[go: up one dir, main page]

JP5423072B2 - High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same - Google Patents

High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same Download PDF

Info

Publication number
JP5423072B2
JP5423072B2 JP2009062894A JP2009062894A JP5423072B2 JP 5423072 B2 JP5423072 B2 JP 5423072B2 JP 2009062894 A JP2009062894 A JP 2009062894A JP 2009062894 A JP2009062894 A JP 2009062894A JP 5423072 B2 JP5423072 B2 JP 5423072B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
phase
strength
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009062894A
Other languages
Japanese (ja)
Other versions
JP2010215958A (en
Inventor
正崇 吉野
勇樹 田路
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009062894A priority Critical patent/JP5423072B2/en
Publication of JP2010215958A publication Critical patent/JP2010215958A/en
Application granted granted Critical
Publication of JP5423072B2 publication Critical patent/JP5423072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主として自動車のセンターピラーやドアインパクトビームなどの高強度車体構造部品の使途に供して好適な曲げ加工性および耐遅れ破壊特性に優れた高強度冷延鋼板およびその製造方法に関するものである。
なお、本発明において、「曲げ加工性に優れた」とは、90°曲げ加工を行った際に破壊が生じない最小の曲げ加工部先端における曲率半径が1.5mm以下であることを、また「耐遅れ破壊特性に優れた」とは、25℃、pH1の塩酸環境下で100h以上破壊が生じないことを意味する。
The present invention relates to a high-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance suitable for use in high-strength vehicle body structural parts such as automobile center pillars and door impact beams, and a method for producing the same. is there.
In the present invention, “excellent in bending workability” means that the radius of curvature at the tip of the minimum bent portion where fracture does not occur when 90 ° bending is performed is 1.5 mm or less. “Excellent delayed fracture resistance” means that no fracture occurs for 100 hours or more in a hydrochloric acid environment at 25 ° C. and pH 1.

近年、CO2排出量の増加による地球温暖化への懸念から、欧州ではCO2の移動発生源である自動車からのCO2排出量の規制が進んでおり、自動車の燃費改善が強く求められている。燃費の改善には車体の軽量化が有効であるが、乗員の安全性を確保することも必要であるため、車体重量を低減しつつ、衝突安全性を従来以上に確保することが必要とされる。
これら車体軽量化および衝突安全性の双方を確保するために、高比強度の材料の適用により、使用する鋼板の薄肉化が検討されており、近年では、引張強度が980〜1180MPa級の高強度鋼板の、センターピラーやドアインパクトビームに代表される自動車保安部品への適用が進んでいる。しかしながら、車体軽量化に対する要求はさらに高まっており、1180MPa級鋼板よりもさらに高強度の鋼板を適用することによる更なる車体の軽量化を視野に入れた検討が行われている。
In recent years, concern about global warming due to an increase in CO 2 emissions in Europe is progressing regulation of CO 2 emissions from motor vehicles is a mobile source of CO 2, and fuel efficiency of the vehicle is strongly required Yes. Although reducing the weight of the vehicle body is effective for improving fuel efficiency, it is also necessary to ensure the safety of passengers. Therefore, it is necessary to reduce the weight of the vehicle body and ensure collision safety more than before. The
In order to ensure both weight reduction and collision safety, the use of high specific strength materials is being considered to reduce the thickness of the steel sheet used. In recent years, high tensile strength of 980 to 1180 MPa class has been studied. The application of steel plates to automobile safety parts represented by center pillars and door impact beams is advancing. However, the demand for reducing the weight of the vehicle body is increasing, and studies are being conducted with a view to further reducing the weight of the vehicle body by applying a steel plate that is stronger than the 1180 MPa class steel plate.

自動車保安部品は、一般にプレス成形により製造される。プレス成形性は材料の延性に強く依存するが、引張強度が980MPa超級の鋼板のプレス加工では曲げを主体とした成形が行われるため、980MPa超級の超高強度鋼板においては延性に加えて、曲げ加工性に優れることも必要とされる。また、引張強度が980MPaを超える高強度の材料では、プレス成形後の残留応力と、環境から侵入する水素に起因した遅れ破壊が懸念される。そのため、高強度の冷延鋼板を上述したような自動車保安部品として適用するためには、高いプレス成形性、すなわち延性、曲げ加工性および耐遅れ破壊特性に優れることが必要となる。   Automobile safety parts are generally manufactured by press molding. The press formability depends strongly on the ductility of the material, but in the press working of a steel sheet with a tensile strength of over 980 MPa, bending is mainly performed. Excellent workability is also required. Moreover, in the case of a high-strength material having a tensile strength exceeding 980 MPa, there is a concern about the residual stress after press molding and delayed fracture due to hydrogen entering from the environment. Therefore, in order to apply a high-strength cold-rolled steel sheet as an automobile safety part as described above, it is necessary to have high press formability, that is, excellent ductility, bending workability, and delayed fracture resistance.

上記のような要求に対して、これまで種々の提案がなされている。
例えば、特許文献1には、残留オーステナイト相のTRIP効果(Transformatoin Induced Plasticity:変態誘起塑性)を利用した、引張強度が1400MPaを超える超高強度薄鋼板に関する技術が開示されている。しかしながら、特許文献1に開示の例ではいずれも、焼入れ性の向上および残留オーステナイトの安定生成の観点からMoが添加されており、合金コストの上昇を招く不利があった。また、金属組織が、マルテンサイトに比べて比較的強度への寄与が小さいベイニティックフェライト相を母相としていることから、1470MPa以上の引張強度を得るために必要なC、Mn量が増大することから、鋼板の圧延負荷が増大するという製造上の問題も残していた。さらに、ベイナイト相の生成および残留オーステナイト相の安定化のために、焼鈍温度から室温までの冷却途中で等温保持を行う必要があるが、等温保持の温度および時間の変動は強度・延性等の材質変動を誘引するため、極めて厳格な操業が求められ、製造安定性の面でも問題を残していた。またさらに、特許文献1では、超高強度鋼板のプレス成形において曲げ加工性が重要であることを指摘しているものの、曲げ特性に関しては何ら開示されていない。
Various proposals have been made to meet the above demand.
For example, Patent Document 1 discloses a technique relating to an ultrahigh strength thin steel sheet having a tensile strength exceeding 1400 MPa, utilizing the TRIP effect (Transformatoin Induced Plasticity) of the retained austenite phase. However, in all of the examples disclosed in Patent Document 1, Mo is added from the viewpoint of improving hardenability and stable generation of retained austenite, which has a disadvantage of increasing the alloy cost. In addition, since the metallographic structure uses a bainitic ferrite phase that contributes relatively little to strength compared to martensite, the amount of C and Mn required to obtain a tensile strength of 1470 MPa or more increases. For this reason, there remains a manufacturing problem that the rolling load of the steel sheet increases. Furthermore, in order to generate the bainite phase and stabilize the retained austenite phase, it is necessary to keep isothermal during the cooling from the annealing temperature to room temperature. In order to induce fluctuations, extremely strict operations were required, and problems were left in terms of manufacturing stability. Furthermore, Patent Document 1 points out that bending workability is important in press forming of an ultrahigh strength steel sheet, but does not disclose any bending characteristics.

一方、特許文献2には、1470MPa以上の引張強度を有し、かつマルテンサイト単相組織からなる高強度鋼板が開示されている。しかしながら、特許文献2に開示の例は、伸びが6%と低いことに加え、180°曲げにおいて割れが発生しない最小の曲げ半径は4mmと大きく、十分な曲げ加工性が得られているとは言えない。   On the other hand, Patent Document 2 discloses a high-strength steel sheet having a tensile strength of 1470 MPa or more and having a martensite single-phase structure. However, in the example disclosed in Patent Document 2, in addition to the low elongation of 6%, the minimum bending radius at which cracks do not occur in 180 ° bending is as large as 4 mm, and sufficient bending workability is obtained. I can not say.

特開2007-197819号公報JP 2007-197819 特許3729108号公報Japanese Patent No. 3729108

本発明は、上記の現状に鑑み開発されたもので、VやMo等の高強度化に有効ではあるものの合金コストを著しく上昇させる還移金属元素を含まず、また鋳造欠陥を誘引するおそれのあるAlを低減した鋼成分とした上で、1470MPa以上という高い引張強度と優れた加工性を有する冷延鋼板を、その有利な製造方法と共に提供することを目的とする。   The present invention has been developed in view of the above situation, and is effective for increasing the strength of V, Mo, etc., but does not include a reverted metal element that significantly increases the alloy cost and may induce casting defects. It is an object of the present invention to provide a cold-rolled steel sheet having a high tensile strength of 1470 MPa or more and an excellent workability together with its advantageous manufacturing method, with a certain Al content as a reduced steel component.

従来、引張強度が1470MPa以上の鋼板を得るためには、金属組織をマルテンサイト単相組織(以下、特に断らない限りマルテンサイト相には焼戻しを施した焼戻しマルテンサイト相を含むものとする)が有効とされていた。しかしながら、一般に、マルテンサイト単相組織は強度の確保が比較的容易な反面、延性に乏しく加工性の点で不利であるとされてきた。そのため、高強度でかつ延性に優れる鋼板としては、TRIP効果を使用した鋼板、あるいはマルテンサイト相と延性に優れるフェライト相からなる二相組織鋼板の研究・開発が進められてきた。さらに、近年では、低温変態相の一種でベイナイト相を活用した鋼板も提案されている。   Conventionally, in order to obtain a steel sheet with a tensile strength of 1470 MPa or more, it is effective to use a martensite single-phase structure (hereinafter, unless otherwise specified, the martensite phase includes a tempered martensite phase that has been tempered). It had been. However, in general, a martensite single-phase structure is relatively easy to secure strength, but has a poor ductility and is disadvantageous in terms of workability. For this reason, research and development of steel sheets using the TRIP effect or duplex-structure steel sheets composed of a martensite phase and a ferrite phase excellent in ductility have been promoted as steel sheets having high strength and excellent ductility. Furthermore, in recent years, a steel sheet using a bainite phase as a kind of low-temperature transformation phase has also been proposed.

しかしながら、TRIP効果を発現させるためには、オーステナイト相の安定性を高めるために多量の合金元素を添加する必要があるだけでなく、焼鈍温度からの冷却時にMs変態点以上の温度で等温保持を行う必要があり、製造工程および製造コストの観点で好ましくない。さらに、等温保持工程における温度・保持時間の変動による強度・延性等の材質変動に対する感受性がマルテンサイト単相鋼板に比べて大きいという問題があった。   However, in order to develop the TRIP effect, it is necessary not only to add a large amount of alloying elements in order to increase the stability of the austenite phase, but also to keep isothermal at temperatures above the Ms transformation point when cooling from the annealing temperature. This is not preferable from the viewpoint of the manufacturing process and manufacturing cost. Furthermore, there is a problem that the sensitivity to material fluctuations such as strength and ductility due to fluctuations in temperature and holding time in the isothermal holding process is higher than martensitic single-phase steel sheets.

また、マルテンサイト相とフェライト相の二相組織は、延性には優れるものの、比較的少量のマルテンサイト相で所定の強度を発現させるために多量のC添加が必要となり、鋼板製造時の圧延荷重およびスポット溶接性の観点から好ましくない。さらに、金属組織が硬度の異なるマルテンサイト相とフェライト相から構成されるため、伸びフランジ性および破壊靭性がマルテンサイト単相組織に比べて低いという問題があった。   In addition, the two-phase structure of martensite phase and ferrite phase is excellent in ductility, but a large amount of C is required to develop a predetermined strength with a relatively small amount of martensite phase. And it is not preferable from the viewpoint of spot weldability. Furthermore, since the metal structure is composed of a martensite phase and a ferrite phase having different hardnesses, there has been a problem that stretch flangeability and fracture toughness are lower than those of a martensite single phase structure.

一方、ベイナイト相を活用した鋼板では、焼鈍温度からの冷却時にオーステナイト相をパーライトやフェライト相に変態させることなく、ベイナイト相生成温度域に冷却する必要があることから、パーライトおよびフェライト相の生成を遅滞させる目的でMnやCrが多量に添加されており、合金コストの観点で好ましくない。また、ベイナイト相を効果的に生成させるためには、焼鈍温度からベイナイト相生成温度までパーライトおよびフェライト相を生成させることなく高速冷却する必要がある。しかしながら、マルテンサイト相を利用した鋼板とは異なり、ベイナイト相を活用した鋼板を得るためには、ベイナイト相を生成させる前にマルテンサイト変態点以下まで鋼板を冷却してはならないことから、製造に際しては高速冷却が必要であるだけでなく、ベイナイト相生成温度域で厳密に冷却を停止させることが必要とされるため、従来の連続焼鈍ラインでの安定かつ効率的な生産は極めて困難であった。   On the other hand, in steel sheets that utilize the bainite phase, it is necessary to cool the austenite phase to the pearlite or ferrite phase during the cooling from the annealing temperature, so it is necessary to cool it to the bainite phase generation temperature range. Mn and Cr are added in a large amount for the purpose of delaying, which is not preferable from the viewpoint of alloy cost. Moreover, in order to produce | generate a bainite phase effectively, it is necessary to cool at high speed, without producing a pearlite and a ferrite phase from an annealing temperature to a bainite phase production temperature. However, unlike steel sheets using the martensite phase, in order to obtain a steel sheet using the bainite phase, the steel sheet must not be cooled below the martensitic transformation point before the bainite phase is generated. In addition to requiring high-speed cooling, it is necessary to stop cooling strictly in the bainite phase generation temperature range, so stable and efficient production in the conventional continuous annealing line has been extremely difficult. .

以上のことから、引張強度が1470MPaを超える超高強度鋼板を得るためには、延性が比較的劣位であるという欠点はあるものの、マルテンサイト単相組織とすることが、合金コストおよび製造安定性の観点から有望と考えられる。
すなわち、マルテンサイト単相組織鋼板は、複相鋼板のように構成相の体積率で強度特性が変化することがなく、所定の機械的特性を有する鋼板を安定して製造することが可能であることに加え、所望の強度を発現させるために必要な合金元素量が比較的少量ですむことから、合金コストにも優れるという利点がある。
From the above, in order to obtain an ultra-high-strength steel sheet with a tensile strength exceeding 1470 MPa, although there is a disadvantage that the ductility is relatively inferior, a martensitic single-phase structure can be used to reduce alloy costs and manufacturing stability. From this point of view, it is considered promising.
That is, the martensitic single-phase structure steel sheet does not change the strength characteristics depending on the volume ratio of the constituent phases unlike the double-phase steel sheet, and can stably manufacture a steel sheet having predetermined mechanical characteristics. In addition, since the amount of alloying elements required to develop desired strength is relatively small, there is an advantage that the alloying cost is excellent.

そこで、発明者らは、上記の背景からマルテンサイト単相組織鋼板においても優れた延性を発現させるべく鋭意検討を重ねた結果、Siを添加してマルテンサイト相の加工硬化能を上昇させることにより、従来のマルテンサイト単相鋼板よりも高い延性を発現させることが可能であることを見出した。また、Siの添加により、焼戻し中の炭化物の粗大化が抑制され、組織中に炭化物が微細・均一に分散した組織が得られることが分かった。炭化物は遅れ破壊を誘引する水素のトラップサイトとして機能するが、本発明では炭化物を組織中に微細・均一に分散させることにより、曲げ加工時に粗大な炭化物を起点とした亀裂発生および進展が抑制されるため、曲げ加工性も向上することも明らかとなった。さらに、耐遅れ破壊特性の観点では、炭化物を組織中に微細・均一に分散させることにより、粗大な炭化物による局所的な水素集中が抑制される効果もある。加えて、曲げ加工性に優れるために、高いひずみ量で曲げ加工した場合のマイクロボイドやマイクロクラックといった材料損傷が低減され、遅れ破壊の起点を低減することが可能となり、耐遅れ破壊特性が向上することを見出した。
一方、製造工程的には、冷間圧延後の焼鈍および冷却に際し、焼鈍温度とその後の冷却過程を適正に制御し、必要に応じて100℃以上、250℃以下の温度域で焼戻し熱処理を施すことが効果的であることも併せて見出した。
Therefore, the inventors have intensively studied to develop excellent ductility in the martensitic single-phase steel sheet from the above background, and as a result, by adding Si, the work hardening ability of the martensitic phase is increased. The present inventors have found that it is possible to develop higher ductility than conventional martensite single-phase steel sheets. It was also found that the addition of Si suppresses the coarsening of the carbide during tempering, and a structure in which the carbide is finely and uniformly dispersed in the structure can be obtained. Carbide functions as a hydrogen trap site that induces delayed fracture, but in the present invention, by finely and uniformly dispersing carbide in the structure, crack initiation and propagation starting from coarse carbide during bending are suppressed. Therefore, it became clear that bending workability was also improved. Further, from the viewpoint of delayed fracture resistance, local concentration of hydrogen due to coarse carbides can be suppressed by finely and uniformly dispersing carbides in the structure. In addition, because of excellent bending workability, material damage such as microvoids and microcracks when bending with a high strain amount is reduced, the starting point of delayed fracture can be reduced, and delayed fracture resistance is improved. I found out.
On the other hand, in terms of manufacturing process, during annealing and cooling after cold rolling, the annealing temperature and the subsequent cooling process are appropriately controlled, and tempering heat treatment is performed in a temperature range of 100 ° C. or higher and 250 ° C. or lower as necessary. It was also found that this is effective.

本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたもので、その要旨構成は次のとおりである。
1.質量%で、
C:0.15〜0.20%、 Si:1.0〜2.0%、
Mn:1.5〜2.5%、 P:0.020%以下、
S:0.005%以下、 Al:0.01〜0.05%、
N:0.005%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:5〜30 ppm
を含み、残部はFeおよび不可避不純物からなり、かつ焼戻しマルテンサイト相を体積率で97%以上、残留オーステナイト相を体積率で3%未満(但し、鋼板表面より深さ10μm以内の部分を除く)の金属組織を有し、さらに引張強度が1470MPa以上、かつ0.2%耐力と引張強度の比が0.80以上であることを特徴とする曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板。
The present invention was completed after further investigation based on the above findings, and the gist of the present invention is as follows.
1. % By mass
C: 0.15-0.20%, Si: 1.0-2.0%,
Mn: 1.5 to 2.5%, P: 0.020% or less,
S: 0.005% or less, Al: 0.01 to 0.05%,
N: 0.005% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 5-30 ppm
The balance consists of Fe and inevitable impurities, and the tempered martensite phase is 97% or more by volume and the residual austenite phase is less than 3% by volume (however, the portion within 10μm in depth from the steel sheet surface is excluded) A high-strength cold-rolled steel sheet with excellent bending workability and delayed fracture resistance, characterized by having a metallographic structure, a tensile strength of 1470 MPa or more, and a ratio of 0.2% proof stress to tensile strength of 0.80 or more.

2.鋼板が、さらに質量%で、
Cu:0.20%以下
を含むことを特徴とする上記1に記載の曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板。
2. The steel plate is more mass%,
Cu: The high-strength cold-rolled steel sheet having excellent bending workability and delayed fracture resistance as described in 1 above, comprising 0.20% or less.

3.質量%で、
C:0.15〜0.20%、 Si:1.0〜2.0%、
Mn:1.5〜2.5%、 P:0.020%以下、
S:0.005%以下、 Al:0.01〜0.05%、
N:0.005%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:5〜30 ppm
を含み、残部はFeおよび不可避不純物からなる鋼スラブを、1200℃以上に加熱後、仕上げ圧延出側温度:800℃以上の条件で熱間圧延を施し、ついで冷間圧延後、得られた冷延鋼板に連続焼鈍を施すに際し、Ac3変態点〜(Ac3変態点+30℃)の温度範囲で30〜1200s保持後、720℃以上の温度域まで1℃/s以上の平均冷却速度で一次冷却したのち、一次冷却終了温度から平均冷却速度:100〜1000℃/sで100℃以下まで二次冷却し、ついで100〜250℃の温度域で120〜1800s保持することを特徴とする、焼戻しマルテンサイト相を体積率で97%以上、残留オーステナイト相を体積率で3%未満(但し、鋼板表面より深さ10μm以内の部分を除く)の金属組織を有し、さらに引張強度が1470MPa以上、かつ0.2%耐力と引張強度の比が0.80以上である曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板の製造方法。
4.前記鋼スラブが、さらに質量%で、
Cu:0.20%以下
を含むことを特徴とする上記3に記載の曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板の製造方法。
3. % By mass
C: 0.15-0.20%, Si: 1.0-2.0%,
Mn: 1.5 to 2.5%, P: 0.020% or less,
S: 0.005% or less, Al: 0.01 to 0.05%,
N: 0.005% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 5-30 ppm
The steel slab consisting of Fe and inevitable impurities is heated to 1200 ° C or higher, and then subjected to hot rolling at a finish rolling exit temperature of 800 ° C or higher, and then cold-rolled. When continuously annealing a rolled steel sheet, hold it for 30 to 1200 s in the temperature range of Ac 3 transformation point to (Ac 3 transformation point + 30 ° C.), then primary at an average cooling rate of 1 ° C./s or more to a temperature range of 720 ° C. Tempering after cooling, secondary cooling from the primary cooling end temperature to the average cooling rate: 100-1000 ° C / s to 100 ° C or less, and then holding in the temperature range of 100-250 ° C for 120-1800s It has a metal structure with a martensite phase volume ratio of 97% or more and a residual austenite phase volume ratio of less than 3% (excluding the portion within 10μm depth from the steel sheet surface), and a tensile strength of 1470MPa or more. and bending the ratio of the tensile strength and 0.2% proof stress is 0.80 or more processing and delayed Method for producing a high strength cold rolled steel sheet having excellent fracture properties.
4). The steel slab is further mass%,
Cu: 0.20% or less
4. The method for producing a high-strength cold-rolled steel sheet having excellent bending workability and delayed fracture resistance as described in 3 above.

本発明によれば、部品にプレス成形後も環境から侵入する水素に起因した遅れ破壊が生じ難い優れた耐遅れ破壊特性を有し、かつ成形時には優れた加工性を発現する引張強度:1470MPa以上の超高強度冷延鋼板を、生産性よく得ることができる。
そのため、遅れ破壊が生じにくい超高強度部品として、例えばセンターピラーやインパクトビーム等の自動車保安部品に供して偉効を奏する。
According to the present invention, the tensile strength is 1470 MPa or more, which has excellent delayed fracture resistance that hardly causes delayed fracture due to hydrogen entering from the environment after press molding, and exhibits excellent workability during molding. The ultra-high strength cold-rolled steel sheet can be obtained with high productivity.
For this reason, as an ultra-high-strength part that does not easily cause delayed fracture, for example, it can be used for automobile safety parts such as a center pillar and an impact beam.

以下、本発明を具体的に説明する。
本発明は、焼戻しマルテンサイト単相組織でありながら加工性に優れる鋼板を得るべく鋭意研究を行った末に、開発されたものである。すなわち、発明者らは、Siを添加することによって、焼戻しマルテンサイト相の加工硬化能が向上すると共に、炭化物を組織中に微細・均一に分散させることが可能となり、1470MPa以上の極めて高い引張強度を有しながらも、高い曲げ加工性ならびに優れた耐遅れ破壊特性を有する冷延鋼板が得られることを見出し、本発明を完成させたものである。
Hereinafter, the present invention will be specifically described.
The present invention was developed after earnest research to obtain a steel sheet having a tempered martensite single phase structure and excellent workability. In other words, the inventors have improved the work hardening ability of the tempered martensite phase by adding Si, and it is possible to finely and uniformly disperse carbides in the structure, and extremely high tensile strength of 1470 MPa or more. The present invention has been completed by finding that a cold-rolled steel sheet having high bending workability and excellent delayed fracture resistance can be obtained.

なお、本発明における「高い延性」とは、JIS5号引張試験における破断伸びが10%以上のことを、「優れた耐遅れ破壊特性」とは、25℃、pH1の塩酸において100h以上破壊が生じないことをいう。
また、本発明における「焼戻しマルテンサイト単相組識」とは、焼戻しマルテンサイト相が体積率で97%以上で、かつ残留オーステナイト相が体積率で3%未満の組織と定義する。このマルテンサイト単相組織は、焼鈍温度からの急冷によって得られるものであり、このプロセスによれば、合金元素を多量に添加することなしに超高強度の鋼板を安定して得ることが可能である。
In the present invention, “high ductility” means that the elongation at break in JIS No. 5 tensile test is 10% or more, and “excellent delayed fracture resistance” means that fracture occurs for 100 hours or more in hydrochloric acid at 25 ° C. and pH 1. Say nothing.
The “tempered martensite single-phase structure” in the present invention is defined as a structure in which the tempered martensite phase is 97% or more by volume and the residual austenite phase is less than 3% by volume. This martensite single phase structure is obtained by rapid cooling from the annealing temperature, and according to this process, it is possible to stably obtain an ultra-high strength steel sheet without adding a large amount of alloying elements. is there.

以下、本発明において、金属組織を前記のように規定した理由について説明する。
<焼戻しマルテンサイト単相組織>
金属組織を、焼戻しマルテンサイト単相(但し、鋼板表面より深さ10μm以内の部分は除く)とすることは、本発明において極めて重要な要件である。すなわち、焼戻しマルテンサイト単相組織とすることで、1470MPa以上の引張強度を得るために必要な合金元素量を低減させることが可能となる。ここで、焼戻しマルテンサイト単相組織とは、金属組織中にフェライト相やパーライト相、ベイナイト相を含まない組織であり、かつマルテンサイト変態せずに残留している残留オーステナイト相が体積率で3%未満であることを指す。ただし、Fe3CやNbC、TiN等の析出物、ならびに不可避的に生成するMnS等の介在物が組織中に含まれていても良い。
また、脱炭等により鋼板の表面から深さ10μm以内にフェライト相が生成する場合があるが、鋼板表層部におけるフェライト相は加工性を低下させるものではないため、表層部にフェライト相が含まれていても差し支えない。このため、本発明では鋼板の表面から深さl0μm以内の組織は限定しないこととした。
Hereinafter, the reason why the metal structure is defined as described above in the present invention will be described.
<Tempered martensite single phase structure>
It is a very important requirement in the present invention that the metal structure is a tempered martensite single phase (except for a portion within a depth of 10 μm from the steel sheet surface). That is, by using a tempered martensite single-phase structure, it is possible to reduce the amount of alloy elements necessary to obtain a tensile strength of 1470 MPa or more. Here, the tempered martensite single phase structure is a structure that does not include a ferrite phase, a pearlite phase, or a bainite phase in the metal structure, and a residual austenite phase that remains without martensite transformation is 3% by volume. It means less than%. However, precipitates such as Fe 3 C, NbC, and TiN, and inclusions such as unavoidable MnS may be included in the structure.
In addition, a ferrite phase may be generated within a depth of 10 μm from the surface of the steel sheet due to decarburization, etc., but since the ferrite phase in the steel sheet surface layer part does not reduce workability, the surface layer part contains a ferrite phase. It does not matter. For this reason, in the present invention, the structure within a depth of 10 μm from the surface of the steel sheet is not limited.

次に、本発朋において、鋼の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する%表示は特に断らない限り質量%を意味するものとする。
<C:0.15〜0.20%>
Cは、オーステナイト相を安定化させる元素であると共に、鋼板の強度を得るために必要な元素である。C添加量が0.15%未満ではマルテンサイト単相組織であっても1470MPa以上の引張強度を得ることが困難となる。一方、0.20%を超えて添加した場合、所定の強度は得られるものの、溶接時に生じる溶接部ならびに溶接による熱影響部が著しく硬化し、溶接性が低下する。このため、C量は0.15〜0.20%の範囲とする。好ましくは0.17〜0.19%の範囲である。
Next, the reason why the component composition of steel is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, the% display regarding a component shall mean the mass%.
<C: 0.15-0.20%>
C is an element that stabilizes the austenite phase and is an element necessary for obtaining the strength of the steel sheet. If the amount of C added is less than 0.15%, it becomes difficult to obtain a tensile strength of 1470 MPa or more even in a martensite single-phase structure. On the other hand, when added over 0.20%, a predetermined strength can be obtained, but the welded portion generated during welding and the heat-affected zone caused by welding are markedly cured, and the weldability is lowered. Therefore, the C content is in the range of 0.15 to 0.20%. Preferably it is 0.17 to 0.19% of range.

<Si:1.0〜2.0%>
Siは、鋼板を硬質化させるのに有効な置換型固溶強化元素であるだけでなく、母相の加工硬化能を上昇させ延性を向上させる元素でもある。これらの効果を発現させるためには、1.0%以上含有させる必要がある。しかしながら、Si量が多くなると、熱間圧延でのスケール形成が顕著になり、最終製品での欠陥率が増加し、経済的に好ましくない。一方で、SiはAc3点を上昇させる作用があり、2.0%を超えて添加すると、オーステナイト単相組織となる焼鈍温度が著しく上昇し、製造コストの増加を招く。それ故、Si量は1.0〜2.0%の範囲とする。より好ましくは1.0〜1.5%の範囲である。
<Si: 1.0-2.0%>
Si is not only a substitutional solid solution strengthening element effective for hardening a steel sheet, but also an element that increases the work hardening ability of the matrix and improves the ductility. In order to express these effects, it is necessary to contain 1.0% or more. However, when the amount of Si increases, scale formation by hot rolling becomes remarkable, and the defect rate in the final product increases, which is not economically preferable. On the other hand, Si has an action of increasing the Ac 3 point, and if added over 2.0%, the annealing temperature at which an austenite single-phase structure is formed rises remarkably, leading to an increase in production cost. Therefore, the Si content is in the range of 1.0 to 2.0%. More preferably, it is 1.0 to 1.5% of range.

<Mn:1.5〜2.5%>
Mnは、オーステナイト相を安定化させ、マルテンサイト単相組織が得られる上部臨界冷却速度を小さくして、マルテンサイト単相組織を得やすくするだけでなく、鋼の強化にも有効な元素である。しかしながら、Mn量が1.5%未満では、焼鈍温度から急冷完了までに要する時間中にフェライト相やパーライト相、ベイナイト相等が生成して強度が低下し、所望の強度を有する鋼板を安定して製造することが困難となる。一方、2.5%を超えると偏折が顕著となり、加工性が劣化するだけでなく、熱間圧延ならびに冷間圧延時に必要な圧延荷重が著しく大きくなるため、好ましくない。それ故、Mn量は1.5〜2.5%の範囲とする。好ましくは1.5〜2.0%の範囲である。
<Mn: 1.5-2.5%>
Mn is an element that stabilizes the austenite phase and reduces the upper critical cooling rate at which a martensite single-phase structure can be obtained, making it easier to obtain a martensite single-phase structure, and is also an effective element for strengthening steel. . However, if the amount of Mn is less than 1.5%, a ferrite phase, a pearlite phase, a bainite phase, and the like are generated during the time required from the annealing temperature to the completion of rapid cooling, and the strength is lowered, and a steel plate having a desired strength is stably produced. It becomes difficult. On the other hand, if it exceeds 2.5%, unfolding becomes remarkable and not only the workability deteriorates, but also the rolling load necessary during hot rolling and cold rolling becomes remarkably large, which is not preferable. Therefore, the Mn content is in the range of 1.5 to 2.5%. Preferably it is 1.5 to 2.0% of range.

<P:0.020%以下>
Pは、粒界偏折による粒界破壊を助長する元素であり、その含有はできるだけ低い方が望ましいため、その上限を0.020%とする。好ましくは0.010%以下である。特に溶接性向上の観点からは、0.008%以下とすることが好ましい。
<P: 0.020% or less>
P is an element that promotes grain boundary fracture due to grain boundary deflection, and its content is preferably as low as possible, so its upper limit is made 0.020%. Preferably it is 0.010% or less. In particular, from the viewpoint of improving weldability, the content is preferably 0.008% or less.

<S:0.005%以下>
Sは、MnSなどの介在物となって、耐衝撃特性や耐遅れ破壊特性の劣化を誘引するため、その含有は極力低減することが望ましく、その上限を0.005%とする。好ましくは0.001%以下である。
<S: 0.005% or less>
Since S becomes an inclusion such as MnS and induces deterioration of impact resistance and delayed fracture resistance, its content is preferably reduced as much as possible, and its upper limit is made 0.005%. Preferably it is 0.001% or less.

<Al:0.01〜0.05%>
Alは、脱酸のために有効な元素であるので0.01%以上含有させるものとする。しかしながら、多量に添加すると鋼板中の介在物が増加して延性を低下させるため、その上限を0.05%とする。
<Al: 0.01-0.05%>
Al is an element effective for deoxidation, so 0.01% or more should be contained. However, if added in a large amount, inclusions in the steel sheet increase and ductility is lowered, so the upper limit is made 0.05%.

<N:0.005%以下>
Nは、不可避不純物であり、窒化物を形成する。特に含有量が0.005%超になると窒化物の形成により高温および低温での延性が低下する。そのため、N量は0.005%以下とする。
<N: 0.005% or less>
N is an unavoidable impurity and forms a nitride. In particular, when the content exceeds 0.005%, ductility at high and low temperatures decreases due to the formation of nitrides. Therefore, the N content is 0.005% or less.

<Ti:0.1%以下、Nb:0.1%以下>
Ti,Nbはいずれも、炭化物や窒化物等の析出物を形成し、鋼の強度を上昇させる他、結晶粒を微細にすることにより、降伏強度を高めるために有効な元素である。これらの効果を得るためには0.01%以上の添加が好ましいが、0.1%を超えるとその効果が飽和する。それ故、Ti,Nb量はそれぞれ0.1%以下とする。
<Ti: 0.1% or less, Nb: 0.1% or less>
Both Ti and Nb are effective elements for increasing the yield strength by forming precipitates such as carbides and nitrides and increasing the strength of the steel and by making the crystal grains finer. In order to obtain these effects, addition of 0.01% or more is preferable, but when it exceeds 0.1%, the effects are saturated. Therefore, the Ti and Nb contents are each 0.1% or less.

<B:5〜30ppm>
Bは、鋼の焼入れ性を向上させ、マルテンサイト単相組織をより容易に得るために有効な元素である。しかしながら、添加量が5ppm未満ではその添加効果に乏しく、一方30ppmを超えて添加しても焼入れ性向上効果は飽和し、むしろ延性の低下が懸念される。それ故、B量は5〜30ppmの範囲とする。好ましくは5〜20ppmの範囲である。
<B: 5 to 30 ppm>
B is an effective element for improving the hardenability of steel and obtaining a martensite single phase structure more easily. However, if the addition amount is less than 5 ppm, the effect of addition is poor. On the other hand, if it exceeds 30 ppm, the effect of improving the hardenability is saturated, and there is a concern that the ductility is lowered. Therefore, the B content is in the range of 5 to 30 ppm. Preferably it is the range of 5-20 ppm.

以上、基本成分について説明したが、本発明では、その他にも、以下に述べる成分を必要に応じて適宜含有させることができる。
<Cu:0.20%以下>
Cuは、オーステナイト相を安定化させ、マルテンサイト単相組織を得やすくするだけでなく、腐食環境下において鋼板表層に濃化層を形成することにより鋼中への水素の侵入を抑制し、耐遅れ破壊特性を向上させる作用がある。しかしながら、添加量が0.20%を超えるとこれらの効果は飽和するため、Cuは0.20%以下で含有させるものとした。
The basic components have been described above, but in the present invention, other components described below can be appropriately contained as necessary.
<Cu: 0.20% or less>
Cu not only stabilizes the austenite phase and makes it easy to obtain a martensite single-phase structure, but also suppresses the penetration of hydrogen into the steel by forming a concentrated layer on the surface of the steel sheet in a corrosive environment. It has the effect of improving delayed fracture characteristics. However, when the added amount exceeds 0.20%, these effects are saturated, so Cu is contained at 0.20% or less.

次に、本発明に従う高強度冷延鋼板の製造方法について述べる。
本発明に係る高強度冷延鋼板は、上記した成分組成に調整した鋼スラブを、1200℃以上に加熱後、仕上げ圧延出側温度:800℃以上の条件で熱間圧延し、ついで冷間圧延後、連続焼鈍に際し、Ac3変態点〜(Ac3変態点+30℃)の温度範囲で30〜1200s保持後、720℃以上の温度域まで1℃/s以上の平均冷却速度で一次冷却し、引き続き一次冷却終了温度から平均冷却速度:100〜1000℃/sで100℃以下まで二次冷却した後、100〜250℃の温度域で120〜1800s保持することによって得ることができる。
以下、本発明の製造方法において、各処理条件を上記の範囲に限定した理由について説明する。
Next, a method for producing a high-strength cold-rolled steel sheet according to the present invention will be described.
The high-strength cold-rolled steel sheet according to the present invention is a steel slab adjusted to the above component composition, heated to 1200 ° C or higher, and then hot-rolled at a finish rolling exit temperature of 800 ° C or higher, and then cold-rolled. Then, during the continuous annealing, after holding for 30 to 1200 s in the temperature range of Ac 3 transformation point to (Ac 3 transformation point + 30 ° C.), primary cooling is performed at an average cooling rate of 1 ° C./s or more to a temperature range of 720 ° C. or more. Subsequently, after secondary cooling from the primary cooling end temperature to 100 ° C. or lower at an average cooling rate of 100 to 1000 ° C./s, the temperature can be obtained by holding for 120 to 1800 s in a temperature range of 100 to 250 ° C.
Hereinafter, the reason why each processing condition is limited to the above range in the manufacturing method of the present invention will be described.

<スラブ加熱温度:1200℃以上>
スラブ加熱温度は、未固溶の析出物および介在物を溶解させることによって、熱間圧延時の変形抵抗を低減させ、生産性を安定化させるためには高い方が望ましい。加熱温度が1200℃未満では、圧延荷重が増大し、熱間圧延時のトラブル発生の危険が増大する。したがって、スラブ加熱温度は1200℃以上とするが、加熱温度があまりに高くなると酸化重量の増加に伴うスケールロスの増大につながるため、スラブ加熱温度は1300℃以下とすることが望ましい。
<Slab heating temperature: 1200 ℃ or higher>
The slab heating temperature is preferably high in order to reduce the deformation resistance during hot rolling and stabilize the productivity by dissolving undissolved precipitates and inclusions. When the heating temperature is less than 1200 ° C., the rolling load increases and the risk of trouble occurring during hot rolling increases. Therefore, the slab heating temperature is set to 1200 ° C. or higher. However, if the heating temperature is too high, the slab heating temperature is desirably 1300 ° C. or lower because it leads to an increase in scale loss accompanying an increase in the oxidized weight.

<仕上げ圧延出側温度:800℃以上>
仕上げ圧延出側温度を800℃以上とすることで、均一な熱延母相組織を得ることができ、用途上、問題なく使用することができる。この点、仕上げ圧延出側温度が800℃を下回ると、鋼板の組織が不均一となり、延性が低下するだけでなく、成形時に種々の不具合が発生するおそれが増大する。また、圧延出側温度が800℃未満の場合、加工組織の残留を回避すべく高い巻取り温度を採用しても、粗大粒の発生に伴う同様の不具合を生じる。したがって、仕上げ圧延出側温度は800℃以上とした。なお、仕上げ圧延出側温度の上限については特に制限はないが、過度に高い温度で圧延した場合にはスケール疵などの原因となるため、1000℃以下程度とすることが好ましい。
<Finishing rolling delivery temperature: 800 ° C or higher>
By setting the finish rolling exit temperature to 800 ° C. or higher, a uniform hot rolled matrix phase structure can be obtained, and can be used without any problem in use. In this respect, when the finish rolling exit temperature is lower than 800 ° C., the structure of the steel sheet becomes non-uniform, not only the ductility is lowered, but also the possibility of various problems occurring during forming increases. Further, when the rolling exit temperature is less than 800 ° C., the same problem associated with the generation of coarse grains occurs even if a high coiling temperature is employed to avoid the remaining of the processed structure. Therefore, the finish rolling exit temperature is set to 800 ° C. or higher. In addition, although there is no restriction | limiting in particular about the upper limit of finish rolling exit side temperature, When it rolls at an excessively high temperature, since it becomes a cause of a scale flaw etc., it is preferable to set it as about 1000 degrees C or less.

上記の熱間圧延後は巻取り処理を行う。本発明において巻取り温度は特に限定されないが、巻取り温度が高すぎると、上述したように粗大粒が生成し、鋼板組織が不均一となるため延性が低下する。一方、巻取り温度が低すぎると、熱間圧延によって生じた加工組織が残留し、次工程である冷間圧延での圧延荷重の増大を招く。従って、巻取り温度は400〜700℃程度とすることが望ましい。好ましくは650℃前後である。   A winding process is performed after said hot rolling. In the present invention, the coiling temperature is not particularly limited, but if the coiling temperature is too high, coarse grains are generated as described above, and the steel sheet structure becomes non-uniform, resulting in a decrease in ductility. On the other hand, when the coiling temperature is too low, the processed structure generated by hot rolling remains, and the rolling load in cold rolling, which is the next step, is increased. Therefore, the winding temperature is preferably about 400 to 700 ° C. Preferably, it is around 650 ° C.

引き続き、冷間圧延を行うが、冷間圧延条件については特に制限はなく、従来公知の方法に従えばよい。   Subsequently, cold rolling is performed, but there is no particular limitation on the cold rolling conditions, and any conventionally known method may be followed.

ついで、連続焼鈍を行う。以下、この連続焼鈍条件について説明する。
<焼鈍処理:Ac3変態点〜(Ac3変態点+30℃)で30〜1200s保持>
マルテンサイト単相組織を得るためには、焼鈍時にオーステナイト単相組織とする必要がある。そのため、焼鈍温度はAc3変態点以上とする必要がある。ただし、オーステナイト単相組織となる温度であっても、焼鈍温度が過度に高い場合には結晶粒が著しく粗大化し、鋼板の降伏強度ならびに靭性が低下する。そのため、焼鈍温度の上限を(Ac3変態点+30℃)とする。
また、上記した焼鈍温度での保持時間が30s未満の場合には、組織がオーステナイト単相組織にならずマルテンサイト単相組織が得られないだけでなく、冷間圧延によって形成された加工組織が残存し、焼鈍後の組織が不均一となり延性の低下を招く。一方、保持時間が1200sを超えると結晶粒が著しく粗大化し、やはり鋼板の降伏強度ならびに勒性が低下する。そのため、焼鈍時の保持時間は30〜1200sの範囲とする。好ましくは300〜900sの範囲である。
Next, continuous annealing is performed. Hereinafter, this continuous annealing condition will be described.
<Annealing treatment: Ac 3 transformation point to (Ac 3 transformation point + 30 ° C) for 30 to 1200 s>
In order to obtain a martensite single phase structure, it is necessary to have an austenite single phase structure during annealing. Therefore, the annealing temperature needs to be higher than the Ac 3 transformation point. However, even at a temperature at which an austenite single-phase structure is formed, if the annealing temperature is excessively high, the crystal grains become extremely coarse, and the yield strength and toughness of the steel sheet decrease. Therefore, the upper limit of the annealing temperature is (Ac 3 transformation point + 30 ° C.).
In addition, when the holding time at the above-described annealing temperature is less than 30 s, not only does the structure become an austenite single-phase structure and a martensite single-phase structure cannot be obtained, but a work structure formed by cold rolling is not obtained. It remains and the structure after annealing becomes non-uniform, resulting in a decrease in ductility. On the other hand, when the holding time exceeds 1200 s, the crystal grains are remarkably coarsened, and the yield strength and the inertia of the steel sheet are also lowered. Therefore, the holding time at the time of annealing shall be 30-1200s. Preferably it is the range of 300-900 s.

<720℃以上の温度域まで1℃/s以上の平均冷却速度で一次冷却し、さらに平均冷却速度:100〜1000℃/sで100℃以下まで二次冷却>
マルテンサイト単相組織を得るためには、焼鈍によりオーステナイト単相組織とした後に、フェライト相やパーライト相、ベイナイト相を生成させることなく100℃以下まで冷却する必要がある。しかしながら、720℃以上の温度域までの一次冷却を1℃/s未満の平均冷却速度で行った場合、冷却中にフェライト相が生成し1470MPa以上の引張強度を有するマルテンサイト単相組織が得られない。
なお、一次冷却における冷却終了温度を720℃以上としたのは、フェライト相およびパーライト相の生成が、720℃未満の温度領域で最も顕著に生じるためである。この一次冷却終了温度の上限は特に限定されるものではなく、上記した焼鈍温度から直接、次に述べる二次冷却の条件で急速冷却しても良い。
また、引き続く二次冷却を100℃/s未満の平均冷却速度で行った場合、100℃以下の温度域まで到達する間にフェライト相やパーライト相、ベイナイト相が生成し、やはり1470MPa以上の引張強度を有するマルテンサイト単相組織を得ることができない。一方、二次冷却における平均冷却速度が1000℃/sより大きくなると、冷却による鋼板の収縮割れが生じるおそれがあるため、上限を1000℃/sとする。なお、二次冷却としては、水焼入れを行うことが好ましい。
<Primary cooling at an average cooling rate of 1 ° C./s or higher to a temperature range of 720 ° C. or higher, and further average cooling rate: secondary cooling to 100 ° C. or lower at 100 to 1000 ° C./s>
In order to obtain a martensite single phase structure, it is necessary to cool to 100 ° C. or less without forming a ferrite phase, a pearlite phase, and a bainite phase after forming an austenite single phase structure by annealing. However, when primary cooling to a temperature range of 720 ° C or higher is performed at an average cooling rate of less than 1 ° C / s, a ferrite phase is formed during cooling, and a martensite single phase structure having a tensile strength of 1470 MPa or more is obtained. Absent.
The reason why the cooling end temperature in the primary cooling is set to 720 ° C. or more is that the generation of the ferrite phase and the pearlite phase occurs most significantly in the temperature region below 720 ° C. The upper limit of the primary cooling end temperature is not particularly limited, and rapid cooling may be performed directly from the above-described annealing temperature under the secondary cooling conditions described below.
In addition, when the subsequent secondary cooling is performed at an average cooling rate of less than 100 ° C / s, ferrite, pearlite, and bainite phases are generated while reaching a temperature range of 100 ° C or less, and tensile strength of 1470 MPa or more is also achieved. It is not possible to obtain a martensite single-phase structure having On the other hand, if the average cooling rate in the secondary cooling is higher than 1000 ° C./s, there is a risk of shrinkage cracking of the steel sheet due to cooling, so the upper limit is set to 1000 ° C./s. In addition, as secondary cooling, it is preferable to perform water quenching.

<100〜250℃の温度範囲で120〜1800s保持>
この焼戻し処理は、マルテンサイト相を軟質化させ加工性を向上させるために行う。すなわち、上記の二次冷却後、マルテンサイト相を焼戻すため、100〜250℃の温度域で120〜1800s保持する。焼戻し温度が100℃未満では、マルテンサイト相の軟質化が不十分で加工性の向上効果が期待できない。一方、焼戻し温度が250℃を超えると、再加熱のためのコスト増につながるだけでなく、著しい強度の低下を招き、所望の効果を得ることができない。
また、保持時間が120sに満たないと、保持温度におけるマルテンサイトの改質化が十分には生じないため、加工性の向上効果が期待できない。一方、保持時間が1800sを超えると、マルテンサイトの軟質化が過度に進行することにより強度が著しく低下することに加え、再加熱時間の増加により製造コストの増加を招く。なお、当該温度で保持した後の冷却手法ならびに速度については限定されることはない。
<Holds for 120 to 1800s in the temperature range of 100 to 250 ° C>
This tempering process is performed in order to soften the martensite phase and improve workability. That is, after the secondary cooling, in order to temper the martensite phase, the temperature is maintained at a temperature of 100 to 250 ° C. for 120 to 1800 s. When the tempering temperature is less than 100 ° C., the softening of the martensite phase is insufficient, and the effect of improving the workability cannot be expected. On the other hand, when the tempering temperature exceeds 250 ° C., not only the cost for reheating is increased, but also a significant decrease in strength is caused and a desired effect cannot be obtained.
Further, if the holding time is less than 120 s, the martensite is not sufficiently modified at the holding temperature, so that the workability improvement effect cannot be expected. On the other hand, if the holding time exceeds 1800 s, the softening of martensite proceeds excessively, resulting in a significant decrease in strength, and an increase in reheating time leads to an increase in manufacturing cost. Note that the cooling method and speed after being held at the temperature are not limited.

表1に示す成分組成になる鋼スラブを、表2に示す条件で熱間圧延した後、常法に従う冷間圧延により板厚:1.4mmの冷延鋼板とした。ついで、表2に示す条件で連続焼鈍ならびに焼戻し処理を施した。
かくして得られた冷延鋼板の引張特性、曲げ特性、金属組織および耐遅れ破壊特性について調査した結果を、表3に示す。
A steel slab having the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2, and then cold-rolled according to a conventional method to obtain a cold-rolled steel sheet having a thickness of 1.4 mm. Next, continuous annealing and tempering were performed under the conditions shown in Table 2.
Table 3 shows the results of investigation on the tensile properties, bending properties, metal structure and delayed fracture resistance of the cold-rolled steel sheet thus obtained.

なお、引張特性、曲げ特性、金属組織および耐遅れ破壊特性はそれぞれ、以下に示す手法で評価した。
<引張試験>
得られた冷延鋼板の圧延直角方向にJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠し、0.2%耐力(YS)、引張強度(TS)および破断伸び(EL)を求めた。
The tensile properties, bending properties, metal structure and delayed fracture resistance were each evaluated by the following methods.
<Tensile test>
JIS No. 5 tensile test specimens were collected in the direction perpendicular to the rolling direction of the obtained cold-rolled steel sheet, and 0.2% proof stress (YS), tensile strength (TS), and elongation at break (EL) were obtained in accordance with the provisions of JIS Z 2241. It was.

<曲げ試験>
曲げ試験は、得られた冷延鋼板より圧延方向を長手として110mm×35mmの板をせん断後、各端面を研削加工し、100mm×30mmとしたものを試験片とした。これらの試験片を3点曲げ試験機を用い、種々の曲率半径を有するポンチにより90°曲げ加工を施し、曲げ頂点部に破壊が生じる限界の曲げ半径(以下:限界曲げ半径と表記する)をそれぞれ求めた。
<Bending test>
The bending test was performed by shearing a 110 mm × 35 mm plate with the rolling direction as the longitudinal direction from the obtained cold-rolled steel plate and grinding each end face to obtain a test piece having a size of 100 mm × 30 mm. These specimens are subjected to 90 ° bending with a punch with various curvature radii using a three-point bending tester, and the critical bending radius (hereinafter referred to as the critical bending radius) that causes fracture at the bending apex is obtained. I asked for each.

<金属組織評価>
得られた冷延鋼板から試験片を採取し、圧延方向と平行な断面について鏡面研磨、ナイタールによるエッチングを施し、光学顕微鏡または走査型電子顕微鏡を用いて微細組織を観察・撮影し、焼戻しマルテンサイト相などの構成相の種類を同定した。フェライト相が認められた試験片については、組織写真を画像解析装置を用いて2値化することにより、焼戻しマルテンサイト相とフェライト相の体積率をそれぞれ求めた。また、組織中の残留オーステナイト分率をMo管球を用いたX線回折法により測定した。
<Metallic structure evaluation>
Specimens were collected from the obtained cold-rolled steel sheet, the cross-section parallel to the rolling direction was mirror-polished and etched with nital, and the microstructure was observed and photographed using an optical microscope or scanning electron microscope, and tempered martensite. The types of constituent phases such as phases were identified. About the test piece by which the ferrite phase was recognized, the volume ratio of the tempered martensite phase and the ferrite phase was calculated | required by binarizing a structure | tissue photograph using an image analyzer, respectively. Further, the retained austenite fraction in the structure was measured by an X-ray diffraction method using a Mo tube.

<遅れ破壊特性評価試験>
得られた冷延鋼板から、圧延方向を長手として30mm×100mmに切断後、端面を研削加工した試験片を用い、この試験片を180°曲げにより破壊が生じない所定の曲げ半径で180°曲げ加工を施した。この曲げ加工を施した試験片に生じたスプリングバックをボルトにより所定量締込み、試験片に応力を負荷したのち、25℃、pH1のHCl水溶液に浸漬し、破壊が生じるまでの時間を最長100hまで測定した。
<Delayed fracture property evaluation test>
From the obtained cold-rolled steel sheet, use a test piece whose end face is ground after cutting into 30 mm x 100 mm with the rolling direction as the long side, and this test piece is bent 180 ° with a predetermined bending radius that does not cause breakage by 180 ° bending. Processed. The spring back generated on the bent test piece is tightened by a specified amount with bolts, and after stress is applied to the test piece, it is immersed in an aqueous HCl solution at 25 ° C and pH 1, and the time until failure occurs is 100 hours at maximum. Until measured.

Figure 0005423072
Figure 0005423072

Figure 0005423072
Figure 0005423072

Figure 0005423072
Figure 0005423072

表3から明らかなように、本発明に従う適正成分組成に調整した鋼板を、本発明に従う製造条件で製造して得た発明例(No.1〜8)はいずれも、引張強度が1470MPa以上で、かつYS(0.2%耐力)とTS(引張強度)の比が0.80以上と極めて高強度でありながら、破断伸びが10%以上で、90°限界曲げ半径が1.5mm以下という優れた加工性を有する焼戻しマルテンサイト単相組織からなる冷延鋼板が得られている。しかも、これらの発明例はいずれも、pH1の塩酸中において100h以上破壊が生じない良好な耐遅れ破壊特性を有していることが分かる。特に、適量のCuを添加したNo.8は、塩酸に24h浸漬した後の鋼中拡散性水素量が他の発明例に比べても大幅に改善されており、遅れ破壊を誘引する拡散性水素の鋼中への侵入を抑制していることが分かる。   As is apparent from Table 3, all of the inventive examples (Nos. 1 to 8) obtained by producing the steel sheets adjusted to the proper composition according to the present invention under the production conditions according to the present invention have a tensile strength of 1470 MPa or more. In addition, the ratio of YS (0.2% proof stress) and TS (tensile strength) is 0.80 or higher, and it has excellent workability with a breaking elongation of 10% or more and a 90 ° limit bending radius of 1.5 mm or less. A cold-rolled steel sheet having a tempered martensite single-phase structure is obtained. Moreover, it can be seen that all of these invention examples have good delayed fracture resistance that does not cause destruction for 100 hours or more in hydrochloric acid at pH 1. In particular, No. 8 to which an appropriate amount of Cu was added had a much improved diffusible hydrogen content in steel after being immersed in hydrochloric acid for 24 hours compared to the other invention examples, and diffusible hydrogen induced delayed fracture. It can be seen that intrusion into the steel is suppressed.

これに対し、鋼成分が本発明の範囲外であるNo.9〜15は、所定の引張強度、0.2%耐力/引張強度比、1.5mm以下の90°限界曲げ半径およびフェライトを含まない焼戻しマルテンサイト単相組織の全てを満足することはできず、本発明には適合しないことが分かる。また、鋼成分が本発明の範囲内であっても、製造条件が適切でない場合には、No.16〜24に示すように、フェライトが生成し焼戻しマルテンサイト単相組織が得られなかったり、過度の焼戻しによって所定の強度が得られなかったり、あるいは焼戻しが不十分であるために良好な曲げ加工性が得られなかったり、さらには十分な耐遅れ破壊特性を有していないなど、いずれも本発明で目標とする諸特性を全て同時に満足する鋼板は得られていない。   On the other hand, Nos. 9 to 15 whose steel components are outside the scope of the present invention have a predetermined tensile strength, a 0.2% proof stress / tensile strength ratio, a 90 ° limit bending radius of 1.5 mm or less, and a tempered marten containing no ferrite. It can be seen that not all of the site single-phase structure can be satisfied and is not compatible with the present invention. Further, even if the steel component is within the scope of the present invention, if the production conditions are not appropriate, as shown in No. 16-24, ferrite is generated and a tempered martensite single phase structure cannot be obtained, Neither the prescribed strength can be obtained by excessive tempering, or good bending workability cannot be obtained due to insufficient tempering, and there is no sufficient delayed fracture resistance. A steel sheet that satisfies all the various properties targeted by the present invention has not been obtained.

本発明は、主として自動車のドアインパクトビームやセンターピラーをはじめとする、超高強度車体保安部品等の使途に好適な焼入れ、焼戻し処理用の薄鋼板であり、かかる鋼板を用いた自動車用部品を製造するに当たり、鋼組成、圧延条件ならびに焼鈍条件を適正に制御することによって、焼戻しマルテンサイト単相組織でありながら、優れた強度−延性バランス、曲げ加工性および耐遅れ破壊特性を発現させることができる。   The present invention is a thin steel plate for quenching and tempering suitable for the use of ultra-high-strength car body safety parts such as automobile door impact beams and center pillars. Automotive parts using such steel plates are In manufacturing, by properly controlling the steel composition, rolling conditions, and annealing conditions, it is possible to develop excellent strength-ductility balance, bending workability and delayed fracture resistance while having a tempered martensite single phase structure. it can.

Claims (4)

質量%で、
C:0.15〜0.20%、 Si:1.0〜2.0%、
Mn:1.5〜2.5%、 P:0.020%以下、
S:0.005%以下、 Al:0.01〜0.05%、
N:0.005%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:5〜30 ppm
を含み、残部はFeおよび不可避不純物からなり、かつ焼戻しマルテンサイト相を体積率で97%以上、残留オーステナイト相を体積率で3%未満(但し、鋼板表面より深さ10μm以内の部分を除く)の金属組織を有し、さらに引張強度が1470MPa以上、かつ0.2%耐力と引張強度の比が0.80以上であることを特徴とする曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板。
% By mass
C: 0.15-0.20%, Si: 1.0-2.0%,
Mn: 1.5 to 2.5%, P: 0.020% or less,
S: 0.005% or less, Al: 0.01 to 0.05%,
N: 0.005% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 5-30 ppm
The balance consists of Fe and inevitable impurities, and the tempered martensite phase is 97% or more by volume and the residual austenite phase is less than 3% by volume (however, the portion within 10μm in depth from the steel sheet surface is excluded) A high-strength cold-rolled steel sheet with excellent bending workability and delayed fracture resistance, characterized by having a metallographic structure, a tensile strength of 1470 MPa or more, and a ratio of 0.2% proof stress to tensile strength of 0.80 or more.
鋼板が、さらに質量%で、
Cu:0.20%以下
を含むことを特徴とする請求項1に記載の曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板。
The steel plate is more mass%,
The high-strength cold-rolled steel sheet having excellent bending workability and delayed fracture resistance according to claim 1, characterized by containing Cu: 0.20% or less.
質量%で、
C:0.15〜0.20%、 Si:1.0〜2.0%、
Mn:1.5〜2.5%、 P:0.020%以下、
S:0.005%以下、 Al:0.01〜0.05%、
N:0.005%以下、 Ti:0.1%以下、
Nb:0.1%以下、 B:5〜30 ppm
を含み、残部はFeおよび不可避不純物からなる鋼スラブを、1200℃以上に加熱後、仕上げ圧延出側温度:800℃以上の条件で熱間圧延を施し、ついで冷間圧延後、得られた冷延鋼板に連続焼鈍を施すに際し、Ac3変態点〜(Ac3変態点+30℃)の温度範囲で30〜1200s保持後、720℃以上の温度域まで1℃/s以上の平均冷却速度で一次冷却したのち、一次冷却終了温度から平均冷却速度:100〜1000℃/sで100℃以下まで二次冷却し、ついで100〜250℃の温度域で120〜1800s保持することを特徴とする、焼戻しマルテンサイト相を体積率で97%以上、残留オーステナイト相を体積率で3%未満(但し、鋼板表面より深さ10μm以内の部分を除く)の金属組織を有し、さらに引張強度が1470MPa以上、かつ0.2%耐力と引張強度の比が0.80以上である曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板の製造方法。
% By mass
C: 0.15-0.20%, Si: 1.0-2.0%,
Mn: 1.5 to 2.5%, P: 0.020% or less,
S: 0.005% or less, Al: 0.01 to 0.05%,
N: 0.005% or less, Ti: 0.1% or less,
Nb: 0.1% or less, B: 5-30 ppm
The steel slab consisting of Fe and inevitable impurities is heated to 1200 ° C or higher, and then subjected to hot rolling at a finish rolling exit temperature of 800 ° C or higher, and then cold-rolled. When continuously annealing a rolled steel sheet, hold it for 30 to 1200 s in the temperature range of Ac 3 transformation point to (Ac 3 transformation point + 30 ° C.), then primary at an average cooling rate of 1 ° C./s or higher to a temperature range of 720 ° C. or higher. Tempering after cooling, secondary cooling from the primary cooling end temperature to the average cooling rate: 100-1000 ° C / s to 100 ° C or less, and then holding in the temperature range of 100-250 ° C for 120-1800s It has a metal structure with a martensite phase volume ratio of 97% or more and a residual austenite phase volume ratio of less than 3% (excluding the portion within 10μm depth from the steel sheet surface), and a tensile strength of 1470MPa or more. and bending the ratio of the tensile strength and 0.2% proof stress is 0.80 or more processing and delayed Method for producing a high strength cold rolled steel sheet having excellent fracture properties.
前記鋼スラブが、さらに質量%で、The steel slab is further mass%,
Cu:0.20%以下Cu: 0.20% or less
を含むことを特徴とする請求項3に記載の曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板の製造方法。The method for producing a high-strength cold-rolled steel sheet having excellent bending workability and delayed fracture resistance according to claim 3.
JP2009062894A 2009-03-16 2009-03-16 High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same Active JP5423072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062894A JP5423072B2 (en) 2009-03-16 2009-03-16 High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062894A JP5423072B2 (en) 2009-03-16 2009-03-16 High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010215958A JP2010215958A (en) 2010-09-30
JP5423072B2 true JP5423072B2 (en) 2014-02-19

Family

ID=42975095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062894A Active JP5423072B2 (en) 2009-03-16 2009-03-16 High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5423072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489540B2 (en) * 2009-06-05 2014-05-14 臼井国際産業株式会社 Processed product made of ultra-high strength steel and its manufacturing method
JP5466576B2 (en) * 2010-05-24 2014-04-09 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bending workability
JP6047037B2 (en) * 2012-03-29 2016-12-21 株式会社神戸製鋼所 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape
JP5906154B2 (en) * 2012-07-20 2016-04-20 株式会社神戸製鋼所 High strength steel plate with excellent delayed fracture resistance and method for producing the same
CN104936716B (en) * 2013-01-18 2016-09-07 株式会社神户制钢所 The manufacture method of hot forming steel beam column
JP6017341B2 (en) 2013-02-19 2016-10-26 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bendability
JP6234845B2 (en) 2014-03-06 2017-11-22 株式会社神戸製鋼所 High strength galvannealed steel sheet with excellent bake hardenability and bendability
WO2015151428A1 (en) 2014-03-31 2015-10-08 Jfeスチール株式会社 High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
JP6295893B2 (en) * 2014-08-29 2018-03-20 新日鐵住金株式会社 Ultra-high-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
US10633720B2 (en) 2015-02-13 2020-04-28 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
JP2016153524A (en) * 2015-02-13 2016-08-25 株式会社神戸製鋼所 Ultra high strength steel sheet excellent in delayed fracture resistance at cut end part
JP2016148098A (en) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 Ultra high strength steel sheet excellent in yield ratio and workability
WO2016129550A1 (en) * 2015-02-13 2016-08-18 株式会社神戸製鋼所 Ultra-high-strength steel plate having excellent delayed fracture resistance at cut end thereof
CN107208236B (en) * 2015-02-13 2019-01-25 杰富意钢铁株式会社 High strength hot dip galvanized steel sheet and its manufacturing method
EP3276022B1 (en) * 2015-03-25 2019-09-04 JFE Steel Corporation Cold-rolled steel sheet and manufacturing method therefor
RU2686715C1 (en) 2015-04-08 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Element of heat-treated steel sheet and method of its production
MX2017012874A (en) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Steel sheet for heat treatment.
CN111868284B (en) 2018-03-19 2021-07-30 日本制铁株式会社 High-strength cold-rolled steel sheet and method for producing the same
TW201945559A (en) * 2018-05-01 2019-12-01 日商日本製鐵股份有限公司 Galvanized steel sheet and manufacturing method thereof
JP6683297B1 (en) * 2018-08-22 2020-04-15 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing the same
JP2019002078A (en) * 2018-09-10 2019-01-10 株式会社神戸製鋼所 Ultra high strength steel sheet excellent in yield ratio and workability
CN109321828A (en) * 2018-11-06 2019-02-12 鞍钢股份有限公司 1600 MPa-grade cold-rolled martensitic steel and production method thereof
US12116649B2 (en) 2018-12-26 2024-10-15 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
CN112969804B (en) 2019-03-29 2023-07-07 日本制铁株式会社 steel plate
KR102711646B1 (en) 2019-10-10 2024-10-04 닛폰세이테츠 가부시키가이샤 Cold rolled steel sheet and its manufacturing method
WO2021153392A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
MX2022009185A (en) * 2020-01-31 2022-08-17 Jfe Steel Corp Steel plate, member, and methods for manufacturing said steel plate and said member.
KR102440757B1 (en) * 2020-12-03 2022-09-08 주식회사 포스코 Ultra high strength cold rolled steel sheet having excellent bandability and method of manufacturing the same
JP7140302B1 (en) * 2020-12-25 2022-09-21 Jfeスチール株式会社 Steel plate, member and manufacturing method thereof
US20240068065A1 (en) * 2020-12-25 2024-02-29 Jfe Steel Corporation Steel sheet, member, and methods for manufacturing the same
MX2023008445A (en) 2021-03-10 2023-07-27 Nippon Steel Corp Cold-rolled steel sheet and method for manufacturing same.
EP4269643A4 (en) 2021-03-10 2024-03-13 Nippon Steel Corporation COLD ROLLED STEEL SHEET AND PRODUCTION PROCESS THEREOF
US20240175102A1 (en) * 2021-03-31 2024-05-30 Jfe Steel Corporation Steel sheet, member, and method for producing steel sheet, and method for producing member
KR20230142837A (en) * 2021-03-31 2023-10-11 제이에프이 스틸 가부시키가이샤 Steel plates, members and their manufacturing methods
JPWO2023068369A1 (en) 2021-10-21 2023-04-27
KR20240068702A (en) 2021-10-21 2024-05-17 닛폰세이테츠 가부시키가이샤 steel plate
JPWO2023153097A1 (en) 2022-02-09 2023-08-17
CN118660982A (en) 2022-02-09 2024-09-17 日本制铁株式会社 Cold rolled steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774412B2 (en) * 1987-01-20 1995-08-09 新日本製鐵株式会社 High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same
JP2000026919A (en) * 1998-07-10 2000-01-25 Kawasaki Steel Corp Production of pc steel rod
JP4396243B2 (en) * 2003-11-28 2010-01-13 Jfeスチール株式会社 Manufacturing method of high workability ultra-high strength cold-rolled steel sheet with excellent delayed fracture resistance after forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor
US11268164B2 (en) 2016-09-28 2022-03-08 Jfe Steel Corporation Steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2010215958A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5423072B2 (en) High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same
JP5668337B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
CN110678569B (en) High-strength steel sheet and method for producing same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP6338024B2 (en) High strength steel plate and manufacturing method thereof
JP6875916B2 (en) High-strength steel plate and its manufacturing method
JP5504636B2 (en) High strength hot rolled steel sheet and method for producing the same
KR20190071755A (en) High-strength cold-rolled steel having a tensile strength of 1500 MPa or more and excellent moldability and a manufacturing method thereof
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP2013072101A (en) High-strength steel sheet, and method of producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP4860786B2 (en) High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method
JP2012514130A (en) Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
JP2616350B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP5365758B2 (en) Steel sheet and manufacturing method thereof
JP7518337B2 (en) Steel sheet for hot stamped parts and its manufacturing method
JP2011038120A (en) High-strength steel sheet superior in ductility, weldability and surface properties, and method for manufacturing the same
JP2006183141A (en) High-strength hot rolled steel sheet and its production method
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
CN115176042A (en) Steel sheet and method for producing steel sheet
JP2006183140A (en) High-strength cold rolled steel sheet and its production method
JP7192819B2 (en) High-strength steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250