JP5392332B2 - Drying equipment - Google Patents
Drying equipment Download PDFInfo
- Publication number
- JP5392332B2 JP5392332B2 JP2011202085A JP2011202085A JP5392332B2 JP 5392332 B2 JP5392332 B2 JP 5392332B2 JP 2011202085 A JP2011202085 A JP 2011202085A JP 2011202085 A JP2011202085 A JP 2011202085A JP 5392332 B2 JP5392332 B2 JP 5392332B2
- Authority
- JP
- Japan
- Prior art keywords
- drying chamber
- dry air
- drying
- steam
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001035 drying Methods 0.000 title claims description 145
- 238000010438 heat treatment Methods 0.000 claims description 74
- 239000011149 active material Substances 0.000 claims description 58
- 230000005674 electromagnetic induction Effects 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 26
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 16
- 238000009835 boiling Methods 0.000 claims description 14
- 239000000243 solution Substances 0.000 description 28
- 239000012530 fluid Substances 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000003204 osmotic effect Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000005338 heat storage Methods 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B23/00—Heating arrangements
- F26B23/04—Heating arrangements using electric heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B13/00—Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
- F26B13/10—Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Drying Of Solid Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、常圧過熱水蒸気を用いて被乾燥材を乾燥させる乾燥装置に関わり、特にリチウムイオン電池等の非水系電解液二次電池において、集電体に活物質溶液を塗布した後の乾燥に好適な乾燥装置に関する。 The present invention relates to a drying apparatus for drying a material to be dried using atmospheric superheated steam, and in particular, in a non-aqueous electrolyte secondary battery such as a lithium ion battery, drying after applying an active material solution to a current collector It is related with the drying apparatus suitable for.
リチウムイオン電池等の非水系電解液二次電池において、その電極は、金属箔からなる集電体(例えばアルミ箔、銅箔)に活物質(例えばリチウム複合酸化物、炭素材)溶液を塗布し、溶剤(溶媒)を乾燥蒸発させた後に、活物質が一定の厚みになるようにプレスして形成される。
集電体に活物質溶液を塗布した後に用いられる乾燥装置としては、熱風ノズルから熱風を吹き付けて乾燥する構成が一般的である(例えば、特許文献1参照。)。
また、被乾燥材を塗工フィルム又は湿潤フィルム(被乾燥フィルム)に特化した乾燥装置として、乾燥チャンバ内に、内部温度維持及び被乾燥フィルムの予熱を行う加熱部、加熱部で加熱された被乾燥フィルムに対して100〜300℃に加熱された常圧過熱水蒸気を噴出する過熱水蒸気噴出部、並びに、過熱水蒸気噴出部から常圧過熱水蒸気を被乾燥フィルムに噴射して温度低下した揮発性有機溶媒成分等を含む排水蒸気を回収するための排気吸入部のセットを複数備えたものがある(例えば、特許文献2参照。)。
さらに、常圧過熱水蒸気の発生に好適な電磁誘導加熱装置として、流体が通過する非磁性材料のパイプ内に収納された流体が浸かる発熱体を、多層構造を形成する基材と、多層構造によって形成された規則的な多数の流体通路とを有する多層構造体としてなる、電磁誘導で加熱する直接加熱による応答性の高い電磁誘導加熱装置がある(例えば、特許文献3及び4参照。)。
In a non-aqueous electrolyte secondary battery such as a lithium ion battery, the electrode is formed by applying an active material (eg, lithium composite oxide, carbon material) solution to a current collector (eg, aluminum foil, copper foil) made of a metal foil. After the solvent (solvent) is dried and evaporated, the active material is pressed to a certain thickness.
As a drying apparatus used after applying an active material solution to a current collector, a configuration in which hot air is blown from a hot air nozzle to dry is generally used (see, for example, Patent Document 1).
In addition, as a drying device specializing in a material to be dried on a coated film or a wet film (film to be dried), the drying chamber was heated by a heating unit and a heating unit for maintaining the internal temperature and preheating the film to be dried. The superheated steam jetting part for jetting normal pressure superheated steam heated to 100 to 300 ° C. with respect to the film to be dried, and the volatility in which the normal pressure superheated steam is jetted from the superheated steam jet part onto the film to be dried. Some have a plurality of sets of exhaust suction parts for recovering drainage steam containing organic solvent components and the like (see, for example, Patent Document 2).
Furthermore, as an electromagnetic induction heating device suitable for generation of atmospheric superheated steam, a heating element immersed in a non-magnetic material pipe through which a fluid passes is divided into a base material that forms a multilayer structure and a multilayer structure. There is a highly responsive electromagnetic induction heating device by direct heating that is heated by electromagnetic induction, which is a multilayer structure having a large number of formed regular fluid passages (see, for example, Patent Documents 3 and 4).
非水系電解液二次電池の電極の乾燥装置として特許文献1のような熱風ノズルから熱風(130℃程度が温度の上限である。)を吹き付ける構成では、熱風による表面からの乾燥であるとともに、集電体に塗布された活物質の塗工膜の温度を溶剤の沸点(例えば、204℃)まで徐々に高めるための予熱ゾーンが必要となること等から乾燥時間(乾燥距離)が長くなるため、乾燥装置の占有面積が大きくなってしまうという問題点がある。
また、特許文献2のような被乾燥フィルムの乾燥装置を非水系電解液二次電池の電極の乾燥装置に適用した場合には、熱伝導性の高い100〜300℃に加熱された常圧過熱水蒸気を用いていることから、熱風を用いるものよりも乾燥効率が高くなるため、乾燥時間(乾燥距離)を比較的短くすることができると考えられる。
しかしながら、特許文献2の乾燥装置はフィルムに対する乾燥に特化したものであり、内部温度維持及び被乾燥フィルムの予熱を行う加熱部が必要になること等も相俟って、常圧過熱水蒸気を用いて非水系電解液二次電池の電極の乾燥をより効率的に行うためには改良の余地がある。
In the configuration in which hot air (about 130 ° C. is the upper limit of temperature) is blown from a hot air nozzle as in Patent Document 1 as a drying device for an electrode of a non-aqueous electrolyte secondary battery, drying is performed from the surface by hot air, The drying time (drying distance) becomes longer due to the need for a preheating zone for gradually increasing the temperature of the coating film of the active material applied to the current collector to the boiling point of the solvent (eg, 204 ° C.). There is a problem that the occupation area of the drying device becomes large.
Moreover, when the drying apparatus of the to-be-dried film like
However, the drying apparatus of
そこで本発明が前述の状況に鑑み、解決しようとするところは、常圧過熱水蒸気を用いて被乾燥材をより効率的に乾燥させる乾燥装置、特に非水系電解液二次電池の電極の乾燥に好適な乾燥装置を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention intends to solve a drying apparatus for drying a material to be dried more efficiently using atmospheric superheated steam, particularly for drying an electrode of a non-aqueous electrolyte secondary battery. It is in providing a suitable drying apparatus .
本願の発明者は、リチウムイオン電池等の非水系電解液二次電池において、集電体に活物質溶液を塗布した後の乾燥を効率的に行うために、常圧過熱水蒸気を用いてその浸透性等の特徴を活用するための検討、実験及び試作等による具体化を進めることにより本発明を完成するに至った。 The inventor of the present application uses a normal-pressure superheated steam in order to efficiently dry the non-aqueous electrolyte secondary battery such as a lithium ion battery after applying the active material solution to the current collector. The present invention has been completed by advancing the embodiment by examination, experimentation, trial manufacture, etc. for utilizing characteristics such as sex.
以下において、先ず、過熱水蒸気について説明する。
図3の水の温度−圧力相図に示すように、水はその温度と圧力により、固相、液相及び気相に分類できる。すなわち、融解曲線TAの左側で昇華曲線TBの左側の領域が固相、融解曲線TAの右側で蒸発曲線TCの左側の領域が液相、昇華曲線TB及び蒸発曲線TCの右側の領域が気相になる。
ここで、気相では、水は水蒸気として存在し、一般に水蒸気と呼ばれる物性の水は1気圧100℃の点Pに存在しており、蒸発曲線TCの右側の領域に位置する水蒸気、すなわち圧力に対応する飽和温度以上に熱せられた状態にある水蒸気(沸点以上の温度の高い水蒸気)を過熱水蒸気と呼んでいる。
In the following, first, superheated steam will be described.
As shown in the temperature-pressure phase diagram of water in FIG. 3, water can be classified into a solid phase, a liquid phase, and a gas phase according to its temperature and pressure. That is, the region on the left side of the sublimation curve TB on the left side of the melting curve TA is the solid phase, the region on the left side of the evaporation curve TC on the right side of the melting curve TA is the liquid phase, and the region on the right side of the sublimation curve TB and the evaporation curve TC is the gas phase. become.
Here, in the gas phase, water exists as water vapor, and water having physical properties generally called water vapor exists at a point P of 1 atm and 100 ° C., and the water vapor located in the region on the right side of the evaporation curve TC, ie, the pressure. Steam that is heated to a temperature equal to or higher than the corresponding saturation temperature (steam having a temperature higher than the boiling point) is called superheated steam.
水蒸気は、その結露点以下の温度域では凝縮しあって白いモヤモヤとした蒸気に変わり、このように白く見える水蒸気は空気中に浮かぶ凝縮した水の固まりであると解釈され、直径が30μm以上になると目に映る白いモヤモヤとした状態になっている。
ところが、点Pを大きく右側に越えた高温状態の過熱水蒸気(約200℃以上の領域に達した常圧過熱水蒸気)を結露点以下に戻しても、白いモヤモヤとした水蒸気になりにくいことがわかっており、一旦高温域に温度を上げた水蒸気は何らかのエネルギを得るのか凝縮しにくく、それが為に30μm以上の直径になりにくいものと推測される。
実際、過飽和状態の空間で過熱水蒸気を送気してもその空間は白くモヤモヤとした空間にならず、極めてクリアな空間が維持できている。
また、この高温域に達した水蒸気は単体の分子状態で存在すると推測され、それが為に細かい隙間などの空域に進入しやすいと考えられる。
The water vapor condenses and turns into a white dull vapor in the temperature range below the dew point, and the water vapor that looks white like this is interpreted as a mass of condensed water floating in the air, with a diameter of 30 μm or more. It becomes a state of white haze that is visible in the eyes.
However, it is understood that even when the superheated steam in a high temperature state that greatly exceeds the point P on the right side (normal pressure superheated steam reaching a region of about 200 ° C. or more) is returned to the dew point or less, it does not easily become white moisture. It is presumed that the water vapor once raised to a high temperature region is difficult to condense or obtain some energy, so that it is difficult to have a diameter of 30 μm or more.
In fact, even if superheated steam is supplied in a supersaturated space, the space is not white and dull, and a very clear space can be maintained.
Moreover, it is estimated that the water vapor that has reached this high temperature region exists in a single molecular state, and therefore, it is considered that the water vapor easily enters an air space such as a fine gap.
次に、非水系電解液二次電池の電極の集電体に塗布した活物質溶液の溶剤の除去について説明する。
溶剤は気化しなければ取り除くことができないため、溶剤を沸点以上の温度にする必要がある。
しかしながら、集電体に塗布した活物質溶液を溶剤の沸点以上の温度で急速に乾燥させると、溶剤が突沸してしまい、乾燥表面が焼けた状態になってしまうことがわかっている。
したがって、従来の乾燥装置においては、上述のとおり集電体に塗布された活物質の塗工膜の温度を溶剤の沸点まで徐々に高めるための予熱ゾーンが必要であった。
Next, the removal of the solvent of the active material solution applied to the current collector of the electrode of the nonaqueous electrolyte secondary battery will be described.
Since the solvent cannot be removed unless it evaporates, it is necessary to bring the solvent to a temperature higher than the boiling point.
However, it has been found that if the active material solution applied to the current collector is rapidly dried at a temperature equal to or higher than the boiling point of the solvent, the solvent bumps and the dried surface is burnt.
Therefore, in the conventional drying apparatus, the preheating zone for gradually raising the temperature of the coating film of the active material applied to the current collector to the boiling point of the solvent as described above is necessary.
以上の着眼点から、本願の発明者は、集電体に活物質溶液を塗布した後に常圧過熱水蒸気を吹き付けて乾燥を行いながら予熱ゾーンを不要にするために、約200℃以上に加熱されて透明となった常圧過熱水蒸気を、気化させて取り除く溶剤の沸点未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として乾燥チャンバに供給することにより、蓄熱効果を利用しながら加熱を行うとともに、上述のとおり約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥するという着想を得た。
また、結露の防止及び乾燥の促進のために、常圧水蒸気に常圧乾燥空気を混合した混合ガスを、その混合比率を変えながら電磁誘導加熱装置に供給することができるように構成し、乾燥チャンバに供給する常圧加熱乾燥空気の量(常圧過熱水蒸気に対する常圧加熱乾燥空気の比率)を操作することにより乾燥チャンバ内の湿度を制御するという着想を得た。
In view of the above, the inventor of the present application is heated to about 200 ° C. or more in order to make the preheating zone unnecessary while spraying atmospheric superheated steam after applying the active material solution to the current collector and drying. The atmospheric pressure superheated steam that has become transparent is less than the boiling point of the solvent that is removed by vaporization, and the temperature is lowered to a high temperature within a range where the binding force between the current collector and the active material does not decrease As described above, heating is performed while utilizing the heat storage effect, and high osmotic power that is maintained even if the temperature of the atmospheric superheated steam that reaches the region of about 200 ° C. or higher is lowered as described above. Taking advantage of the characteristics, the idea was to dry efficiently while maintaining a good dry surface where the dry surface does not burn.
In addition, in order to prevent condensation and promote drying, a mixed gas in which atmospheric pressure dry air is mixed with atmospheric pressure steam can be supplied to the electromagnetic induction heating device while changing the mixing ratio, and drying is performed. The idea was to control the humidity in the drying chamber by manipulating the amount of atmospheric heated dry air supplied to the chamber (ratio of atmospheric heated dry air to atmospheric superheated steam).
すなわち、本発明に係る乾燥装置は、前記課題解決のために、乾燥チャンバ内の被乾燥材を乾燥させる乾燥装置であって、管路を通して水又は水蒸気が供給される電磁誘導加熱装置と、前記水又は水蒸気を加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気供給管路とを備え、前記約200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気供給管路を通すことにより、前記被乾燥材に適した所定温度まで温度を低下させた状態として前記乾燥チャンバに供給し、 前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることを特徴とする。 That is, a drying device according to the present invention is a drying device for drying a material to be dried in a drying chamber for solving the above-described problem, and an electromagnetic induction heating device to which water or water vapor is supplied through a pipeline, A controller for controlling the electromagnetic induction heating device so as to generate normal-pressure superheated steam that is transparent at about 200 ° C. or more by heating water or water vapor; and an overheat connected to the drying chamber and the electromagnetic induction heating device The atmospheric pressure superheated steam that became transparent at about 200 ° C. or more was passed through the superheated steam supply pipe, and the temperature was lowered to a predetermined temperature suitable for the material to be dried. The state is supplied to the drying chamber, and the material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and the material to be dried Suitable predetermined Degree is, the the temperature of the solvent below the boiling point of the active substance solution, and, wherein the temperature der Rukoto the binding force is set high within a range that does not decrease in the current collector and the active material.
このような構成によれば、制御装置により電磁誘導加熱装置を制御して水又は水蒸気を加熱し、約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気を、過熱水蒸気供給管路を通すことにより、被乾燥材に適した所定温度まで低下させた状態として乾燥チャンバに供給することから、被乾燥材に適した所定温度で乾燥することができるとともに、その際に、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かすことができるため、被乾燥材の乾燥を効率的に行うことができる。
その上、乾燥チャンバ内に常圧過熱蒸気が充満することから、乾燥チャンバ内を無酸素状態にすることができるため、被乾燥材の酸化防止を促すことができる。
また、前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることにより、リチウムイオン電池等の非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質の乾燥において、約200℃以上に加熱されて透明となった常圧過熱水蒸気を、気化させて取り除く溶剤の沸点(例えば、204℃)未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで温度を低下させた状態として乾燥チャンバに供給するので、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体(芯材)を発熱させ、蓄熱効果を利用しながら溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
According to such a configuration, the control device controls the electromagnetic induction heating device to heat water or water vapor, to generate normal pressure superheated water vapor that is transparent at about 200 ° C. or more, By passing through the superheated steam supply pipe, it is supplied to the drying chamber in a state lowered to a predetermined temperature suitable for the material to be dried, so that it can be dried at a predetermined temperature suitable for the material to be dried. In addition, since it is possible to make use of characteristics such as high osmotic force that can be maintained even if the temperature of the atmospheric superheated steam reaching a region of about 200 ° C. or higher is lowered, the material to be dried can be efficiently dried. .
In addition, since the atmospheric pressure superheated steam is filled in the drying chamber, the inside of the drying chamber can be brought into an oxygen-free state, and thus the prevention of oxidation of the material to be dried can be promoted.
Further, the material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and the predetermined temperature suitable for the material to be dried is A non-aqueous electrolyte solution such as a lithium ion battery having a temperature lower than the boiling point of the solvent of the active material solution and a temperature set high in a range in which the binding force between the current collector and the active material does not decrease In the drying of the current collector and the active material after applying the active material solution to the current collector of the secondary battery, the solvent is removed by vaporizing the atmospheric superheated steam that is heated to about 200 ° C. or more and becomes transparent In the drying chamber in a state where the temperature is lowered to a temperature set high (for example, 180 ° C.) within a range in which the binding force between the current collector and the active material is not decreased. As it is supplied, it reaches an area of about 200 ° C or higher. Utilizing characteristics such as high osmotic force that can be maintained even if the temperature of atmospheric superheated steam is lowered, heat is generated from the current collector (core material) instead of drying from the surface, and the solvent is removed from the inside while utilizing the heat storage effect. Since it is possible to dry and evaporate, it is possible to efficiently dry while maintaining a good dry surface where the dry surface is not burnt, so that a preheating zone can be eliminated.
ここで、管路を通して常圧加熱乾燥空気を前記乾燥チャンバに供給する加熱乾燥空気供給装置と、前記乾燥チャンバ内の湿度を検出する湿度センサとを備え、前記加熱乾燥空気供給装置により前記乾燥チャンバに供給する前記常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置を備えてなると好ましい。
このような構成によれば、乾燥チャンバ内に常圧加熱乾燥空気が供給され、その供給量が調節され、乾燥チャンバ内の湿度が所定湿度(例えば、20%)以下又は所定湿度範囲内(例えば、10%〜20%)になるように制御装置により制御されることから、乾燥チャンバ内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、被乾燥材の乾燥をさらに効率的に行うことができる。
Here, a heating / drying air supply device that supplies atmospheric pressure heating / drying air to the drying chamber through a pipe line, and a humidity sensor that detects humidity in the drying chamber, the heating / drying air supply device provides the drying chamber. It is preferable to provide a control device for controlling the humidity in the drying chamber detected by the humidity sensor to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of the atmospheric pressure heated dry air supplied to the air.
According to such a configuration, normal pressure heated dry air is supplied into the drying chamber, the supply amount thereof is adjusted, and the humidity in the drying chamber is equal to or lower than a predetermined humidity (for example, 20%) or within a predetermined humidity range (for example, 10% to 20%), the humidity in the drying chamber is significantly lower than the humidity in the drying chamber in a normal drying apparatus (for example, 70 to 80%). Since the state can be maintained, the material to be dried can be dried more efficiently.
さらに、本発明に係る乾燥装置は、前記課題解決のために、乾燥チャンバ内の被乾燥材である、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質を乾燥させる乾燥装置であって、常圧水蒸気を発生する水蒸気発生装置と、常圧乾燥空気を発生する乾燥空気発生装置と、前記水蒸気発生装置に接続されて前記常圧水蒸気が供給される水蒸気供給管路及び前記乾燥空気発生装置に接続されて前記常圧乾燥空気が供給される乾燥空気供給管路が合流する混合ガス供給管路を通して前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される電磁誘導加熱装置と、前記混合ガスを加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路と、前記乾燥チャンバ内の湿度を検出する湿度センサと、前記過熱水蒸気及び加熱乾燥空気供給管路を通して前記乾燥チャンバに供給する常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置とを備え、前記200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気及び加熱乾燥空気供給管路を通すことにより、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として前記乾燥チャンバに供給することを特徴とする。 Furthermore, in order to solve the above problems, the drying apparatus according to the present invention provides the current collector after applying an active material solution to a current collector of a non-aqueous electrolyte secondary battery, which is a material to be dried in a drying chamber. A drying apparatus for drying a body and an active material, a steam generating apparatus for generating atmospheric pressure steam, a drying air generating apparatus for generating atmospheric dry air, and the atmospheric steam connected to the steam generating apparatus The normal-pressure steam and the normal-pressure dry air are supplied through a mixed gas supply line connected to the supplied steam supply line and the dry-air supply line connected to the dry-air generator and supplied with the normal-pressure dry air. An electromagnetic induction heating device to which a mixed gas is supplied, a control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the mixed gas, Drying chamber A superheated steam and heated dry air supply line connected to the electromagnetic induction heating device, a humidity sensor for detecting the humidity in the drying chamber, and supply to the drying chamber through the superheated steam and heated dry air supply line A control device for controlling the humidity in the drying chamber detected by the humidity sensor to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of dry air heated under normal pressure, and transparent at 200 ° C. or higher The normal pressure superheated water vapor is passed through the superheated water vapor and heated dry air supply line so that the temperature is less than the boiling point of the solvent of the active material solution and the collector and the active material are bonded. The drying chamber is supplied in a state in which the temperature is lowered to a temperature set high within a range in which the adhesion force does not decrease.
このような構成によれば、リチウムイオン電池等の非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記活物質溶液の前記集電体及び活物質の乾燥において、電磁誘導加熱装置に常圧水蒸気及び常圧乾燥空気の混合ガスが供給し、制御装置により電磁誘導加熱装置を制御して電磁誘導加熱装置により約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気及び常圧加熱乾燥空気の混合ガスを、乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路を通して、気化させて取り除く溶剤の沸点(例えば、204℃)未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで温度を低下させた状態として乾燥チャンバに供給するので、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体(芯材)を発熱させ、蓄熱効果を利用しながら溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
その上、過熱水蒸気及び加熱乾燥空気供給管路を通して乾燥チャンバに供給される常圧加熱乾燥空気の量が制御装置により調節され、乾燥チャンバ内の湿度を検出する湿度センサにより検出した乾燥チャンバ内の湿度が所定湿度(例えば、20%)以下又は所定湿度範囲内(例えば、10%〜20%)になるように制御装置により制御されることから、乾燥チャンバ内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、前記集電体及び活物質の乾燥をさらに効率的に行うことができる。
その上さらに、乾燥チャンバ内に常圧過熱蒸気が充満することから、乾燥チャンバ内を無酸素状態にすることができるため、前記集電体及び活物質の酸化防止を促すことができる。
その上、電磁誘導加熱装置に常圧水蒸気及び常圧乾燥空気の混合ガスを供給することから、電磁誘導加熱装置により、約200℃以上の領域に達した常圧過熱水蒸気を発生するための常圧水蒸気の加熱及び乾燥チャンバ内の湿度制御に用いる常圧乾燥空気の加熱の両方を行う構成であるため、常圧加熱乾燥空気を乾燥チャンバに供給する加熱乾燥空気供給装置を別途設ける必要がない。
According to such a configuration, in the drying of the current collector and the active material of the active material solution after the active material solution is applied to the current collector of a non-aqueous electrolyte secondary battery such as a lithium ion battery, A mixed gas of normal pressure steam and normal pressure dry air is supplied to the induction heating device, and the control device controls the electromagnetic induction heating device to generate normal pressure superheated steam that becomes transparent at about 200 ° C or higher by the electromagnetic induction heating device. The boiling point of the solvent removed by vaporizing the mixed gas of the normal pressure superheated steam and the normal pressure heated dry air through the superheated steam and heated dry air supply line connected to the drying chamber and the electromagnetic induction heating device (for example, 204 ° C.) and is supplied to the drying chamber in a state in which the temperature is lowered to a high temperature (for example, 180 ° C.) within a range in which the binding force between the current collector and the active material does not decrease. Therefore, taking advantage of characteristics such as high penetrating power that can be maintained even if the temperature of atmospheric superheated steam that reaches a temperature of about 200 ° C or higher is lowered, heat is generated from the current collector (core material) rather than drying from the surface. Since the solvent can be dried and evaporated from the inside while utilizing the heat storage effect, the drying surface can be efficiently dried while keeping the dry surface in a good condition, thus eliminating the need for a preheating zone it can.
In addition, the amount of atmospheric pressure heated dry air supplied to the drying chamber through the superheated steam and heated drying air supply line is adjusted by the controller, and the humidity in the drying chamber detected by the humidity sensor that detects the humidity in the drying chamber is adjusted. The humidity is controlled by the control device so that the humidity is equal to or lower than a predetermined humidity (for example, 20%) or within a predetermined humidity range (for example, 10% to 20%). Since the humidity in the drying chamber can be kept significantly lower than the humidity (for example, 70 to 80%), the current collector and the active material can be further efficiently dried.
Furthermore, since the atmospheric pressure superheated steam is filled in the drying chamber, the inside of the drying chamber can be brought into an oxygen-free state, so that the current collector and the active material can be prevented from being oxidized.
In addition, since a mixed gas of normal pressure steam and normal pressure dry air is supplied to the electromagnetic induction heating device, the electromagnetic induction heating device generates normal pressure superheated steam reaching a region of about 200 ° C. or higher. Since it is configured to perform both heating of pressurized water vapor and heating of atmospheric pressure drying air used for humidity control in the drying chamber, there is no need to separately provide a heating / drying air supply device for supplying atmospheric pressure heating / drying air to the drying chamber. .
以上のように、本発明に係る乾燥装置によれば、電磁誘導加熱装置により約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気を、被乾燥材に適した所定温度まで低下させた状態として乾燥チャンバに供給することから、被乾燥材に適した所定温度で乾燥することができるとともに、その際に、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かすことができるため、被乾燥材の乾燥を効率的に行うことができ、乾燥チャンバ内に供給する常圧加熱乾燥空気の供給量が調節され、乾燥チャンバ内の湿度が所定湿度以下になるように制御されることから、乾燥チャンバ内の湿度を低い状態に保つことができるため、被乾燥材の乾燥をさらに効率的に行うことができるという顕著な効果を奏する。
As described above, according to the drying apparatus according to the present invention, the normal pressure superheated steam that is transparent at about 200 ° C. or more is generated by the electromagnetic induction heating device, and this normal pressure superheated steam is suitable for the material to be dried. Since it is supplied to the drying chamber in a state lowered to a predetermined temperature, it can be dried at a predetermined temperature suitable for the material to be dried, and at that time, the atmospheric superheated steam that has reached an area of about 200 ° C. or higher Since the characteristics such as high osmotic force maintained even if the temperature is lowered can be utilized, the material to be dried can be efficiently dried, and the supply amount of atmospheric pressure heated dry air supplied into the drying chamber is Since the humidity in the drying chamber is adjusted and controlled to be equal to or lower than the predetermined humidity, the humidity in the drying chamber can be kept low, so that the material to be dried can be more efficiently dried. it can A marked effect say.
図1のブロック図に示す本発明の実施の形態に係る乾燥装置は、例えば非水系電解液二次電池であるリチウムイオン電池の電極の製造に用いられ、電磁誘導加熱装置1により発生させた常圧過熱水蒸気を過熱水蒸気供給管路(過熱水蒸気及び加熱乾燥空気供給管路)L4を通して乾燥チャンバ2に供給することにより、活物質(例えばリチウム複合酸化物、炭素材)溶液の溶剤(例えば、N−メチル−2−ピロリドン、三協化学株式会社商品名:NMP)を乾燥蒸発させるものである。すなわち本実施の形態に係る乾燥装置の被乾燥材は、リチウムイオン電池の集電体Aに活物質溶液を塗布した後の集電体A及び活物質である。
ここで、前記電極を構成する帯状の金属箔からなる集電体A(例えばアルミ箔、銅箔)の搬送系(搬送方向は、図中矢印F参照。)は、乾燥チャンバ2の上流側に位置する図示しない繰り出しローラに巻回された集電体Aを繰り出しながら、乾燥チャンバ2の下流側に位置する図示しない巻き取りローラに巻き取るように構成され、この搬送系により、乾燥チャンバ2の上流側の図示しない塗工装置により活物質溶液が表面に塗布された集電体Aが乾燥チャンバ2内を通って下流側へ所定搬送速度で搬送される。また、前記搬送系の搬送速度は搬送速度センサ10により検出され、この検出値が制御装置3へ送られる。
The drying apparatus according to the embodiment of the present invention shown in the block diagram of FIG. 1 is used, for example, for manufacturing an electrode of a lithium ion battery that is a non-aqueous electrolyte secondary battery, and is generated by the electromagnetic induction heating apparatus 1. By supplying the superheated steam under pressure to the drying
Here, a transport system (refer to arrow F in the figure for the transport direction) of a current collector A (for example, an aluminum foil or a copper foil) made of a strip-shaped metal foil constituting the electrode is disposed upstream of the drying
電磁誘導加熱装置1は、熱交換器を用いない直接加熱により流体を過熱するものであり、装置本体1A及び高周波電流発生器1Bからなる。ここで、装置本体1Aは、特許文献3及び4の電磁誘導加熱装置のように、絶縁体カラム(非磁性材料のパイプ)、絶縁体カラムに巻線された通電可能な励磁コイル、絶縁体カラム内に収納されて流体が浸かり、励磁コイルによる電磁誘導により渦電流が生じて発熱する発熱体を備えており、発熱体を、多層構造を形成する基材と多層構造によって形成された規則的な多数の流体通路とを有する多層構造体としたものである。また、高周波電流発生器1Bは、交流電源の整流回路及びインバータ等からなり、装置本体1Aの励磁コイルに高周波電流を流すためのものである。
このような直接加熱による電磁誘導加熱装置によれば、流体の単位体積当たりの伝熱面積の比表面積を極めて大きくすることができ、発熱体から流体への伝熱効率が非常に高くなるとともに、応答性を高めることができるため、本発明のように流体の温度制御を行う電磁誘導加熱装置として好適なものである。
また、装置本体1Aの流出側には温度センサ1Tが設置されており、温度センサ1Tの検出値が制御装置3へ送られ、制御装置3により高周波電流発生器1Bから励磁コイルに供給する高周波電流が制御される。
The electromagnetic induction heating device 1 superheats a fluid by direct heating without using a heat exchanger, and includes a device
According to such an electromagnetic induction heating device by direct heating, the specific surface area of the heat transfer area per unit volume of the fluid can be made extremely large, the heat transfer efficiency from the heating element to the fluid becomes very high, and the response Therefore, the present invention is suitable as an electromagnetic induction heating device that controls the temperature of a fluid as in the present invention.
Further, a
図1に示すように、例えば純水用のボイラである水蒸気発生装置4から水蒸気供給管路L1に常圧水蒸気が供給され、例えば空気タンク、コンプレッサ及びドライヤ等である乾燥空気発生装置5から乾燥空気供給管路L2に常圧乾燥空気が供給されるため、管路L1及びL2が合流した混合ガス供給管路L3を経由して、電磁誘導加熱装置1の装置本体1Aには、前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される。
ここで、水蒸気発生装置4から水蒸気供給管路L1に供給された常圧水蒸気は、管路L1に設置された蒸気流量制御弁6Aにより流量を調節することができ、その流量は蒸気流量センサ6Bにより検出され、蒸気流量センサ6Bの検出値が制御装置3へ送られ、制御装置3により蒸気流量制御弁6Aが制御される。
また、乾燥空気発生装置5から乾燥空気供給管路L2に供給された常圧乾燥空気は、管路L2に設置された空気流量制御弁7Aにより流量を調節することができ、その流量は空気流量センサ7Bにより検出され、空気流量センサ7Bの検出値が制御装置3へ送られ、制御装置3により空気流量制御弁7Aが制御される。
さらに、混合ガス供給管路L3に供給された前記常圧水蒸気及び常圧乾燥空気の混合ガスは、管路L3に設置された混合ガス流量制御弁8Aにより流量を調節することができ、その流量は混合ガス流量センサ8Bにより検出され、混合ガス流量センサ8Bの検出値が制御装置3へ送られ、制御装置3により混合ガス流量制御弁8Aが制御される。
As shown in FIG. 1, normal-pressure steam is supplied to a steam supply line L1 from a steam generator 4 that is a boiler for pure water, for example, and is dried from a
Here, the normal-pressure steam supplied from the steam generator 4 to the steam supply pipe L1 can be adjusted in flow rate by the steam
The normal pressure dry air supplied from the
Furthermore, the flow rate of the mixed gas of the normal pressure steam and the normal pressure dry air supplied to the mixed gas supply line L3 can be adjusted by the mixed gas flow
混合ガス供給管路L3から電磁誘導加熱装置1の装置本体1Aに供給された前記常圧水蒸気及び常圧乾燥空気の混合ガスは、約200℃以上で透明となった常圧過熱水蒸気を発生させるように電磁誘導加熱装置1により加熱される。
このように発生した約200℃以上で透明となった常圧過熱水蒸気の温度は、過熱水蒸気及び加熱乾燥空気供給管路L4(図2に示す噴出部2A,2A又は2B,2Bまでの管路L41又はL42も含む。)を通して、被乾燥材に適した所定温度である活物質溶液の溶剤の沸点(前記溶剤がN−メチル−2−ピロリドンである場合、204℃)未満の温度であり、且つ、集電体Aと活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで低下させた状態とされ、この状態の常圧過熱水蒸気が乾燥チャンバ2内へ導入される。
The mixed gas of the normal pressure steam and the normal pressure dry air supplied from the mixed gas supply line L3 to the apparatus
The temperature of the normal-pressure superheated steam that became transparent at about 200 ° C. or more generated in this way is the superheated steam and heated and dried air supply pipe L4 (
なお、約200℃以上で透明となった常圧過熱水蒸気の温度を被乾燥材に適した所定温度まで低下させるための、電磁誘導加熱装置1から噴出部2A,2A又は2B,2Bまでの管路L4の長さは、被乾燥材の種類や厚さにより異なるため、実験又は試作等により決定することができ、このように約200℃以上で透明となった常圧過熱水蒸気の温度を目標温度(被乾燥材に適した所定温度)にするための微調整は、例えば蒸気流量制御弁6A又は混合ガス流量制御弁8Aを操作する流量調整により行うことができる。
また、電磁誘導加熱装置1の装置本体1Aには前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給されるため、前記所定温度まで温度が低下した常圧過熱水蒸気とともに、前記常圧過熱水蒸気と同じ温度の常圧乾燥空気も管路L4を経由して乾燥チャンバ2内へ導入される。
In addition, the tube from the electromagnetic induction heating device 1 to the jetting
Further, since the mixed gas of the normal pressure steam and the normal pressure dry air is supplied to the apparatus
例えば、図2の概略縦断面図に示すように、乾燥チャンバ2内を搬送される活物質溶液が両面に塗布された集電体Aに対し、その両面に離間するように設置された、例えば直径1〜2mm程度の多数の通孔が集電体Aに対向する面に形成された箱体である噴出部2A,2A及び2B,2Bから、上述のとおり過熱水蒸気及び加熱乾燥空気供給管路L4を経由して前記所定温度まで温度が低下した状態の混合ガスGが噴出する。
ここで、乾燥チャンバ2内の温度及び湿度は、図1に示す温度センサ2T及び湿度センサ2Hにより検出され、温度センサ2Tの検出値及び湿度センサ2Hの検出値が制御装置3へ送られ、制御装置3により、後述するように乾燥チャンバ2内の温度及び湿度が制御される。
なお、活物質溶液が片面に塗布された集電体Aに対しては、活物質溶液が塗布された片面に対向する側から混合ガスGが噴出するように、噴出部2A,2A及び噴出部2B,2Bの一方のみとする。
また、制御装置3によりダンパ9を開閉するアクチュエータが制御され、活物質溶液の溶剤が気化したガスは、排気管路L5を経由してダンパ9から排気される。
For example, as shown in the schematic longitudinal cross-sectional view of FIG. 2, the current collector A applied on both sides of the active material solution transported in the drying
Here, the temperature and humidity in the drying
For the current collector A on which the active material solution is applied on one side, the
Further, the actuator that opens and closes the damper 9 is controlled by the control device 3, and the gas vaporized by the solvent of the active material solution is exhausted from the damper 9 via the exhaust line L5.
次に、本発明の実施の形態に係る乾燥方法について説明する。
(乾燥チャンバ内予熱工程)
図1に示す構成の乾燥装置において、蒸気流量制御弁6Aを閉じ、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3を経由して、常圧乾燥空気のみを電磁誘導加熱装置1の装置本体1Aに供給する。
この常圧乾燥空気を電磁誘導加熱装置1により所定温度(例えば、150℃〜160℃程度)まで加熱し、このように加熱された常圧加熱乾燥空気を管路L4から乾燥チャンバ2内へ供給することにより、温度センサ2Tで検出した乾燥チャンバ2内の温度を100℃以上の所定温度(例えば120℃)に昇温し、乾燥チャンバ2の内壁の温度を100℃以上にする。
この工程により、冷えた乾燥チャンバ2内に過熱水蒸気を供給することによる結露の発生を抑制することができる。
Next, the drying method according to the embodiment of the present invention will be described.
(Preheating process in drying chamber)
In the drying apparatus having the configuration shown in FIG. 1, the steam flow
The normal pressure dry air is heated to a predetermined temperature (for example, about 150 ° C. to 160 ° C.) by the electromagnetic induction heating device 1, and the normal pressure heated dry air thus heated is supplied into the drying
By this step, it is possible to suppress the occurrence of condensation due to supplying superheated steam into the cooled drying
(被乾燥材の乾燥工程)
次に、図1に示す構成の乾燥装置において、蒸気流量制御弁6Aを開いて水蒸気発生装置4から常圧水蒸気を管路L1に供給するとともに、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3を経由して、常圧水蒸気及び常圧乾燥空気の混合ガスを電磁誘導加熱装置1の装置本体1Aに供給する。
前記混合ガスを電磁誘導加熱装置1により加熱して常圧で約200℃以上に加熱されて透明となった常圧過熱水蒸気を発生させ、上述のとおり管路L4を経由させて、活物質溶液の溶剤の沸点未満の温度であり、且つ、集電体Aと活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで低下させた状態の常圧過熱水蒸気と加熱乾燥空気との混合ガスG(図2参照。)を乾燥チャンバ2に供給する。
そして、活物質溶液が表面に塗布された集電体Aを前記搬送系により所定搬送速度で下流側へ搬送しながら、混合ガスGにより蓄熱効果を利用しながら加熱を行うとともに、上述のとおり約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体A(芯材)を発熱させ、蓄熱効果を利用しながら活物質溶液の溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
(Drying process of material to be dried)
Next, in the drying apparatus having the configuration shown in FIG. 1, the steam
The mixed gas is heated by the electromagnetic induction heating device 1 to generate normal-pressure superheated steam that is heated to about 200 ° C. or higher at normal pressure and becomes transparent, and passes through the pipe L4 as described above, and the active material solution Normal pressure superheated steam and heating in a state where the temperature is lower than the boiling point of the solvent and the temperature is lowered to a high temperature (for example, 180 ° C.) within a range where the binding force between the current collector A and the active material does not decrease A mixed gas G with dry air (see FIG. 2) is supplied to the drying
And while conveying the collector A coated with the active material solution on the downstream side at a predetermined conveyance speed by the conveyance system, while heating using the heat storage effect by the mixed gas G, about as described above Utilizing characteristics such as high osmotic power that can be maintained even if the temperature of atmospheric superheated steam reaching 200 ° C or higher is lowered, heat is collected from current collector A (core material) instead of drying from the surface, thereby storing heat. Since the solvent of the active material solution can be dried and evaporated from the inside while utilizing the effect, the dry surface can be efficiently dried while keeping the dry surface in a good condition, thus eliminating the need for a preheating zone. be able to.
ここで、温度センサ2Tの検出値が制御装置3へ送られることから、制御装置3は、搬送速度センサ10により検出した搬送速度を参照して活物質溶液の溶剤を乾燥蒸発させるための単位時間当たりの熱エネルギを考慮しながら、乾燥チャンバ2内へ供給すべき図2に示す混合ガスGの流量を、例えば混合ガス流量制御弁8Aを調節することにより制御して、温度センサ2Tの検出値が低下し過ぎないように温度制御することができる。
また、このように被乾燥材(集電体A及び活物質)を乾燥する際には、湿度センサ2Hの検出値が制御装置3へ送られることから、制御装置3により空気流量制御弁7Aを操作して常圧乾燥空気の供給量を調節することにより、乾燥チャンバ2に供給する常圧加熱乾燥空気の量を調節することができるため、乾燥チャンバ2内の湿度を所定湿度以下(例えば、20%以下)又は所定湿度範囲内(例えば、10%〜20%)にすることにより、乾燥チャンバ2内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、集電体A及び活物質の乾燥をさらに効率的に行うことができる。
さらに、乾燥チャンバ2内に常圧過熱蒸気が充満することから、乾燥チャンバ2内を無酸素状態にすることができるため、集電体A及び活物質の酸化防止を促すことができる。
Here, since the detected value of the
Further, when the material to be dried (the current collector A and the active material) is dried in this way, the detection value of the
Furthermore, since the atmospheric pressure superheated steam is filled in the drying
(運転停止工程)
図1に示す構成の乾燥装置の運転を停止させる際には、乾燥チャンバ2内の結露を防ぐために、蒸気流量制御弁6Aを閉じ、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3から常圧乾燥空気のみを電磁誘導加熱装置1の装置本体1Aに供給し、電磁誘導加熱装置1により加熱された加熱乾燥空気のみを管路L4から乾燥チャンバ2に供給し、加熱乾燥空気の温度を少しずつ下げるように制御装置3により電磁誘導加熱装置1を制御して運転を停止する。
(Operation stop process)
When the operation of the drying apparatus having the configuration shown in FIG. 1 is stopped, in order to prevent condensation in the drying
以上の説明においては、常圧水蒸気及び常圧乾燥空気の混合ガスを電磁誘導加熱装置1に供給して加熱する構成を示したが、常圧水蒸気の加熱と常圧乾燥空気の加熱とを別の加熱装置により行う構成としてもよく、例えば常圧水蒸気の供給及び加熱ルートと分離した加熱乾燥空気供給装置の構成、すなわち常圧乾燥空気を電磁誘導加熱装置1と別体の加熱装置に供給して加熱し、このように加熱された常圧加熱乾燥空気を乾燥チャンバに供給するようにしてもよい。
ただし、図1に示す構成の乾燥装置のように電磁誘導加熱装置1に常圧水蒸気及び常圧乾燥空気の混合ガスを供給し、電磁誘導加熱装置1により、約200℃以上の領域に達した常圧過熱水蒸気を発生するための常圧水蒸気の加熱及び乾燥チャンバ2内の湿度制御に用いる常圧乾燥空気の加熱の両方を行う構成によれば、常圧加熱乾燥空気を乾燥チャンバ2に供給する加熱乾燥空気供給装置を別途設ける必要がないため、より好ましい実施態様である。
In the above description, a configuration in which a mixed gas of atmospheric pressure steam and atmospheric pressure dry air is supplied to the electromagnetic induction heating device 1 and heated is shown. However, heating of atmospheric pressure steam and heating of atmospheric pressure dry air are different. For example, the structure of the heated dry air supply apparatus separated from the supply and heating route of atmospheric steam, that is, the atmospheric dry air is supplied to the electromagnetic induction heating apparatus 1 and a separate heating apparatus. The atmospheric pressure heated dry air heated in this manner may be supplied to the drying chamber.
However, the mixed gas of atmospheric pressure steam and atmospheric pressure dry air was supplied to the electromagnetic induction heating apparatus 1 as in the drying apparatus having the configuration shown in FIG. 1, and the electromagnetic induction heating apparatus 1 reached an area of about 200 ° C. or higher. According to the configuration that performs both the heating of the normal pressure steam for generating the normal pressure superheated steam and the heating of the normal pressure dry air used for controlling the humidity in the drying
A 集電体
F 搬送方向
G 混合ガス
L1 水蒸気供給管路
L2 乾燥空気供給管路
L3 混合ガス供給管路
L4,L41,L42 過熱水蒸気及び加熱乾燥空気供給管路
L5 排気管路
1 電磁誘導加熱装置
1A 装置本体
1B 高周波電流発生器
1T 温度センサ
2 乾燥チャンバ
2A,2B 噴出部
2T 温度センサ
2H 湿度センサ
3 制御装置
4 水蒸気発生装置
5 乾燥空気発生装置
6A 蒸気流量制御弁
6B 蒸気流量センサ
7A 空気流量制御弁
7B 空気流量センサ
8A 混合ガス流量制御弁
8B 混合ガス流量センサ
9 ダンパ
10 搬送速度センサ
A Current collector F Transport direction G Mixed gas L1 Water vapor supply line L2 Dry air supply line L3 Mixed gas supply lines L4, L41, L42 Superheated steam and heated dry air supply line L5 Exhaust line 1 Electromagnetic induction heating device DESCRIPTION OF
Claims (3)
管路を通して水又は水蒸気が供給される電磁誘導加熱装置と、
前記水又は水蒸気を加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、
前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気供給管路とを備え、
前記約200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気供給管路を通すことにより、前記被乾燥材に適した所定温度まで温度を低下させた状態として前記乾燥チャンバに供給し、
前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることを特徴とする乾燥装置。 A drying device for drying a material to be dried in a drying chamber,
An electromagnetic induction heating device to which water or steam is supplied through a pipeline;
A control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the water or steam;
A superheated steam supply line connected to the drying chamber and an electromagnetic induction heating device;
The normal pressure superheated steam that has become transparent at about 200 ° C. or higher is supplied to the drying chamber in a state where the temperature is lowered to a predetermined temperature suitable for the material to be dried by passing through the superheated steam supply pipe. ,
The material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and a predetermined temperature suitable for the material to be dried is the active material. a temperature below the boiling point of the solvent of the solution, and drying and wherein the temperature der Rukoto the bonding strength between the active material and the current collector is set high within a range that does not decrease.
前記乾燥チャンバ内の湿度を検出する湿度センサとを備え、
前記加熱乾燥空気供給装置により前記乾燥チャンバに供給する前記常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置を備えてなる請求項1記載の乾燥装置。 A heated and dried air supply device for supplying atmospheric pressure heated and dried air to the drying chamber through a conduit;
A humidity sensor for detecting the humidity in the drying chamber;
The humidity in the drying chamber detected by the humidity sensor is controlled to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of the atmospheric pressure heated dry air supplied to the drying chamber by the heated dry air supply device. 2. The drying apparatus according to claim 1, further comprising a control device that performs the control.
常圧水蒸気を発生する水蒸気発生装置と、
常圧乾燥空気を発生する乾燥空気発生装置と、
前記水蒸気発生装置に接続されて前記常圧水蒸気が供給される水蒸気供給管路及び前記乾燥空気発生装置に接続されて前記常圧乾燥空気が供給される乾燥空気供給管路が合流する混合ガス供給管路を通して前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される電磁誘導加熱装置と、
前記混合ガスを加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、
前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路と、
前記乾燥チャンバ内の湿度を検出する湿度センサと、
前記過熱水蒸気及び加熱乾燥空気供給管路を通して前記乾燥チャンバに供給する常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置とを備え、
前記200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気及び加熱乾燥空気供給管路を通すことにより、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として前記乾燥チャンバに供給することを特徴とする乾燥装置。 A drying apparatus for drying the current collector and the active material after applying an active material solution to a current collector of a non-aqueous electrolyte secondary battery, which is a material to be dried in a drying chamber,
A steam generator for generating atmospheric steam,
A dry air generator for generating atmospheric dry air;
A mixed gas supply in which a steam supply line connected to the steam generator and supplied with the normal pressure steam and a dry air supply line connected to the dry air generator and supplied with the normal pressure dry air join together An electromagnetic induction heating device to which a mixed gas of the atmospheric steam and the atmospheric dry air is supplied through a pipe;
A control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the mixed gas;
Superheated steam and heated dry air supply lines connected to the drying chamber and electromagnetic induction heating device;
A humidity sensor for detecting humidity in the drying chamber;
The humidity in the drying chamber detected by the humidity sensor is controlled to be equal to or lower than a predetermined humidity or in a predetermined humidity range by adjusting the amount of atmospheric pressure heated dry air supplied to the drying chamber through the superheated steam and heated dry air supply line. And a control device for controlling inside,
The normal pressure superheated steam that becomes transparent at 200 ° C. or higher is passed through the superheated steam and heated dry air supply pipe, so that the temperature is lower than the boiling point of the solvent of the active material solution, and the current collector A drying apparatus, wherein the drying chamber is supplied in a state where the temperature is lowered to a temperature set high in a range in which the binding force between the active material and the active material does not decrease.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011202085A JP5392332B2 (en) | 2011-09-15 | 2011-09-15 | Drying equipment |
CN201280044980.4A CN104040275B (en) | 2011-09-15 | 2012-09-07 | Drying device and drying means |
PCT/JP2012/072929 WO2013039005A1 (en) | 2011-09-15 | 2012-09-07 | Drying device and drying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011202085A JP5392332B2 (en) | 2011-09-15 | 2011-09-15 | Drying equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013064516A JP2013064516A (en) | 2013-04-11 |
JP5392332B2 true JP5392332B2 (en) | 2014-01-22 |
Family
ID=47883236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011202085A Active JP5392332B2 (en) | 2011-09-15 | 2011-09-15 | Drying equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5392332B2 (en) |
CN (1) | CN104040275B (en) |
WO (1) | WO2013039005A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023224234A1 (en) * | 2022-05-19 | 2023-11-23 | Lg Energy Solution, Ltd. | Method and system for drying a battery part |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104934235B (en) * | 2014-03-23 | 2019-12-31 | 东莞东阳光科研发有限公司 | Preparation method of electrode for supercapacitor |
KR102257673B1 (en) * | 2014-05-15 | 2021-05-28 | 삼성에스디아이 주식회사 | Apparatus for drying electrode plate and method for drying the same |
KR101822593B1 (en) | 2015-03-17 | 2018-01-26 | 주식회사 엘지화학 | Electrode having porous binder coating layer, method for preparation thereof, and lithium secondary battery comprising the same |
CN104928966B (en) * | 2015-06-17 | 2017-02-01 | 湖南广信科技股份有限公司 | Drying technology for paper and paperboard |
JP6604055B2 (en) * | 2015-07-02 | 2019-11-13 | 凸版印刷株式会社 | Method and apparatus for manufacturing laminated sheet |
KR101765471B1 (en) * | 2015-11-30 | 2017-08-07 | 씨아이에스(주) | Superheated steam generating apparatus for manufacturing process of secondary cell |
KR102752344B1 (en) * | 2019-08-01 | 2025-01-10 | 주식회사 엘지에너지솔루션 | Dryer for electrode with water spraying unit and electrode drying method thereof |
JPWO2022131295A1 (en) * | 2020-12-16 | 2022-06-23 | ||
CN113694873A (en) * | 2021-09-14 | 2021-11-26 | 朱枫 | Production and processing equipment and process of polyurethane waterproof coating |
CN116829890A (en) * | 2021-11-18 | 2023-09-29 | 株式会社Lg新能源 | Electrode manufacturing apparatus and electrode manufacturing method |
CN114279182B (en) * | 2021-12-27 | 2023-01-17 | 奉节县夔宇农业开发有限责任公司 | Raw materials quick drying device convenient to chinese-medicinal material processing usefulness |
JP2023145181A (en) * | 2022-03-28 | 2023-10-11 | 東レエンジニアリング株式会社 | drying system |
CN115377503A (en) * | 2022-06-16 | 2022-11-22 | 岳阳耀宁新能源科技有限公司 | Electromagnetic heating accelerated electrolyte infiltration device and infiltration method |
CN117968365B (en) * | 2024-02-29 | 2024-07-02 | 广西广投正润新材料科技有限公司 | Visual recognition drying method and device for electronic aluminum foil |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039470A (en) * | 1983-08-10 | 1985-03-01 | 株式会社高分子加工研究所 | Continuous fiber heat method and apparatus |
JP4330488B2 (en) * | 2004-05-12 | 2009-09-16 | 達實 小野 | Heat treatment equipment using superheated steam |
JP2006318809A (en) * | 2005-05-13 | 2006-11-24 | Toyota Motor Corp | Manufacturing method of electrode assembly for fuel cell and electrode assembly for fuel cell |
JP2008103098A (en) * | 2006-10-17 | 2008-05-01 | Matsushita Electric Ind Co Ltd | Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment |
JP4793317B2 (en) * | 2007-04-23 | 2011-10-12 | トヨタ自動車株式会社 | Membrane electrode assembly manufacturing method, membrane electrode assembly, membrane electrode assembly manufacturing apparatus, and fuel cell |
JP2009004268A (en) * | 2007-06-22 | 2009-01-08 | Toyota Motor Corp | Diffusion layer, fuel cell using the same, and method of manufacturing the same |
JP5401998B2 (en) * | 2009-01-09 | 2014-01-29 | セイコーエプソン株式会社 | Recording device |
CN101628779B (en) * | 2009-08-21 | 2011-05-11 | 北京大学 | Method and device for drying sludge by utilizing high-temperature steam |
-
2011
- 2011-09-15 JP JP2011202085A patent/JP5392332B2/en active Active
-
2012
- 2012-09-07 WO PCT/JP2012/072929 patent/WO2013039005A1/en active Application Filing
- 2012-09-07 CN CN201280044980.4A patent/CN104040275B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023224234A1 (en) * | 2022-05-19 | 2023-11-23 | Lg Energy Solution, Ltd. | Method and system for drying a battery part |
Also Published As
Publication number | Publication date |
---|---|
CN104040275B (en) | 2015-11-25 |
JP2013064516A (en) | 2013-04-11 |
CN104040275A (en) | 2014-09-10 |
WO2013039005A1 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5392332B2 (en) | Drying equipment | |
ES2767400T3 (en) | Device for the formation of coatings on surfaces of a constructive part, a material in the form of a band or a tool | |
US10184717B2 (en) | Apparatus for drying electrode plate | |
KR101467640B1 (en) | Method and apparatus for drying electrode | |
JP5909986B2 (en) | Electrode drying method and electrode drying apparatus | |
US20140050850A1 (en) | Vacuum apparatus, method for cooling heat source in vacuum, and thin film manufacturing method | |
CN204795670U (en) | Respond to roller device that generates heat | |
JP2011064406A (en) | Composite material sheet manufacturing machine and method of manufacturing composite material sheet | |
CN103237917B (en) | Dry method coating unit | |
CN105363348B (en) | Distillation device and the membrane distillation system with the distillation device | |
JP5887437B2 (en) | Drying equipment and heat treatment system | |
JP2012013383A (en) | Drying device in thin film coating device | |
JP5359148B2 (en) | Solvent recovery system and solvent recovery method | |
JP2015124982A (en) | Heat pump drying device and heat pump drying device operation method | |
JP7462161B2 (en) | Drying method and drying device | |
WO2016181692A1 (en) | Steam circulation regeneration system | |
JP2009235520A (en) | Cold spray method, and cold spray device | |
CN112436100B (en) | Isothermal die head device for substrate surface and application method | |
JP6200304B2 (en) | Continuous superheated steam heat treatment apparatus and method for producing conductive coating film | |
JP4445481B2 (en) | Thin plate joining apparatus and thin plate joining method using the same | |
WO2014141421A1 (en) | Oil diffusion pump and vacuum film formation device | |
CN221566292U (en) | Electromagnetic induction evaporation device | |
CN106871487A (en) | Absorption heat pump | |
JP2024528204A (en) | Coating installation for coating an object, method for coating an object and use thereof | |
JP3636588B2 (en) | Drying equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130411 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130411 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5392332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |