JP5402164B2 - Refrigeration cycle equipment - Google Patents
Refrigeration cycle equipment Download PDFInfo
- Publication number
- JP5402164B2 JP5402164B2 JP2009085526A JP2009085526A JP5402164B2 JP 5402164 B2 JP5402164 B2 JP 5402164B2 JP 2009085526 A JP2009085526 A JP 2009085526A JP 2009085526 A JP2009085526 A JP 2009085526A JP 5402164 B2 JP5402164 B2 JP 5402164B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- heat
- compressor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
本発明は、空気調和機の冷凍サイクルの発明であって、より詳細には、温度帯の異なる複数の熱交換器を有する冷凍装置に関わるものである。 The present invention is an invention of a refrigeration cycle of an air conditioner, and more particularly relates to a refrigeration apparatus having a plurality of heat exchangers having different temperature zones.
従来、高温用熱交換器と低温用熱交換器からなる、温度帯の異なる複数の熱交換器を有する冷凍装置において、それぞれの熱交換器に冷媒を供給するため、高温用熱交換器に冷媒を供給する高温用圧縮手段としての高温用圧縮機と、低温用熱交換器に冷媒を供給する低温用圧縮手段としての低温用圧縮機とを備えた冷凍装置がある。(特許文献1)
このような冷凍装置においては、低温用熱交換器は高温用熱交換器に比べ温度が低いため、低温用圧縮手段の吐出冷媒の温度も高温用圧縮手段の吐出冷媒温度に比べ低温で良いが、吸熱器を経て低温用圧縮手段および高温用圧縮手段に導入される冷媒の温度は同じである。
2. Description of the Related Art Conventionally, in a refrigeration apparatus having a plurality of heat exchangers having different temperature zones, which includes a high-temperature heat exchanger and a low-temperature heat exchanger, the refrigerant is supplied to each heat exchanger. There is a refrigeration apparatus provided with a high-temperature compressor as a high-temperature compression means for supplying the refrigerant and a low-temperature compressor as a low-temperature compression means for supplying a refrigerant to the low-temperature heat exchanger. (Patent Document 1)
In such a refrigeration apparatus, the temperature of the low-temperature heat exchanger is lower than that of the high-temperature heat exchanger, so the temperature of the refrigerant discharged from the low-temperature compression means may be lower than the temperature of the refrigerant discharged from the high-temperature compression means. The temperature of the refrigerant introduced into the low temperature compression means and the high temperature compression means through the heat absorber is the same.
ここで低温と高温とを作り出すためには、圧縮手段あるいは熱交換器で冷媒温度をコントロールすることが考えられるが、低温用圧縮手段に、高温用圧縮手段に導入される冷媒と同じ温度の冷媒を供給しているため、低温用熱交換器を含む冷凍サイクルの熱が有効に利用されていない。 Here, in order to produce a low temperature and a high temperature, it is conceivable to control the refrigerant temperature with a compression means or a heat exchanger, but the refrigerant having the same temperature as the refrigerant introduced into the high temperature compression means is used as the low temperature compression means. Therefore, the heat of the refrigeration cycle including the low-temperature heat exchanger is not effectively used.
また、上述した冷凍装置においては、凝縮器の温度を高くするためには圧縮機からの冷媒吐出圧力を高くする必要があるため、圧縮機での圧縮比を大きくする必要がある。しかしながら、単段圧縮で圧縮比を大きくすると圧縮機での損失が多くなるため、高い吐出圧力が必要な場合には、冷媒の圧縮を低圧圧縮手段と高圧圧縮手段からなる複数の圧縮手段で行う、多段圧縮が採用されている。 Moreover, in the refrigeration apparatus described above, in order to increase the temperature of the condenser, it is necessary to increase the refrigerant discharge pressure from the compressor, so it is necessary to increase the compression ratio in the compressor. However, since the loss in the compressor increases when the compression ratio is increased by single-stage compression, the refrigerant is compressed by a plurality of compression means including a low-pressure compression means and a high-pressure compression means when a high discharge pressure is required. Multi-stage compression is adopted.
しかしながら、上述したような多段圧縮を採用した冷凍装置の場合、高い圧力で冷凍サイクルの運転を行い凝縮器の温度を高くすることが可能であるが、圧縮機の吐出温度が高温になるという問題があった。 However, in the case of a refrigeration apparatus that employs multi-stage compression as described above, it is possible to increase the temperature of the condenser by operating the refrigeration cycle at a high pressure, but the problem is that the discharge temperature of the compressor becomes high. was there.
本発明は、高温用熱交換器と低温用熱交換器からなる、温度帯の異なる複数の熱交換器を有する冷凍装置において、冷凍サイクルの運転効率をよくすることを目的とする。 An object of the present invention is to improve the operating efficiency of a refrigeration cycle in a refrigeration apparatus having a plurality of heat exchangers having different temperature zones, each of which includes a high-temperature heat exchanger and a low-temperature heat exchanger.
本発明は上述の課題を解決するため、請求項1に関する発明は、冷媒が、第一圧縮機、第一熱交換器、第一膨張手段、吸熱器の順に循環する第一の冷媒回路と、第二圧縮機、第二熱交換器、第二膨張手段、前記吸熱器の順に循環する第二の冷媒回路とを有し、
前記第一膨張手段および前記第二膨張手段の下流側であって前記吸熱器の上流側の冷媒の一部を、前記第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を第二圧縮機の吸入側に戻すようにしたことを特徴としている。
In order to solve the above-mentioned problems, the present invention relates to a first refrigerant circuit in which the refrigerant circulates in the order of the first compressor, the first heat exchanger, the first expansion means, and the heat absorber. A second compressor, a second heat exchanger, a second expansion means, and a second refrigerant circuit circulating in the order of the heat absorber,
An inter-refrigerant heat exchanger that exchanges heat between a part of the refrigerant downstream of the first expansion means and the second expansion means and upstream of the heat absorber with the refrigerant on the suction side of the first compressor. And the refrigerant that has passed through the inter-refrigerant heat exchanger is returned to the suction side of the second compressor.
また、請求項2に関する発明は、冷媒が、第一圧縮手段、第一熱交換器、第一膨張手段、主膨張手段、吸熱器、低圧側圧縮手段の順に循環する第一の冷媒回路と、第二圧縮手段、第二熱交換器、第二膨張手段、前記主膨張手段、前記吸熱器、前記低圧側圧縮手段の順に循環する第二の冷媒回路とを有し、
前記主膨張手段の下流側であって前記吸熱器の上流側の冷媒の一部を、前記低圧側圧縮手段の下流側であって前記第一圧縮手段の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を前記第二圧縮手段の吸入側にインジェクションするようにしたことを特徴としている。
The invention relating to claim 2 is a first refrigerant circuit in which the refrigerant circulates in the order of the first compression means, the first heat exchanger, the first expansion means, the main expansion means, the heat absorber, and the low pressure side compression means; A second refrigerant circuit that circulates in the order of the second compression means, the second heat exchanger, the second expansion means, the main expansion means, the heat absorber, and the low-pressure side compression means,
Between the refrigerants that exchange heat with a refrigerant on the downstream side of the main expansion unit and on the upstream side of the heat absorber with the refrigerant on the downstream side of the low-pressure side compression unit and on the suction side of the first compression unit A heat exchanger is provided, and the refrigerant that has passed through the inter-refrigerant heat exchanger is injected into the suction side of the second compression means.
さらには、請求項3に関する発明は、前記吸熱器の下流側の冷媒を、前記第一熱交換器の下流側の冷媒と熱交換するようにしたことを特徴としている。 Furthermore, the invention relating to claim 3 is characterized in that heat is exchanged between the refrigerant on the downstream side of the heat absorber and the refrigerant on the downstream side of the first heat exchanger.
低温用熱交換器は高温用熱交換器に比べ温度が低いため、低温用圧縮手段の吐出冷媒の温度も高温用圧縮手段の吐出冷媒温度に比べ低温で良いが、吸熱器を経て低温用圧縮手段および高温用圧縮手段に導入される冷媒の温度は同じであるため、冷媒間熱交換器を用いない場合には、圧縮手段及び熱交換器で冷媒温度をコントロールし、低温と高温とを作り出す必要がある。 Since the temperature of the low-temperature heat exchanger is lower than that of the high-temperature heat exchanger, the temperature of the refrigerant discharged from the low-temperature compression means may be lower than the temperature of the refrigerant discharged from the high-temperature compression means. Because the temperature of the refrigerant introduced into the means and the high-temperature compression means is the same, when the inter-refrigerant heat exchanger is not used, the refrigerant temperature is controlled by the compression means and the heat exchanger to produce a low temperature and a high temperature. There is a need.
請求項1および請求項2に係わる発明によれば、冷媒の一部を、低温用熱交換器に冷媒を供給する第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を通過させ、高温用熱交換器に冷媒を供給する第二圧縮機の吸入側に戻すようにすることで、吸熱器から、低温用圧縮手段を経て低温用熱交換器に供給される冷媒および、高温用圧縮手段を経て高温用熱交換器に供給される冷媒のうち、低温用熱交換器に供給される冷媒の熱を、冷媒が低温用圧縮手段に導入される前に高温用熱交換器に供給される冷媒に与えることが可能になる。 According to the first and second aspects of the invention, a part of the refrigerant passes through the inter-refrigerant heat exchanger that exchanges heat with the refrigerant on the suction side of the first compressor that supplies the refrigerant to the low-temperature heat exchanger. The refrigerant to be supplied to the low-temperature heat exchanger from the heat absorber through the low-temperature compression means by returning to the suction side of the second compressor that supplies the refrigerant to the high-temperature heat exchanger, and the high temperature Of the refrigerant supplied to the high temperature heat exchanger via the compression means, the heat of the refrigerant supplied to the low temperature heat exchanger is transferred to the high temperature heat exchanger before the refrigerant is introduced into the low temperature compression means. It becomes possible to give to the refrigerant | coolant supplied.
このように、低温用熱交換器には不必要となる熱を、低温用圧縮手段に冷媒が吸入される前に高温用圧縮手段の吸入冷媒に伝達し、高温用熱交換器で利用することが可能となるため、冷凍サイクルの運転効率を向上させることができる。 In this way, heat unnecessary for the low temperature heat exchanger is transferred to the refrigerant sucked into the high temperature compression means before the refrigerant is sucked into the low temperature compression means and used in the high temperature heat exchanger. Therefore, the operating efficiency of the refrigeration cycle can be improved.
また、請求項3に係わる発明は、低温用熱交換器の出口側冷媒と吸熱器の出口側冷媒とを熱交換させることで、吸熱器の出口側冷媒に熱を与えることが可能となるため、低温用熱交換器を通過した冷媒の過冷却を得ると同時に、膨張手段で減圧された冷媒に熱を与えることができる。 In the invention according to claim 3, heat can be applied to the outlet side refrigerant of the heat absorber by exchanging heat between the outlet side refrigerant of the low temperature heat exchanger and the outlet side refrigerant of the heat absorber. In addition, it is possible to obtain supercooling of the refrigerant that has passed through the low-temperature heat exchanger and at the same time to apply heat to the refrigerant that has been decompressed by the expansion means.
以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。尚、実施例としては、空気調和機等に用いられて温水を生成する冷凍サイクル装置であって、多段圧縮を行うものを例として説明することとする。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an example, a refrigeration cycle apparatus that is used in an air conditioner or the like to generate hot water and performs multi-stage compression will be described as an example.
図1は、本発明に係る第一の実施例を示す冷凍サイクル装置の説明図であり、図2は本発明に係る第二の実施例を示す説明図である。これらの冷凍サイクル装置は、第一熱交換器41としての低温用熱交換器と、第二熱交換器42としての高温用熱交換器とを備え、第一熱交換器41から第二熱交換器42の順に水を循環させ温水を得るための水回路71を有している。
FIG. 1 is an explanatory view of a refrigeration cycle apparatus showing a first embodiment according to the present invention, and FIG. 2 is an explanatory view showing a second embodiment according to the present invention. These refrigeration cycle apparatuses include a low-temperature heat exchanger as the first heat exchanger 41 and a high-temperature heat exchanger as the
水を第一熱交換器41から第二熱交換器42の順に循環させることで、高い温度の熱交換器のみで水と冷媒を熱交換させる場合に比べ、それぞれの熱交換器を順に通過する水と冷媒の温度差を少なくすることができるため、冷媒と水の熱交換効率を高くすることができる。
By circulating water in the order from the first heat exchanger 41 to the
図1に示すように、実施例1における冷凍サイクル装置は、冷媒が、第一圧縮機としての低温用圧縮機11、第一熱交換器41、第一膨張手段21、主膨張手段23、吸熱器43、低圧側圧縮機10の順に循環する第一の冷媒回路と、第二圧縮機としての高温用圧縮機12、第二熱交換器42、第二膨張手段22、主膨張手段23、吸熱器43、低圧側圧縮機10の順に循環する第二の冷媒回路とを有し、主膨張手段10と第一膨張手段21との間の冷媒の一部を、低圧側圧縮機10の下流側であって第一圧縮機11の吸入側の冷媒と熱交換させる主冷媒間熱交換器33を設け、主冷媒間熱交換器33を通過した冷媒を高温用圧縮機12の吸入側に、インジェクションポート61を介してインジェクションするようにした冷凍サイクル装置である。
As shown in FIG. 1, in the refrigeration cycle apparatus in the first embodiment, the refrigerant is a low-
このように、高温用圧縮機12の吸入側に主膨張手段10と第一膨張手段21との間の冷媒の一部をインジェクションするようにしたため、高温用圧縮機12吐出冷媒の温度が高くなることを防止できる。
Thus, since a part of the refrigerant between the main expansion means 10 and the first expansion means 21 is injected into the suction side of the
また、主冷媒間熱交換器33で低温用圧縮機11の吸入側の冷媒と高温用圧縮機12の吸入側にインジェクションする冷媒とを熱交換させるようにしたため、低温側冷媒回路の冷媒の熱を、高温側冷媒回路に与えることが可能となる。
In addition, since the main
例えば、第一熱交換器41を含む低温側冷媒回路と第二熱交換器42を含む高温側冷媒回路において水回路71で温水を生成する場合、あえて第一熱交換器41の温度を第二熱交換器42よりも低くしている。上述した実施例1のような構成によれば、このような運転状況において、第一熱交換器41で不必要となる分の熱を、第二熱交換器42を含む高温側冷媒回路に与えることが可能となる。
For example, when the hot water is generated in the
さらに、吸熱器43の下流側の冷媒と、第一熱交換器41の下流側の冷媒とを、第2冷媒間熱交換器32を用いて熱交換するようになっている。この熱交換を行うことで、第一熱交換器41を通過した冷媒の過冷却を得ると同時に、吸熱器43を通過した冷媒を過熱することが可能となる。
Further, heat is exchanged between the refrigerant on the downstream side of the heat absorber 43 and the refrigerant on the downstream side of the first heat exchanger 41 using the
このように吸熱器43を通過した冷媒に熱を与えることで、例えば吸熱器43を通過した冷媒に液相状態の冷媒が残っていたとしても、第2冷媒間熱交換器32でさらに吸熱させることで気相状態とすることが可能になる。
By applying heat to the refrigerant that has passed through the heat absorber 43 in this manner, for example, even if the liquid phase refrigerant remains in the refrigerant that has passed through the heat absorber 43, the second
さらに、前記主膨張手段23と前記第一膨張手段21との間から前記主冷媒間熱交換器33に導入される冷媒と、前記第二熱交換器42の下流側の冷媒とを、第1冷媒間熱交換器31を用いて熱交換するようになっている。この熱交換を行うことで、前記第二熱交換器42を通過した冷媒の過冷却を得ると同時に、前記主冷媒間熱交換器33に導入される冷媒に熱を与えることが可能となる。
Further, the refrigerant introduced into the main
また、低圧側圧縮機10と低温用圧縮機11との間及び、低圧側圧縮機10と高温用圧縮機12との間に、第1流量調節弁51および第2流量調節弁52を配置している。
A first flow rate control valve 51 and a second flow
さらに、主膨張手段23と第一膨張手段21との間から、主冷媒間熱交換器33を介して高温用圧縮12の吸入側にインジェクションする冷媒回路に、第3流量調節弁53を配置している。
これにより、第一熱交換器41、第二熱交換器42及び冷媒間熱交換器における冷媒流量を、適宜調節するようにしている。
Further, a third flow
Thereby, the refrigerant | coolant flow volume in the 1st heat exchanger 41, the
ここで吸熱器43は、図示しない送風機を用いて外気と熱交換を行うようにしても良いし、電熱ヒーターや他の冷凍サイクルなどの熱源から冷媒に熱を与えるようにしても良い。 Here, the heat absorber 43 may exchange heat with the outside air using a blower (not shown), or may supply heat to the refrigerant from a heat source such as an electric heater or another refrigeration cycle.
図2に示す実施例2においては、主膨張手段としてエジェクタ24を用いており、エジェクタ24に導入された冷媒は気液分離器62で気相冷媒と液相冷媒に分離され、気相冷媒は低圧側圧縮機10に供給される。また、気液分離器62で分離された液相冷媒は、第2冷媒間熱交換器32で第一熱交換器41の下流側の冷媒と熱交換したのち吸熱器43で熱交換され、エジェクタ24へ導入されるようになっている。
In the second embodiment shown in FIG. 2, an ejector 24 is used as the main expansion means, and the refrigerant introduced into the ejector 24 is separated into a gas-phase refrigerant and a liquid-phase refrigerant by a gas-
このように、膨張手段としてエジェクタ24を用いるため、減圧時のエネルギー損失を低減することができる。 Thus, since the ejector 24 is used as the expansion means, energy loss during decompression can be reduced.
また、気液分離器62で分離された液相冷媒を、第一熱交換器41の下流側の冷媒と熱交換するようにしたため、吸熱器43での吸熱と合わせ、液冷媒により多くの熱を与えることができるようになっている。
Further, since the liquid-phase refrigerant separated by the gas-
また、高温用熱交換器を有する冷媒回路の冷媒圧力を第二膨張手段22で減圧した後、低温用熱交換器を有する冷媒回路の冷媒と合流させ、合流した冷媒の圧力を第一膨張手段21で減圧するようにしている。これは、高温用熱交換器を有する冷媒回路の冷媒圧力の方が低温用熱交換器を有する冷媒回路の冷媒圧力よりも高いため、第一膨張手段21の上流側で高温用熱交換器を有する冷媒回路の冷媒圧力を減圧し、低温用熱交換器を有する冷媒回路の冷媒圧力と同じにした後、第一膨張手段21で減圧するためである。 Further, after the refrigerant pressure of the refrigerant circuit having the high-temperature heat exchanger is reduced by the second expansion means 22, the refrigerant is joined with the refrigerant of the refrigerant circuit having the low-temperature heat exchanger, and the combined refrigerant pressure is changed to the first expansion means. The pressure is reduced at 21. This is because the refrigerant pressure of the refrigerant circuit having the high-temperature heat exchanger is higher than the refrigerant pressure of the refrigerant circuit having the low-temperature heat exchanger, so the high-temperature heat exchanger is installed upstream of the first expansion means 21. This is because the pressure of the refrigerant circuit having the refrigerant circuit is reduced to be the same as the refrigerant pressure of the refrigerant circuit having the low-temperature heat exchanger and then reduced by the first expansion means 21.
この他、実施例1と共通する構成については同様の付番をし、詳細な説明は省略する。 In addition, the same reference numerals are given to configurations common to the first embodiment, and detailed description thereof is omitted.
尚、以上説明した実施例では、低圧側圧縮機を有し多段圧縮を行う冷凍サイクル装置について説明したが、これに限るものでなく、例えば、主膨張手段23を用いることなく第一膨張手段21と第二膨張手段22のみで減圧を行い、冷媒の圧縮を、低圧側圧縮機10を用いることなく低温用圧縮機11と高温用圧縮機12のみで行うようにした冷凍サイクル装置においても同様に適用できる。
In the embodiment described above, a refrigeration cycle apparatus having a low-pressure side compressor and performing multi-stage compression has been described. However, the present invention is not limited to this, for example, the first expansion means 21 without using the main expansion means 23. Similarly, in the refrigeration cycle apparatus in which the pressure is reduced only by the second expansion means 22 and the refrigerant is compressed only by the
10 低圧側圧縮機
11 低温用圧縮機
12 高温用圧縮機
21 第一膨張手段
22 第二膨張手段
23 主膨張手段
24 エジェクタ
31 第1冷媒間熱交換器
32 第2冷媒間熱交換器
33 主冷媒間熱交換器
41 第一熱交換器
42 第二熱交換器
43 吸熱器
51 第1流量調節弁
52 第2流量調節弁
53 第3流量調節弁
61 インジェクションポート
62 気液分離器
71 水回路
10 Low pressure compressor
11 Low temperature compressor
12 High temperature compressor
21 First expansion means
22 Second expansion means
23 Main expansion means
24 Ejector
31 1st refrigerant heat exchanger
32 Second refrigerant heat exchanger
33 Main refrigerant heat exchanger
41 1st heat exchanger
42 Second heat exchanger
43 heat sink
51 1st flow control valve
52 Second flow control valve
53 Third flow control valve
61 Injection port
62 Gas-liquid separator
71 Water circuit
Claims (3)
前記第一膨張手段と前記吸熱器との間の冷媒の一部を、前記第一圧縮機の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を第二圧縮機の吸入側に戻すようにし、
前記分岐部と前記冷媒間熱交換器との間、および前記分岐部と前記第二圧縮機との間にそれぞれ流量調整弁を設けた冷凍サイクル装置。 The first refrigerant circuit in which the refrigerant circulates in the order of the first compressor, the first heat exchanger, the first expansion means, and the heat absorber, the second compressor, the second heat exchanger, the second expansion means, and the heat absorption A second refrigerant circuit that circulates in the order of the vessel, and a branching portion into which the refrigerant from the heat absorber branches into the first compressor and the second compressor ,
A refrigerant-to-refrigerant heat exchanger that exchanges a part of the refrigerant between the first expansion means and the heat absorber with the refrigerant on the suction side of the first compressor is provided, and passes through the refrigerant-to-refrigerant heat exchanger. Return the refrigerant to the suction side of the second compressor ,
A refrigeration cycle apparatus in which a flow rate adjusting valve is provided between the branch portion and the inter-refrigerant heat exchanger and between the branch portion and the second compressor .
前記主膨張手段と前記第一膨張手段との間の冷媒の一部を、前記低圧側圧縮手段の下流側であって前記第一圧縮手段の吸入側の冷媒と熱交換させる冷媒間熱交換器を設け、前記冷媒間熱交換器を通過した冷媒を前記第二圧縮手段の吸入側にインジェクションするようにし、
前記低圧側圧縮手段と前記冷媒間熱交換器の間、および前記低圧側圧縮手段と前記第二圧縮機との間にそれぞれ流量調整弁を設けた冷凍サイクル装置。 A first refrigerant circuit in which refrigerant circulates in the order of the first compression means, the first heat exchanger, the first expansion means, the main expansion means, the heat absorber, and the low pressure side compression means, the second compression means, and the second heat exchange A second refrigerant circuit that circulates in the order of the compressor, the second expansion means, the main expansion means, the heat absorber, and the low-pressure side compression means, and the refrigerant from the low-pressure side compression means is the first compressor and the second A branching portion branched to the compressor ,
An inter-refrigerant heat exchanger that exchanges heat between a part of the refrigerant between the main expansion means and the first expansion means with the refrigerant on the downstream side of the low-pressure side compression means and on the suction side of the first compression means. Injecting the refrigerant that has passed through the inter-refrigerant heat exchanger to the suction side of the second compression means ,
A refrigeration cycle apparatus provided with a flow rate adjusting valve between the low pressure side compression means and the inter-refrigerant heat exchanger, and between the low pressure side compression means and the second compressor .
The refrigeration cycle apparatus according to claim 1 or 2, wherein heat is exchanged between the refrigerant on the downstream side of the heat absorber and the refrigerant on the downstream side of the first heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085526A JP5402164B2 (en) | 2009-03-31 | 2009-03-31 | Refrigeration cycle equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085526A JP5402164B2 (en) | 2009-03-31 | 2009-03-31 | Refrigeration cycle equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010236796A JP2010236796A (en) | 2010-10-21 |
JP5402164B2 true JP5402164B2 (en) | 2014-01-29 |
Family
ID=43091273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009085526A Expired - Fee Related JP5402164B2 (en) | 2009-03-31 | 2009-03-31 | Refrigeration cycle equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5402164B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112015021087A2 (en) * | 2013-03-15 | 2017-07-18 | Novelis Inc | sheet metal rolling apparatus and method |
JP6643632B2 (en) * | 2016-03-10 | 2020-02-12 | パナソニックIpマネジメント株式会社 | Air conditioner |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA8562B (en) * | 1984-01-11 | 1985-09-25 | Copeland Corp | Highly efficient flexible two-stage refrigeration system |
US4787211A (en) * | 1984-07-30 | 1988-11-29 | Copeland Corporation | Refrigeration system |
CA2080197A1 (en) * | 1991-11-04 | 1993-05-05 | Leroy John Herbst | Household refrigerator with improved refrigeration circuit |
JP2924460B2 (en) * | 1992-06-16 | 1999-07-26 | ダイキン工業株式会社 | Air conditioner |
CN1886625B (en) * | 2003-11-28 | 2010-12-01 | 三菱电机株式会社 | Refrigeration and air conditioning units |
JP2006220318A (en) * | 2005-02-08 | 2006-08-24 | Iwaya Reitouki Seisakusho:Kk | Vapor compression type refrigerating machine system |
-
2009
- 2009-03-31 JP JP2009085526A patent/JP5402164B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010236796A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4246257B2 (en) | Refrigeration cycle equipment | |
RU2472078C2 (en) | Refrigeration systems and method of cold generation | |
EP2322875B1 (en) | Refrigeration cycle device and air conditioner | |
KR101171151B1 (en) | Air-Conditioning System using Exhaustion Heat Recovery Ejector | |
JP5681549B2 (en) | Refrigeration cycle method | |
KR101288681B1 (en) | Air conditioner | |
JP2011094814A (en) | Refrigerating cycle device and refrigerant compressing method | |
JP2012247081A (en) | Composite system cum power generation and heat pump | |
JP5919036B2 (en) | Heat pump type water heater | |
WO2016013077A1 (en) | Refrigeration cycle device | |
CN113994150A (en) | Chiller system with multiple compressors | |
CN209484874U (en) | A two-stage refrigeration system | |
JP5402164B2 (en) | Refrigeration cycle equipment | |
KR101823469B1 (en) | High temperature hot water supply and heating and air conditioning system with partial load using dual cycle | |
JP2004340418A (en) | Water-heating air conditioner | |
KR101162020B1 (en) | Heat pump heating apparatus | |
JP2004257627A (en) | Heat pump device | |
KR102339673B1 (en) | Refrigeration unit and temperature control unit | |
KR101528160B1 (en) | Duality for refrigerating/heating cycle type Heat pump system | |
US20080184722A1 (en) | Method and apparatus for a refrigeration circuit | |
JP2012149844A (en) | Refrigerating cycle device | |
WO2018186043A1 (en) | Hot-water supply device, and dual hot-water generation unit | |
KR20190077692A (en) | heat transmitter | |
JP2015152293A (en) | refrigeration cycle apparatus | |
KR101164360B1 (en) | Heat pump apparatus comprising vapor injection compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131014 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5402164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |