[go: up one dir, main page]

JP5422302B2 - Gas heating device and fuel cell system using the same - Google Patents

Gas heating device and fuel cell system using the same Download PDF

Info

Publication number
JP5422302B2
JP5422302B2 JP2009195050A JP2009195050A JP5422302B2 JP 5422302 B2 JP5422302 B2 JP 5422302B2 JP 2009195050 A JP2009195050 A JP 2009195050A JP 2009195050 A JP2009195050 A JP 2009195050A JP 5422302 B2 JP5422302 B2 JP 5422302B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
fuel cell
air
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009195050A
Other languages
Japanese (ja)
Other versions
JP2011047551A (en
Inventor
進 日数谷
貞夫 荒木
匠磨 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009195050A priority Critical patent/JP5422302B2/en
Publication of JP2011047551A publication Critical patent/JP2011047551A/en
Application granted granted Critical
Publication of JP5422302B2 publication Critical patent/JP5422302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Gas Burners (AREA)

Description

本発明は、固体高分子型燃料電池の起動が支障なく行うことができるように同燃料電池に設けられるガス加熱装置に関し、さらに同装置を用いた燃料電池システムに関する。本明細書において、「金属」とはケイ素のような半金属も含むこととする。   The present invention relates to a gas heating device provided in the fuel cell so that the solid polymer fuel cell can be started without any trouble, and further relates to a fuel cell system using the device. In this specification, “metal” includes metalloids such as silicon.

固体高分子型燃料電池の作動温度は80-100℃であり、これより低い温度では発電効率が低下し、低温時における始動性は大きな課題となっている。特に、燃料電池の車両用に用いた場合、外気温が低い状態、たとえば氷点下で起動しようとすると始動までに時間がかかるという問題がある。低温始動対策としては、燃料電池の外部負荷に電力を供給することで反応を促進し、自己発熱により温度を上昇させて始動性を向上させる方法が提案されている(特許文献1)。   The operating temperature of the polymer electrolyte fuel cell is 80 to 100 ° C., and the power generation efficiency is lowered at a temperature lower than this, and the startability at a low temperature is a big problem. In particular, when it is used for a fuel cell vehicle, there is a problem that it takes a long time to start when it is started in a state where the outside air temperature is low, for example, below freezing. As a low-temperature start-up measure, a method has been proposed in which the reaction is promoted by supplying electric power to an external load of the fuel cell, and the start-up property is improved by raising the temperature by self-heating (Patent Document 1).

このように自己発熱により燃料電池スタックを暖機する場合、暖機時間を短縮するために燃料電池スタックに大電流を流して発熱を促進する方法がある。しかしながら、暖機時間短縮を図って出力電流を増大させると、発熱量が増大するとともに、発電に伴ってセル内部で発生する生成水の量も増加し、この生成水が拡散電極層、触媒層内で凍結する結果、反応ガスが固体高分子電解質膜に到達できなくなって急激な電圧降下を招き、結果的に電圧降下を早めるという問題がある。つまり、出力電力増大による自己発熱での温度上昇より生成水の凍結の方が速いと、燃料電池スタックが温度上昇する前にセル内で生成水が凍結し発電不能となり、始動性向上という目的を達成することはできない。   When the fuel cell stack is warmed up by self-heating as described above, there is a method of promoting heat generation by flowing a large current through the fuel cell stack in order to shorten the warm-up time. However, if the output current is increased by shortening the warm-up time, the calorific value increases, and the amount of generated water generated inside the cell increases with power generation, and this generated water becomes a diffusion electrode layer, catalyst layer. As a result of freezing inside, there is a problem that the reaction gas cannot reach the solid polymer electrolyte membrane, causing a rapid voltage drop and consequently a rapid voltage drop. In other words, if the generated water freezes faster than the temperature rises due to self-heating due to an increase in output power, the generated water freezes in the cell before the temperature of the fuel cell stack rises, making it impossible to generate power. Cannot be achieved.

特表2000-512068号公報Special Table 2000-512068

始動性を向上させるには、燃料電池の暖機時間を短縮でき、さらに生成水の凍結より燃料電池スタックの温度上昇を速くできればよい。生成水の凍結より燃料電池スタックの温度上昇を速くする方法の一つとして、スタックへ供給するガス(水素と空気)を燃料電池の作動温度である80-100℃まで加熱して供給する方法がある。供給ガスを加熱する方法としては一般的に電気ヒーター等の加熱機器を用いるが、この場合80-100℃まで加熱するのに時間がかかるため燃料電池の暖機時間の短縮を図ることができない。本発明はこのような問題を解決することができるガス加熱装置を提供することを課題とする。   In order to improve the startability, it is sufficient that the warm-up time of the fuel cell can be shortened and that the temperature rise of the fuel cell stack can be made faster than the freezing of the produced water. One way to increase the temperature of the fuel cell stack faster than freezing of generated water is to heat the gas (hydrogen and air) supplied to the stack to 80-100 ° C, which is the operating temperature of the fuel cell. is there. As a method for heating the supply gas, a heating device such as an electric heater is generally used. However, in this case, since it takes time to heat to 80-100 ° C., it is impossible to shorten the warm-up time of the fuel cell. This invention makes it a subject to provide the gas heating apparatus which can solve such a problem.

本発明者らは、燃料電池スタックへの供給ガスを80-100℃に短時間で加熱する手段を検討した結果、本発明のガス加熱装置の設置でそれが可能であることを見出した。   As a result of studying means for heating the gas supplied to the fuel cell stack to 80-100 ° C. in a short time, the present inventors have found that this is possible by installing the gas heating device of the present invention.

請求項1に係る発明は、水素酸化触媒の存在下に水素の酸化熱により水素と空気(または酸素)との混合ガスを昇温させる酸化反応器を備え、該水素酸化触媒は酸化還元可能な金属酸化物からなる担体に触媒活性金属が担持されてなりかつ酸化反応器への充填前または充填後に還元処理された触媒であることを特徴とするガス加熱装置である。 The invention according to claim 1 includes an oxidation reactor that raises the temperature of a mixed gas of hydrogen and air (or oxygen) by the oxidation heat of hydrogen in the presence of a hydrogen oxidation catalyst, and the hydrogen oxidation catalyst can be oxidized and reduced. a gas heating device, wherein the catalytically active metal on a carrier consisting of a metal oxide is a catalyst that has been reduced before or after filling the filling of the Li Kui oxidation reactor, such being carried.

請求項2に係る発明は、酸化反応器の上流側に水素と空気(または酸素)とをおのおの供給するガス供給部を、下流側に酸化反応ガスの温度を調整するための希釈ガスを添加するガス添加部をそれぞれ備えることを特徴とする請求項1記載のガス加熱装置である。   In the invention according to claim 2, a gas supply unit for supplying hydrogen and air (or oxygen) to the upstream side of the oxidation reactor is added, and a dilution gas for adjusting the temperature of the oxidation reaction gas is added to the downstream side. The gas heating device according to claim 1, further comprising a gas addition unit.

請求項に係る発明は、酸化反応器に充填する触媒が、上流域充填層と下流域充填層とに分割され、両充填層に水素と空気(または酸素)とが供給されることを特徴とする請求項1または2に記載のガス加熱装置である。 The invention according to claim 3 is characterized in that the catalyst charged in the oxidation reactor is divided into an upstream packed bed and a downstream packed bed, and hydrogen and air (or oxygen) are supplied to both packed beds. The gas heating device according to claim 1 or 2 .

請求項に係る発明は、請求項1〜のいずれかに記載のガス加熱装置が、プロトン交換膜型燃料電池の水素極および空気(または酸素)極に接続されていることを特徴とする燃料電池システムである。 The invention according to claim 4 is characterized in that the gas heating device according to any one of claims 1 to 3 is connected to a hydrogen electrode and an air (or oxygen) electrode of a proton exchange membrane fuel cell. It is a fuel cell system.

酸化反応器に充填する触媒の担体を構成する酸化還元可能な金属酸化物は、複合酸化物であることが好ましい。該金属酸化物としては希土類金属酸化物が好ましい。該希土類金属酸化物としては酸化セリウム、酸化ランタン、酸化サマリウムが好ましい。該金属酸化物は、希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも1種の金属との複合酸化物であるか、または、希土類金属と、マグネシウム、チタン、ジルコニウム、イットリウム、アルミニウム、ケイ素、コバルト、鉄およびガリウムからなる群から選ばれる少なくとも2種の金属との複合酸化物であることが好ましい。水素酸化触媒の触媒活性金属としては第VIII族金属、スズ、銅、銀、マンガン、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属が好ましい。水素酸化触媒は酸化反応器への充填前または充填後に還元処理されたものであることが好ましい。   The redox-capable metal oxide constituting the catalyst support charged in the oxidation reactor is preferably a composite oxide. The metal oxide is preferably a rare earth metal oxide. As the rare earth metal oxide, cerium oxide, lanthanum oxide, and samarium oxide are preferable. The metal oxide is a composite oxide of a rare earth metal and at least one metal selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium, or a rare earth A composite oxide of a metal and at least two metals selected from the group consisting of magnesium, titanium, zirconium, yttrium, aluminum, silicon, cobalt, iron and gallium is preferable. The catalytically active metal of the hydrogen oxidation catalyst is preferably at least one metal selected from the group consisting of Group VIII metals, tin, copper, silver, manganese, chromium and vanadium. It is preferable that the hydrogen oxidation catalyst has been reduced before or after filling the oxidation reactor.

本発明によるガス加熱装置を備えた好ましい燃料電池システムとして、本発明によるガス加熱装置が燃料電池空気(または酸素)極ガス入り口部の上流に設置された燃料電池システム、本発明によるガス加熱装置が燃料電池空気(または酸素)極ガス入り口部の上流および水素極ガス入り口部の上流におのおの設置された燃料電池システム、燃料電池空気(または酸素)極ガス入り口上流部に設置したガス加熱装置のガス供給部に水素と空気(または酸素)との混合ガスを供給し、ガス加熱装置の添加部に空気(または酸素)を供給する燃料電池システム、および、燃料電池水素極ガス入り口上流部に設置したガス加熱装置のガス供給部に水素と空気(または酸素)との混合ガスを供給し、ガス加熱装置の添加部に水素を供給する燃料電池システムが挙げられる。   As a preferred fuel cell system equipped with the gas heating device according to the present invention, a fuel cell system in which the gas heating device according to the present invention is installed upstream of the fuel cell air (or oxygen) electrode inlet, and the gas heating device according to the present invention include: Fuel cell system installed upstream of the fuel cell air (or oxygen) electrode inlet and upstream of the hydrogen electrode gas inlet, gas of the gas heating device installed upstream of the fuel cell air (or oxygen) electrode inlet A fuel cell system that supplies a mixed gas of hydrogen and air (or oxygen) to the supply unit, and supplies air (or oxygen) to the addition unit of the gas heating device, and a fuel cell hydrogen electrode gas inlet upstream portion A fuel cell system that supplies a mixed gas of hydrogen and air (or oxygen) to the gas supply section of the gas heating apparatus and supplies hydrogen to the addition section of the gas heating apparatus. Temu, and the like.

燃料である水素ガスの一部または全部と空気(または酸素)を混合し、低温度から酸化することが可能な触媒層に導入し、水素の酸化熱により燃料である水素を所定温度(例:80℃)に瞬時に上げる。また、カソード反応に用いる空気(または酸素)には燃料である水素の一部を混合し、この混合ガスを、低温度から酸化することが可能な触媒層に導入することでカソード反応に用いる空気(または酸素)を所定温度まで瞬時に上げることができる。このように反応ガスが瞬時に所定温度に到達するため燃料電池自体も瞬時に所定温度まで加熱することができる。これにより、速やかに燃料電池を暖機、起動することが可能となる。   A part or all of the hydrogen gas as fuel and air (or oxygen) are mixed and introduced into a catalyst layer that can be oxidized from a low temperature, and the hydrogen as fuel is heated to a predetermined temperature (eg, by the oxidation heat of hydrogen). Increase to 80 ℃) instantly. In addition, a part of hydrogen as a fuel is mixed with air (or oxygen) used for the cathode reaction, and this mixed gas is introduced into a catalyst layer that can be oxidized from a low temperature, thereby air used for the cathode reaction. (Or oxygen) can be instantaneously raised to a predetermined temperature. As described above, since the reaction gas instantaneously reaches the predetermined temperature, the fuel cell itself can be instantaneously heated to the predetermined temperature. As a result, the fuel cell can be quickly warmed up and started.

低温度から水素を酸化することができる触媒は、酸化還元可能な酸化物を担体とし、この担体に活性金属を担持したものであり、この触媒を還元した状態で使用する。還元処理は反応管に設置する前に還元処理を行い反応管に充填してもよいし、還元処理していない触媒を反応管に設置後、還元処理を実施してもよい。これら還元処理により触媒担体に用いた酸化状態の担体の一部又は全部が還元された状態になる。この触媒に水素と空気(または酸素)を常温以下の低温度で接触させると、還元状態にある担体は酸素と反応することで酸化熱を発生し瞬時に触媒層温度が水素と空気(または酸素)が反応する温度まで上昇する。一旦水素と空気(または酸素)が反応する温度まで触媒層温度が上昇するとその後は自立的に水素と空気(または酸素)の反応が進行する。これにより、装置の起動時に電気ヒータ等での予備加熱が不要であり、また、起動性に優れた燃料電池システムを構築することが出来る。   A catalyst that can oxidize hydrogen from a low temperature uses an oxide capable of redox reduction as a support, and supports the active metal on the support. The catalyst is used in a reduced state. The reduction treatment may be performed before the reaction tube is installed and filled in the reaction tube, or after the catalyst that has not been reduced is installed in the reaction tube, the reduction treatment may be performed. By these reduction treatments, a part or all of the oxidized carrier used for the catalyst carrier is reduced. When hydrogen and air (or oxygen) are brought into contact with this catalyst at a low temperature of room temperature or lower, the reduced carrier reacts with oxygen to generate oxidation heat, and the catalyst layer temperature instantaneously becomes hydrogen and air (or oxygen). ) Rises to the temperature at which it reacts. Once the temperature of the catalyst layer rises to a temperature at which hydrogen and air (or oxygen) react, the reaction between hydrogen and air (or oxygen) proceeds autonomously thereafter. As a result, preheating with an electric heater or the like is not required at the time of starting the apparatus, and a fuel cell system having excellent startability can be constructed.

これらの触媒は水素過剰雰囲気下では起動時に空気(または酸素)と反応して酸化された担体は、触媒層温度が400℃以上になる領域で反応ガス中の水素で還元されるため、システム停止後に再度空気(または酸素)と水素の混合ガスを供給することでシステムを起動することができる。燃料電池の水素極は水素過剰雰囲気になるため、繰り返し起動が可能である。   Under the hydrogen-excess atmosphere, these catalysts react with air (or oxygen) at the time of start-up, and the oxidized carrier is reduced with hydrogen in the reaction gas in the region where the catalyst layer temperature exceeds 400 ° C. The system can be started later by supplying a mixed gas of air (or oxygen) and hydrogen again. Since the hydrogen electrode of the fuel cell is in an excess hydrogen atmosphere, it can be repeatedly activated.

一方、空気(または酸素)極は空気(または酸素)過剰雰囲気になるため、起動時に酸素と反応して酸化された担体が再還元処理されないため、繰り返し起動ができない。そこで、酸化触媒を2段に分割し、一段目は水素過剰雰囲気になる空気(または酸素)を供給し、二段目で残りの水素を燃焼させるために一段目と二段目の間に空気(または酸素)を供給させる。これにより一段目の触媒は再還元処理が行われ、繰り返し起動が可能となる。   On the other hand, since the air (or oxygen) electrode is in an air (or oxygen) -excess atmosphere, the carrier oxidized by reacting with oxygen at the time of activation is not subjected to re-reduction treatment, so that it cannot be repeatedly activated. Therefore, the oxidation catalyst is divided into two stages, the first stage is supplied with air (or oxygen) that becomes a hydrogen-excess atmosphere, and the second stage has air between the first and second stages to burn the remaining hydrogen. (Or oxygen) is supplied. As a result, the first stage catalyst is subjected to a re-reduction process and can be repeatedly activated.

これらの触媒は起動回数が増加するにつれ再還元処理が不十分となり、いずれは起動ができなくなる可能性がある。常温以下の温度における起動性は、還元状態にある金属酸化物担体が酸化された際の酸化熱によるものである。この酸化は触媒層上流域で起き、その下流域にある触媒は過剰に存在する水素で400℃以上の温度で還元されるため、担体は触媒層上流域では酸化されても下流域では還元状態が保たれる。次回起動時にはこの下流域における担体が酸化され、常温以下での起動が可能となる。起動回数が増加すると、触媒層上流域の酸化された担体の領域が増加し、還元状態を保っている担体の領域が減少し、いずれは常温以下の温度で起動するのに必要な還元状態の担体を有する領域が存在しなくなり、起動できなくなると考えられる。   As the number of times of activation of these catalysts increases, the re-reduction treatment becomes insufficient, and eventually, there is a possibility that the activation cannot be performed. The startability at a temperature below room temperature is due to the heat of oxidation when the metal oxide support in the reduced state is oxidized. This oxidation occurs in the upstream area of the catalyst layer, and the catalyst in the downstream area is reduced by excess hydrogen at a temperature of 400 ° C or higher, so that the carrier is oxidized in the upstream area of the catalyst layer but is reduced in the downstream area. Is preserved. At the next start-up, the carrier in this downstream region is oxidized, and start-up at room temperature or below becomes possible. As the number of start-ups increases, the area of the oxidized carrier upstream of the catalyst layer increases and the area of the carrier that maintains the reduced state decreases, and eventually the reduced state necessary to start up at a temperature below room temperature. It is considered that the region having the carrier does not exist and cannot be activated.

そこで、所定回数の起動を行い還元状態にある担体の領域が少なくなった場合は、触媒層への水素と空気(または酸素)の供給を反転させ、担体が還元状態を保っている領域に入口ガスを供給することで常温以下の温度での起動が行われると共に、還元状態の担体が少なくなっていた領域において同担体は再還元され還元状態に再生される。   Therefore, when the region of the carrier in the reduced state is reduced after starting a predetermined number of times, the supply of hydrogen and air (or oxygen) to the catalyst layer is reversed, and the carrier enters the region where the carrier is kept in the reduced state. By supplying the gas, activation at a temperature below room temperature is performed, and the carrier is re-reduced and regenerated to a reduced state in a region where the carrier in the reduced state is reduced.

この方法により、起動回数が増加しても安定して常温以下の低温度からの起動が可能となる。触媒層への入り口ガスを反転させるには触媒層の出入り口に各々水素と空気(または酸素)との流れ方向を反転させるためのバルブ機構を設置し、これらを適宜開閉する。   According to this method, even if the number of times of activation increases, it is possible to stably start from a low temperature below room temperature. In order to reverse the entrance gas to the catalyst layer, a valve mechanism for reversing the flow directions of hydrogen and air (or oxygen) is installed at the entrance and exit of the catalyst layer, and these are opened and closed as appropriate.

本発明によれば、燃料である水素ガスの一部または全部と空気(または酸素)を混合し、低温度から酸化することが可能な触媒層に導入し、水素の酸化熱により燃料である水素を所定温度に瞬時に上げる。また、カソード反応に用いる空気(または酸素)には燃料である水素の一部を混合し、この混合ガスを、低温度から酸化することが可能な触媒層に導入することでカソード反応に用いる空気(または酸素)を所定温度まで瞬時に上げることができる。このように反応ガスが瞬時に所定温度に到達するため燃料電池自体も瞬時に所定温度まで加熱することができる。これにより、速やかに燃料電池を暖機、起動することが可能となる。   According to the present invention, a part or all of hydrogen gas as a fuel and air (or oxygen) are mixed and introduced into a catalyst layer that can be oxidized from a low temperature, and hydrogen as a fuel is generated by the oxidation heat of hydrogen. Is immediately raised to a predetermined temperature. In addition, a part of hydrogen as a fuel is mixed with air (or oxygen) used for the cathode reaction, and this mixed gas is introduced into a catalyst layer that can be oxidized from a low temperature, thereby air used for the cathode reaction. (Or oxygen) can be instantaneously raised to a predetermined temperature. As described above, since the reaction gas instantaneously reaches the predetermined temperature, the fuel cell itself can be instantaneously heated to the predetermined temperature. As a result, the fuel cell can be quickly warmed up and started.

実施例1のガス加熱装置を示す概略図である。1 is a schematic view showing a gas heating device of Example 1. FIG. 実施例2のガス加熱装置を示す概略図である。6 is a schematic view showing a gas heating apparatus of Example 2. FIG. 実施例4のプロトン交換膜型燃料電池システムを示す概略図である。6 is a schematic diagram showing a proton exchange membrane fuel cell system of Example 4. FIG.

つぎに、本発明を具体的に説明するために、本発明の実施例をいくつか挙げる。   Next, in order to explain the present invention specifically, some examples of the present invention will be given.

実施例1
図1に、水素酸化触媒(1)の存在下に水素の酸化熱により水素と空気との混合ガスを昇温させる酸化反応器(2)を備えたガス加熱装置(3)を示す。水素酸化触媒として酸化セリウム担体に白金を担持した触媒(貴金属系:1wt%、遷移金属系:5wt%、1mmφペレット)を用いた。触媒充填量は2mLとした。
Example 1
FIG. 1 shows a gas heating device (3) provided with an oxidation reactor (2) for raising the temperature of a mixed gas of hydrogen and air by the oxidation heat of hydrogen in the presence of a hydrogen oxidation catalyst (1). As a hydrogen oxidation catalyst, a catalyst in which platinum was supported on a cerium oxide support (noble metal type: 1 wt%, transition metal type: 5 wt%, 1 mmφ pellet) was used. The catalyst loading was 2 mL.

ガス加熱装置への供給する入り口ガス温度は−40℃から20℃で、触媒層出口温度が450℃、ガス加熱装置出口温度が80℃または100℃、ガス加熱装置出口の水素ガス流量が10NL/minになるように、ガス加熱装置のガス供給部(4)およびガス添加部(5)へのガス流量を設定した。1〜14の条件で操作を行った結果を表1に示す。   The inlet gas temperature supplied to the gas heating device is -40 ° C to 20 ° C, the catalyst layer outlet temperature is 450 ° C, the gas heating device outlet temperature is 80 ° C or 100 ° C, and the hydrogen gas flow rate at the gas heating device outlet is 10 NL / The gas flow rate to the gas supply unit (4) and the gas addition unit (5) of the gas heating apparatus was set to be min. Table 1 shows the results of operation under conditions 1 to 14.

実施例2
図2に、酸化反応器(2)に充填する触媒が、上流域充填層(1a)と下流域充填層(1b)とに分割され、両充填層に水素と空気とが供給されるガス加熱装置(3)を示す。水素酸化触媒として酸化セリウム担体に白金を担持した触媒(貴金属系:1wt%、遷移金属系:5wt%、1mmφペレット)を用いた。触媒充填量は上流域充填層(1a)および下流域充填層(1b)ともに0.3mLとした。
Example 2
In FIG. 2, the catalyst charged in the oxidation reactor (2) is divided into an upstream packed bed (1a) and a downstream packed bed (1b), and hydrogen heating and air are supplied to both packed beds. Device (3) is shown. As a hydrogen oxidation catalyst, a catalyst in which platinum was supported on a cerium oxide support (noble metal type: 1 wt%, transition metal type: 5 wt%, 1 mmφ pellet) was used. The amount of catalyst packed was 0.3 mL for both the upstream packed bed (1a) and the downstream packed bed (1b).

ガス加熱装置への供給する入り口ガス温度は−40℃から20℃で、上流域充填層の出口温度および下流域充填層の温度がともに450℃、ガス加熱装置出口温度が80℃または100℃、ガス加熱装置に供給するトータルの空気供給量が約24NL/minになるように、ガス加熱装置のガス供給部(4)およびガス添加部(5)のガス流量を設定した。1〜14の条件で操作を行った結果を表2に示す。   The inlet gas temperature supplied to the gas heating device is -40 ° C to 20 ° C, the outlet temperature of the upstream packed bed and the temperature of the downstream packed bed are both 450 ° C, the outlet temperature of the gas heating device is 80 ° C or 100 ° C, The gas flow rates of the gas supply unit (4) and the gas addition unit (5) of the gas heating device were set so that the total air supply amount supplied to the gas heating device was about 24 NL / min. Table 2 shows the results of operation under conditions 1 to 14.


実施例3
水素酸化触媒として、酸化セリウム担体に担持する金属を鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、スズ、銅、銀、マンガン、クロムおよびバナジウムに変えたものを用いた以外、実施例1と同じ操作を実施した。

Example 3
Same as Example 1 except that the metal supported on the cerium oxide support was changed to iron, cobalt, nickel, ruthenium, rhodium, palladium, tin, copper, silver, manganese, chromium and vanadium as the hydrogen oxidation catalyst. The operation was performed.

実施条件は、ガス加熱ガス供給温度20℃、触媒層出口温度450℃、ガス加熱装置出口温度100℃となるように、各ガス流量の設定を行った。 Each gas flow rate was set such that the gas heating gas supply temperature was 20 ° C, the catalyst layer outlet temperature was 450 ° C, and the gas heater outlet temperature was 100 ° C.

実施例4
図3において、水素酸化触媒として、白金を担持する金属酸化物担体を酸化ランタン、酸化サマリウム、Ce-Zr複合酸化物、Ce-Ti複合酸化物、Ce-Mg複合酸化物、Ce-Zr-Al複合酸化物、Ce-Zr-Si複合酸化物に変えたものを用いた以外、実施例1と同じ操作を実施した。実施条件は、ガス加熱ガス供給温度20℃、触媒層出口温度450℃、ガス加熱装置出口温度100℃となるように各ガス流量の設定を行った。図3中、(6)はプロトン交換膜型燃料電池,(7)はその水素極、(8)は空気極,(9)は電解質膜、(10)は上記バルブ機構を構成する複数のバルブである。
Example 4
In FIG. 3, as a hydrogen oxidation catalyst, a metal oxide carrier supporting platinum is made of lanthanum oxide, samarium oxide, Ce-Zr composite oxide, Ce-Ti composite oxide, Ce-Mg composite oxide, Ce-Zr-Al. complex oxide, except that had use what was changed to Ce-Zr-Si composite oxide was carried out the same procedure as in example 1. Each gas flow rate was set so that the gas heating gas supply temperature was 20 ° C, the catalyst layer outlet temperature was 450 ° C, and the gas heater outlet temperature was 100 ° C. In FIG. 3, (6) is a proton exchange membrane fuel cell, (7) is its hydrogen electrode, (8) is an air electrode, (9) is an electrolyte membrane, and (10) is a plurality of valves constituting the valve mechanism. It is.

実施例1、3、4の触媒を用いて実施したときのガス加熱装置出口ガス温度が100℃に到達するまでの時間を表3に示す。

Figure 0005422302
Figure 0005422302
Figure 0005422302
Table 3 shows the time required for the gas heater outlet gas temperature to reach 100 ° C. when the catalysts of Examples 1, 3, and 4 are used.
Figure 0005422302
Figure 0005422302
Figure 0005422302

表1および表2に示されるとおり、入口温度−40℃から20℃において出口温度が80℃または100℃まで上がることが確認できる。   As shown in Tables 1 and 2, it can be confirmed that the outlet temperature rises to 80 ° C. or 100 ° C. at an inlet temperature of −40 ° C. to 20 ° C.

また、表3より、いずれの触媒においても出口温度は上昇し、出口温度が所定温度になるまでの時間は1.5min以内であり、非常に起動性が高いことが確認できた。   Further, from Table 3, the outlet temperature increased for any of the catalysts, and the time until the outlet temperature reached the predetermined temperature was 1.5 min or less, and it was confirmed that the startability was very high.

(1) 水素酸化触媒
(1a) 上流域充填層
(1b) 下流域充填層
(2) 酸化反応器
(3) ガス加熱装置
(4) ガス供給部
(5) ガス添加部
(6) プロトン交換膜型燃料電池
(7) 水素極
(8) 空気極
(9) 電解質膜
(10) バルブ
(1) Hydrogen oxidation catalyst
(1a) Upstream packed bed
(1b) Downstream packed bed
(2) Oxidation reactor
(3) Gas heating device
(4) Gas supply section
(5) Gas addition section
(6) Proton exchange membrane fuel cell
(7) Hydrogen electrode
(8) Air electrode
(9) Electrolyte membrane
(10) Valve

Claims (4)

水素酸化触媒の存在下に水素の酸化熱により水素と空気(または酸素)との混合ガスを昇温させる酸化反応器を備え、該水素酸化触媒は酸化還元可能な金属酸化物からなる担体に触媒活性金属が担持されてなりかつ酸化反応器への充填前または充填後に還元処理された触媒であることを特徴とするガス加熱装置。 An oxidation reactor that raises the temperature of a mixed gas of hydrogen and air (or oxygen) by the heat of hydrogen oxidation in the presence of a hydrogen oxidation catalyst is provided, and the hydrogen oxidation catalyst is supported on a support made of a metal oxide that can be oxidized and reduced. gas heating device, wherein the active metal is reduced treated catalyst before or after filling the filling of the supported by a Li Kui oxidation reactor. 酸化反応器の上流側に水素と空気(または酸素)とをおのおの供給するガス供給部を、下流側に酸化反応ガスの温度を調整するための希釈ガスを添加するガス添加部をそれぞれ備えることを特徴とする請求項1記載のガス加熱装置。 A gas supply unit for supplying hydrogen and air (or oxygen) to the upstream side of the oxidation reactor, and a gas addition unit for adding a dilution gas for adjusting the temperature of the oxidation reaction gas on the downstream side. The gas heating device according to claim 1, wherein 酸化反応器に充填する触媒が、上流域充填層と下流域充填層とに分割され、両充填層に水素と空気(または酸素)とが供給されることを特徴とする請求項1または2に記載のガス加熱装置。 Catalyst charged to the oxidation reactor is divided into an upstream zone packed layer and the lower basin filling layer, to claim 1 or 2, and hydrogen both filling layers and air (or oxygen) is characterized in that it is provided The gas heating apparatus as described. 請求項1〜のいずれかに記載のガス加熱装置が、プロトン交換膜型燃料電池の水素極および空気(または酸素)極に接続されていることを特徴とする燃料電池システム。 Fuel cell system gas heating device according to any one of claims 1 to 3, characterized in that it is connected to the hydrogen electrode and the air (or oxygen) electrode of the proton exchange membrane fuel cell.
JP2009195050A 2009-08-26 2009-08-26 Gas heating device and fuel cell system using the same Expired - Fee Related JP5422302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195050A JP5422302B2 (en) 2009-08-26 2009-08-26 Gas heating device and fuel cell system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195050A JP5422302B2 (en) 2009-08-26 2009-08-26 Gas heating device and fuel cell system using the same

Publications (2)

Publication Number Publication Date
JP2011047551A JP2011047551A (en) 2011-03-10
JP5422302B2 true JP5422302B2 (en) 2014-02-19

Family

ID=43834074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195050A Expired - Fee Related JP5422302B2 (en) 2009-08-26 2009-08-26 Gas heating device and fuel cell system using the same

Country Status (1)

Country Link
JP (1) JP5422302B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886497B2 (en) * 2012-05-14 2016-03-16 株式会社豊田自動織機 Reforming system
CN103894134A (en) * 2014-03-24 2014-07-02 苏州润弘贸易有限公司 Reactor for producing printing and dyeing auxiliaries
KR102269268B1 (en) * 2020-12-08 2021-06-25 국방과학연구소 Burning system comprising multi-stage burner apparatus using catalyst and control method thereof
CN113437357B (en) * 2021-07-27 2023-03-14 中汽创智科技有限公司 Preparation method of solid electrolyte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296423A (en) * 1992-04-13 1993-11-09 Mitsubishi Heavy Ind Ltd Method for igniting combustible gas
JPH06137522A (en) * 1992-10-21 1994-05-17 Toshiba Corp Catalyst burner
JP3815880B2 (en) * 1998-01-27 2006-08-30 株式会社ガスター Combustion device
JP2005055098A (en) * 2003-08-06 2005-03-03 Denso Corp Catalytic reaction heater
JP2006134802A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell
EP1724012A1 (en) * 2005-05-21 2006-11-22 Degussa AG Catalyst containing gold on ceria-manganes oxide
JP4949743B2 (en) * 2006-06-07 2012-06-13 株式会社日立製作所 Solid oxide fuel cell system and starting method thereof
JP2008034253A (en) * 2006-07-28 2008-02-14 Toyota Motor Corp Fuel cell and fuel cell system

Also Published As

Publication number Publication date
JP2011047551A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP5422302B2 (en) Gas heating device and fuel cell system using the same
JP2003104706A (en) Fuel reformer and start-up method thereof
JP2008266118A (en) Reformer system
JP3473896B2 (en) Hydrogen purification equipment
JP3490877B2 (en) Starting method of reformer for fuel cell
JP2008501607A (en) Hybrid water gas shift reactor
JPH07185303A (en) Device for removing carbon monoxide
JP2002128505A (en) Hydrogen extraction device
EP1661853A1 (en) Method and apparatus for treating reformed gas and fuel cell electric power generation system
JPH08100184A (en) Carbon monoxide removing system
JP2002085983A (en) Method of activating carbon monoxide removing catalyst, method of operating carbon monoxide removing apparatus and method of operating fuel cell system
JP2000203803A (en) Starting method of reformer for reforming hydrocarbons to hydrogen
JP4072725B2 (en) Operation method of fuel cell power generator
JP4663095B2 (en) Hydrogen purification equipment
JP2002145602A (en) Fuel reforming aspparatus
JP4867084B2 (en) Hydrogen purification equipment
JP4135066B2 (en) Fuel reformer and starting method thereof
JP5886497B2 (en) Reforming system
JP2002348102A (en) Hydrogen purification equipment
JP4003130B2 (en) Fuel cell power generator and its operation method
CN117101663A (en) Methanation catalyst processing method, methane production method and methanation catalyst
JP2001176533A (en) Fuel cell system and fuel cell cogeneration hot water supply system
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP2003261302A (en) Hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees