JP5417936B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP5417936B2 JP5417936B2 JP2009084904A JP2009084904A JP5417936B2 JP 5417936 B2 JP5417936 B2 JP 5417936B2 JP 2009084904 A JP2009084904 A JP 2009084904A JP 2009084904 A JP2009084904 A JP 2009084904A JP 5417936 B2 JP5417936 B2 JP 5417936B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- recrystallization annealing
- less
- grain
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、方向性電磁鋼板の製造方法に関し、特に一次再結晶焼鈍時の急速加熱による鉄損低減効果を最大限発揮させることにより、極めて鉄損の低い方向性電磁鋼板を安定して得ようとするものである。 The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet, and in particular, to stably obtain a grain-oriented electrical steel sheet having extremely low iron loss by maximizing the effect of reducing iron loss by rapid heating during primary recrystallization annealing. It is what.
電磁鋼板は、変圧器や発電機の鉄心材料として広く用いられている。特に方向性電磁鋼板は、その結晶方位がゴス(Goss)方位と呼ばれる{110} <001>方位に高度に集積していて、変圧器や発電機のエネルギーロスの低減に直接つながる良好な鉄損特性を有している。この鉄損特性の改善手段としては、板厚の低減、Si含有量の増加、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化および二次粒の細粒化などが有効である。 Electrical steel sheets are widely used as iron core materials for transformers and generators. In particular, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, called the Goss orientation, and have good iron loss that directly leads to reduction of energy loss in transformers and generators. It has characteristics. Effective means for improving the iron loss characteristics include reducing the plate thickness, increasing the Si content, improving the orientation of the crystal orientation, applying tension to the steel sheet, smoothing the surface of the steel sheet, and refining the secondary grains. It is.
二次粒を細粒化させる技術としては、特許文献1,特許文献2,特許文献3および特許文献4などに、脱炭焼鈍時に急速加熱する方法や脱炭焼鈍直前に急速加熱処理し、一次再結晶集合組織を改善する方法が提案されている。この技術の適用により、鉄損特性は改善されるものの、場合によっては二次粒が細粒化せず、期待通りの鉄損低減効果が得られないことが判明した。
As a technique for refining secondary grains,
その他、特許文献5や特許文献6には、脱炭焼鈍の昇温過程において急速加熱処理を施し、かつ脱炭焼鈍が行われる温度域の雰囲気酸化度を制御し、もって磁気特性を改善する技術が提案されている。
しかしながら、この技術は、ある程度の磁気特性向上は期待できるものの、コイル長手方向で磁気特性がばらつくことや、場合によっては、磁気特性の向上代が小さいなど安定性の面で問題が残されていた。
In addition, Patent Document 5 and Patent Document 6 disclose a technique for improving the magnetic properties by performing rapid heat treatment in the temperature raising process of decarburization annealing and controlling the atmospheric oxidation degree in the temperature range where decarburization annealing is performed. Has been proposed.
However, although this technique can be expected to improve the magnetic characteristics to some extent, there are still problems in terms of stability, such as variations in the magnetic characteristics in the longitudinal direction of the coil and, in some cases, a small margin for improving the magnetic characteristics. .
本発明は、上記の問題を有利に解決するもので、一次再結晶焼鈍時の急速加熱による鉄損低減効果を最大限発揮させることにより、所期した鉄損低減効果を安定して実現することができる方向性電磁鋼板の製造方法を提案することを目的とする。 The present invention advantageously solves the above-mentioned problems, and achieves the expected iron loss reduction effect stably by maximizing the iron loss reduction effect due to rapid heating during primary recrystallization annealing. It aims at proposing the manufacturing method of the grain-oriented electrical steel sheet which can do.
以下、本発明の解明経緯について説明する。
さて、発明者らは、急速加熱による二次粒細粒化に影響を及ぼしている因子について綿密な調査を行ったところ、急速加熱による一次再結晶集合組織の変化を二次再結晶挙動に反映させるには、二次再結晶焼鈍時における窒化挙動を制御することが重要であり、この窒化挙動制御手段としては、鋼板表面にサブスケールを形成させずに二次再結晶焼鈍を実施することが重要であることが解明された。
以下、上記の知見を得るに至った実験結果について説明する。
The elucidation process of the present invention will be described below.
The inventors conducted a thorough investigation on the factors affecting secondary grain refinement by rapid heating, and reflected changes in primary recrystallization texture due to rapid heating in secondary recrystallization behavior. In order to achieve this, it is important to control the nitriding behavior during secondary recrystallization annealing. As this nitriding behavior control means, secondary recrystallization annealing can be performed without forming a subscale on the steel sheet surface. It became clear that it was important.
Hereinafter, the experimental results that led to obtaining the above knowledge will be described.
<実験1>
C:0.07mass%、Si:3.05mass%、Mn:0.075mass%、P:0.008mass%、Al:250ppm、N:80ppm、S:200ppmおよびSe:5ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1400℃に加熱後、熱間圧延により板厚:2.3mmの熱延板としたのち、1100℃で80秒の熱延板焼鈍を施した。ついで、1回目の冷間圧延により中間板厚:0.50mmとしたのち、雰囲気酸化度(P[H2O]/P[H2]):0.30、温度:850℃、時間:300秒の条件で中間焼鈍を施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、2回目の冷間圧延を施して最終板厚:0.23mmの冷延板とし、ついで840℃、200秒の条件で一次再結晶焼鈍を施した。この一次再結晶焼鈍に際しては、昇温過程および均熱過程の雰囲気酸化度および500〜700℃間の昇温速度を種々に変化させた。その後、焼鈍分離剤としてコロイダルシリカを静電塗布し、二次再結晶焼鈍として、最初にN2雰囲気中にて850℃、100時間の焼鈍を行い、その後H2雰囲気中にて1200℃、10時間の焼鈍を行った。その後、TiCl4,H2,CH4の混合ガスからなる雰囲気中でTiCを鋼板両面に形成し、最後に50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティングを施して、製品とした。
<
Contains C: 0.07 mass%, Si: 3.05 mass%, Mn: 0.075 mass%, P: 0.008 mass%, Al: 250 ppm, N: 80 ppm, S: 200 ppm and Se: 5 ppm, the balance being Fe and inevitable impurities A steel slab with the following composition is produced by continuous casting, heated to 1400 ° C, hot rolled to a thickness of 2.3 mm, and then hot-rolled at 1100 ° C for 80 seconds. did. Next, after the first cold rolling, the intermediate sheet thickness was set to 0.50 mm, and then the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]): 0.30, temperature: 850 ° C., time: 300 seconds Intermediate annealing was performed. Then, after removing the subscale on the surface by hydrochloric acid pickling, the second cold rolling is performed to obtain a cold rolled sheet having a final thickness of 0.23 mm, followed by primary recrystallization annealing at 840 ° C. for 200 seconds. gave. During this primary recrystallization annealing, the degree of atmospheric oxidation in the temperature raising process and the soaking process and the temperature raising rate between 500-700 ° C. were variously changed. Then, colloidal silica is electrostatically applied as an annealing separator, and as secondary recrystallization annealing, first annealing is performed at 850 ° C. for 100 hours in an N 2 atmosphere, and then 1200 ° C., 10% in an H 2 atmosphere. Time annealing was performed. Thereafter, TiC was formed on both surfaces of the steel sheet in an atmosphere composed of a mixed gas of TiCl 4 , H 2 and CH 4 , and finally an insulating coating made of 50% colloidal silica and magnesium phosphate was applied to obtain a product.
上記の実験において、一次再結晶集合組織および製品板の磁気特性を調査した。一次再結晶集合組織は、板厚中心層におけるオイラー(Euler)空間のφ2=45°断面での二次元的強度分布によって評価し、また磁気特性は、800℃で3時間の歪取り焼鈍を行った後に、JIS C 2550に従って評価した。 In the above experiment, the primary recrystallization texture and the magnetic properties of the product plate were investigated. The primary recrystallization texture is evaluated by the two-dimensional intensity distribution in the Euler space φ2 = 45 ° section in the thickness center layer, and the magnetic properties are subjected to strain relief annealing at 800 ° C for 3 hours. After JIS C Evaluation according to 2550.
図1に、500〜700℃間の昇温速度と一次再結晶板のゴス方位強度(φ=90°,φ1=90°,φ2=45°)との関係を示す。
同図より明らかなように、急速加熱により一次再結晶集合組織を変化させる(ゴス方位強度を高める)ためには、昇温速度を150℃/s以上にする必要があることが分かる。
FIG. 1 shows the relationship between the heating rate between 500-700 ° C. and the Goss orientation strength (φ = 90 °, φ1 = 90 °, φ2 = 45 °) of the primary recrystallized plate.
As is clear from the figure, in order to change the primary recrystallization texture by rapid heating (to increase the Goss azimuth strength), it is understood that the heating rate needs to be 150 ° C./s or more.
また、図2には、一次再結晶焼鈍時の雰囲気酸化度と製品の鉄損特性との関係を示す。
同図から、雰囲気酸化度をP[H2O]/P[H2]≦0.05とした条件下で急速加熱した方が、鉄損改善代が大きくなることが分かる。
FIG. 2 shows the relationship between the degree of atmospheric oxidation during the primary recrystallization annealing and the iron loss characteristics of the product.
From the figure, it can be seen that the iron loss improvement allowance increases when rapid heating is performed under the condition where the atmospheric oxidation degree is P [H 2 O] / P [H 2 ] ≦ 0.05.
以上の結果より、急速加熱による鉄損改善効果を最大限に引き出すためには、昇温速度だけでなく、一次再結晶焼鈍を雰囲気酸化度(P[H2O]/P[H2])≦0.05で行うことが極めて重要であることが分かる。 From the above results, in order to maximize the iron loss improvement effect by rapid heating, not only the rate of temperature increase but also the primary recrystallization annealing should be performed with the atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) It can be seen that it is extremely important to perform at ≦ 0.05.
<実験2>
C:0.025mass%、Si:3.05mass%、Mn:0.075mass%、P:0.005mass%、Al:30ppm、N:20ppm、S:10ppmおよびSe:5ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1100℃に加熱後、熱間圧延により板厚:2.0mmの熱延板しとたのち、950℃で120秒の熱延板焼鈍を施した。ついで、冷間圧延により最終板厚:0.23mmの冷延板としたのち、835℃、600秒の条件で一次再結晶焼鈍を施した。この一次再結晶焼鈍に際しては、昇温過程および均熱過程の雰囲気酸化度および500〜700℃間の昇温速度を種々に変化させた。その後、焼鈍分離剤としてアルミナ粉末をスラリーとして塗布し、最初にN2:Ar=40%:60%の雰囲気中にて900℃、200時間の焼鈍を行い、その後H2雰囲気中にて1250℃、10時間の焼鈍を行った。その後、TiCl4,H2,N2の混合ガスからなる雰囲気中でTiNを鋼板両面に形成し、最後に50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティングを施して、製品とした。ここでは、磁気特性を評価した。
<Experiment 2>
Contains C: 0.025 mass%, Si: 3.05 mass%, Mn: 0.075 mass%, P: 0.005 mass%, Al: 30 ppm, N: 20 ppm, S: 10 ppm and Se: 5 ppm, the balance being Fe and inevitable impurities A steel slab with the following composition is manufactured by continuous casting, heated to 1100 ° C, hot-rolled to a thickness of 2.0 mm, and then hot-rolled for 120 seconds at 950 ° C. gave. Next, after cold rolling to obtain a cold rolled sheet having a final thickness of 0.23 mm, primary recrystallization annealing was performed at 835 ° C. for 600 seconds. During this primary recrystallization annealing, the degree of atmospheric oxidation in the temperature raising process and the soaking process and the temperature raising rate between 500-700 ° C. were variously changed. Thereafter, alumina powder is applied as a slurry as an annealing separator, and annealing is first performed at 900 ° C. for 200 hours in an atmosphere of N 2 : Ar = 40%: 60%, and then 1250 ° C. in an H 2 atmosphere. Annealing was performed for 10 hours. Thereafter, TiN was formed on both surfaces of the steel plate in an atmosphere consisting of a mixed gas of TiCl 4 , H 2 and N 2 , and finally an insulating coating consisting of 50% colloidal silica and magnesium phosphate was applied to obtain a product. Here, the magnetic properties were evaluated.
図3に、一次再結晶焼鈍時の雰囲気酸化度と製品の鉄損特性との関係を示す。
同図に示したとおり、インヒビターを含有しない成分系では、雰囲気酸化度をP[H2O]/P[H2]≦0.05に制御しない場合は、急速加熱による鉄損低減効果が全く得られないことが分かった。
以上より、インヒビターを含有しない成分系で急速加熱による鉄損改善効果を得るためには、急速加熱処理だけでなく、一次再結晶焼鈍時の雰囲気酸化度を制御することが不可欠であることが判明した。
FIG. 3 shows the relationship between the degree of atmospheric oxidation during the primary recrystallization annealing and the iron loss characteristics of the product.
As shown in the figure, in the component system that does not contain an inhibitor, if the atmospheric oxidation degree is not controlled to P [H 2 O] / P [H 2 ] ≦ 0.05, the effect of reducing iron loss by rapid heating can be obtained at all. I found that there was no.
From the above, in order to obtain an iron loss improvement effect by rapid heating in a component system that does not contain an inhibitor, it was found that it is indispensable not only to perform rapid heat treatment but also to control the degree of atmospheric oxidation during primary recrystallization annealing. did.
<実験3>
実験1,2より、急速加熱による鉄損改善効果を最大限得るためには、急速加熱処理および一次再結晶焼鈍時の雰囲気酸化度をP[H2O]/P[H2]≦0.05とすることが非常に重要であることが明らかとなった。そこで、次に、この理由について調査した。
C:0.003mass%、Si:2.55mass%、Mn:0.22mass%、P:0.005mass%、Al:25ppm、N:35ppm、S:5ppmおよびSe:3ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、連続鋳造にて製造し、1150℃に加熱後、熱間圧延により板厚:1.8mmの熱延板としたのち、1030℃で120秒の熱延板焼鈍を施した。ついで、冷間圧延により最終板厚:0.23mmに仕上げたのち、この冷延板に磁区細分化処理のため5mm間隔のエッチング溝を形成してから、880℃、10秒の条件で一次再結晶焼鈍を施した。この一次再結晶焼鈍に際しては、昇温過程および均熱過程の雰囲気酸化度を変化させた。また、500℃〜700℃間の昇温速度については500℃/sで行った。その後、N2雰囲気中にて900℃、100時間の焼鈍を行った。その後、塩酸酸洗によって表面を洗浄したのち、TiCl4,H2,CH4の混合ガスからなる雰囲気中でTiCを鋼板両面に形成し、最後に50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティングを施して、製品とした。
<Experiment 3>
From
Contains C: 0.003 mass%, Si: 2.55 mass%, Mn: 0.22 mass%, P: 0.005 mass%, Al: 25 ppm, N: 35 ppm, S: 5 ppm and Se: 3 ppm, the balance being Fe and inevitable impurities A steel slab with the following composition is manufactured by continuous casting, heated to 1150 ° C, hot rolled to a hot rolled sheet with a thickness of 1.8mm, and then subjected to hot rolled sheet annealing at 1030 ° C for 120 seconds. did. Next, after finishing to a final plate thickness of 0.23 mm by cold rolling, etching grooves of 5 mm intervals are formed on this cold rolled plate for magnetic domain subdivision treatment, and then primary recrystallization is performed at 880 ° C. for 10 seconds. Annealed. During the primary recrystallization annealing, the degree of atmospheric oxidation during the heating process and the soaking process was changed. Moreover, about the temperature increase rate between 500 degreeC-700 degreeC, it carried out at 500 degreeC / s. Thereafter, annealing was performed at 900 ° C. for 100 hours in an N 2 atmosphere. After cleaning the surface by hydrochloric acid pickling, TiC is formed on both sides of the steel plate in an atmosphere consisting of a mixed gas of TiCl 4 , H 2 and CH 4 , and finally insulation consisting of 50% colloidal silica and magnesium phosphate The product was coated.
図4に、二次再結晶焼鈍終了時のサンプルについて、コイルの外・中・内巻き部における地鉄中の窒素含有量(以下、地鉄N量という)を調査した結果を、一次再結晶焼鈍時の雰囲気酸化度との関係で示す。
同図に示したとおり、一次再結晶焼鈍時の雰囲気酸化度がP[H2O]/P[H2]≦0.05のものは、二次再結晶焼鈍後の地鉄N量が小さく、さらにコイル外・中・内巻き部の差も小さくなっていることが分かる。
これに対し、P[H2O]/P[H2]>0.05の場合には、二次再結晶焼鈍後の地鉄N量が大きく、またコイル外・中・内巻き部の差も大きくなっている。
Fig. 4 shows the results of investigating the nitrogen content in the base iron (hereinafter referred to as the amount of iron N) in the outer, middle and inner windings of the coil for the sample at the end of secondary recrystallization annealing. This is shown in relation to the degree of atmospheric oxidation during annealing.
As shown in the figure, when the degree of atmospheric oxidation at the time of primary recrystallization annealing is P [H 2 O] / P [H 2 ] ≦ 0.05, the amount of steel N after secondary recrystallization annealing is small. It can be seen that the difference between the outer part of the coil, the middle part and the inner part is also reduced.
On the other hand, when P [H 2 O] / P [H 2 ]> 0.05, the amount of steel N after secondary recrystallization annealing is large, and the difference between the outer, middle, and inner coil portions is also large. It has become.
また、図5に、地鉄N量と鉄損との関係について調べた結果を示す。
同図から明らかなように、地鉄N量と鉄損との間には相関があり、二次再結晶焼鈍における窒化変動を抑制することが良好な鉄損を得るためには重要であることが分かる。
In addition, FIG. 5 shows the results of examining the relationship between the amount of ground iron N and iron loss.
As is clear from the figure, there is a correlation between the amount of iron in the ground and iron loss, and it is important to obtain good iron loss to suppress nitriding fluctuations in secondary recrystallization annealing. I understand.
一次再結晶焼鈍時における急速加熱および雰囲気酸化度が、二次再結晶焼鈍時の窒化挙動に影響を与える理由については、次のように考えている。
雰囲気酸化度が高い場合に地鉄N量が増大するのは、鋼板表面に形成されたポーラスなサブスケールがNの侵入を容易にしているためと考えられ、むしろサブスケールを形成させない方がNの侵入が抑制されると考えられる。また、地鉄N量が高い場合に、鉄損が改善しなかったのは、不純物あるいはインヒビター成分によって形成された析出物の状態が、二次再結晶焼鈍時の窒化・脱窒によって変化し、これが二次再結晶挙動に悪影響を与えたためと考えられる。よって、一次再結晶集合組織の改善を二次再結晶挙動に反映させるためには、サブスケールをできるだけ形成させないことにより、二次再結晶焼鈍時の窒化・脱窒を抑制し、不純物あるいはインヒビターによって形成される析出物の状態を変化させないことが非常に重要なポイントであると考えている。
The reason why rapid heating and atmospheric oxidation during primary recrystallization annealing influence the nitriding behavior during secondary recrystallization annealing is considered as follows.
The reason for the increase in the amount of iron in the atmosphere when the degree of atmospheric oxidation is high is that the porous subscale formed on the surface of the steel sheet facilitates the penetration of N. Rather, it is better not to form the subscale. It is thought that the invasion of is suppressed. In addition, when the amount of ground iron N is high, the iron loss did not improve because the state of precipitates formed by impurities or inhibitor components changes due to nitridation / denitrification during secondary recrystallization annealing, This is considered to have caused an adverse effect on the secondary recrystallization behavior. Therefore, in order to reflect the improvement of the primary recrystallization texture in the secondary recrystallization behavior, the nitriding / denitrification during the secondary recrystallization annealing is suppressed by not forming the subscale as much as possible, and impurities or inhibitors are used. We believe that it is a very important point not to change the state of the formed precipitate.
Nの地鉄中への侵入を容易にするサブスケールとしては、Fe系の酸化物だけでなく、Si系の酸化物も含まれる。Si系の酸化物は、比較的低温から形成されるので、一次再結晶焼鈍の均熱過程だけでなく、昇温過程での雰囲気制御も重要となる。この昇温過程の雰囲気を適正とすることにより、二次再結晶焼鈍時における窒化挙動を的確に制御できるのであるが、従来はこの昇温過程における雰囲気酸化度の制御について考慮が払われていなかった。
そのため、Si系酸化物が鋼板表面に形成され、窒化挙動の制御が十分に行なわれず、急速加熱処理による鉄損改善効果、特にゴス方位強度を高めることによる効果が顕在化していなかったものと考えられる。なお、急速加熱処理を一次再結晶焼鈍と分離して行う場合、一次再結晶焼鈍時の昇温工程だけでなく、急速加熱工程の雰囲気制御も必須となる。
本発明は上記知見に立脚するものである。
The subscale that facilitates the penetration of N into the ground iron includes not only Fe-based oxides but also Si-based oxides. Since the Si-based oxide is formed at a relatively low temperature, not only the soaking process of the primary recrystallization annealing but also the atmosphere control in the heating process is important. Although the nitriding behavior during secondary recrystallization annealing can be accurately controlled by making the atmosphere of this temperature rising process appropriate, conventionally, no consideration has been given to the control of the degree of atmospheric oxidation during this temperature rising process. It was.
For this reason, Si-based oxides were formed on the steel sheet surface, and the nitriding behavior was not sufficiently controlled, and it was thought that the effect of improving iron loss by rapid heating treatment, especially the effect of increasing Goss azimuth strength, was not evident. It is done. Note that when the rapid heating process is performed separately from the primary recrystallization annealing, not only the temperature raising process during the primary recrystallization annealing but also the atmosphere control of the rapid heating process is essential.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.08%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつインヒビターとしてAlN、MnSおよびMnSeのうちから選んだ少なくとも一種を用い、AlNを用いる場合にはAl:0.010〜0.065%およびN:0.005〜0.012%を、MnSを用いる場合にはS:0.005〜0.03%を、MnSeを用いる場合にはSe:0.005〜0.03%をそれぞれ含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を施し、その後二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記一次再結晶焼鈍前に、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて、少なくとも500〜700℃の温度域について150℃/s以上の昇温速度で加熱する急速加熱処理を施し、引き続き、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて一次再結晶焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. When using at least one selected from AlN, MnS, and MnSe as an inhibitor, and containing AlN, by mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0% Contains Al: 0.010 to 0.065% and N: 0.005 to 0.012%, S: 0.005 to 0.03% when MnS is used, Se: 0.005 to 0.03% when MnSe is used, and the balance is Fe. And steel slab consisting of unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing as necessary, then subjected to one or more cold rolling sandwiching intermediate annealing to the final sheet thickness, Next, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing primary recrystallization annealing and then performing secondary recrystallization annealing,
Before the primary recrystallization annealing, atmosphere oxidation degree (P [H2O] / P [ H2]) is in a non-oxidizing atmosphere of 0.05 or less, at least for 500 to 700 temperature range of ° C. 0.99 ° C. / s or more It is characterized by a rapid heat treatment that heats at a rate of temperature rise, followed by primary recrystallization annealing in a non-oxidizing atmosphere with an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing grain-oriented electrical steel sheets.
2.質量%で、C:0.08%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつインヒビター成分であるAlを100ppm以下、N,S,Seをそれぞれ50ppm以下に低減し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を施し、その後二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記一次再結晶焼鈍前に、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて、少なくとも500〜700℃の温度域について150℃/s以上の昇温速度で加熱する急速加熱処理を施し、引き続き、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて一次再結晶焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。
2. In mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0%, and the inhibitor component Al is reduced to 100 ppm or less, and N, S, Se are reduced to 50 ppm or less, The remainder is a steel slab composed of Fe and inevitable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, followed by one or more cold rollings sandwiching intermediate annealing, and the final plate In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps that are thick and then subjected to primary recrystallization annealing and then secondary recrystallization annealing,
Before the primary recrystallization annealing, atmosphere oxidation degree (P [H2O] / P [ H2]) is in a non-oxidizing atmosphere of 0.05 or less, at least for 500 to 700 temperature range of ° C. 0.99 ° C. / s or more It is characterized by a rapid heat treatment that heats at a rate of temperature rise, followed by primary recrystallization annealing in a non-oxidizing atmosphere with an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing grain-oriented electrical steel sheets.
3.質量%で、C:0.08%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつインヒビターとしてAlN、MnSおよびMnSeのうちから選んだ少なくとも一種を用い、AlNを用いる場合にはAl:0.010〜0.065%およびN:0.005〜0.012%を、MnSを用いる場合にはS:0.005〜0.03%を、MnSeを用いる場合にはSe:0.005〜0.03%をそれぞれ含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を施し、その後二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記一次再結晶焼鈍を雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて行い、その際、昇温過程である500〜700℃の温度域を150℃/s以上の速度で急速加熱することを特徴とする方向性電磁鋼板の製造方法。
3. When using at least one selected from AlN, MnS, and MnSe as an inhibitor, and containing AlN, by mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0% Contains Al: 0.010 to 0.065% and N: 0.005 to 0.012%, S: 0.005 to 0.03% when MnS is used, Se: 0.005 to 0.03% when MnSe is used, and the balance is Fe. And steel slab consisting of unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing as necessary, then subjected to one or more cold rolling sandwiching intermediate annealing to the final sheet thickness, Next, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing primary recrystallization annealing and then performing secondary recrystallization annealing,
The primary recrystallization annealing is performed in a non-oxidizing atmosphere having an atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) of 0.05 or less, and at that time, a temperature of 500 to 700 ° C., which is a temperature rising process A method for producing a grain-oriented electrical steel sheet, characterized by rapidly heating the zone at a rate of 150 ° C / s or more.
4.質量%で、C:0.08%以下、Si:2.0〜8.0%およびMn:0.005〜1.0%を含有し、かつインヒビター成分であるAlを100ppm以下、N,S,Seをそれぞれ50ppm以下に低減し、残部はFeおよび不可避的不純物からなる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚とし、ついで一次再結晶焼鈍を施し、その後二次再結晶焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
前記一次再結晶焼鈍を雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて行い、その際、昇温過程である500〜700℃の温度域を150℃/s以上の速度で急速加熱することを特徴とする方向性電磁鋼板の製造方法。
4). In mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0%, and the inhibitor component Al is reduced to 100 ppm or less, and N, S, Se are reduced to 50 ppm or less, The remainder is a steel slab composed of Fe and inevitable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, followed by one or more cold rollings sandwiching intermediate annealing, and the final plate In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps that are thick and then subjected to primary recrystallization annealing and then secondary recrystallization annealing,
The primary recrystallization annealing is performed in a non-oxidizing atmosphere having an atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) of 0.05 or less, and at that time, a temperature of 500 to 700 ° C., which is a temperature rising process A method for producing a grain-oriented electrical steel sheet, characterized by rapidly heating the zone at a rate of 150 ° C / s or more.
5.前記二次再結晶焼鈍工程において、750℃以上の昇温過程における雰囲気中のN2の割合を60%以下に抑制することを特徴とする前記1〜4のいずれかに記載の方向性電磁鋼板の製造方法。 5. 5. The grain-oriented electrical steel sheet according to any one of 1 to 4 above, wherein in the secondary recrystallization annealing step, the ratio of N 2 in the atmosphere in the temperature rising process of 750 ° C. or higher is suppressed to 60% or less. Manufacturing method.
6.前記鋼スラブが、質量%でさらに、Ni:0.03〜1.50%,Sn:0.01〜1.50%,Sb:0.005〜1.50%,Cu:0.03〜3.0%,P:0.03〜0.50%,Mo:0.005〜0.1%およびCr:0.03〜1.50%のうちから選んだ一種または二種以上を含有する組成になることを特徴とする前記1〜5のいずれかに記載の方向性電磁鋼板の製造方法。 6). The steel slab is further in mass%, Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.1 % And Cr: A method for producing a grain-oriented electrical steel sheet according to any one of 1 to 5 above, wherein the composition contains one or more selected from 0.03 to 1.50%.
本発明によれば、一次再結晶焼鈍時の急速加熱による鉄損低減効果を最大限発揮させることによって、極めて鉄損の低い方向性電磁鋼板を安定して得ることができる。 According to the present invention, a grain-oriented electrical steel sheet with extremely low iron loss can be stably obtained by maximizing the effect of reducing iron loss by rapid heating during primary recrystallization annealing.
以下、本発明を具体的に説明する。
まず、本発明において、鋼スラブの成分組成を前記の範囲に限定した理由について説明する。なお、以下、成分に関する「%」、「ppm」表示は特に断らない限り「mass%」、「mass ppm」を意味するものとする。
本発明は、インヒビターを含有する成分系および含有しない成分系のいずれでもよく、基本成分であるC,SiおよびMn量は両者で共通する。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described. In addition, hereinafter, “%” and “ppm” relating to ingredients mean “mass%” and “mass ppm” unless otherwise specified.
The present invention may be either a component system containing an inhibitor or a component system not containing an inhibitor, and the amounts of C, Si and Mn as basic components are common to both.
C:0.08%以下
C量が0.08%を超えると、製造工程中に磁気時効の起こらない50ppm以下までCを低減することが困難になるので、C量は0.08%以下に制限した。なお、C量の下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特には設けない。
C: 0.08% or less When the amount of C exceeds 0.08%, it becomes difficult to reduce C to 50 ppm or less at which no magnetic aging occurs during the manufacturing process. Therefore, the amount of C is limited to 0.08% or less. Note that the lower limit of the amount of C is not particularly provided because secondary recrystallization is possible even for materials not containing C.
Si:2.0〜8.0%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0%に満たないとその添加効果に乏しく、一方8.0%を超えると加工性が著しく低下し、また磁束密度も低下するので、Si量は2.0〜8.0%の範囲に限定した。
Si: 2.0-8.0%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0%, the effect of addition is poor, while if it exceeds 8.0%, the workability is significantly reduced. In addition, since the magnetic flux density also decreases, the Si content is limited to the range of 2.0 to 8.0%.
Mn:0.005〜1.0%
Mnは、熱間加工性を良好にするために必要な元素であるが、0.005%未満ではその添加効果に乏しく、一方1.0%を超えると製品板の磁束密度が低下するので、Mn量は0.005〜1.0%の範囲に限定した。
Mn: 0.005 to 1.0%
Mn is an element necessary for improving the hot workability, but if it is less than 0.005%, the effect of addition is poor, while if it exceeds 1.0%, the magnetic flux density of the product plate decreases, so the amount of Mn is 0.005. Limited to -1.0% range.
次に、二次再結晶にインヒビターを利用する場合には、インヒビター成分として従来から公知のAl,S,N,Se等を含有させる。
インヒビターとしてAlNを用いる場合は、Al:0.010〜0.065%およびN:0.005〜0.012%、MnSを用いる場合はS:0.005〜0.03%を、MnSeを用いる場合はSe:0.005〜0.03%
インヒビターとして、AlNやMnS、MnSeを利用する場合、各成分が下限に満たないと所期したインヒビター効果が得られず、一方上限を超えると析出物の分散状態が不均一化し、所期したインヒビター効果が得られないので、各インヒビター成分は上記の範囲で含有させるものとした。
Next, when an inhibitor is used for secondary recrystallization, conventionally known Al, S, N, Se and the like are contained as an inhibitor component.
When using AlN as an inhibitor, Al: 0.010 to 0.065% and N: 0.005 to 0.012%, when using MnS, S: 0.005 to 0.03%, when using MnSe, Se: 0.005 to 0.03%
When AlN, MnS, or MnSe is used as an inhibitor, the desired inhibitor effect cannot be obtained unless each component is lower than the lower limit. On the other hand, if the upper limit is exceeded, the dispersed state of precipitates becomes uneven, and the desired inhibitor is obtained. Since the effect could not be obtained, each inhibitor component was included in the above range.
インヒビターを利用しない場合、Al:100ppm以下、かつN,S,Se:各々50ppm以下
インヒビターを利用しない場合には、Al量を100ppm以下、かつN、SおよびSe量については、それぞれ50ppm以下にすることが、鋼板を良好に二次再結晶させる上で不可欠である。かかる成分は、極力低減することが磁気特性の観点からは望ましいが、これらの成分の低減はコスト高となるため、上記範囲内で残存させても問題はない。
When the inhibitor is not used, Al: 100 ppm or less, and N, S, Se: 50 ppm or less respectively When the inhibitor is not used, the Al amount is 100 ppm or less, and the N, S, and Se amounts are each 50 ppm or less. This is essential for good secondary recrystallization of the steel sheet. Although it is desirable to reduce these components as much as possible from the viewpoint of magnetic characteristics, since the reduction of these components increases the cost, there is no problem even if they are left within the above range.
以上、必須元素および抑制元素について説明したが、本発明では、その他にも磁気特性改善元素として、Ni,Sn,Sb,Cu,P,MoおよびCrのうちから選んだ少なくとも一種を以下の範囲で適宜含有させることができる。
Ni:0.03〜1.50%
Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素であるが、添加量が0.03%未満では磁気特性の改善効果が小さく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が低下するので、Niは0.03〜1.50%の範囲で含有させるものとした。
As described above, the essential element and the suppressing element have been described. In the present invention, at least one selected from Ni, Sn, Sb, Cu, P, Mo, and Cr as other magnetic property improving elements is within the following range. It can be contained as appropriate.
Ni: 0.03-1.50%
Ni is a useful element for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the added amount is less than 0.03%, the effect of improving the magnetic properties is small, while if it exceeds 1.50%, secondary recrystallization is achieved. Since Ni becomes unstable and the magnetic properties deteriorate, Ni is included in the range of 0.03 to 1.50%.
Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%およびCr:0.03〜1.50%
これらの元素はいずれも、磁気特性の改善に有用な元素であるが、それぞれ下限に満たないとその添加効果に乏しく、一方上限を超えると二次再結晶粒の発達が抑制され、むしろ磁気特性の劣化を招くので、それぞれ上記の範囲で含有させるものとした。
Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10% and Cr: 0.03-1.50%
All of these elements are useful elements for improving the magnetic properties. However, when the lower limit is not reached, the effect of addition is poor.On the other hand, when the upper limit is exceeded, the development of secondary recrystallized grains is suppressed. In this case, each of the above-mentioned ranges is used.
次に、本発明の製造工程について説明する。
上記の好適成分組成に調整した溶鋼を、通常の造塊法や連続鋳造法でスラブとする。また、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。スラブの場合は、通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。薄鋳片の場合は、熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進んでもよい。熱間圧延前のスラブ加熱温度は、Al,N,S,Seを低減したインヒビター成分を含まない成分系である場合には、インヒビターを固溶させる必要がないため、1250℃以下の低温とすることがコストの面で望ましい。
Next, the manufacturing process of the present invention will be described.
The molten steel adjusted to the above preferred component composition is made into a slab by a normal ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. In the case of a slab, it is heated and rolled by a normal method, but may be immediately subjected to hot rolling without heating after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is. The slab heating temperature before hot rolling is a low temperature of 1250 ° C. or lower because there is no need to dissolve the inhibitor in the case of a component system that does not contain an inhibitor component with reduced Al, N, S, and Se. This is desirable in terms of cost.
ついで、必要に応じて熱延板焼鈍を施す。ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度は800℃以上1100℃以下程度とするのが好適である。熱延板焼鈍温度が800℃に満たないと、熱延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難となり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるため、整粒した一次再結晶組織を実現する上で極めて不利となる。 Next, hot-rolled sheet annealing is performed as necessary. In order to highly develop a goth structure in the product plate, it is preferable that the hot-rolled sheet annealing temperature is about 800 ° C. or higher and 1100 ° C. or lower. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a sized primary recrystallized structure, which hinders the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, which is extremely disadvantageous for realizing a sized primary recrystallized structure.
熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、再結晶焼鈍を行う。冷間圧延は、その温度を100〜250℃に上昇させて行うことや、冷間圧延の途中で100〜250℃の時効処理を1回または複数回行うことが、ゴス組織を発達させる上で有効である。なお、冷間圧延後、磁区を細分化するためにエッチング溝を形成させても、本発明には何ら支障はない。 After hot-rolled sheet annealing, re-annealing is performed after performing cold rolling twice or more sandwiching once or intermediate annealing. Cold rolling is performed by raising the temperature to 100 to 250 ° C., or performing aging treatment at 100 to 250 ° C. one or more times during the cold rolling to develop the goth structure. It is valid. In addition, even if it forms an etching groove | channel in order to subdivide a magnetic domain after cold rolling, there will be no trouble in this invention.
冷間圧延終了後、急速加熱処理を実施する。この急速加熱処理は、一次再結晶集合組織のゴス方位強度を向上させるために行うものであり、この目的を達成するためには少なくとも500〜700℃の温度域における昇温速度を150℃/s以上とする必要がある。この急速加熱工程は、従来の一次再結晶焼鈍工程と分離して一次再結晶焼鈍工程の前に行ってもよいし、一次再結晶焼鈍工程の昇温過程に適用してもよい。急速加熱方法については、特に限定されることはなく、誘導加熱や直接通電加熱といった公知の方法で実施すればよい。
また、急速加熱工程および一次再結晶焼鈍工程における雰囲気酸化度は、サブスケールの形成をできるだけ抑制するために、P[H2O]/P[H2]≦0.05好ましくはP[H2O]/P[H2]≦0.01とする必要がある。この雰囲気制御は、二次再結晶焼鈍時の窒化挙動を有効に制御するための必須条件であり、特に一次再結晶焼鈍工程だけでなく、急速加熱工程についても、この雰囲気制御を行うことが重要である。
特にサブスケールが形成しやすくなる温度域は500℃以上であることから、500℃以上において前記の雰囲気制御か必要である。
After the cold rolling is completed, rapid heat treatment is performed. This rapid heating treatment is performed in order to improve the Goss orientation strength of the primary recrystallization texture, and in order to achieve this purpose, the heating rate in the temperature range of at least 500 to 700 ° C. is set to 150 ° C./s. It is necessary to do it above. This rapid heating step may be performed before the primary recrystallization annealing step separately from the conventional primary recrystallization annealing step, or may be applied to the temperature raising process of the primary recrystallization annealing step. The rapid heating method is not particularly limited, and may be performed by a known method such as induction heating or direct current heating.
The degree of atmospheric oxidation in the rapid heating step and the primary recrystallization annealing step is P [H 2 O] / P [H 2 ] ≦ 0.05, preferably P [H 2 O] in order to suppress the formation of subscales as much as possible. / P [H 2 ] ≦ 0.01 is required. This atmosphere control is an indispensable condition for effectively controlling the nitriding behavior during secondary recrystallization annealing, and it is important to control this atmosphere not only in the primary recrystallization annealing process but also in the rapid heating process. It is.
In particular, since the temperature range in which the subscale is easily formed is 500 ° C. or higher, the above atmosphere control is necessary at 500 ° C. or higher.
上記の一次再結晶焼鈍後、二次再結晶焼鈍を実施する。この際、鋼板同士の密着が懸念される場合には、鋼板と反応しない(鋼板表面にサブスケールを形成しない)公知の焼鈍分離剤を塗布してもよい。
ここで、二次再結晶焼鈍における窒化・脱窒挙動を制御するためには、二次再結晶焼鈍時における雰囲気中のN2の割合を低減することも有効である。ただし、急速加熱処理および一次再結晶焼鈍における雰囲気酸化度をP[H2O]/P[H2]≦0.05に制御することによって、窒化・脱窒は十分抑制されるので、この雰囲気中のN2割合の制御は必ずしも必須というわけではない。
After the primary recrystallization annealing, secondary recrystallization annealing is performed. At this time, if there is a concern about the adhesion between the steel plates, a known annealing separator that does not react with the steel plates (does not form a subscale on the steel plate surface) may be applied.
Here, in order to control the nitriding / denitrifying behavior in the secondary recrystallization annealing, it is also effective to reduce the ratio of N 2 in the atmosphere during the secondary recrystallization annealing. However, nitriding and denitrifying are sufficiently suppressed by controlling the atmospheric oxidation degree in the rapid heat treatment and primary recrystallization annealing to P [H 2 O] / P [H 2 ] ≦ 0.05. Control of the N 2 ratio is not always essential.
二次粒径を小さくするためには、多くの二次再結晶核を生成させる必要がある。二次再結晶核は二次再結晶焼鈍初期に生成されるので、二次再結晶焼鈍時の雰囲気N2分圧を制御する場合は、750℃以上の昇温過程において雰囲気中のN2割合を60%以下にすることが好ましい。ここに、雰囲気制御開始温度を750℃以上としたのは、750℃付近より窒化・脱窒が起こりやすくなるためである。 In order to reduce the secondary particle size, it is necessary to generate many secondary recrystallization nuclei. Since secondary recrystallization nuclei are generated in the early stage of secondary recrystallization annealing, when controlling the atmospheric N 2 partial pressure during secondary recrystallization annealing, the ratio of N 2 in the atmosphere during the temperature rise process above 750 ° C Is preferably 60% or less. Here, the reason why the atmosphere control start temperature is set to 750 ° C. or more is that nitriding / denitrifying tends to occur from around 750 ° C.
ついで、得られた鋼板の表面に張力被膜を形成させる。この形成方法は、公知の方法を適用すればよく、特に限定されることはない。たとえば、CVD法やPVD法のような蒸着法を用いて窒化物、炭化物、炭窒化物からなるセラミック被膜を形成させる方法などは有効である。
張力被膜生成後は、絶縁コーティングを施す。絶縁コーティングとしては、従来から方向性電磁鋼板に使用されている無機質コーティングが有望である。
このようにして得られた鋼板に、さらに鉄損の低減を目的として、レーザーあるいはプラズマ炎等を照射して、磁区を細分化することも可能である。
Next, a tension coating is formed on the surface of the obtained steel plate. This forming method may be a known method and is not particularly limited. For example, a method of forming a ceramic film made of nitride, carbide, carbonitride using a vapor deposition method such as CVD or PVD is effective.
After the tension film is formed, an insulating coating is applied. As an insulating coating, an inorganic coating conventionally used for grain-oriented electrical steel sheets is promising.
It is also possible to subdivide the magnetic domains by irradiating the steel plate thus obtained with a laser or a plasma flame for the purpose of further reducing iron loss.
実施例1
表1に示す成分組成になる鋼スラブを、連続鋳造にて製造し、1450℃に加熱後、熱間圧延により板厚:2.0 mmの熱延板としたのち、950℃で180秒の熱延板焼鈍を施した。ついで、1回目の冷間圧延により中間板厚:0.75mmとしたのち、雰囲気酸化度(P[H2O]/P[H2])=0.30、温度:830℃、時間:300秒の条件で中間焼鈍を施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、2回目の冷間圧延を施して最終板厚:0.23mmの冷延板とし、ついで磁区細分化処理のために5mm間隔のエッチング溝を形成したのち、一次再結晶焼鈍前に急速加熱処理を施した。この急速加熱処理に際しては、表2に示すように、350〜800℃の温度域の昇温速度を50〜300℃/sの範囲で変化させると共に、雰囲気酸化度についても、P[H2O]/P[H2]=0.001〜0.5の範囲で変化させた。ついで、一次再結晶焼鈍を、雰囲気酸化度(P[H2O]/P[H2])=0.001〜0.5、温度:840℃、時間:200秒の条件で施した。その後、コロイダルシリカを静電塗布したのち、二次再結晶および純化を目的としたバッチ焼鈍を、H2雰囲気中にて1250℃,30時間の条件で実施した。この二次再結晶焼鈍に際し、750℃以上の昇温過程において雰囲気中のN2割合を表2に示すように変化させた。それ以外の雰囲気については、750℃以下の昇温過程はN2雰囲気、保定過程はH2雰囲気、冷却過程はAr雰囲気とした。
上記のようにして得たフォルステライト被膜のない平滑な表面を有する鋼板に対し、TiCl4,H2,CH4の混合ガスからなる雰囲気中でTiCを鋼板両面に形成し、最後に50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティングを施して、製品とした。
かくして得られた方向性電磁鋼板の磁気特性について調べた結果を表2に併記する。
Example 1
Steel slabs with the composition shown in Table 1 were manufactured by continuous casting, heated to 1450 ° C, hot rolled into a hot rolled sheet with a thickness of 2.0 mm, and then hot rolled at 950 ° C for 180 seconds. Plate annealing was performed. Next, after the first cold rolling, the intermediate plate thickness was set to 0.75 mm, and the atmosphere oxidation degree (P [H 2 O] / P [H 2 ]) = 0.30, temperature: 830 ° C., time: 300 seconds Intermediate annealing was performed. Then, after removing the sub-scale on the surface by hydrochloric acid pickling, the second cold rolling is performed to form a cold rolled sheet having a final thickness of 0.23 mm, and then etching grooves at intervals of 5 mm are formed for magnetic domain subdivision processing. After the formation, rapid heating treatment was performed before the primary recrystallization annealing. In this rapid heating treatment, as shown in Table 2, the temperature increase rate in the temperature range of 350 to 800 ° C. is changed in the range of 50 to 300 ° C./s, and the atmospheric oxidation degree is also P [H 2 O ] / P [H 2 ] = 0.001 to 0.5. Next, primary recrystallization annealing was performed under the conditions of atmospheric oxidation degree (P [H 2 O] / P [H 2 ]) = 0.001 to 0.5, temperature: 840 ° C., time: 200 seconds. Thereafter, colloidal silica was electrostatically applied, and then batch annealing for the purpose of secondary recrystallization and purification was performed in an H 2 atmosphere at 1250 ° C. for 30 hours. During the secondary recrystallization annealing, the N 2 ratio in the atmosphere was changed as shown in Table 2 in the temperature rising process of 750 ° C. or higher. For the other atmospheres, the temperature rising process at 750 ° C. or lower was an N 2 atmosphere, the holding process was an H 2 atmosphere, and the cooling process was an Ar atmosphere.
TiC is formed on both sides of the steel plate in an atmosphere consisting of a mixed gas of TiCl 4 , H 2 and CH 4 for the steel plate having a smooth surface without the forsterite film obtained as described above, and finally 50% An insulating coating made of colloidal silica and magnesium phosphate was applied to make a product.
The results of examining the magnetic properties of the grain-oriented electrical steel sheet thus obtained are also shown in Table 2.
表2に示したとおり、本発明に従い得られた方向性電磁鋼板はいずれも、極めて良好な鉄損特性が得られている。
これに対し、製造条件が一つでも本発明範囲から外れたものは、本発明で所期したほど良好な鉄損特性が得られていない。
As shown in Table 2, all the grain-oriented electrical steel sheets obtained according to the present invention have extremely good iron loss characteristics.
On the other hand, even if one manufacturing condition is out of the scope of the present invention, the iron loss characteristics as good as expected in the present invention are not obtained.
実施例2
表3に示す成分組成になる鋼スラブを、連続鋳造にて製造し、1140℃に加熱後、熱間圧延により板厚:1.6 mmの熱延板としたのち、980℃で100秒の熱延板焼鈍を施した。ついで、冷間圧延により板厚:0.23mmの冷延板に仕上げたのち、850℃、100秒の均熱条件で一次再結晶焼鈍を施した。この一次再結晶焼鈍に際しては、均熱過程に至る昇温過程において、表4に示すように、400〜750℃間の昇温速度を40〜300℃/sの範囲で変化させ、また雰囲気酸化度についても昇温過程および均熱過程ともにP[H2O]/P[H2]=0.001〜0.5の範囲で変化させた。その後、二次再結晶を目的としたバッチ焼鈍を900℃、120時間の条件で実施した。この二次再結晶焼鈍に際し、750℃以上の昇温過程における雰囲気中のN2割合を表4に示すように変化させた。それ以外の雰囲気はN2:100%とした。
上記のようにして得たフォルステライト被膜のない平滑な表面を有する鋼板に対し、TiCl4,H2,N2の混合ガスからなる雰囲気中でTiNを鋼板両面に形成し、最後に50%のコロイダルシリカとリン酸マグネシウムからなる絶縁コーティングを施して、製品とした。
かくして得られた方向性電磁鋼板の磁気特性について調べた結果を表4に併記する。
Example 2
Steel slabs with the composition shown in Table 3 were manufactured by continuous casting, heated to 1140 ° C, hot rolled into a hot rolled sheet with a thickness of 1.6 mm, and then hot rolled at 980 ° C for 100 seconds. Plate annealing was performed. Next, after cold rolling to finish a cold rolled sheet having a thickness of 0.23 mm, primary recrystallization annealing was performed under a soaking condition of 850 ° C. for 100 seconds. In this primary recrystallization annealing, in the temperature rising process leading to the soaking process, as shown in Table 4, the temperature rising rate between 400 and 750 ° C. is changed in the range of 40 to 300 ° C./s, and the atmospheric oxidation is performed. The temperature was changed in the range of P [H 2 O] / P [H 2 ] = 0.001 to 0.5 in both the temperature raising process and the soaking process. Thereafter, batch annealing for the purpose of secondary recrystallization was performed at 900 ° C. for 120 hours. At the time of the secondary recrystallization annealing, the N 2 ratio in the atmosphere in the temperature rising process of 750 ° C. or higher was changed as shown in Table 4. The other atmosphere was N 2 : 100%.
TiN is formed on both sides of the steel plate in an atmosphere consisting of a mixed gas of TiCl 4 , H 2 and N 2 for the steel plate having a smooth surface without the forsterite film obtained as described above, and finally 50% An insulating coating made of colloidal silica and magnesium phosphate was applied to make a product.
The results of examining the magnetic properties of the grain-oriented electrical steel sheet thus obtained are also shown in Table 4.
表4から明らかなように、本発明に従い得られた方向性電磁鋼板はいずれも、極めて良好な鉄損特性を得ることができる。
これに対し、製造条件が一つでも本発明範囲から外れたものは、本発明で所期したほど良好な鉄損特性が得られなかった。
As is apparent from Table 4, any grain-oriented electrical steel sheet obtained according to the present invention can obtain extremely good iron loss characteristics.
On the other hand, even if one production condition was not within the scope of the present invention, the iron loss characteristics as good as expected in the present invention could not be obtained.
本発明によれば、急速加熱による鉄損低減効果を最大限発揮させることが可能になるので、今まで以上に鉄損の低い方向性電磁鋼板を安定して製造することが可能になる。 According to the present invention, the effect of reducing iron loss due to rapid heating can be exerted to the maximum. Therefore, it becomes possible to stably manufacture a grain-oriented electrical steel sheet having a lower iron loss than before.
Claims (6)
前記一次再結晶焼鈍前に、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて、少なくとも500〜700℃の温度域について150℃/s以上の昇温速度で加熱する急速加熱処理を施し、引き続き、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて一次再結晶焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 When using at least one selected from AlN, MnS, and MnSe as an inhibitor, and containing AlN, by mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0% Contains Al: 0.010 to 0.065% and N: 0.005 to 0.012%, S: 0.005 to 0.03% when MnS is used, Se: 0.005 to 0.03% when MnSe is used, and the balance is Fe. And steel slab consisting of unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing as necessary, then subjected to one or more cold rolling sandwiching intermediate annealing to the final sheet thickness, Next, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing primary recrystallization annealing and then performing secondary recrystallization annealing,
Before the primary recrystallization annealing, atmosphere oxidation degree (P [H2O] / P [ H2]) is in a non-oxidizing atmosphere of 0.05 or less, at least for 500 to 700 temperature range of ° C. 0.99 ° C. / s or more It is characterized by a rapid heat treatment that heats at a rate of temperature rise, followed by primary recrystallization annealing in a non-oxidizing atmosphere with an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing grain-oriented electrical steel sheets.
前記一次再結晶焼鈍前に、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて、少なくとも500〜700℃の温度域について150℃/s以上の昇温速度で加熱する急速加熱処理を施し、引き続き、雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて一次再結晶焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 In mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0%, and the inhibitor component Al is reduced to 100 ppm or less, and N, S, Se are reduced to 50 ppm or less, The remainder is a steel slab composed of Fe and inevitable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, followed by one or more cold rollings sandwiching intermediate annealing, and the final plate In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps that are thick and then subjected to primary recrystallization annealing and then secondary recrystallization annealing,
Before the primary recrystallization annealing, atmosphere oxidation degree (P [H2O] / P [ H2]) is in a non-oxidizing atmosphere of 0.05 or less, at least for 500 to 700 temperature range of ° C. 0.99 ° C. / s or more It is characterized by a rapid heat treatment that heats at a rate of temperature rise, followed by primary recrystallization annealing in a non-oxidizing atmosphere with an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing grain-oriented electrical steel sheets.
前記一次再結晶焼鈍を雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて行い、その際、昇温過程である500〜700℃の温度域を150℃/s以上の速度で急速加熱することを特徴とする方向性電磁鋼板の製造方法。 When using at least one selected from AlN, MnS, and MnSe as an inhibitor, and containing AlN, by mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0% Contains Al: 0.010 to 0.065% and N: 0.005 to 0.012%, S: 0.005 to 0.03% when MnS is used, Se: 0.005 to 0.03% when MnSe is used, and the balance is Fe. And steel slab consisting of unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing as necessary, then subjected to one or more cold rolling sandwiching intermediate annealing to the final sheet thickness, Next, in the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing primary recrystallization annealing and then performing secondary recrystallization annealing,
The primary recrystallization annealing is performed in a non-oxidizing atmosphere having an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing a grain-oriented electrical steel sheet, characterized by rapid heating at a rate of at least ° C / s.
前記一次再結晶焼鈍を雰囲気酸化度(P[H2O]/P[H2])が0.05以下の非酸化性雰囲気中にて行い、その際、昇温過程である500〜700℃の温度域を150℃/s以上の速度で急速加熱することを特徴とする方向性電磁鋼板の製造方法。 In mass%, C: 0.08% or less, Si: 2.0-8.0% and Mn: 0.005-1.0%, and the inhibitor component Al is reduced to 100 ppm or less, and N, S, Se are reduced to 50 ppm or less, The remainder is a steel slab composed of Fe and inevitable impurities, hot-rolled, and subjected to hot-rolled sheet annealing as necessary, followed by one or more cold rollings sandwiching intermediate annealing, and the final plate In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps that are thick and then subjected to primary recrystallization annealing and then secondary recrystallization annealing,
The primary recrystallization annealing is performed in a non-oxidizing atmosphere having an atmospheric oxidation degree (P [H2O] / P [H2]) of 0.05 or less. A method for producing a grain-oriented electrical steel sheet, characterized by rapid heating at a rate of at least ° C / s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009084904A JP5417936B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009084904A JP5417936B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010236013A JP2010236013A (en) | 2010-10-21 |
JP5417936B2 true JP5417936B2 (en) | 2014-02-19 |
Family
ID=43090617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009084904A Expired - Fee Related JP5417936B2 (en) | 2009-03-31 | 2009-03-31 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5417936B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5772410B2 (en) * | 2010-11-26 | 2015-09-02 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5760590B2 (en) * | 2011-03-30 | 2015-08-12 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP6376360B2 (en) * | 2011-08-12 | 2018-08-22 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5994981B2 (en) | 2011-08-12 | 2016-09-21 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5360272B2 (en) | 2011-08-18 | 2013-12-04 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5610084B2 (en) | 2011-10-20 | 2014-10-22 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
CN104471084B (en) * | 2012-07-26 | 2016-06-29 | 杰富意钢铁株式会社 | The manufacture method of orientation electromagnetic steel plate |
RU2599942C2 (en) * | 2012-07-26 | 2016-10-20 | ДжФЕ СТИЛ КОРПОРЕЙШН | Method of making sheet of textured electrical steel |
US20150243419A1 (en) * | 2012-09-27 | 2015-08-27 | Jef Steel Corporation | Method for producing grain-oriented electrical steel sheet |
JP5854233B2 (en) * | 2013-02-14 | 2016-02-09 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
US10134514B2 (en) * | 2013-02-28 | 2018-11-20 | Jfe Steel Corporation | Method for producing grain-oriented electrical steel sheet |
JP6160649B2 (en) * | 2014-05-19 | 2017-07-12 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP6191564B2 (en) * | 2014-09-04 | 2017-09-06 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet and nitriding equipment |
KR102044321B1 (en) * | 2017-12-26 | 2019-11-13 | 주식회사 포스코 | Grain oriented electrical steel sheet method for manufacturing the same |
JP6900977B2 (en) * | 2018-06-29 | 2021-07-14 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
CN113272457B (en) * | 2019-01-16 | 2023-04-14 | 日本制铁株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
WO2020149341A1 (en) * | 2019-01-16 | 2020-07-23 | 日本製鉄株式会社 | Method for manufacturing grain-oriented electrical steel sheet |
JP6988845B2 (en) * | 2019-02-26 | 2022-01-05 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2983128B2 (en) * | 1993-08-24 | 1999-11-29 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss |
JP3359449B2 (en) * | 1995-01-06 | 2002-12-24 | 新日本製鐵株式会社 | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet |
JP3392669B2 (en) * | 1996-11-22 | 2003-03-31 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss |
JP4288054B2 (en) * | 2002-01-08 | 2009-07-01 | 新日本製鐵株式会社 | Method for producing grain-oriented silicon steel sheet |
JP5011712B2 (en) * | 2005-11-15 | 2012-08-29 | Jfeスチール株式会社 | Manufacturing method of unidirectional electrical steel sheet |
-
2009
- 2009-03-31 JP JP2009084904A patent/JP5417936B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010236013A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5417936B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4840518B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5772410B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6617827B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN109844156B (en) | Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same | |
CN108699620A (en) | Manufacturing method of grain oriented electrical steel sheet | |
JP2007238984A (en) | Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties | |
JPH09118964A (en) | Grain-directional silicon steel having high volume resistivity | |
CN113166836B (en) | Oriented electrical steel sheet and method for manufacturing the same | |
CN118401693A (en) | Oriented electrical steel sheet and method for manufacturing same | |
JP5962565B2 (en) | Planarization annealing method and manufacturing method of grain-oriented electrical steel sheet | |
CN111566244A (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JPH059666A (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
JP3928275B2 (en) | Electrical steel sheet | |
EP4450669A1 (en) | Grain-oriented electrical steel sheet and method for manufacturing same | |
JP3357615B2 (en) | Method for manufacturing oriented silicon steel sheet with extremely low iron loss | |
WO2022210504A1 (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
WO2020149333A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
WO2022210503A1 (en) | Production method for grain-oriented electrical steel sheet | |
JPH0542496B2 (en) | ||
JP2003277830A (en) | Manufacturing method of grain-oriented electrical steel sheet having uniform magnetic properties in the sheet width direction | |
JP2020139174A (en) | Manufacturing method of directional electromagnetic steel plate | |
JPH0718334A (en) | Method for producing electrical steel sheet having excellent magnetic properties | |
JP2003328037A (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent bend characteristics | |
JPH06207219A (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131022 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5417936 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |