することにより、ロール7で引き抜く際に、その部位の引出抵抗が増大するため、鋳板6が破断し易い。平均鋳造速度が500mm/minを超える場合には、鋳板出口4aの付近で、冷却不足による溶湯漏れが発生する。
(Average casting speed)
In the graphite fixed mold type continuous casting method, when the
(鋳造板厚)
黒鉛固定鋳型式連続鋳造法では、連続鋳造する鋳板6の板厚は5〜20mmの範囲とする。板厚が5mm未満の場合には、鋳込口1aの付近で溶湯2が急速に凝固することにより、ロール7で引き抜く際に、その部位の引出抵抗が増大するため、鋳板6が破断し易い。板厚が20mmを超える場合には、鋳造の冷却速度が著しく遅くなり、Mgの偏析度合いが大きくなり、Mg偏析度を本発明の範囲内に抑制することが難しくなり、これに起因するβ相の析出を抑制できない可能性がある。また、β相全般が粗大化したり、多量に析出する傾向がある。この結果プレス成形性が著しく低下する可能性が高くなる。
(Cast plate thickness)
In the graphite fixed mold type continuous casting method, the thickness of the
(面削処理)
黒鉛固定鋳型式連続鋳造法では、鋳板6の表面でMg偏析が発生しやすい。そのため、作製された鋳板6の板両面を所定量削る面削処理を行うことが好ましい。面削処理により板両面のMg偏析部を取り除くことで、Mg偏析度を本発明の範囲内に抑制することができる。Mg偏析部の深さは後退ストローク長さに対応するため、面削量は、前記した引き抜き方法の後退ストローク長さとする。
(Chamfering process)
In the graphite fixed mold type continuous casting method, Mg segregation is likely to occur on the surface of the
前記では、薄板連続鋳造方法について、黒鉛固定鋳型式連続鋳造法を例にとって説明したが、アルミニウム合金板のMg偏析度を本発明の範囲内に抑制することができれば、この方法に限定されるものではない。例えば、双ロール式連続鋳造法であってもよい。 In the above, the thin plate continuous casting method has been described by taking the graphite fixed mold type continuous casting method as an example. However, if the Mg segregation degree of the aluminum alloy plate can be suppressed within the scope of the present invention, it is limited to this method. is not. For example, a twin roll type continuous casting method may be used.
双ロール式連続鋳造法は、図3に示すような薄板連続鋳造装置100を用いて行われ、回転する一対の水冷銅鋳型(双ロール500)間に、保持炉200の給湯ノズル400から溶湯300を注湯して凝固させ、かつ、この双ロール500の間において、凝固直後に圧下し、かつ急冷して、薄い板厚の鋳板600とする方法である。この双ロール式連続鋳造法はハンター法や3C法などが知られている。この方法では、板厚も比較的薄い1〜13mmのものが得られるため、従来のDC鋳塊(厚さ200〜600mm)で実施していた鋳造後の熱間粗圧延、熱間仕上げ圧延等の工程が省略できる。
The twin roll type continuous casting method is performed using a thin plate
<均質化熱処理工程>
均質加熱処理工程は、前記工程で作製された鋳板6に所定の均質化熱処理を施す工程である。均質化熱処理は、400℃以上液相線温度以下で、必要時間行なう。この熱処理時間は、連続熱処理炉を使用して、薄板連続鋳造法による鋳板6に均質化熱処理を施す場合には1秒(1s)以下が目安である。この均質化熱処理によって、Mgの偏析度合いが小さくなり、Mg偏析度を本発明の範囲内に抑制することができる。
<Homogenization heat treatment process>
The homogeneous heat treatment step is a step of performing a predetermined homogenization heat treatment on the
均質化熱処理においては、鋳板6の昇温時と冷却時の両方の途中過程で、昇温速度と冷却速度が小さいと、Al−Mg系金属間化合物(β相)が発生する可能性が十分にある。特に、β相が発生する可能性が高い温度域は、昇温時は鋳板中心部の温度が200〜400℃までの範囲、冷却時は均質化熱処理温度〜100℃までの範囲である。このため、このような均質化熱処理を行なう際には、β相の発生を抑制するために、均質化熱処理温度への加熱の際に、鋳板中心部の温度が200〜400℃までの範囲の平均昇温速度を5℃/s以上とすることが好ましい。また、均質化熱処理温度からの冷却に際して、均質化熱処理温度〜100℃までの範囲の平均冷却速度を5℃/s以上とすることが好ましい。
In the homogenization heat treatment, there is a possibility that an Al—Mg-based intermetallic compound (β phase) is generated when the heating rate and the cooling rate are low in the course of both the heating and cooling of the
<冷間圧延工程>
冷間圧延工程は、均質化熱処理が施された鋳板6を製品板の板厚、例えば、0.1〜13mmに冷延処理する工程で、冷間圧延によって、鋳造組織が加工組織化される。したがって、冷間圧延される鋳板6の板厚が厚い場合には、冷延途中に中間焼鈍を入れて、最終の冷間圧延における冷延率を60%以下とすることが好ましい。なお、冷間圧延における加工組織化の程度は、冷間圧延の冷延率にもより、前記集合組織制御のために、鋳造組織が残留する場合もあるが、成形性や機械的な特性を阻害しない範囲で許容される。
<Cold rolling process>
The cold rolling process is a process in which the
<最終焼鈍工程>
最終焼鈍工程は、前記工程で作製された冷延板に所定の最終焼鈍を施す工程である。最終焼鈍工程では、冷延板を400℃〜液相線温度(℃)で最終焼鈍する。この最終焼鈍によって、Mgの偏析度合いが小さくなり、Mg偏析度を本発明の範囲内に抑制することができ、これに起因するβ相の析出やプレス成形性の低下を抑制できる。
<Final annealing process>
The final annealing step is a step of performing a predetermined final annealing on the cold-rolled sheet produced in the above step. In the final annealing step, the cold rolled sheet is finally annealed at 400 ° C. to the liquidus temperature (° C.). By this final annealing, the degree of Mg segregation is reduced, the degree of Mg segregation can be suppressed within the scope of the present invention, and the precipitation of β phase and the press formability due to this can be suppressed.
最終焼鈍温度が400℃未満では、溶体化効果が得られない可能性が高く、さらに、Mgの偏析度合いを小さくする効果が無い。このため、最終焼鈍温度は好ましくは450℃以上がよい。さらに、この最終焼鈍後には、500〜300℃の温度範囲を10℃/s以上の、できるだけ速い平均冷却速度で冷却する必要がある。最終焼鈍後の平均冷却速度が遅く、10℃/s未満であれば、冷却過程で、Mgの偏析度合いが逆に大きくなり、Mg偏析度を本発明の範囲内に抑制することができず、これに起因するβ相の析出やプレス成形性の低下を抑制できない可能性がある。また、平均冷却速度は、好ましくは15℃/s以上である。 When the final annealing temperature is less than 400 ° C., there is a high possibility that the solution effect will not be obtained, and there is no effect of reducing the degree of Mg segregation. For this reason, the final annealing temperature is preferably 450 ° C. or higher. Furthermore, after this final annealing, it is necessary to cool at a temperature range of 500 to 300 ° C. at an average cooling rate as fast as possible of 10 ° C./s or more. If the average cooling rate after the final annealing is slow and less than 10 ° C./s, the degree of segregation of Mg becomes larger in the cooling process, and the degree of Mg segregation cannot be suppressed within the scope of the present invention. There is a possibility that the β phase precipitation and the press formability due to this cannot be suppressed. The average cooling rate is preferably 15 ° C./s or more.
次に、本発明の実施例について説明する。
表1に示す種々の化学成分組成のAl−Mg系合金(実施例A〜E、比較例F、G)溶湯を、前記した黒鉛固定鋳型式連続鋳造法および双ロール式連続鋳造法により、表2に示す条件で各板厚に鋳造した。そして、各鋳板に、表2に示す条件で選択的に面削処理、均質化熱処理を施した後、熱間圧延することなしに、板厚1.0mmまたは板厚11.0mmまで冷間圧延した。なお、これらの冷間圧延中の中間焼鈍は行なわなかった。次に、これら各冷延板を、表2に示す温度と冷却条件で、連続焼鈍炉で最終焼鈍(焼鈍温度での保持時間は1秒以下)を行い、成形用アルミニウム合金板(実施例No.1〜5、比較例No.6〜20)とした。ここで、成形用アルミニウム合金板(比較例No.6)は、特許文献3に記載された双ロール式連続鋳造法を用いた製造方法によって作製した。
Next, examples of the present invention will be described.
The Al—Mg-based alloys (Examples A to E, Comparative Examples F and G) having various chemical composition shown in Table 1 were melted by the above-described graphite fixed mold type continuous casting method and twin roll type continuous casting method. Each sheet was cast under the conditions shown in 2. Each cast plate was selectively subjected to chamfering treatment and homogenization heat treatment under the conditions shown in Table 2, and then cold-rolled to a plate thickness of 1.0 mm or a plate thickness of 11.0 mm without hot rolling. Rolled. In addition, the intermediate annealing during these cold rolling was not performed. Next, these cold-rolled sheets were subjected to final annealing in a continuous annealing furnace under the temperature and cooling conditions shown in Table 2 (the holding time at the annealing temperature was 1 second or less), and an aluminum alloy sheet for forming (Example No. .1 to 5, Comparative Example Nos. 6 to 20). Here, the forming aluminum alloy plate (Comparative Example No. 6) was manufactured by a manufacturing method using a twin-roll continuous casting method described in
また、黒鉛固定鋳型式連続鋳造法では、後退ストローク長さ:3mm、平均鋳造速度:300mm/min、鋳造温度(注湯温度):液相線温度+140℃で実施した。双ロール式連続鋳造法では、双ロールの周速は70m/min、溶湯を双ロールに注湯する際の注湯温度は、液相線温度+20℃とし、双ロール表面の潤滑は行なわなかった。
各合金の液相線温度の算出には熱力学計算ソフトThermo-Calc Ver.R(Al-DATA Ver.6)を用いた。
Further, in the graphite fixed mold type continuous casting method, the retreat stroke length was 3 mm, the average casting speed was 300 mm / min, the casting temperature (the pouring temperature): the liquidus temperature + 140 ° C. In the twin roll type continuous casting method, the peripheral speed of the twin roll was 70 m / min, the pouring temperature when pouring the molten metal into the twin roll was the liquidus temperature + 20 ° C., and the twin roll surface was not lubricated. .
Thermodynamic calculation software Thermo-Calc Ver.R (Al-DATA Ver.6) was used to calculate the liquidus temperature of each alloy.
得られた成形用アルミニウム合金板(実施例No.1〜5、比較例No.6〜22)について、各合金板の領域Mg偏析度Xおよび板厚方向Mg偏析度Yを下記手順で算出および評価した。その結果を表2に示す。
また、実施例No.1の領域Mg偏析度Xの算出結果を図4、比較例No.6の領域Mg偏析度Xの算出結果を図5に示す。そして、実施例1の板厚方向Mg偏析度Yの算出結果を図6、比較例No.16の板厚方向Mg偏析度Yの算出結果を図7に示す。
About the obtained aluminum alloy plate for shaping | molding (Example No. 1-5, comparative example No. 6-22), area | region Mg segregation degree X and plate thickness direction Mg segregation degree Y of each alloy plate were calculated in the following procedure, and evaluated. The results are shown in Table 2.
In addition, Example No. The calculation result of the region Mg segregation degree X in FIG. The calculation result of the region Mg segregation degree X of 6 is shown in FIG. And the calculation result of the sheet thickness direction Mg segregation degree Y of Example 1 is shown in FIG. FIG. 7 shows the calculation results of the thickness segregation degree Y of 16 in the plate thickness direction.
(領域Mg偏析度Xの算出および評価)
成形用アルミニウム合金板の表面に辺長さ100mmの正方形状の領域を設定し、その領域内の板幅方向に16.6mm間隔(間隔a)で板端を含まずに5点、板長さ方向に25mm間隔(間隔b)で5点の合計25点の板幅方向測定点Px(No.1〜25)を設定した(図1(a)参照)。そして、各測定点でのアルミニウム合金板の表面でのMg濃度を測定し、各測定点でのMg濃度の平均値を算出して板幅方向平均Mg濃度Coとした。
(Calculation and evaluation of region Mg segregation degree X)
A square region having a side length of 100 mm is set on the surface of the forming aluminum alloy plate, and the plate width direction within the region is 16.6 mm apart (interval a) at 5 points without including the plate end, the plate length. A total of 25 plate width direction measurement points Px (Nos. 1 to 25) of 5 points were set at 25 mm intervals (interval b) in the direction (see FIG. 1A). Then, the Mg concentration on the surface of the aluminum alloy plate at each measurement point was measured, and the average value of the Mg concentration at each measurement point was calculated to obtain the average Mg concentration Co in the plate width direction.
次に、板幅方向測定点Px(No.1〜25)の各測定点で、板厚方向に0.01mm間隔(間隔c)で複数の板厚方向測定点Pyを設定した(図1(b)参照)。そして、各測定点(所定板厚位置(所定深さ位置))でのアルミニウム合金板のMg濃度を測定し、各測定点でのMg濃度の平均値を算出して板厚方向平均Mg濃度Ciとした。 Next, at each measurement point of the plate width direction measurement points Px (No. 1 to 25), a plurality of plate thickness direction measurement points Py were set at intervals of 0.01 mm (interval c) in the plate thickness direction (FIG. 1 ( b)). Then, the Mg concentration of the aluminum alloy plate at each measurement point (predetermined plate thickness position (predetermined depth position)) is measured, the average value of the Mg concentration at each measurement point is calculated, and the plate thickness direction average Mg concentration Ci It was.
そして、板幅方向測定点Px(No.1〜25)の各測定点での板厚方向平均Mg濃度Ciと板幅方向平均Mg濃度Coとから、両者の差(Ci−Co)で定義される領域Mg偏析度Xを算出した(図4、図5参照)。なお、Mg濃度の測定にはEPMA(日本電子製X線マイクロアナライザー:JXA−8800RL)を用いた。 Then, the plate thickness direction average Mg concentration Ci and the plate width direction average Mg concentration Co at each measurement point of the plate width direction measurement point Px (No. 1 to 25) are defined by the difference (Ci-Co) between the two. Region Mg segregation degree X was calculated (see FIGS. 4 and 5). For measurement of Mg concentration, EPMA (JEOL X-ray microanalyzer: JXA-8800RL) was used.
領域Mg偏析度Xの評価は、その最大値の絶対値が0.5質量%以下のとき満足(○)、0.5質量%を超えるとき不満足(×)とし、また、その平均値の絶対値が0.1質量%以下のとき満足(○)、0.1質量%を超えるとき不満足(×)とした。 The evaluation of the region Mg segregation degree X is satisfied (◯) when the absolute value of the maximum value is 0.5% by mass or less, unsatisfactory (×) when the absolute value exceeds 0.5% by mass, and the absolute value of the average value Satisfactory (O) when the value was 0.1% by mass or less, and unsatisfactory (x) when the value exceeded 0.1% by mass.
(板厚方向Mg偏析度Yの算出および評価)
前記板幅方向測定点(No.1〜25)のうちから1点(No.13)を選択して、その測定点で測定された板厚方向(複数の板厚方向測定点Py)でのMg濃度を板厚方向Mg濃度Ctとした。そして、それらの平均値として前記で算出した板厚方向平均Mg濃度Ciを用いて、両者の差(Ct−Ci)で定義される板厚方向Mg偏析度Yを算出した。なお、板厚方向測定点Pyが0.01mmまたは1.0mmのときが、合金板の表面である(図6、図7参照)。
(Calculation and evaluation of sheet thickness direction Mg segregation degree Y)
One point (No. 13) is selected from the plate width direction measurement points (No. 1 to 25), and the plate thickness direction (a plurality of plate thickness direction measurement points Py) measured at the measurement point is selected. The Mg concentration was defined as the Mg concentration Ct in the thickness direction. And the plate thickness direction Mg segregation degree Y defined by the difference (Ct-Ci) of both was computed using the plate thickness direction average Mg density | concentration Ci calculated above as those average values. When the plate thickness direction measurement point Py is 0.01 mm or 1.0 mm, it is the surface of the alloy plate (see FIGS. 6 and 7).
板厚方向Mg偏析度Yの評価は、その最大値の絶対値が4質量%以下のとき満足(○)、4質量%を超えるとき不満足(×)とし、また、その平均値の絶対値が0.8質量%以下のとき満足(○)、0.8質量%を超えるとき不満足(×)とした。 The evaluation of the thickness direction Mg segregation degree Y is satisfied when the absolute value of the maximum value is 4% by mass or less (O), and is unsatisfactory (X) when the absolute value exceeds 4% by mass, and the absolute value of the average value is Satisfied (◯) when 0.8% by mass or less, and unsatisfactory (x) when exceeding 0.8% by mass.
また、得られた成形用アルミニウム合金板(実施例No.1〜5、比較例6〜22)について、各合金板の平均結晶粒径を前記した測定方法にしたがって測定した。 Moreover, about the obtained aluminum alloy plate for shaping | molding (Example No. 1-5, Comparative Examples 6-22), the average crystal grain size of each alloy plate was measured in accordance with the measuring method described above.
(平均結晶粒径)
実施例No.1〜5、比較例No.6〜10、12〜17、19〜22の平均結晶粒径は、30〜60μmの範囲であった。また、比較例No.11、18の平均結晶粒径は、100μmを超えていた。
(Average crystal grain size)
Example No. 1-5, comparative example No.1. The average crystal grain sizes of 6 to 10, 12 to 17, and 19 to 22 were in the range of 30 to 60 μm. Comparative Example No. The average crystal grain sizes of 11 and 18 exceeded 100 μm.
さらに、得られた成形用アルミニウム合金板(実施例No.1〜5、比較例No.6〜22)について、各合金板のプレス成形性を下記手順で評価した。その結果を表2に示す。 Furthermore, about the obtained aluminum alloy plate for shaping | molding (Example No. 1-5, comparative example No. 6-22), the press formability of each alloy plate was evaluated in the following procedure. The results are shown in Table 2.
(プレス成形性の評価)
合金板から採取した試験片を用いて引張試験を行い、引張強度(TS:MPa)、全伸び(EL:%)を測定し、(TS)×(EL)で定義される強度延性バランス値でプレス成形性を評価した。強度延性バランス値が11000以上のとき合格(○)、11000未満のときを不合格(×)とした。
(Evaluation of press formability)
A tensile test is performed using a test piece taken from the alloy plate, the tensile strength (TS: MPa), the total elongation (EL:%) are measured, and the strength ductility balance value defined by (TS) × (EL) The press formability was evaluated. When the strength ductility balance value was 11000 or more, it was judged as acceptable (◯), and when it was less than 11,000, it was judged as unacceptable (x).
また、試験片の採取は、合金板の長手方向にわたって、互いの間隔を100mm以上開けた任意5箇所から行い、(TS)値および(EL)値は5枚の試験片の測定値の平均値を用いた。さらに、引張試験はJISZ2201にしたがって行うとともに、試験片形状はJIS5号試験片で行い、試験片の長手方向が合金板の圧延方向と一致するように作製した。なお、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。 In addition, the specimens are collected from any five locations with a distance of 100 mm or more in the longitudinal direction of the alloy plate, and the (TS) value and (EL) value are average values of the measured values of the five specimens. Was used. Furthermore, the tensile test was performed in accordance with JISZ2201, and the shape of the test piece was performed with a JIS No. 5 test piece so that the longitudinal direction of the test piece coincided with the rolling direction of the alloy plate. The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.
具体的には、比較例No.6は、特許文献3に記載された合金板であるが、Mg偏析度(領域Mg偏析度)が本発明の範囲内に抑制できていないため、プレス成形性に劣っていた。比較例No.7、14は、Mg偏析度については本発明の範囲内に抑制できているが、Mg含有量が下限値を下回っているため、強度延性バランスが低く、プレス成形性に劣っていた。比較例No.8、15は、Mg含有量が上限値を超えるため、Mg偏析度が大きく、プレス成形性に劣っていた。比較例No.9、10、16、17は、均質化熱処理を行っていないため、Mg偏析度が大きく、プレス成形性に劣っていた。比較例No.11、18は、鋳造の際の冷却速度が遅いため、Mg偏析度が大きく、プレス成形性に劣っていた。比較例No.12、19は、最終焼鈍温度が低いため、Mg偏析度が大きく、プレス成形性に劣っていた。比較例13、20は、最終焼鈍の際の冷却速度が遅いため、Mg偏析度が大きく、プレス成形性に劣っていた。比較例21は、双ロール式連続鋳造法により作製した鋳板の板両面を1.75mm削る面削処理を行ったが、Mg偏析度(領域Mg偏析度)が本発明の範囲内に抑制できていないため、プレス成形性に劣っていた。比較例22は、黒鉛固定鋳型式連続鋳造法により作製した鋳板の板両面への面削処理を行っていないため、Mg偏析度が大きく、プレス成形性に劣っていた。
Specifically, Comparative Example No. 6 is an alloy plate described in
a、b、c 間隔
L 板長さ
W 板幅
T 板厚
Px 板幅方向測定点
Py 板厚方向測定点
1 保持炉
1a 鋳込口
2 溶湯
3 連続鋳造鋳型
4 黒鉛固定鋳型
4a 鋳板出口
5 水冷ジャケット
6 鋳板
7 ロール
10 薄板連続鋳造装置
100 薄板連続鋳造装置
200 保持炉
300 溶湯
400 給湯ノズル
500 双ロール
600 鋳板
a, b, c interval L plate length W plate width T plate thickness Px plate width direction measurement point Py plate thickness
Claims (4)
前記成形用アルミニウム合金板の表面に設定された全板幅を1辺とする正方形状の領域において、板幅方向および板長さ方向に所定の間隔で設定された複数の板幅方向測定点でMg濃度を測定し、それらのMg濃度の平均値を板幅方向平均Mg濃度(Co)とし、
前記板幅方向測定点において、板厚方向に所定の間隔で全板厚にわたって設定された複数の板厚方向測定点でMg濃度を測定し、それらの平均値を板厚方向平均Mg濃度(Ci)としたとき、
板厚方向平均Mg濃度(Ci)と板幅方向平均Mg濃度(Co)との差(Ci−Co)で定義される領域Mg偏析度(X)の絶対値は、その最大値が0.5質量%以下、かつ、その平均値が0.1質量%以下であることを特徴とする成形用アルミニウム合金板。 Mg: 6.0-15.0% by mass, and the balance is a forming aluminum alloy plate made of Al and impurities,
In a square region having one side of the total plate width set on the surface of the forming aluminum alloy plate, at a plurality of plate width direction measurement points set at predetermined intervals in the plate width direction and the plate length direction. Mg concentration is measured, and the average value of those Mg concentrations is the average Mg concentration in the plate width direction (Co),
At the measurement points in the plate width direction, the Mg concentration is measured at a plurality of plate thickness direction measurement points set over the entire plate thickness at a predetermined interval in the plate thickness direction, and the average value thereof is calculated as the plate thickness direction average Mg concentration (Ci )
The absolute value of the region Mg segregation degree (X) defined by the difference (Ci-Co) between the plate thickness direction average Mg concentration (Ci) and the plate width direction average Mg concentration (Co) is 0.5. An aluminum alloy sheet for forming, characterized by having a mass% or less and an average value of 0.1 mass% or less.
当該領域Mg偏析度(X)の算出に際して、前記板幅方向測定点の少なくとも1つにおいて、板厚方向に所定の間隔で全板厚にわたって測定されたMg濃度を板厚方向Mg濃度(Ct)としたとき、
板厚方向Mg濃度(Ct)と板厚方向平均Mg濃度(Ci)との差(Ct−Ci)で定義される板厚方向Mg偏析度(Y)の絶対値は、その最大値が4質量%以下、かつ、その平均値が0.8質量%以下であることを特徴とする請求項1に記載の成形用アルミニウム合金板。 In addition to the region Mg segregation degree (X),
In calculating the region Mg segregation degree (X), at least one of the measurement points in the plate width direction, the Mg concentration measured over the entire plate thickness at a predetermined interval in the plate thickness direction is the Mg concentration in the plate thickness direction (Ct). When
The absolute value of the thickness direction Mg segregation degree (Y) defined by the difference (Ct−Ci) between the thickness direction Mg concentration (Ct) and the thickness direction average Mg concentration (Ci) is 4 masses. %, And the average value is 0.8 mass% or less, The aluminum alloy sheet for shaping | molding of Claim 1 characterized by the above-mentioned.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010187756A JP5427143B2 (en) | 2010-08-25 | 2010-08-25 | Aluminum alloy sheet for forming |
PCT/JP2011/068979 WO2012026469A1 (en) | 2010-08-25 | 2011-08-23 | Aluminum alloy sheet for forming |
US13/810,765 US20130112323A1 (en) | 2010-08-25 | 2011-08-23 | Formable aluminum alloy sheet |
CN201180030754.6A CN102959109B (en) | 2010-08-25 | 2011-08-23 | Aluminum alloy sheet for forming |
DE112011102796T DE112011102796T5 (en) | 2010-08-25 | 2011-08-23 | Formable aluminum alloy sheet |
KR1020137004523A KR101520195B1 (en) | 2010-08-25 | 2011-08-23 | Aluminum alloy sheet for forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010187756A JP5427143B2 (en) | 2010-08-25 | 2010-08-25 | Aluminum alloy sheet for forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012046776A JP2012046776A (en) | 2012-03-08 |
JP5427143B2 true JP5427143B2 (en) | 2014-02-26 |
Family
ID=45723463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010187756A Expired - Fee Related JP5427143B2 (en) | 2010-08-25 | 2010-08-25 | Aluminum alloy sheet for forming |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130112323A1 (en) |
JP (1) | JP5427143B2 (en) |
KR (1) | KR101520195B1 (en) |
CN (1) | CN102959109B (en) |
DE (1) | DE112011102796T5 (en) |
WO (1) | WO2012026469A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5920723B2 (en) | 2011-11-21 | 2016-05-18 | 株式会社神戸製鋼所 | Aluminum-magnesium alloy and its alloy plate |
WO2015027030A1 (en) * | 2013-08-21 | 2015-02-26 | Taheri Mitra Lenore | Selective grain boundary engineering |
GB201503608D0 (en) * | 2015-03-03 | 2015-04-15 | Spex Services Ltd | Improved tool |
CN105238959A (en) * | 2015-10-15 | 2016-01-13 | 郭进标 | Tungsten doped aluminum alloy and preparation method thereof |
CN105543587B (en) * | 2015-11-20 | 2018-04-24 | 江苏大学 | A kind of strong nanocrystalline Al-Mg aluminum alloy materials of superelevation and preparation method thereof |
KR101816202B1 (en) | 2015-12-31 | 2018-01-09 | 최창민 | Aluminum alloy for high strength |
KR101694831B1 (en) * | 2016-03-25 | 2017-01-11 | 조일알미늄(주) | Aluminium alloy composition for car body and method of casting |
EP3728665A1 (en) * | 2017-12-21 | 2020-10-28 | Novelis, Inc. | Aluminum alloy products exhibiting improved bond durability and/or having phosphorus-containing surfaces and methods of making the same |
CN110643863A (en) * | 2019-08-29 | 2020-01-03 | 金榀精密工业(苏州)有限公司 | High-strength automobile part outer shell and forming method |
CN111411271A (en) * | 2020-05-07 | 2020-07-14 | 南京至美畅和科技会展股份有限公司 | High-strength aluminum alloy material for exhibition shelf |
TWI769061B (en) * | 2021-08-19 | 2022-06-21 | 中國鋼鐵股份有限公司 | Negative segregation slab and method for producing the same |
CN114058915A (en) * | 2021-10-29 | 2022-02-18 | 安徽省恒泰动力科技有限公司 | Rare earth doped aluminum-magnesium alloy product and preparation process thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3076241A (en) * | 1959-06-22 | 1963-02-05 | Reynolds Metals Co | Graphite mold casting system |
FR1458948A (en) * | 1965-04-12 | 1966-04-29 | Lorraine Escaut Sa | Device for planing the edges of a strip |
JPH07252571A (en) | 1994-03-17 | 1995-10-03 | Nippon Steel Corp | Aluminum alloy plate for automobile and manufacturing method thereof |
JPH08165538A (en) | 1994-12-12 | 1996-06-25 | Sky Alum Co Ltd | Highly recyclable aluminum alloy rolled sheet for automobile body sheet and method for producing the same |
JPH08199278A (en) * | 1995-01-27 | 1996-08-06 | Nippon Steel Corp | Aluminum alloy sheet excellent in press formability and paint bake hardenability and method for producing the same |
JP4224463B2 (en) * | 2005-01-19 | 2009-02-12 | 株式会社神戸製鋼所 | Aluminum alloy sheet for forming |
JP4955969B2 (en) * | 2005-09-16 | 2012-06-20 | 株式会社神戸製鋼所 | Manufacturing method of forming aluminum alloy sheet |
JP4542004B2 (en) * | 2005-09-16 | 2010-09-08 | 株式会社神戸製鋼所 | Aluminum alloy sheet for forming |
JP4427020B2 (en) * | 2005-09-30 | 2010-03-03 | 株式会社神戸製鋼所 | Manufacturing method of forming aluminum alloy sheet |
JP4542017B2 (en) * | 2005-10-11 | 2010-09-08 | 株式会社神戸製鋼所 | Aluminum alloy plate ingot for cold rolling |
JP2010187756A (en) | 2009-02-16 | 2010-09-02 | Olympus Corp | Image processing apparatus, image processing method, and image processing program |
-
2010
- 2010-08-25 JP JP2010187756A patent/JP5427143B2/en not_active Expired - Fee Related
-
2011
- 2011-08-23 WO PCT/JP2011/068979 patent/WO2012026469A1/en active Application Filing
- 2011-08-23 CN CN201180030754.6A patent/CN102959109B/en not_active Expired - Fee Related
- 2011-08-23 DE DE112011102796T patent/DE112011102796T5/en not_active Ceased
- 2011-08-23 US US13/810,765 patent/US20130112323A1/en not_active Abandoned
- 2011-08-23 KR KR1020137004523A patent/KR101520195B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2012026469A1 (en) | 2012-03-01 |
US20130112323A1 (en) | 2013-05-09 |
DE112011102796T5 (en) | 2013-05-29 |
CN102959109A (en) | 2013-03-06 |
JP2012046776A (en) | 2012-03-08 |
KR101520195B1 (en) | 2015-05-13 |
CN102959109B (en) | 2015-11-25 |
KR20130059398A (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427143B2 (en) | Aluminum alloy sheet for forming | |
JP4203508B2 (en) | Method for producing aluminum alloy cast plate | |
CN101107373A (en) | Aluminum alloy sheet and method for producing same | |
JP4914098B2 (en) | Method for producing aluminum alloy cast plate | |
WO2014163086A1 (en) | Titanium slab for hot rolling and production method therefor | |
JP6836266B2 (en) | Al-Mg-Si based aluminum alloy cast plate and its manufacturing method | |
JP5059353B2 (en) | Aluminum alloy plate with excellent stress corrosion cracking resistance | |
JP5416795B2 (en) | Aluminum alloy sheet for forming | |
JP4542016B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP4541934B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
KR20200070358A (en) | Manufacturing method of titanium hot rolled sheet | |
JP6589443B2 (en) | Al-Si-Mg-based aluminum alloy plate, method for producing the alloy plate, and automotive parts using the alloy plate | |
JP4955969B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP4542004B2 (en) | Aluminum alloy sheet for forming | |
JP4542017B2 (en) | Aluminum alloy plate ingot for cold rolling | |
JP4427020B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP6778615B2 (en) | Aluminum alloy plate for superplastic molding and its manufacturing method | |
JP4456505B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP5406600B2 (en) | Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof | |
JP2022139749A (en) | Aluminum alloy plate for vehicle body parts and method for producing same | |
JP4224435B2 (en) | Aluminum alloy plate for automobile and method for producing the same | |
JP6345016B2 (en) | Aluminum alloy plate for hot forming and manufacturing method thereof | |
WO2024053218A1 (en) | Aluminum alloy foil and method for producing same | |
JP2025062590A (en) | Aluminum alloy foil and manufacturing method of the same | |
KR20220079494A (en) | aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5427143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |