[go: up one dir, main page]

JP5422463B2 - Non-destructive inspection method in the reactor pressure vessel lower mirror - Google Patents

Non-destructive inspection method in the reactor pressure vessel lower mirror Download PDF

Info

Publication number
JP5422463B2
JP5422463B2 JP2010080069A JP2010080069A JP5422463B2 JP 5422463 B2 JP5422463 B2 JP 5422463B2 JP 2010080069 A JP2010080069 A JP 2010080069A JP 2010080069 A JP2010080069 A JP 2010080069A JP 5422463 B2 JP5422463 B2 JP 5422463B2
Authority
JP
Japan
Prior art keywords
inspection
furnace
rpv
outside
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010080069A
Other languages
Japanese (ja)
Other versions
JP2011209254A (en
Inventor
ちひろ 松岡
健一 大谷
正文 今井
正浩 小池
尚幸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010080069A priority Critical patent/JP5422463B2/en
Publication of JP2011209254A publication Critical patent/JP2011209254A/en
Application granted granted Critical
Publication of JP5422463B2 publication Critical patent/JP5422463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、原子力発電所の主要機器の一つである原子炉圧力容器の下鏡部における非破壊検査に関するものである。   The present invention relates to a nondestructive inspection in a lower mirror portion of a reactor pressure vessel, which is one of the main equipment of a nuclear power plant.

多くの工業製品では、その安心・安全を確保するために様々な検査が行われている。特に原子力発電所においては、運転を開始した後も定期的に運転を止めて機器の点検が行われており、原子力発電所の安全運転の確保が何よりも優先されている。   Many industrial products undergo various inspections to ensure their safety and security. In particular, in nuclear power plants, after starting operation, the operation is periodically stopped and equipment is inspected, and ensuring safe operation of the nuclear power plant is given priority over anything else.

近年、定期検査等において欠陥が発見された場合は、直ちに補修または取替えを行うのではなく、非破壊検査によって欠陥の寸法を測定することで、機器の健全性を評価し、その後の運転期間の設定または補修時期の決定を行うようになっている。   In recent years, if a defect is discovered in a periodic inspection, etc., the equipment's soundness is evaluated by measuring the size of the defect by nondestructive inspection instead of immediately repairing or replacing it. The setting or repair time is decided.

原子力発電所の主要機器の一つである原子炉圧力容器(以下、RPV)もしくはRPVに付帯する炉内構造物の溶接部においても定期的に検査が行われており、前記溶接部に対して非破壊検査を行う方法の一つとして、RPV内にカメラを投入し、溶接部の表面状態を確認する目視検査(VT)が行われている。他にも超音波探傷試験(UT)や過流探傷検査(ECT)など、その多くは溶接施工側となる炉内から検査装置をアクセスさせる方法を採用して実施されている。例えば、特許文献1のように、RPVの円周方向の溶接部を超音波検査する装置が記載されている。   Regular inspections are also carried out in the reactor pressure vessel (hereinafter referred to as RPV), which is one of the main equipment of nuclear power plants, or in the welded part of the reactor internal structure attached to the RPV. As one of the methods for performing non-destructive inspection, visual inspection (VT) is performed in which a camera is inserted into the RPV and the surface state of the welded portion is confirmed. Many other methods such as an ultrasonic flaw detection test (UT) and an overcurrent flaw detection test (ECT) are carried out by adopting a method of accessing an inspection device from the inside of the furnace on the welding operation side. For example, as in Patent Document 1, an apparatus that ultrasonically inspects the welded portion of the RPV in the circumferential direction is described.

しかし、近年は検査装置の高度化や新しい検査手法の開発により溶接部の検査を施工側となる炉内からではなく、RPVを介した炉外からも検査が実施できるようになってきた。炉内検査では通常RPV内は炉水で満たされており、作業環境は水中となるが、炉外検査は気中作業であるため、作業性は向上すると考えられている。例えば、特許文献2では、炉外の検査で、容器貫通部の原子炉圧力容器壁面に対する傾斜角度を測定し、検査位置を求めている。また、特許文献3では、炉内の液中点検装置として、溶接部を目視検査するときに超音波を用いて装置の位置を判定することが記載されている。   However, in recent years, it has become possible to carry out inspections not only from the inside of the furnace on the construction side, but also from outside the furnace via the RPV, due to the advancement of inspection apparatuses and the development of new inspection methods. In the in-furnace inspection, the inside of the RPV is usually filled with the reactor water and the working environment is underwater. However, since the out-of-furnace inspection is an aerial operation, it is considered that the workability is improved. For example, in Patent Document 2, the inspection position is obtained by measuring the inclination angle of the vessel penetration portion with respect to the reactor pressure vessel wall surface in the inspection outside the reactor. Moreover, in patent document 3, it describes that the position of an apparatus is determined using an ultrasonic wave when visually inspecting a welding part as a submerged inspection apparatus in a furnace.

RPV下鏡部は約150〜200mmの板厚が直径6000〜7000mmの半球状になっており、さらに制御棒駆動案内管(以下、CRDハウジング)などの炉内構造物が貫通するための直径200mm程度の穴が100〜200個程設けられた構造になっている。   The RPV lower mirror has a hemispherical shape with a plate thickness of about 150 to 200 mm and a diameter of 6000 to 7000 mm, and a diameter of 200 mm for penetration of internal structures such as a control rod drive guide tube (hereinafter referred to as CRD housing). It has a structure in which about 100 to 200 holes are provided.

特開平08−226987号公報Japanese Patent Laid-Open No. 08-226987 特開2008−039622号公報JP 2008-039622 A 特開平02−95246号公報Japanese Patent Laid-Open No. 02-95246

RPV下鏡部での検査対象となる溶接部の形状は複雑で、周囲も狭隘なため、アクセス性,接触性などの点から検査条件が制限され、検査可能範囲や精度に限界が生じ、健全性評価に十分な情報を得ることが困難になると想定される。   The shape of the welded part to be inspected at the RPV lower mirror part is complicated and the surroundings are narrow, so the inspection conditions are limited in terms of accessibility, contactability, etc., and the inspection range and accuracy are limited, which is sound. It is assumed that it will be difficult to obtain sufficient information for sex assessment.

解決しようとする問題点は、原子炉圧力容器下鏡部の狭隘かつ複雑形状な溶接部の検査精度の向上である。   The problem to be solved is to improve the inspection accuracy of the narrow and complex welded portion of the lower part of the reactor pressure vessel.

原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査において、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を実施し、同一欠陥の寸法又は範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法。   In the inspection of the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, nondestructive inspection is performed from two directions from the inside of the RPV (inside the reactor) and from the outside of the RPV (outside of the reactor). Or the inspection method which measures a range and matches the measurement result by said 2 methods.

本発明の検査手法はRPV下鏡部といった狭隘かつ複雑形状な箇所で行う検査において、炉内検査と炉外検査の2手法を適用することで、それぞれの検査不可範囲をカバーすることができる。また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができ、検査精度を向上させことができる。   The inspection method of the present invention can cover each non-inspectable range by applying two methods of in-furnace inspection and out-of-furnace inspection in an inspection performed in a narrow and complicated shape portion such as an RPV lower mirror part. Moreover, since each inspection result is matched, a more detailed evaluation of a defect can be performed and inspection accuracy can be improved.

実施対象となる原子炉圧力容器下鏡部の断面図である。It is sectional drawing of the reactor pressure vessel lower mirror part used as implementation object. 実施対象である溶接部の断面図である。It is sectional drawing of the welding part which is implementation object. 炉内検査装置の構成例である。It is a structural example of an in-furnace inspection apparatus. 炉内検査装置による計測例である。It is an example of a measurement by an in-furnace inspection device. 炉内位置座標設定の説明図である。It is explanatory drawing of the position coordinate setting in a furnace. 炉外検査装置の構成例である。It is a structural example of an in-core inspection apparatus. 炉外位置座標設定の説明図である。It is explanatory drawing of a furnace position coordinate setting. 炉外検査装置による計測例である。It is an example of a measurement by an out-of-core inspection device. 炉内および炉外の位置座標設定の説明図である。It is explanatory drawing of the position coordinate setting inside and outside a furnace.

図面を用いて各実施例を説明する。   Each embodiment will be described with reference to the drawings.

以下の各実施例に記載するように、RPVもしくはRPVに付帯する炉内構造物の溶接部、特に下鏡部で発見された欠陥に対して、溶接施工側となる炉内側から行う炉内検査と溶接部に対してRPVを介した炉外側から行う炉外検査の2手法を適用し、総合的に当該欠陥の寸法または範囲の測定を行うことで測定精度を向上させる。   As described in the following examples, in-furnace inspection is performed from the inside of the furnace on the welding side for defects found in the welded portion of the reactor internal structure attached to RPV or RPV, particularly the lower mirror portion. The measurement accuracy is improved by applying two methods of out-of-furnace inspection performed from the outside of the furnace via the RPV to the weld and comprehensively measuring the size or range of the defect.

また、RPV下鏡部といった狭隘かつ複雑形状な箇所で行う検査において、炉内検査と炉外検査の2手法を適用することで、それぞれの検査不可範囲をカバーすることができる。   In addition, in the inspection performed in a narrow and complicated portion such as the RPV lower mirror part, by applying the two methods of in-furnace inspection and out-furnace inspection, it is possible to cover each non-inspectable range.

また、炉内もしくは炉外検査によって求められた欠陥の位置座標に基づき、炉外もしくは炉内からの検査を行うことで欠陥同定の作業時間を短縮するこが可能となる。   In addition, it is possible to reduce the time for defect identification by performing inspection from outside or inside the furnace based on the position coordinates of defects obtained by in-furnace or outside furnace inspection.

また、この時、炉内検査結果と炉外検査結果によって得られる欠陥の位置座標をマッチングさせるため、検査時に予め炉内と炉外で同一の座標軸を設けることにより欠陥評価時の作業効率向上を図る。   At this time, in order to match the position coordinates of the defect obtained from the in-furnace inspection result and the out-of-furnace inspection result, the same coordinate axis is provided in advance in the furnace and outside the furnace at the time of inspection, thereby improving the work efficiency at the time of defect evaluation. Plan.

また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができる。   Moreover, since each inspection result is matched, more detailed evaluation of a defect can be performed.

さらに、検査場所となるRPV周辺は狭隘かつ高線量であるため、作業時間を短縮できることにより作業者の被爆線量を少なくすることができる。   Furthermore, since the vicinity of the RPV serving as the inspection place is narrow and has a high dose, the exposure time of the worker can be reduced by shortening the work time.

図1は本実施例の検査方法などの実施対象である原子力発電所のRPV下鏡部の断面図である。前記で述べたようにRPV下鏡部は半球状の構造物であるRPV1に円筒状のCRDハウジング2などが貫通しており、CRDハウジングとRPVはCRDスタブ3によって固定されている。A部は図2で詳述する。   FIG. 1 is a cross-sectional view of an RPV lower mirror portion of a nuclear power plant that is an object of implementation of the inspection method of this embodiment. As described above, in the RPV lower mirror portion, the cylindrical CRD housing 2 or the like passes through the RPV 1 which is a hemispherical structure, and the CRD housing and the RPV are fixed by the CRD stub 3. Part A will be described in detail with reference to FIG.

図2は実施対象である溶接部の断面図である。図2のA詳細図に示すようにCRDスタブ円周とRPV内面側が溶接部4a,4bにより固定されているため、検査対象となる溶接部形状が3次元的に変化し、複雑であることがわかる。以下に説明する実施例ではCRDスタブ3の溶接部4a,4bを検査対象としているが、他のRPVもしくはRPVに付帯する炉内構造物の溶接部に対しても応用できる。   FIG. 2 is a cross-sectional view of a welded portion that is an object of implementation. Since the CRD stub circumference and the RPV inner surface side are fixed by the welded portions 4a and 4b as shown in the A detailed view of FIG. 2, the shape of the welded portion to be inspected is three-dimensionally changed and complicated. Recognize. In the embodiment described below, the welds 4a and 4b of the CRD stub 3 are targeted for inspection, but the present invention can also be applied to other RPVs or welds of in-furnace structures attached to RPVs.

また、以下に説明する実施例では炉内からと炉外からの非破壊検査により求められる欠陥の位置座標をマッチングさせるために炉内と炉外で貫通して存在するCRDハウジングを利用して、同一の位置座標原点を設けているが、他の炉内構造物においても応用できる。   Further, in the embodiment described below, in order to match the position coordinates of the defect obtained by nondestructive inspection from the inside of the furnace and from the outside of the furnace, a CRD housing that penetrates inside and outside the furnace is used, Although the same position coordinate origin is provided, it can be applied to other in-furnace structures.

各実施例の検査装置は、検査対象を検査する検査部,検査部からの情報を受信し記録する記録部,受信した情報を表示する表示部を有する。記録部はデータベースサーバ,ハードディスク,メモリなどの記録媒体である。表示装置は、ディスプレイなどである。例えば、超音波非破壊検査を行う超音波については特許文献2に代表されるような構成を有し、検査部として、超音波を送出,受信する超音波探触子(超音波センサ)を有する。また、超音波探触子から送出,受信される超音波の送出,受信のタイミングなどを制御する制御機構を有する。制御機構はコンピュータであり、フェーズドアレイ法などによる超音波走査をプログラムをCPUで実行することで行う。目視検査(VT)の場合は、検査部はカメラである。渦流探傷検査(ECT)の場合は、検査部は励磁コイル,検出コイル又は励磁・検出兼用コイルなどである。また、コイルを制御する制御機構を有し、制御機構はコンピュータである。   The inspection apparatus of each embodiment includes an inspection unit that inspects an inspection object, a recording unit that receives and records information from the inspection unit, and a display unit that displays the received information. The recording unit is a recording medium such as a database server, a hard disk, or a memory. The display device is a display or the like. For example, an ultrasonic wave that performs ultrasonic nondestructive inspection has a configuration represented by Patent Document 2, and has an ultrasonic probe (ultrasonic sensor) that transmits and receives ultrasonic waves as an inspection unit. . It also has a control mechanism that controls the timing of sending and receiving ultrasonic waves transmitted and received from the ultrasonic probe. The control mechanism is a computer, and performs ultrasonic scanning by a phased array method or the like by executing a program on the CPU. In the case of visual inspection (VT), the inspection unit is a camera. In the case of eddy current inspection (ECT), the inspection unit is an excitation coil, a detection coil, or an excitation / detection coil. Moreover, it has a control mechanism which controls a coil and a control mechanism is a computer.

実施例1では、まず炉内超音波探傷検査によって炉内側からの非破壊検査を行い、欠陥の検出および寸法を測定する。次に前記炉内検査で得られた欠陥位置座標に基づいて炉外側から超音波非破壊検査を行う。最後にこの両検査結果をマッチングさせて欠陥形状の評価を行う。ここでは炉内の非破壊検査において超音波探傷検査(UT)を採用しているが、目視検査(VT),渦流探傷検査(ECT),超音波探傷検査(UT)のうち1手法のみ、2手法の組み合わせもしくは3手法の組み合わせのうち、いずれを適用しても良い。   In Example 1, first, nondestructive inspection from the inside of the furnace is performed by in-furnace ultrasonic flaw inspection, and the detection and dimension of the defect are measured. Next, ultrasonic nondestructive inspection is performed from the outside of the furnace based on the defect position coordinates obtained by the in-furnace inspection. Finally, the defect shape is evaluated by matching both inspection results. Here, ultrasonic flaw detection (UT) is adopted for nondestructive inspection in the furnace, but only one method among visual inspection (VT), eddy current flaw inspection (ECT), and ultrasonic flaw inspection (UT) is used. Either a combination of methods or a combination of three methods may be applied.

図3は炉内検査で用いる炉内超音波装置の構成の概要図である。超音波検査装置本体5はCRDハウジングの上部に着座し、本体側面に取り付けられたアーム部6を上下に昇降および装置を中心として回転または収縮することでアーム部先端に取り付けられた超音波センサ7を検査対象部位にアクセスし、超音波を送受信しながら走査することで当該部の探傷検査を行う。   FIG. 3 is a schematic diagram of the configuration of the in-core ultrasonic device used in the in-core inspection. The ultrasonic inspection apparatus main body 5 is seated on the upper part of the CRD housing, and an ultrasonic sensor 7 attached to the tip of the arm part by moving the arm part 6 attached to the side of the main body up and down and rotating or contracting around the apparatus. Is scanned while transmitting and receiving ultrasonic waves, and the part is inspected.

また、装置着座部に取り付けられた位置決めプレート8はガイドピン9a,9b,押付プレート10,ガイドプレート11により構成されており、着座したCRDハウジングから隣接するCRDスタブに向けガイドプレート11を押し出すことで2つのハウジング間をクランプ(固定)することが可能である。   Further, the positioning plate 8 attached to the device seating portion is composed of guide pins 9a and 9b, a pressing plate 10 and a guide plate 11, and the guide plate 11 is pushed out from the seated CRD housing toward the adjacent CRD stub. It is possible to clamp (fix) between the two housings.

定期検査等において欠陥が発見された場合、その欠陥の寸法や範囲を測定する必要がある。次に発見された欠陥を前記炉内検査装置を用いて測定する過程について図4により説明する。   When a defect is found in a periodic inspection or the like, it is necessary to measure the size and range of the defect. Next, a process of measuring the found defects using the in-furnace inspection apparatus will be described with reference to FIG.

図4は炉内検査装置による計測例である。超音波検査装置本体5が着座したところからCRDハウジングの管中心軸方向をz0とし、超音波検査装置本体5が着座したCRDハウジングの管中心から隣接するCRDハウジングの管中心までをr0とし、アーム部6の回転中心から超音波センサ7までの距離をr1とし、位置決めプレート8が接続された隣接するCRDハウジングの方向からのアーム部6の回転角度をθ1とし、超音波検査装置本体5が着座したところからCRDハウジングの管中心軸方向で欠陥位置までの距離をz1として測定する。これら位置の測定は、ロボットアームなどの位置を制御するときのように通常の測定装置により測定される。測定された位置情報は炉内検査装置のデータベースへ記録される。 FIG. 4 is an example of measurement by the in-furnace inspection apparatus. The tube center axis direction of the CRD housing from where the ultrasonic inspection apparatus body 5 is seated is z 0, and r 0 is the distance from the tube center of the CRD housing where the ultrasonic inspection apparatus body 5 is seated to the tube center of the adjacent CRD housing. The distance from the rotation center of the arm 6 to the ultrasonic sensor 7 is r 1, and the rotation angle of the arm 6 from the direction of the adjacent CRD housing to which the positioning plate 8 is connected is θ 1. The distance from the place where the main body 5 is seated to the defect position in the tube central axis direction of the CRD housing is measured as z 1 . The measurement of these positions is performed by a normal measuring device as in the case of controlling the position of a robot arm or the like. The measured position information is recorded in the database of the in-furnace inspection device.

図5は、炉内位置座標設定の説明図である。上記のように測定したデータに基づいて座標を設定する。まず、本装置では着座したCRDハウジングの管中心軸12とCRDハウジング上面13の交わる部分を中心とした基準座標軸を設ける。具体的には着座したCRDハウジングの鉛直方向をz軸、クランプしている2つのCRDハウジングの中心を結んだ方向をr軸、前記z軸を中心とする回転角θで構成される基準座標軸である。   FIG. 5 is an explanatory diagram for setting the position coordinates in the furnace. Coordinates are set based on the data measured as described above. First, in the present apparatus, a reference coordinate axis is provided centering on a portion where the tube central axis 12 of the seated CRD housing intersects with the upper surface 13 of the CRD housing. Specifically, the vertical direction of the seated CRD housing is the z-axis, the direction connecting the centers of the two clamped CRD housings is the r-axis, and the reference coordinate axis is composed of the rotation angle θ about the z-axis. is there.

前記基準座標軸を用いると欠陥位置座標は図5右に示すように、r軸と検査装置アーム部とのなす角をθ1と、CRDハウジング中心からアーム先端までの距離r1と、CRDハウジング上面から欠陥までの距離z1を測定することで欠陥位置座標(r1,z1,θ1)を特定することができる。 When the reference coordinate axis is used, the defect position coordinates are as shown in the right of FIG. 5, the angle between the r axis and the inspection device arm part is θ 1 , the distance r 1 from the center of the CRD housing to the tip of the arm, and the top surface of the CRD housing By measuring the distance z 1 from the defect to the defect, the defect position coordinates (r 1 , z 1 , θ 1 ) can be specified.

次に前記欠陥位置座標(r1,z1,θ1)に基づいてRPVの外面側から超音波探傷検査を行う炉外検査装置とその過程について説明する。 Next, an out-of-furnace inspection apparatus that performs ultrasonic flaw inspection from the outer surface side of the RPV based on the defect position coordinates (r 1 , z 1 , θ 1 ) and its process will be described.

図6に示す装置はRPV外側の床に設置された保温材14の上を走行する台車15と前記台車の先頭部分に旋廻及び昇降機能を有するアーム部16、さらに前記アーム部の先端に取り付けられた超音波センサ17によって構成されている。また装置本体部分からガイドプレート18a,18bを左右に押し出すことによって2つのCRDハウジングの間でクランプする機能を備えている。   The apparatus shown in FIG. 6 is attached to the carriage 15 running on the heat insulating material 14 installed on the floor outside the RPV, the arm part 16 having a turning and raising / lowering function at the head part of the carriage, and further to the tip of the arm part. The ultrasonic sensor 17 is used. Further, it has a function of clamping between the two CRD housings by pushing the guide plates 18a, 18b left and right from the apparatus main body.

前記炉外検査装置を用いて、RPV外面に超音波センサを接触させたまま走査し、超音波を送受信することで当該部の探傷検査を行う。   Using the out-of-furnace inspection apparatus, scanning is performed with the ultrasonic sensor in contact with the outer surface of the RPV, and the flaw detection inspection of the part is performed by transmitting and receiving ultrasonic waves.

ここでは前記炉内検査にて欠陥位置座標(r1,z1,θ1)が特定されているため、前記欠陥位置座標(r1,z1,θ1)に基づいて炉外検査装置をアクセスさせ炉外側から超音波探傷検査を実施する。 Here, since the defect position coordinates (r 1 , z 1 , θ 1 ) are specified by the in-furnace inspection, an out-of-furnace inspection apparatus is used based on the defect position coordinates (r 1 , z 1 , θ 1 ). Access and conduct ultrasonic inspection from outside of furnace.

まず、欠陥が検出されたCRDハウジングの付近まで走行させ、炉内検査において基準座標軸を設ける際にクランプした2つのCRDハウジングと同じCRDハウジングを炉外検査装置によりクランプする。   First, it travels to the vicinity of the CRD housing where the defect is detected, and the same CRD housing as the two CRD housings clamped when the reference coordinate axis is provided in the in-furnace inspection is clamped by the in-furnace inspection apparatus.

図7は、炉外位置座標設定の説明図である。欠陥が検出されたCRDハウジングへ炉外検査装置を接続することにより炉内検査の際に基準座標軸を設定した手順と同様の手順で炉外検査装置において基準座標軸を設定することができ、炉内と炉外で同じ基準座標軸を設けることができる。この基準座標軸を基に、既に炉内検査によって特定された欠陥位置座標(r1,z1,θ1)となる部分を探傷するように適宜、炉外検査装置をアクセスし、炉外から当該部の超音波探傷検査を実施する。 FIG. 7 is an explanatory diagram of the out-of-furnace position coordinate setting. By connecting the out-of-core inspection device to the CRD housing in which the defect is detected, the reference coordinate axis can be set in the out-of-core inspection device in the same procedure as that for setting the reference coordinate axis during the in-core inspection. The same reference coordinate axis can be provided outside the furnace. Based on this reference coordinate axis, the outside inspection apparatus is accessed as needed so as to detect the part having the defect position coordinates (r 1 , z 1 , θ 1 ) already identified by in-furnace inspection. Conduct an ultrasonic flaw inspection of the part.

図8は、第1の実施例による炉外検査装置による計測例である。炉外検査装置の台車15が着座し、欠陥を有するCRDハウジングの管中心軸方向をz0とし、欠陥を有するCRDハウジングの管中心から炉外検査装置の台車15が着座した隣接するCRDハウジングの管中心までをr0とし、欠陥を有するCRDハウジングの管中心から超音波センサ17までの距離をr2とし、欠陥を有するCRDハウジングの管中心を中心としてr0方向から超音波センサ17までの回転角度をθ2とし、炉外検査装置の台車15が着座したところからCRDハウジングの管中心軸方向で超音波センサ17までの距離をz2として測定する。これら位置の測定はロボットアームなどの位置を制御するときのように通常の測定装置により測定される。測定された位置情報は炉内検査装置のデータベースへ記録される。炉外検査装置の超音波センサ17の位置座標(r2,z2,θ2)から既に炉内検査によって特定された欠陥位置座標(r1,z1,θ1)の方向へ超音波探傷検査を実施する。 FIG. 8 shows an example of measurement by the out-of-core inspection apparatus according to the first embodiment. The trolley 15 of the out-of-furnace inspection apparatus is seated, the tube center axis direction of the defective CRD housing is z 0, and the adjacent CRD housing of the out-of-furnace inspection apparatus trolley 15 is seated from the tube center of the defective CRD housing. up tube center and r 0, from the tube center of the CRD housing having a defect the distance to the ultrasonic sensor 17 and r 2, from r 0 direction about the tube center of the CRD housing having a defect to the ultrasonic sensor 17 The rotation angle is θ 2, and the distance from the place where the cart 15 of the out-of-furnace inspection device is seated to the ultrasonic sensor 17 in the tube central axis direction of the CRD housing is measured as z 2 . These positions are measured by a normal measuring device as in the case of controlling the position of a robot arm or the like. The measured position information is recorded in the database of the in-furnace inspection device. Ultrasonic flaw detection from the position coordinates (r 2 , z 2 , θ 2 ) of the ultrasonic sensor 17 of the out-of-furnace inspection apparatus in the direction of the defect position coordinates (r 1 , z 1 , θ 1 ) already identified by the in-furnace inspection Conduct an inspection.

図9は、炉内および炉外の位置座標設定の説明図である。3次元の座標原点を炉内と炉外で共有した場合、図5の炉内検査装置が着座したCRDハウジングの管中心軸12とCRDハウジング上面13の交わる部分を基準座標原点とし、欠陥位置までをz1とし、RPVの軸方向の厚さをztとし、炉外検査装置の超音波センサ17から炉外検査装置の台車15の走行面位置までをz2とした場合、炉外検査装置の台車15の走行面位置のZ座標は、炉内の原点からの距離Zとして設定することができる。このようにRPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点を炉内と炉外で共有する。 FIG. 9 is an explanatory diagram of setting the position coordinates inside and outside the furnace. When the three-dimensional coordinate origin is shared between the inside and outside of the furnace, the intersection of the CRD housing tube center axis 12 and the CRD housing upper surface 13 where the in-furnace inspection apparatus of FIG. Is z 1 , the axial thickness of the RPV is z t, and z 2 is the distance from the ultrasonic sensor 17 of the out-of-furnace inspection device to the running surface position of the carriage 15 of the out-of-furnace inspection device. The Z coordinate of the running surface position of the cart 15 can be set as the distance Z from the origin in the furnace. In this way, using the structure penetrating the RPV lower mirror part (furnace bottom), the three-dimensional coordinate origin is shared between inside and outside the furnace.

尚、上述した基準座標軸による位置合わせは、RPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点を炉内と炉外で共有したが、3次元の座標原点のうち2次元座標の原点を炉内と炉外で共有しても良い。つまり、図9の位置座標のように、Z軸の原点を共有せず、図5の炉内位置情報と図7の炉外位置情報のように、別々にZ軸原点をもつこともできる。   In addition, the alignment based on the reference coordinate axis described above uses a structure penetrating the RPV lower mirror (furnace bottom) and shares the three-dimensional coordinate origin both inside and outside the furnace. Of these, the origin of the two-dimensional coordinates may be shared inside and outside the furnace. That is, the origin of the Z axis is not shared as in the position coordinates of FIG. 9, and the Z axis origin can be provided separately as in the in-furnace position information of FIG. 5 and the out-of-furnace position information of FIG.

炉内外からの別々の検査結果について同一欠陥の寸法又は範囲の測定を行った測定結果をマッチングした一例としては、上述したように、炉内外で同一のCRDハウジングの位置に測定装置を合わせて欠陥の位置を測定することで欠陥の位置を合わせることにより行う。また、別の例としては、炉内外からの検査画像から欠陥を評価するために、炉内外からの検査画像それぞれの欠陥の位置情報について同じ座標に基づいた位置表示を行うことで、評価する技術者は両画像からより精度よく評価することができる。また、別の例としては、炉内外からの検査画像から欠陥を評価するために、同一欠陥を含んだ範囲についての炉内外からの検査画像それぞれについて座標軸の表示を行っても良い。これらのように、炉内と炉外からの2方向での同一欠陥の寸法又は範囲の測定結果をマッチングすることは、欠陥評価をしやすくするために、炉内外からの別々の検査結果について同一欠陥を含む検査結果の位置を合わせることにより行う。   As an example of matching the measurement results of the same defect size or range for different inspection results from inside and outside the furnace, as described above, the measurement device is aligned with the position of the same CRD housing inside and outside the furnace. This is done by aligning the position of the defect by measuring the position. Moreover, as another example, in order to evaluate defects from inspection images from inside and outside the furnace, a technique for evaluating by performing position display based on the same coordinates for position information of each defect in the inspection images from inside and outside the furnace The person can evaluate more accurately from both images. As another example, in order to evaluate defects from inspection images from inside and outside the furnace, coordinate axes may be displayed for each inspection image from inside and outside the furnace in a range including the same defect. Like these, matching the measurement results of the same defect size or range in two directions from the inside and outside of the furnace is the same for different inspection results from inside and outside the furnace in order to facilitate defect evaluation. This is done by matching the position of the inspection result including the defect.

また、上述した基準座標軸による位置合わせは、RPV下鏡部(炉底部)を貫通する構造物を利用し平面座標(r,θ)を共有したが、それを共有せず、図5の炉内位置情報と図7の炉外位置情報をそれぞれ有し、炉底部の設計情報を参照して炉内位置情報と炉外位置情報の相対位置を補間することとしてもよい。このように、座標の原点を共有しなくても、炉内外で欠陥位置情報を求め、測定結果をマッチングすることができる。この場合、炉内,炉外で同じCRDハウジングに検査装置を接続できない場合でも同じ欠陥に対して超音波探傷検査を実施することができる。但し、同じCRDハウジングに検査装置を接続した場合の方がRPV実機と設計情報とのズレが少なくより精度良く測定できる。   In addition, the alignment based on the reference coordinate axis described above shares the plane coordinates (r, θ) using a structure penetrating the RPV lower mirror (furnace bottom), but does not share it, and the interior of the furnace of FIG. The position information and the out-of-furnace position information of FIG. 7 may be provided, and the relative position between the in-furnace position information and the out-of-furnace position information may be interpolated with reference to the design information of the bottom of the furnace. In this way, it is possible to obtain defect position information inside and outside the furnace and match the measurement results without sharing the origin of coordinates. In this case, even if the inspection device cannot be connected to the same CRD housing inside and outside the furnace, the ultrasonic flaw inspection can be performed for the same defect. However, when the inspection device is connected to the same CRD housing, the difference between the RPV actual machine and the design information is less, and the measurement can be performed with higher accuracy.

上述したように、原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査において、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を実施し、同一欠陥の寸法又は範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法により、狭隘かつ複雑形状な溶接部の検査精度を向上することができる。また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができ、検査精度を向上させことができる。上述したように、RPVもしくはRPVに付帯する内部構造物に発生した欠陥に対して炉内から非破壊検査を実施し、当該欠陥の寸法・範囲の測定を行った後、前記非破壊検査によって求められた欠陥位置情報に基づき炉外から非破壊検査を実施し、同一欠陥の寸法・範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法により、先に炉内検査により欠陥位置を測定することで、検査装置の設置位置の自由度が炉内に比べて高いため、測定結果のマッチングを行いやすく、炉内外の欠陥画像をマッチングした画像について精度も良いものが得られる。   As described above, in the inspection of the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, non-destructive inspection is performed from two directions from the inside of the RPV (inside the reactor) and from the outside of the RPV (outside the reactor). The inspection accuracy of narrow and complex welds can be improved by the inspection method of measuring the size or range of the same defect and matching the measurement results of the two methods. Moreover, since each inspection result is matched, a more detailed evaluation of a defect can be performed and inspection accuracy can be improved. As described above, after performing nondestructive inspection from inside the furnace for defects generated in RPV or an internal structure attached to RPV, and measuring the size and range of the defects, the nondestructive inspection is performed. Based on the obtained defect position information, nondestructive inspection is performed from the outside of the furnace, the size and range of the same defect are measured, and the defect position is first determined by in-furnace inspection by the inspection method that matches the measurement results of the two methods. By measuring, since the degree of freedom of the installation position of the inspection apparatus is higher than in the furnace, it is easy to match the measurement results, and an image with a high accuracy can be obtained for the image that matches the defect images inside and outside the furnace.

従来、炉内検査によって特定された欠陥位置座標を利用せずに検査を行う場合はRPV外面に超音波センサを接触させ、超音波を送信しながら走査し、反射エコーを確認することで欠陥の位置を求めていた。   Conventionally, when inspection is performed without using the defect position coordinates specified by in-furnace inspection, an ultrasonic sensor is brought into contact with the outer surface of the RPV, scanning is performed while transmitting ultrasonic waves, and a reflection echo is confirmed to confirm the defect. I was seeking a position.

しかし本実施例1では炉内検査の結果を利用し、炉外検査装置をアクセスさせるため、炉外検査における作業時間を短縮することができ、検査全体の作業効率の向上に貢献することができる。また、先に炉内検査により欠陥位置を測定することで、検査装置の設置位置の自由度が炉内に比べて高いため、内部で検査した範囲を外部から補完しやすく、得られた両方の画像から精度よく欠陥を評価することができる。   However, in the first embodiment, the result of the in-furnace inspection is used to access the out-of-furnace inspection apparatus, so that the work time in the out-of-furnace inspection can be shortened and the work efficiency of the entire inspection can be improved. . In addition, by measuring the defect position by in-furnace inspection first, the degree of freedom of the installation position of the inspection device is higher than in the furnace, so it is easy to complement the range inspected from the outside, both obtained Defects can be accurately evaluated from images.

上述したように、RPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点を炉内と炉外で共有したり、3次元の座標原点のうち2次元座標の原点を炉内と炉外で共有することにより、炉内探傷結果と炉外探傷結果は同一の座標軸上で表されるため、2つの探傷結果を容易に組み合わせて評価することができる。   As described above, using a structure penetrating the RPV lower mirror part (furnace bottom), the three-dimensional coordinate origin is shared between the inside and outside of the furnace, or the two-dimensional coordinate origin among the three-dimensional coordinate origins. By sharing the inside and outside of the furnace, the in-core flaw detection result and the out-of-furnace flaw detection result are expressed on the same coordinate axis, so that the two flaw detection results can be easily combined and evaluated.

上述したように、原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査を行う検査装置において、RPV内側(炉内)より非破壊検査を行う検査部と、RPV外側(炉外)から非破壊検査を行う検査部と、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を行ったデータを受信し記録する記録部と、前記2方向より非破壊検査を行った両方のデータを表示する表示部と、炉内から非破壊検査を実施することで当該欠陥の寸法又は範囲の測定を行って求められた欠陥位置情報と、炉外から非破壊検査を実施することで同一欠陥の寸法又は範囲の測定を行った欠陥位置情報の測定結果を前記表示部へ表示する制御装置を有する検査装置により、狭隘かつ複雑形状な溶接部の検査精度を向上することができる。また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができ、検査精度を向上させことができる。   As described above, in the inspection apparatus for inspecting the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, the inspection unit for performing nondestructive inspection from the inside of the RPV (inside the furnace), and the outside of the RPV (outside of the furnace) ) From the RPV inside (furnace) and from the RPV outside (outside of the furnace) the recording unit that receives and records the data from the non-destructive inspection, and from the two directions Display section for displaying both non-destructive inspection data, defect position information obtained by measuring the size or range of the defect by performing non-destructive inspection from inside the furnace, and non-destructive information from outside the furnace The inspection device with a control device that displays the measurement result of the defect position information obtained by measuring the size or range of the same defect by performing destructive inspection on the display unit, the inspection accuracy of a narrow and complex shape welded portion To improve It can be. Moreover, since each inspection result is matched, a more detailed evaluation of a defect can be performed and inspection accuracy can be improved.

上述したように、隣接するCRDハウジングの相対位置関係を測定し(位置決めプレート8又はガイドプレート18によるCRDハウジングのクランプ)、前記CRDハウジングの一つから測定対象物までの位置を測定する(アーム部6,アーム部16による欠陥位置までの移動と計測)ことでRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定する位置測定方法により、CRDハウジングの位置を基にして計測対象物の位置を簡易に精度良く得ることができる。   As described above, the relative positional relationship between adjacent CRD housings is measured (the clamp of the CRD housing by the positioning plate 8 or the guide plate 18), and the position from one of the CRD housings to the measurement object is measured (the arm unit). 6, measurement and measurement based on the position of the CRD housing by the position measurement method for measuring the position of the measurement object of the internal structure attached to the RPV or RPV by moving the arm part 16 to the defect position) Can be obtained easily and accurately.

上述したように、隣接するCRDハウジングの相対位置関係を測定する位置決め装置(位置決めプレート8,ガイドプレート18)と、前記CRDハウジングの一つから測定対象物までの位置を測定するアーム(6,16)を有するRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定する位置測定装置(超音波検査装置本体5,台車15)により、CRDハウジングの位置を基にして計測対象物の位置を簡易に精度良く得ることができる。尚、計測対象物の位置を簡易に精度良く得るためには、必ずしも上述した炉内および炉外の非破壊検査装置は必要とはしない。   As described above, the positioning device (positioning plate 8, guide plate 18) that measures the relative positional relationship between adjacent CRD housings, and the arms (6, 16) that measure the position from one of the CRD housings to the measurement object. The position of the measurement object on the basis of the position of the CRD housing by the position measurement device (ultrasonic inspection device main body 5, carriage 15) that measures the position of the measurement object of the internal structure attached to the RPV or the RPV having Can be obtained easily and accurately. In order to easily and accurately obtain the position of the measurement object, the above-described nondestructive inspection apparatus inside and outside the furnace is not necessarily required.

実施例2では、まず炉外超音波探傷検査によって炉外側からの非破壊検査を行い、欠陥の検出および寸法を測定する。次に前記炉内検査で得られた欠陥位置座標に基づいて炉内側から超音波非破壊検査を行う。最後にこの両検査結果をマッチングさせて欠陥形状の評価を行う。ここでは炉内の非破壊検査において超音波探傷検査(UT)を採用しているが、目視検査(VT),過流探傷検査(ECT),超音波探傷検査(UT)のうち1手法のみ、2手法の組み合わせもしくは3手法の組み合わせのうち、いずれを適用しても良い。   In Example 2, first, a non-destructive inspection from the outside of the furnace is performed by an ultrasonic inspection outside the furnace, and a defect is detected and a dimension is measured. Next, ultrasonic nondestructive inspection is performed from the inside of the furnace based on the defect position coordinates obtained by the in-furnace inspection. Finally, the defect shape is evaluated by matching both inspection results. Here, ultrasonic inspection (UT) is adopted in the nondestructive inspection in the furnace, but only one method among visual inspection (VT), overcurrent inspection (ECT), and ultrasonic inspection (UT), Either a combination of two methods or a combination of three methods may be applied.

炉外検査で用いる炉外超音波装置の構成は実施例1の図6の炉外超音波装置と同様であり、欠陥の測定をする過程も、クランプしたCRDハウジングを用いて実施例1の図8と同様に欠陥位置座標(r1,z1,θ1)を特定する。このとき、欠陥位置座標(r1,z1,θ1)は、炉外検査装置の超音波センサ17の位置座標(r2,z2,θ2)と超音波探傷検査を行った結果としての欠陥の位置情報に基づいて特定する。次に前記欠陥位置座標(r1,z1,θ1)に基づいてRPVの内面側から超音波探傷検査を行う。ここで用いる炉内超音波装置の構成は実施例1の図3の炉内超音波装置と同様である。 The configuration of the out-of-core ultrasonic apparatus used in the out-of-core inspection is the same as that of the out-of-core ultrasonic apparatus of FIG. 6 of the first embodiment, and the process of measuring the defect is also the same as that of the first embodiment using the clamped CRD housing. Similarly to 8, the defect position coordinates (r 1 , z 1 , θ 1 ) are specified. At this time, the defect position coordinates (r 1 , z 1 , θ 1 ) are obtained as a result of performing ultrasonic flaw inspection with the position coordinates (r 2 , z 2 , θ 2 ) of the ultrasonic sensor 17 of the out-of-core inspection apparatus. It is specified based on the position information of the defect. Next, based on the defect position coordinates (r 1 , z 1 , θ 1 ), ultrasonic flaw inspection is performed from the inner surface side of the RPV. The configuration of the in-furnace ultrasonic device used here is the same as that of the in-furnace ultrasonic device of FIG.

本実施例2では前記炉外検査にて欠陥位置座標(r1,z1,θ1)が特定されているため、前記欠陥位置座標(r1,z1,θ1)に基づいて炉内検査装置をアクセスさせ炉内側から超音波探傷検査を実施する。 In the second embodiment, since the defect position coordinates (r 1 , z 1 , θ 1 ) are specified by the out-of-furnace inspection, the inside of the furnace is based on the defect position coordinates (r 1 , z 1 , θ 1 ). The inspection device is accessed and ultrasonic flaw detection is performed from inside the furnace.

まず、欠陥が検出されたCRDハウジングの上面に炉内検査装置を着座させ、炉外検査において基準座標軸を設ける際にクランプした2つのCRDハウジングと同じCRDハウジングを炉内検査装置によりクランプする。これにより炉外検査の際に基準座標軸を設定した手順と同様の手順で炉内検査装置において基準座標軸を設定することができ、炉外と炉内で同じ基準座標軸を設けることができる。この基準座標軸を基に、既に炉内検査によって特定された欠陥位置座標(r1,z1,θ1)となる部分を探傷するように適宜、炉内検査装置をアクセスし、炉内から当該部の超音波探傷検査を実施する。 First, the in-furnace inspection apparatus is seated on the upper surface of the CRD housing in which the defect is detected, and the same CRD housing as the two CRD housings clamped when the reference coordinate axis is provided in the out-of-furnace inspection is clamped by the in-furnace inspection apparatus. As a result, the reference coordinate axis can be set in the in-furnace inspection apparatus in the same procedure as the procedure for setting the reference coordinate axis during the out-of-furnace inspection, and the same reference coordinate axis can be provided outside the furnace and in the furnace. Based on this reference coordinate axis, the in-furnace inspection apparatus is appropriately accessed so as to detect the part that becomes the defect position coordinates (r 1 , z 1 , θ 1 ) already identified by the in-furnace inspection, Conduct an ultrasonic flaw inspection of the part.

実施例2では炉外検査の結果を利用し、炉内検査装置をアクセスさせるため、炉内検査における作業時間を短縮することができ、検査全体の作業効率の向上に貢献することができる。さらに、実施例1と同様に炉外探傷結果と炉内探傷結果は同一の座標軸上で表されるため、2つの探傷結果を容易に組み合わせて評価することができる。   In the second embodiment, the result of the out-of-furnace inspection is used to access the in-furnace inspection apparatus. Therefore, the work time in the in-furnace inspection can be shortened, and the work efficiency of the entire inspection can be improved. Furthermore, since the in-core flaw detection result and the in-core flaw detection result are represented on the same coordinate axis as in the first embodiment, the two flaw detection results can be easily combined and evaluated.

上述した実施例2では、先に炉外検査により欠陥位置を測定することで、狭隘で検査装置の設置位置の自由度が低い炉内検査の予定を予め検討することができるので、炉内検査の作業時間を短縮することが可能という効果もある。また、炉内構造物の撤去など別の作業を行っている間に、炉外検査を先に行うことができるため炉内および炉外の両検査全体の検査時間を削減することが可能である。   In Example 2 mentioned above, since the defect position is first measured by the outside inspection, the schedule of the in-reactor inspection which is narrow and has a low degree of freedom in the installation position of the inspection apparatus can be examined in advance. There is also an effect that the working time can be shortened. In addition, the inspection outside the furnace can be performed first while other work such as removal of the internal structure of the furnace is being performed, so it is possible to reduce the inspection time for both the inspection inside and outside the furnace. .

上述したように、原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査において、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を実施し、同一欠陥の寸法又は範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法により、狭隘かつ複雑形状な溶接部の検査精度を向上することができる。また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができ、検査精度を向上させことができる。   As described above, in the inspection of the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, non-destructive inspection is performed from two directions from the inside of the RPV (inside the reactor) and from the outside of the RPV (outside the reactor). The inspection accuracy of narrow and complex welds can be improved by the inspection method of measuring the size or range of the same defect and matching the measurement results of the two methods. Moreover, since each inspection result is matched, a more detailed evaluation of a defect can be performed and inspection accuracy can be improved.

上述したように、RPVもしくはRPVに付帯する内部構造物に発生した欠陥に対して炉外から非破壊検査を実施し、当該欠陥の寸法・範囲の測定を行った後、前記非破壊検査によって求められた欠陥位置情報に基づき炉内から非破壊検査を実施し、同一欠陥の寸法又は範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法により、炉外検査によって求められた欠陥の位置座標に基づき、炉内からの検査を行うことで欠陥同定の作業時間を短縮するこが可能となる。また、先に炉外検査により欠陥位置を測定することで、狭隘で検査装置の設置位置の自由度が低い炉内検査の予定を予め検討することができるので、炉内検査の作業時間を短縮することが可能という効果もある。また、炉内構造物の撤去など別の作業を行っている間に、炉外検査を先に行うことができるため炉内および炉外の両検査全体の検査時間を削減することが可能である。   As described above, after performing nondestructive inspection from the outside of the furnace for defects generated in RPV or internal structures attached to RPV, and measuring the size and range of the defects, the nondestructive inspection is performed. Based on the obtained defect position information, nondestructive inspection is performed from the inside of the furnace, the size or range of the same defect is measured, and the inspection method for matching the measurement results of the two methods is used to determine the defect obtained by the outside inspection. By performing inspection from the furnace based on the position coordinates, it is possible to reduce the work time for defect identification. In addition, by measuring the defect position first by out-of-furnace inspection, it is possible to examine in-furnace inspection schedules that are narrow and have a low degree of freedom in the installation position of inspection equipment, so the work time for in-furnace inspection is shortened. There is also an effect that it is possible to do. In addition, the inspection outside the furnace can be performed first while other work such as removal of the internal structure of the furnace is being performed, so it is possible to reduce the inspection time for both the inspection inside and outside the furnace. .

上述したように、RPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点を炉内と炉外で共有したり、3次元の座標原点のうち2次元座標の原点を炉内と炉外で共有することにより、炉内探傷結果と炉外探傷結果は同一の座標軸上で表されるため、2つの探傷結果を容易に組み合わせて評価することができる。   As described above, using a structure penetrating the RPV lower mirror part (furnace bottom), the three-dimensional coordinate origin is shared between the inside and outside of the furnace, or the two-dimensional coordinate origin among the three-dimensional coordinate origins. By sharing the inside and outside of the furnace, the in-core flaw detection result and the out-of-furnace flaw detection result are expressed on the same coordinate axis, so that the two flaw detection results can be easily combined and evaluated.

上述したように、原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査を行う検査装置において、RPV内側(炉内)より非破壊検査を行う検査部と、RPV外側(炉外)から非破壊検査を行う検査部と、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を行ったデータを受信し記録する記録部と、前記2方向より非破壊検査を行った両方のデータを表示する表示部と、炉内から非破壊検査を実施することで当該欠陥の寸法又は範囲の測定を行って求められた欠陥位置情報と、炉外から非破壊検査を実施することで同一欠陥の寸法又は範囲の測定を行った欠陥位置情報の測定結果を前記表示部へ表示する制御装置を有する検査装置により、狭隘かつ複雑形状な溶接部の検査精度を向上することができる。また、それぞれの検査結果をマッチングさせるため、欠陥のより詳細な評価を行うことができ、検査精度を向上させることができる。   As described above, in the inspection apparatus for inspecting the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, the inspection unit for performing nondestructive inspection from the inside of the RPV (inside the furnace), and the outside of the RPV (outside of the furnace) ) From the RPV inside (furnace) and from the RPV outside (outside of the furnace) the recording unit that receives and records the data from the non-destructive inspection, and from the two directions Display section for displaying both non-destructive inspection data, defect position information obtained by measuring the size or range of the defect by performing non-destructive inspection from inside the furnace, and non-destructive information from outside the furnace The inspection device with a control device that displays the measurement result of the defect position information obtained by measuring the size or range of the same defect by performing destructive inspection on the display unit, the inspection accuracy of a narrow and complex shape welded portion To improve It can be. Moreover, since each inspection result is matched, a more detailed evaluation of a defect can be performed and inspection accuracy can be improved.

上述したように、隣接するCRDハウジングの相対位置関係を測定し(位置決めプレート8又はガイドプレート18によるCRDハウジングのクランプ)、前記CRDハウジングの一つから測定対象物までの位置を測定する(アーム部6,アーム部16による欠陥位置までの移動と計測)ことでRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定する位置測定方法により、CRDハウジングの位置を基にして計測対象物の位置を簡易に精度良く得ることができる。   As described above, the relative positional relationship between adjacent CRD housings is measured (the clamp of the CRD housing by the positioning plate 8 or the guide plate 18), and the position from one of the CRD housings to the measurement object is measured (the arm unit). 6, measurement and measurement based on the position of the CRD housing by the position measurement method for measuring the position of the measurement object of the internal structure attached to the RPV or RPV by moving the arm part 16 to the defect position) Can be obtained easily and accurately.

上述したように、隣接するCRDハウジングの相対位置関係を測定する位置決め装置(位置決めプレート8,ガイドプレート18)と、前記CRDハウジングの一つから測定対象物までの位置を測定するアーム(6,16)を有するRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定する位置測定装置(超音波検査装置本体5,台車15)により、CRDハウジングの位置を基にして計測対象物の位置を簡易に精度良く得ることができる。尚、計測対象物の位置を簡易に精度良く得るためには、必ずしも上述した炉内および炉外の非破壊検査装置は必要とはしない。   As described above, the positioning device (positioning plate 8, guide plate 18) that measures the relative positional relationship between adjacent CRD housings, and the arms (6, 16) that measure the position from one of the CRD housings to the measurement object. The position of the measurement object on the basis of the position of the CRD housing by the position measurement device (ultrasonic inspection device main body 5, carriage 15) that measures the position of the measurement object of the internal structure attached to the RPV or the RPV having Can be obtained easily and accurately. In order to easily and accurately obtain the position of the measurement object, the above-described nondestructive inspection apparatus inside and outside the furnace is not necessarily required.

尚、上述した各実施例では、炉内検査および炉外検査のどちらかを先に行い、他方を後に行ったが、同時に行っても良い。但し、炉内,炉外の検査で欠陥の位置が判明していないタイミングで同時に行う検査は、欠陥位置が判明していないので作業効率の点では落ちるが、それぞれの検査不可範囲をカバーすることができる。また、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を行うので、狭隘かつ複雑形状な溶接部の検査精度を向上することができる。   In each of the above-described embodiments, either the in-furnace inspection or the out-of-furnace inspection is performed first and the other is performed later, but they may be performed simultaneously. However, the inspection that is performed at the same time when the position of the defect is not known in the furnace inside and outside the furnace, the defect position is not known, so that the work efficiency is lowered. Can do. Further, since the non-destructive inspection is performed from two directions from the inside of the RPV (inside the furnace) and from the outside of the RPV (outside of the furnace), the inspection accuracy of the narrow and complicated welded portion can be improved.

尚、上述した各実施例では、位置測定をアーム部6,アーム部16,位置決めプレート8,ガイドプレート18などを用いたが、他の位置測定装置でも良い。例えば、特許文献3のような容器壁に取り付けた超音波発信子と検査部に取り付けた超音波受信体を設け、制御部に位置判定を実行させることでも位置を測定できる。   In each of the above-described embodiments, the position measurement is performed using the arm unit 6, the arm unit 16, the positioning plate 8, the guide plate 18, and the like, but other position measurement devices may be used. For example, the position can also be measured by providing an ultrasonic transmitter attached to the container wall as in Patent Document 3 and an ultrasonic receiver attached to the inspection unit and causing the control unit to perform position determination.

1 原子炉圧力容器(RPV)
2 制御棒駆動案内管(CRDハウジング)
3 CRDスタブ
4 CRDスタブ溶接部
5 超音波検査装置本体
6,16 アーム部
7,17 超音波センサ
8 位置決めプレート
9 ガイドピン
10 押付プレート
11,18 ガイドプレート
12 管中心軸
13 ハウジング上面
14 保温材
15 台車
1 Reactor pressure vessel (RPV)
2 Control rod drive guide tube (CRD housing)
3 CRD stub 4 CRD stub welded portion 5 Ultrasonic inspection apparatus main body 6, 16 Arm portion 7, 17 Ultrasonic sensor 8 Positioning plate 9 Guide pin 10 Pressing plate 11, 18 Guide plate 12 Pipe center shaft 13 Housing upper surface 14 Heat retaining material 15 Trolley

Claims (8)

原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査において、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を実施し、同一欠陥の寸法又は範囲の測定を行い、前記2手法による測定結果をマッチングする検査手法。   In the inspection of the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, nondestructive inspection is performed from two directions from the inside of the RPV (inside the reactor) and from the outside of the RPV (outside of the reactor). Or the inspection method which measures a range and matches the measurement result by said 2 methods. 請求項1において、RPVもしくはRPVに付帯する内部構造物に発生した欠陥に対して先に炉内から非破壊検査を実施し、当該欠陥の寸法・範囲の測定を行った後、前記非破壊検査によって求められた欠陥位置情報に基づき炉外から非破壊検査を実施する検査手法。   The nondestructive inspection according to claim 1, wherein a nondestructive inspection is first performed from inside the furnace for defects generated in RPV or an internal structure incidental to the RPV, and the size and range of the defects are measured. Inspection method that carries out nondestructive inspection from outside the furnace based on the defect position information obtained by. 請求項1において、RPVもしくはRPVに付帯する内部構造物に発生した欠陥に対して先に炉外から非破壊検査を実施し、当該欠陥の寸法・範囲の測定を行った後、前記非破壊検査によって求められた欠陥位置情報に基づき炉内から非破壊検査を実施する検査手法。   The nondestructive inspection according to claim 1, wherein nondestructive inspection is first performed from outside the furnace for defects generated in RPV or an internal structure attached to RPV, and the size and range of the defects are measured. Inspection method to perform nondestructive inspection from inside the furnace based on the defect position information obtained by 請求項2又は請求項3のいずれか一項に記載の検査手法において、RPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点のうち2次元座標の原点を炉内と炉外で共有することを特徴とする検査手法。 4. The inspection method according to claim 2, wherein a structure passing through an RPV lower mirror part (furnace bottom) is used, and the origin of a two-dimensional coordinate among the three-dimensional coordinate origins is set in a furnace. Inspection method characterized by sharing inside and outside the furnace. 請求項2又は請求項3のいずれか一項に記載の検査手法において、RPV下鏡部(炉底部)を貫通する構造物を利用し、3次元の座標原点を炉内と炉外で共有することを特徴とする検査手法。 In the inspection method according to any one of claims 2 or claim 3, using the structure that penetrates RPV under the mirror unit (furnace bottom), share a coordinate origin of the three-dimensional in the furnace and the furnace outer Inspection method characterized by that. 原子炉圧力容器(以下RPV)もしくはRPVに付帯する内部構造物の検査を行う検査装置において、RPV内側(炉内)より非破壊検査を行う検査部と、RPV外側(炉外)から非破壊検査を行う検査部と、RPV内側(炉内)からとRPV外側(炉外)からの2方向より非破壊検査を行ったデータを受信し記録する記録部と、前記2方向より非破壊検査を行った両方のデータを表示する表示部と、炉内から非破壊検査を実施することで当該欠陥の寸法又は範囲の測定を行って求められた欠陥位置情報と、炉外から非破壊検査を実施することで同一欠陥の寸法又は範囲の測定を行った欠陥位置情報の測定結果を前記表示部へ表示する制御装置を有する検査装置。   In the inspection equipment that inspects the reactor pressure vessel (hereinafter referred to as RPV) or the internal structure attached to the RPV, the inspection part that performs nondestructive inspection from the inside of the RPV (inside the reactor) and the nondestructive inspection from the outside of the RPV (outside the reactor) An inspection unit for performing the non-destructive inspection from two directions from the inside of the RPV (inside the furnace) and the outside of the RPV (outside of the furnace), and a non-destructive inspection from the two directions In addition, a display unit that displays both data, defect position information obtained by measuring the size or range of the defect by performing nondestructive inspection from inside the furnace, and nondestructive inspection from outside the furnace The inspection apparatus which has the control apparatus which displays the measurement result of the defect position information which measured the dimension or range of the same defect on the said display part. 請求項1において、隣接するCRDハウジングの相対位置関係を測定し、前記CRDハウジングの一つから測定対象物までの位置を測定することでRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定することを特徴とする検査方法。   2. The position of the measurement object of the internal structure attached to RPV or RPV by measuring the relative positional relationship between adjacent CRD housings and measuring the position from one of the CRD housings to the measurement object. An inspection method characterized by measuring 請求項6において、隣接するCRDハウジングの相対位置関係を測定する位置決め装置と、前記CRDハウジングの一つから測定対象物までの位置を測定するアームを有するRPVもしくはRPVに付帯する内部構造物の測定対象物の位置を測定する位置測定装置を有する検査装置。   7. The measurement of an internal structure attached to an RPV or RPV having a positioning device for measuring a relative positional relationship between adjacent CRD housings and an arm for measuring a position from one of the CRD housings to a measurement object. An inspection apparatus having a position measuring device for measuring the position of an object.
JP2010080069A 2010-03-31 2010-03-31 Non-destructive inspection method in the reactor pressure vessel lower mirror Active JP5422463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080069A JP5422463B2 (en) 2010-03-31 2010-03-31 Non-destructive inspection method in the reactor pressure vessel lower mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080069A JP5422463B2 (en) 2010-03-31 2010-03-31 Non-destructive inspection method in the reactor pressure vessel lower mirror

Publications (2)

Publication Number Publication Date
JP2011209254A JP2011209254A (en) 2011-10-20
JP5422463B2 true JP5422463B2 (en) 2014-02-19

Family

ID=44940456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080069A Active JP5422463B2 (en) 2010-03-31 2010-03-31 Non-destructive inspection method in the reactor pressure vessel lower mirror

Country Status (1)

Country Link
JP (1) JP5422463B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118658A (en) * 1984-11-15 1986-06-05 Hitachi Ltd Two-probe ultrasonic flaw detection method and apparatus
US6137853A (en) * 1994-10-13 2000-10-24 General Electric Company Method and apparatus for remote ultrasonic inspection of nozzles in vessel bottom head
JP2005227020A (en) * 2004-02-10 2005-08-25 Hitachi Ltd Inspection and repair device and method for reactor pressure vessel
JP4634865B2 (en) * 2005-06-02 2011-02-16 株式会社東芝 Furnace bottom inspection repair device and method
JP4682175B2 (en) * 2007-08-20 2011-05-11 日立Geニュークリア・エナジー株式会社 Inspection device and inspection method for welds in reactor pressure vessel

Also Published As

Publication number Publication date
JP2011209254A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5662873B2 (en) Ultrasonic flaw detection method
KR100884524B1 (en) Automotive ultrasonic flaw detector
US9146205B2 (en) Vibrothermographic weld inspections
EP3108236B1 (en) Ultrasonic phased array transducer for the nondestructive evaluation (nde) inspection of jet pump riser welds and welded attachments
JP5706772B2 (en) Nondestructive inspection method
US20160178581A1 (en) System for evaluating weld quality using eddy currents
KR101693226B1 (en) Multi Ultrasonic Probe for Scanning of Welded Zone of Tube
JP5604738B2 (en) Progress crack detection method, apparatus and program
CN101672829A (en) Method for measuring parameter of omega welding seam defect
JP5622597B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
US11081243B2 (en) Device for controlling and measuring welding defects on a cylindrical wall and method implementing same
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
US5145637A (en) Incore housing examination system
JP5840910B2 (en) Ultrasonic flaw detection method
JP5530975B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5010944B2 (en) Ultrasonic flaw detector
JP2511583B2 (en) Reactor maintenance method
EP2749878A2 (en) Stereo vision encoded ultrasonic inspection
JP5422463B2 (en) Non-destructive inspection method in the reactor pressure vessel lower mirror
EP2972288B1 (en) Ultrasonic inspection tool for access hole cover
Baque Review of in-service inspection and repair technique developments for French liquid metal fast reactors
JP2013181767A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method using the same
CN114324578A (en) Ferrite steel container sheet butt weld phased array ultrasonic detection method
Pajnić et al. Advanced approach of reactor pressure vessel in-service inspection
Baqué et al. French developments for improving In Service Inspection of SFRs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150