[go: up one dir, main page]

JP5392332B2 - Drying equipment - Google Patents

Drying equipment Download PDF

Info

Publication number
JP5392332B2
JP5392332B2 JP2011202085A JP2011202085A JP5392332B2 JP 5392332 B2 JP5392332 B2 JP 5392332B2 JP 2011202085 A JP2011202085 A JP 2011202085A JP 2011202085 A JP2011202085 A JP 2011202085A JP 5392332 B2 JP5392332 B2 JP 5392332B2
Authority
JP
Japan
Prior art keywords
drying chamber
dry air
drying
steam
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011202085A
Other languages
Japanese (ja)
Other versions
JP2013064516A (en
Inventor
善之 塩路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Jitsugyo Co Ltd
Original Assignee
Daiichi Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Jitsugyo Co Ltd filed Critical Daiichi Jitsugyo Co Ltd
Priority to JP2011202085A priority Critical patent/JP5392332B2/en
Priority to CN201280044980.4A priority patent/CN104040275B/en
Priority to PCT/JP2012/072929 priority patent/WO2013039005A1/en
Publication of JP2013064516A publication Critical patent/JP2013064516A/en
Application granted granted Critical
Publication of JP5392332B2 publication Critical patent/JP5392332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、常圧過熱水蒸気を用いて被乾燥材を乾燥させる乾燥装置に関わり、特にリチウムイオン電池等の非水系電解液二次電池において、集電体に活物質溶液を塗布した後の乾燥に好適な乾燥装置に関する。 The present invention relates to a drying apparatus for drying a material to be dried using atmospheric superheated steam, and in particular, in a non-aqueous electrolyte secondary battery such as a lithium ion battery, drying after applying an active material solution to a current collector It is related with the drying apparatus suitable for.

リチウムイオン電池等の非水系電解液二次電池において、その電極は、金属箔からなる集電体(例えばアルミ箔、銅箔)に活物質(例えばリチウム複合酸化物、炭素材)溶液を塗布し、溶剤(溶媒)を乾燥蒸発させた後に、活物質が一定の厚みになるようにプレスして形成される。
集電体に活物質溶液を塗布した後に用いられる乾燥装置としては、熱風ノズルから熱風を吹き付けて乾燥する構成が一般的である(例えば、特許文献1参照。)。
また、被乾燥材を塗工フィルム又は湿潤フィルム(被乾燥フィルム)に特化した乾燥装置として、乾燥チャンバ内に、内部温度維持及び被乾燥フィルムの予熱を行う加熱部、加熱部で加熱された被乾燥フィルムに対して100〜300℃に加熱された常圧過熱水蒸気を噴出する過熱水蒸気噴出部、並びに、過熱水蒸気噴出部から常圧過熱水蒸気を被乾燥フィルムに噴射して温度低下した揮発性有機溶媒成分等を含む排水蒸気を回収するための排気吸入部のセットを複数備えたものがある(例えば、特許文献2参照。)。
さらに、常圧過熱水蒸気の発生に好適な電磁誘導加熱装置として、流体が通過する非磁性材料のパイプ内に収納された流体が浸かる発熱体を、多層構造を形成する基材と、多層構造によって形成された規則的な多数の流体通路とを有する多層構造体としてなる、電磁誘導で加熱する直接加熱による応答性の高い電磁誘導加熱装置がある(例えば、特許文献3及び4参照。)。
In a non-aqueous electrolyte secondary battery such as a lithium ion battery, the electrode is formed by applying an active material (eg, lithium composite oxide, carbon material) solution to a current collector (eg, aluminum foil, copper foil) made of a metal foil. After the solvent (solvent) is dried and evaporated, the active material is pressed to a certain thickness.
As a drying apparatus used after applying an active material solution to a current collector, a configuration in which hot air is blown from a hot air nozzle to dry is generally used (see, for example, Patent Document 1).
In addition, as a drying device specializing in a material to be dried on a coated film or a wet film (film to be dried), the drying chamber was heated by a heating unit and a heating unit for maintaining the internal temperature and preheating the film to be dried. The superheated steam jetting part for jetting normal pressure superheated steam heated to 100 to 300 ° C. with respect to the film to be dried, and the volatility in which the normal pressure superheated steam is jetted from the superheated steam jet part onto the film to be dried. Some have a plurality of sets of exhaust suction parts for recovering drainage steam containing organic solvent components and the like (see, for example, Patent Document 2).
Furthermore, as an electromagnetic induction heating device suitable for generation of atmospheric superheated steam, a heating element immersed in a non-magnetic material pipe through which a fluid passes is divided into a base material that forms a multilayer structure and a multilayer structure. There is a highly responsive electromagnetic induction heating device by direct heating that is heated by electromagnetic induction, which is a multilayer structure having a large number of formed regular fluid passages (see, for example, Patent Documents 3 and 4).

特開2008−103098号公報JP 2008-103098 A 特開2007−276283号公報JP 2007-276283 A 特許第2889607号公報Japanese Patent No. 2889607 特許第3628705号公報Japanese Patent No. 3628705

非水系電解液二次電池の電極の乾燥装置として特許文献1のような熱風ノズルから熱風(130℃程度が温度の上限である。)を吹き付ける構成では、熱風による表面からの乾燥であるとともに、集電体に塗布された活物質の塗工膜の温度を溶剤の沸点(例えば、204℃)まで徐々に高めるための予熱ゾーンが必要となること等から乾燥時間(乾燥距離)が長くなるため、乾燥装置の占有面積が大きくなってしまうという問題点がある。
また、特許文献2のような被乾燥フィルムの乾燥装置を非水系電解液二次電池の電極の乾燥装置に適用した場合には、熱伝導性の高い100〜300℃に加熱された常圧過熱水蒸気を用いていることから、熱風を用いるものよりも乾燥効率が高くなるため、乾燥時間(乾燥距離)を比較的短くすることができると考えられる。
しかしながら、特許文献2の乾燥装置はフィルムに対する乾燥に特化したものであり、内部温度維持及び被乾燥フィルムの予熱を行う加熱部が必要になること等も相俟って、常圧過熱水蒸気を用いて非水系電解液二次電池の電極の乾燥をより効率的に行うためには改良の余地がある。
In the configuration in which hot air (about 130 ° C. is the upper limit of temperature) is blown from a hot air nozzle as in Patent Document 1 as a drying device for an electrode of a non-aqueous electrolyte secondary battery, drying is performed from the surface by hot air, The drying time (drying distance) becomes longer due to the need for a preheating zone for gradually increasing the temperature of the coating film of the active material applied to the current collector to the boiling point of the solvent (eg, 204 ° C.). There is a problem that the occupation area of the drying device becomes large.
Moreover, when the drying apparatus of the to-be-dried film like patent document 2 is applied to the drying apparatus of the electrode of a non-aqueous electrolyte secondary battery, the normal pressure overheating heated at 100-300 degreeC with high heat conductivity is carried out. Since water vapor is used, the drying efficiency is higher than that using hot air, and it is considered that the drying time (drying distance) can be made relatively short.
However, the drying apparatus of Patent Document 2 is specialized for drying of a film, and in combination with the need for a heating unit for maintaining the internal temperature and preheating the film to be dried, atmospheric superheated steam is generated. There is room for improvement in order to use and dry the electrodes of the non-aqueous electrolyte secondary battery more efficiently.

そこで本発明が前述の状況に鑑み、解決しようとするところは、常圧過熱水蒸気を用いて被乾燥材をより効率的に乾燥させる乾燥装置、特に非水系電解液二次電池の電極の乾燥に好適な乾燥装置を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention intends to solve a drying apparatus for drying a material to be dried more efficiently using atmospheric superheated steam, particularly for drying an electrode of a non-aqueous electrolyte secondary battery. It is in providing a suitable drying apparatus .

本願の発明者は、リチウムイオン電池等の非水系電解液二次電池において、集電体に活物質溶液を塗布した後の乾燥を効率的に行うために、常圧過熱水蒸気を用いてその浸透性等の特徴を活用するための検討、実験及び試作等による具体化を進めることにより本発明を完成するに至った。   The inventor of the present application uses a normal-pressure superheated steam in order to efficiently dry the non-aqueous electrolyte secondary battery such as a lithium ion battery after applying the active material solution to the current collector. The present invention has been completed by advancing the embodiment by examination, experimentation, trial manufacture, etc. for utilizing characteristics such as sex.

以下において、先ず、過熱水蒸気について説明する。
図3の水の温度−圧力相図に示すように、水はその温度と圧力により、固相、液相及び気相に分類できる。すなわち、融解曲線TAの左側で昇華曲線TBの左側の領域が固相、融解曲線TAの右側で蒸発曲線TCの左側の領域が液相、昇華曲線TB及び蒸発曲線TCの右側の領域が気相になる。
ここで、気相では、水は水蒸気として存在し、一般に水蒸気と呼ばれる物性の水は1気圧100℃の点Pに存在しており、蒸発曲線TCの右側の領域に位置する水蒸気、すなわち圧力に対応する飽和温度以上に熱せられた状態にある水蒸気(沸点以上の温度の高い水蒸気)を過熱水蒸気と呼んでいる。
In the following, first, superheated steam will be described.
As shown in the temperature-pressure phase diagram of water in FIG. 3, water can be classified into a solid phase, a liquid phase, and a gas phase according to its temperature and pressure. That is, the region on the left side of the sublimation curve TB on the left side of the melting curve TA is the solid phase, the region on the left side of the evaporation curve TC on the right side of the melting curve TA is the liquid phase, and the region on the right side of the sublimation curve TB and the evaporation curve TC is the gas phase. become.
Here, in the gas phase, water exists as water vapor, and water having physical properties generally called water vapor exists at a point P of 1 atm and 100 ° C., and the water vapor located in the region on the right side of the evaporation curve TC, ie, the pressure. Steam that is heated to a temperature equal to or higher than the corresponding saturation temperature (steam having a temperature higher than the boiling point) is called superheated steam.

水蒸気は、その結露点以下の温度域では凝縮しあって白いモヤモヤとした蒸気に変わり、このように白く見える水蒸気は空気中に浮かぶ凝縮した水の固まりであると解釈され、直径が30μm以上になると目に映る白いモヤモヤとした状態になっている。
ところが、点Pを大きく右側に越えた高温状態の過熱水蒸気(約200℃以上の領域に達した常圧過熱水蒸気)を結露点以下に戻しても、白いモヤモヤとした水蒸気になりにくいことがわかっており、一旦高温域に温度を上げた水蒸気は何らかのエネルギを得るのか凝縮しにくく、それが為に30μm以上の直径になりにくいものと推測される。
実際、過飽和状態の空間で過熱水蒸気を送気してもその空間は白くモヤモヤとした空間にならず、極めてクリアな空間が維持できている。
また、この高温域に達した水蒸気は単体の分子状態で存在すると推測され、それが為に細かい隙間などの空域に進入しやすいと考えられる。
The water vapor condenses and turns into a white dull vapor in the temperature range below the dew point, and the water vapor that looks white like this is interpreted as a mass of condensed water floating in the air, with a diameter of 30 μm or more. It becomes a state of white haze that is visible in the eyes.
However, it is understood that even when the superheated steam in a high temperature state that greatly exceeds the point P on the right side (normal pressure superheated steam reaching a region of about 200 ° C. or more) is returned to the dew point or less, it does not easily become white moisture. It is presumed that the water vapor once raised to a high temperature region is difficult to condense or obtain some energy, so that it is difficult to have a diameter of 30 μm or more.
In fact, even if superheated steam is supplied in a supersaturated space, the space is not white and dull, and a very clear space can be maintained.
Moreover, it is estimated that the water vapor that has reached this high temperature region exists in a single molecular state, and therefore, it is considered that the water vapor easily enters an air space such as a fine gap.

次に、非水系電解液二次電池の電極の集電体に塗布した活物質溶液の溶剤の除去について説明する。
溶剤は気化しなければ取り除くことができないため、溶剤を沸点以上の温度にする必要がある。
しかしながら、集電体に塗布した活物質溶液を溶剤の沸点以上の温度で急速に乾燥させると、溶剤が突沸してしまい、乾燥表面が焼けた状態になってしまうことがわかっている。
したがって、従来の乾燥装置においては、上述のとおり集電体に塗布された活物質の塗工膜の温度を溶剤の沸点まで徐々に高めるための予熱ゾーンが必要であった。
Next, the removal of the solvent of the active material solution applied to the current collector of the electrode of the nonaqueous electrolyte secondary battery will be described.
Since the solvent cannot be removed unless it evaporates, it is necessary to bring the solvent to a temperature higher than the boiling point.
However, it has been found that if the active material solution applied to the current collector is rapidly dried at a temperature equal to or higher than the boiling point of the solvent, the solvent bumps and the dried surface is burnt.
Therefore, in the conventional drying apparatus, the preheating zone for gradually raising the temperature of the coating film of the active material applied to the current collector to the boiling point of the solvent as described above is necessary.

以上の着眼点から、本願の発明者は、集電体に活物質溶液を塗布した後に常圧過熱水蒸気を吹き付けて乾燥を行いながら予熱ゾーンを不要にするために、約200℃以上に加熱されて透明となった常圧過熱水蒸気を、気化させて取り除く溶剤の沸点未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として乾燥チャンバに供給することにより、蓄熱効果を利用しながら加熱を行うとともに、上述のとおり約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥するという着想を得た。
また、結露の防止及び乾燥の促進のために、常圧水蒸気に常圧乾燥空気を混合した混合ガスを、その混合比率を変えながら電磁誘導加熱装置に供給することができるように構成し、乾燥チャンバに供給する常圧加熱乾燥空気の量(常圧過熱水蒸気に対する常圧加熱乾燥空気の比率)を操作することにより乾燥チャンバ内の湿度を制御するという着想を得た。
In view of the above, the inventor of the present application is heated to about 200 ° C. or more in order to make the preheating zone unnecessary while spraying atmospheric superheated steam after applying the active material solution to the current collector and drying. The atmospheric pressure superheated steam that has become transparent is less than the boiling point of the solvent that is removed by vaporization, and the temperature is lowered to a high temperature within a range where the binding force between the current collector and the active material does not decrease As described above, heating is performed while utilizing the heat storage effect, and high osmotic power that is maintained even if the temperature of the atmospheric superheated steam that reaches the region of about 200 ° C. or higher is lowered as described above. Taking advantage of the characteristics, the idea was to dry efficiently while maintaining a good dry surface where the dry surface does not burn.
In addition, in order to prevent condensation and promote drying, a mixed gas in which atmospheric pressure dry air is mixed with atmospheric pressure steam can be supplied to the electromagnetic induction heating device while changing the mixing ratio, and drying is performed. The idea was to control the humidity in the drying chamber by manipulating the amount of atmospheric heated dry air supplied to the chamber (ratio of atmospheric heated dry air to atmospheric superheated steam).

すなわち、本発明に係る乾燥装置は、前記課題解決のために、乾燥チャンバ内の被乾燥材を乾燥させる乾燥装置であって、管路を通して水又は水蒸気が供給される電磁誘導加熱装置と、前記水又は水蒸気を加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気供給管路とを備え、前記約200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気供給管路を通すことにより、前記被乾燥材に適した所定温度まで温度を低下させた状態として前記乾燥チャンバに供給し、 前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることを特徴とする。 That is, a drying device according to the present invention is a drying device for drying a material to be dried in a drying chamber for solving the above-described problem, and an electromagnetic induction heating device to which water or water vapor is supplied through a pipeline, A controller for controlling the electromagnetic induction heating device so as to generate normal-pressure superheated steam that is transparent at about 200 ° C. or more by heating water or water vapor; and an overheat connected to the drying chamber and the electromagnetic induction heating device The atmospheric pressure superheated steam that became transparent at about 200 ° C. or more was passed through the superheated steam supply pipe, and the temperature was lowered to a predetermined temperature suitable for the material to be dried. The state is supplied to the drying chamber, and the material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and the material to be dried Suitable predetermined Degree is, the the temperature of the solvent below the boiling point of the active substance solution, and, wherein the temperature der Rukoto the binding force is set high within a range that does not decrease in the current collector and the active material.

このような構成によれば、制御装置により電磁誘導加熱装置を制御して水又は水蒸気を加熱し、約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気を、過熱水蒸気供給管路を通すことにより、被乾燥材に適した所定温度まで低下させた状態として乾燥チャンバに供給することから、被乾燥材に適した所定温度で乾燥することができるとともに、その際に、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かすことができるため、被乾燥材の乾燥を効率的に行うことができる。
その上、乾燥チャンバ内に常圧過熱蒸気が充満することから、乾燥チャンバ内を無酸素状態にすることができるため、被乾燥材の酸化防止を促すことができる。
また、前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることにより、リチウムイオン電池等の非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質の乾燥において、約200℃以上に加熱されて透明となった常圧過熱水蒸気を、気化させて取り除く溶剤の沸点(例えば、204℃)未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで温度を低下させた状態として乾燥チャンバに供給するので、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体(芯材)を発熱させ、蓄熱効果を利用しながら溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
According to such a configuration, the control device controls the electromagnetic induction heating device to heat water or water vapor, to generate normal pressure superheated water vapor that is transparent at about 200 ° C. or more, By passing through the superheated steam supply pipe, it is supplied to the drying chamber in a state lowered to a predetermined temperature suitable for the material to be dried, so that it can be dried at a predetermined temperature suitable for the material to be dried. In addition, since it is possible to make use of characteristics such as high osmotic force that can be maintained even if the temperature of the atmospheric superheated steam reaching a region of about 200 ° C. or higher is lowered, the material to be dried can be efficiently dried. .
In addition, since the atmospheric pressure superheated steam is filled in the drying chamber, the inside of the drying chamber can be brought into an oxygen-free state, and thus the prevention of oxidation of the material to be dried can be promoted.
Further, the material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and the predetermined temperature suitable for the material to be dried is A non-aqueous electrolyte solution such as a lithium ion battery having a temperature lower than the boiling point of the solvent of the active material solution and a temperature set high in a range in which the binding force between the current collector and the active material does not decrease In the drying of the current collector and the active material after applying the active material solution to the current collector of the secondary battery, the solvent is removed by vaporizing the atmospheric superheated steam that is heated to about 200 ° C. or more and becomes transparent In the drying chamber in a state where the temperature is lowered to a temperature set high (for example, 180 ° C.) within a range in which the binding force between the current collector and the active material is not decreased. As it is supplied, it reaches an area of about 200 ° C or higher. Utilizing characteristics such as high osmotic force that can be maintained even if the temperature of atmospheric superheated steam is lowered, heat is generated from the current collector (core material) instead of drying from the surface, and the solvent is removed from the inside while utilizing the heat storage effect. Since it is possible to dry and evaporate, it is possible to efficiently dry while maintaining a good dry surface where the dry surface is not burnt, so that a preheating zone can be eliminated.

ここで、管路を通して常圧加熱乾燥空気を前記乾燥チャンバに供給する加熱乾燥空気供給装置と、前記乾燥チャンバ内の湿度を検出する湿度センサとを備え、前記加熱乾燥空気供給装置により前記乾燥チャンバに供給する前記常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置を備えてなると好ましい。
このような構成によれば、乾燥チャンバ内に常圧加熱乾燥空気が供給され、その供給量が調節され、乾燥チャンバ内の湿度が所定湿度(例えば、20%)以下又は所定湿度範囲内(例えば、10%〜20%)になるように制御装置により制御されることから、乾燥チャンバ内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、被乾燥材の乾燥をさらに効率的に行うことができる。
Here, a heating / drying air supply device that supplies atmospheric pressure heating / drying air to the drying chamber through a pipe line, and a humidity sensor that detects humidity in the drying chamber, the heating / drying air supply device provides the drying chamber. It is preferable to provide a control device for controlling the humidity in the drying chamber detected by the humidity sensor to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of the atmospheric pressure heated dry air supplied to the air.
According to such a configuration, normal pressure heated dry air is supplied into the drying chamber, the supply amount thereof is adjusted, and the humidity in the drying chamber is equal to or lower than a predetermined humidity (for example, 20%) or within a predetermined humidity range (for example, 10% to 20%), the humidity in the drying chamber is significantly lower than the humidity in the drying chamber in a normal drying apparatus (for example, 70 to 80%). Since the state can be maintained, the material to be dried can be dried more efficiently.

さらに、本発明に係る乾燥装置は、前記課題解決のために、乾燥チャンバ内の被乾燥材である、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質を乾燥させる乾燥装置であって、常圧水蒸気を発生する水蒸気発生装置と、常圧乾燥空気を発生する乾燥空気発生装置と、前記水蒸気発生装置に接続されて前記常圧水蒸気が供給される水蒸気供給管路及び前記乾燥空気発生装置に接続されて前記常圧乾燥空気が供給される乾燥空気供給管路が合流する混合ガス供給管路を通して前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される電磁誘導加熱装置と、前記混合ガスを加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路と、前記乾燥チャンバ内の湿度を検出する湿度センサと、前記過熱水蒸気及び加熱乾燥空気供給管路を通して前記乾燥チャンバに供給する常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置とを備え、前記200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気及び加熱乾燥空気供給管路を通すことにより、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として前記乾燥チャンバに供給することを特徴とする。   Furthermore, in order to solve the above problems, the drying apparatus according to the present invention provides the current collector after applying an active material solution to a current collector of a non-aqueous electrolyte secondary battery, which is a material to be dried in a drying chamber. A drying apparatus for drying a body and an active material, a steam generating apparatus for generating atmospheric pressure steam, a drying air generating apparatus for generating atmospheric dry air, and the atmospheric steam connected to the steam generating apparatus The normal-pressure steam and the normal-pressure dry air are supplied through a mixed gas supply line connected to the supplied steam supply line and the dry-air supply line connected to the dry-air generator and supplied with the normal-pressure dry air. An electromagnetic induction heating device to which a mixed gas is supplied, a control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the mixed gas, Drying chamber A superheated steam and heated dry air supply line connected to the electromagnetic induction heating device, a humidity sensor for detecting the humidity in the drying chamber, and supply to the drying chamber through the superheated steam and heated dry air supply line A control device for controlling the humidity in the drying chamber detected by the humidity sensor to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of dry air heated under normal pressure, and transparent at 200 ° C. or higher The normal pressure superheated water vapor is passed through the superheated water vapor and heated dry air supply line so that the temperature is less than the boiling point of the solvent of the active material solution and the collector and the active material are bonded. The drying chamber is supplied in a state in which the temperature is lowered to a temperature set high within a range in which the adhesion force does not decrease.

このような構成によれば、リチウムイオン電池等の非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記活物質溶液の前記集電体及び活物質の乾燥において、電磁誘導加熱装置に常圧水蒸気及び常圧乾燥空気の混合ガスが供給し、制御装置により電磁誘導加熱装置を制御して電磁誘導加熱装置により約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気及び常圧加熱乾燥空気の混合ガスを、乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路を通して、気化させて取り除く溶剤の沸点(例えば、204℃)未満であり、且つ、集電体と活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで温度を低下させた状態として乾燥チャンバに供給するので、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体(芯材)を発熱させ、蓄熱効果を利用しながら溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
その上、過熱水蒸気及び加熱乾燥空気供給管路を通して乾燥チャンバに供給される常圧加熱乾燥空気の量が制御装置により調節され、乾燥チャンバ内の湿度を検出する湿度センサにより検出した乾燥チャンバ内の湿度が所定湿度(例えば、20%)以下又は所定湿度範囲内(例えば、10%〜20%)になるように制御装置により制御されることから、乾燥チャンバ内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、前記集電体及び活物質の乾燥をさらに効率的に行うことができる。
その上さらに、乾燥チャンバ内に常圧過熱蒸気が充満することから、乾燥チャンバ内を無酸素状態にすることができるため、前記集電体及び活物質の酸化防止を促すことができる。
その上、電磁誘導加熱装置に常圧水蒸気及び常圧乾燥空気の混合ガスを供給することから、電磁誘導加熱装置により、約200℃以上の領域に達した常圧過熱水蒸気を発生するための常圧水蒸気の加熱及び乾燥チャンバ内の湿度制御に用いる常圧乾燥空気の加熱の両方を行う構成であるため、常圧加熱乾燥空気を乾燥チャンバに供給する加熱乾燥空気供給装置を別途設ける必要がない。
According to such a configuration, in the drying of the current collector and the active material of the active material solution after the active material solution is applied to the current collector of a non-aqueous electrolyte secondary battery such as a lithium ion battery, A mixed gas of normal pressure steam and normal pressure dry air is supplied to the induction heating device, and the control device controls the electromagnetic induction heating device to generate normal pressure superheated steam that becomes transparent at about 200 ° C or higher by the electromagnetic induction heating device. The boiling point of the solvent removed by vaporizing the mixed gas of the normal pressure superheated steam and the normal pressure heated dry air through the superheated steam and heated dry air supply line connected to the drying chamber and the electromagnetic induction heating device (for example, 204 ° C.) and is supplied to the drying chamber in a state in which the temperature is lowered to a high temperature (for example, 180 ° C.) within a range in which the binding force between the current collector and the active material does not decrease. Therefore, taking advantage of characteristics such as high penetrating power that can be maintained even if the temperature of atmospheric superheated steam that reaches a temperature of about 200 ° C or higher is lowered, heat is generated from the current collector (core material) rather than drying from the surface. Since the solvent can be dried and evaporated from the inside while utilizing the heat storage effect, the drying surface can be efficiently dried while keeping the dry surface in a good condition, thus eliminating the need for a preheating zone it can.
In addition, the amount of atmospheric pressure heated dry air supplied to the drying chamber through the superheated steam and heated drying air supply line is adjusted by the controller, and the humidity in the drying chamber detected by the humidity sensor that detects the humidity in the drying chamber is adjusted. The humidity is controlled by the control device so that the humidity is equal to or lower than a predetermined humidity (for example, 20%) or within a predetermined humidity range (for example, 10% to 20%). Since the humidity in the drying chamber can be kept significantly lower than the humidity (for example, 70 to 80%), the current collector and the active material can be further efficiently dried.
Furthermore, since the atmospheric pressure superheated steam is filled in the drying chamber, the inside of the drying chamber can be brought into an oxygen-free state, so that the current collector and the active material can be prevented from being oxidized.
In addition, since a mixed gas of normal pressure steam and normal pressure dry air is supplied to the electromagnetic induction heating device, the electromagnetic induction heating device generates normal pressure superheated steam reaching a region of about 200 ° C. or higher. Since it is configured to perform both heating of pressurized water vapor and heating of atmospheric pressure drying air used for humidity control in the drying chamber, there is no need to separately provide a heating / drying air supply device for supplying atmospheric pressure heating / drying air to the drying chamber. .

以上のように、本発明に係る乾燥装置によれば、電磁誘導加熱装置により約200℃以上で透明となった常圧過熱水蒸気を発生させ、この常圧過熱水蒸気を、被乾燥材に適した所定温度まで低下させた状態として乾燥チャンバに供給することから、被乾燥材に適した所定温度で乾燥することができるとともに、その際に、約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かすことができるため、被乾燥材の乾燥を効率的に行うことができ、乾燥チャンバ内に供給する常圧加熱乾燥空気の供給量が調節され、乾燥チャンバ内の湿度が所定湿度以下になるように制御されることから、乾燥チャンバ内の湿度を低い状態に保つことができるため、被乾燥材の乾燥をさらに効率的に行うことができるという顕著な効果を奏する。
As described above, according to the drying apparatus according to the present invention, the normal pressure superheated steam that is transparent at about 200 ° C. or more is generated by the electromagnetic induction heating device, and this normal pressure superheated steam is suitable for the material to be dried. Since it is supplied to the drying chamber in a state lowered to a predetermined temperature, it can be dried at a predetermined temperature suitable for the material to be dried, and at that time, the atmospheric superheated steam that has reached an area of about 200 ° C. or higher Since the characteristics such as high osmotic force maintained even if the temperature is lowered can be utilized, the material to be dried can be efficiently dried, and the supply amount of atmospheric pressure heated dry air supplied into the drying chamber is Since the humidity in the drying chamber is adjusted and controlled to be equal to or lower than the predetermined humidity, the humidity in the drying chamber can be kept low, so that the material to be dried can be more efficiently dried. it can A marked effect say.

本発明の実施の形態に係る乾燥装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the drying apparatus which concerns on embodiment of this invention. 乾燥チャンバ内の構成例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structural example in a drying chamber. 水の温度−圧力相図である。It is a temperature-pressure phase diagram of water.

図1のブロック図に示す本発明の実施の形態に係る乾燥装置は、例えば非水系電解液二次電池であるリチウムイオン電池の電極の製造に用いられ、電磁誘導加熱装置1により発生させた常圧過熱水蒸気を過熱水蒸気供給管路(過熱水蒸気及び加熱乾燥空気供給管路)L4を通して乾燥チャンバ2に供給することにより、活物質(例えばリチウム複合酸化物、炭素材)溶液の溶剤(例えば、N−メチル−2−ピロリドン、三協化学株式会社商品名:NMP)を乾燥蒸発させるものである。すなわち本実施の形態に係る乾燥装置の被乾燥材は、リチウムイオン電池の集電体Aに活物質溶液を塗布した後の集電体A及び活物質である。
ここで、前記電極を構成する帯状の金属箔からなる集電体A(例えばアルミ箔、銅箔)の搬送系(搬送方向は、図中矢印F参照。)は、乾燥チャンバ2の上流側に位置する図示しない繰り出しローラに巻回された集電体Aを繰り出しながら、乾燥チャンバ2の下流側に位置する図示しない巻き取りローラに巻き取るように構成され、この搬送系により、乾燥チャンバ2の上流側の図示しない塗工装置により活物質溶液が表面に塗布された集電体Aが乾燥チャンバ2内を通って下流側へ所定搬送速度で搬送される。また、前記搬送系の搬送速度は搬送速度センサ10により検出され、この検出値が制御装置3へ送られる。
The drying apparatus according to the embodiment of the present invention shown in the block diagram of FIG. 1 is used, for example, for manufacturing an electrode of a lithium ion battery that is a non-aqueous electrolyte secondary battery, and is generated by the electromagnetic induction heating apparatus 1. By supplying the superheated steam under pressure to the drying chamber 2 through the superheated steam supply line (superheated steam and heated dry air supply line) L4, a solvent (for example, N) of the active material (for example, lithium composite oxide, carbon material) solution. -Methyl-2-pyrrolidone, Sankyo Chemical Co., Ltd. trade name: NMP) is dried and evaporated. That is, the material to be dried of the drying apparatus according to the present embodiment is the current collector A and the active material after the active material solution is applied to the current collector A of the lithium ion battery.
Here, a transport system (refer to arrow F in the figure for the transport direction) of a current collector A (for example, an aluminum foil or a copper foil) made of a strip-shaped metal foil constituting the electrode is disposed upstream of the drying chamber 2. The current collector A wound around a feeding roller (not shown) positioned is wound around a winding roller (not shown) located downstream of the drying chamber 2 while being fed out. A current collector A having an active material solution coated on its surface by a coating device (not shown) on the upstream side is transported through the drying chamber 2 to the downstream side at a predetermined transport speed. Further, the transport speed of the transport system is detected by a transport speed sensor 10, and this detected value is sent to the control device 3.

電磁誘導加熱装置1は、熱交換器を用いない直接加熱により流体を過熱するものであり、装置本体1A及び高周波電流発生器1Bからなる。ここで、装置本体1Aは、特許文献3及び4の電磁誘導加熱装置のように、絶縁体カラム(非磁性材料のパイプ)、絶縁体カラムに巻線された通電可能な励磁コイル、絶縁体カラム内に収納されて流体が浸かり、励磁コイルによる電磁誘導により渦電流が生じて発熱する発熱体を備えており、発熱体を、多層構造を形成する基材と多層構造によって形成された規則的な多数の流体通路とを有する多層構造体としたものである。また、高周波電流発生器1Bは、交流電源の整流回路及びインバータ等からなり、装置本体1Aの励磁コイルに高周波電流を流すためのものである。
このような直接加熱による電磁誘導加熱装置によれば、流体の単位体積当たりの伝熱面積の比表面積を極めて大きくすることができ、発熱体から流体への伝熱効率が非常に高くなるとともに、応答性を高めることができるため、本発明のように流体の温度制御を行う電磁誘導加熱装置として好適なものである。
また、装置本体1Aの流出側には温度センサ1Tが設置されており、温度センサ1Tの検出値が制御装置3へ送られ、制御装置3により高周波電流発生器1Bから励磁コイルに供給する高周波電流が制御される。
The electromagnetic induction heating device 1 superheats a fluid by direct heating without using a heat exchanger, and includes a device main body 1A and a high-frequency current generator 1B. Here, the apparatus main body 1A includes an insulating column (a pipe made of a nonmagnetic material), an energized exciting coil wound around the insulating column, and an insulating column, as in the electromagnetic induction heating devices of Patent Documents 3 and 4. It has a heating element that is immersed in a fluid and generates heat by generating eddy currents due to electromagnetic induction by an exciting coil. The heating element is a regular structure formed by a base material that forms a multilayer structure and a multilayer structure. A multilayer structure having a large number of fluid passages is provided. The high-frequency current generator 1B includes a rectifier circuit of an AC power supply, an inverter, and the like, and is used to flow a high-frequency current through the excitation coil of the apparatus main body 1A.
According to such an electromagnetic induction heating device by direct heating, the specific surface area of the heat transfer area per unit volume of the fluid can be made extremely large, the heat transfer efficiency from the heating element to the fluid becomes very high, and the response Therefore, the present invention is suitable as an electromagnetic induction heating device that controls the temperature of a fluid as in the present invention.
Further, a temperature sensor 1T is installed on the outflow side of the apparatus main body 1A, and the detected value of the temperature sensor 1T is sent to the control device 3, and the control device 3 supplies a high-frequency current to the exciting coil from the high-frequency current generator 1B. Is controlled.

図1に示すように、例えば純水用のボイラである水蒸気発生装置4から水蒸気供給管路L1に常圧水蒸気が供給され、例えば空気タンク、コンプレッサ及びドライヤ等である乾燥空気発生装置5から乾燥空気供給管路L2に常圧乾燥空気が供給されるため、管路L1及びL2が合流した混合ガス供給管路L3を経由して、電磁誘導加熱装置1の装置本体1Aには、前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される。
ここで、水蒸気発生装置4から水蒸気供給管路L1に供給された常圧水蒸気は、管路L1に設置された蒸気流量制御弁6Aにより流量を調節することができ、その流量は蒸気流量センサ6Bにより検出され、蒸気流量センサ6Bの検出値が制御装置3へ送られ、制御装置3により蒸気流量制御弁6Aが制御される。
また、乾燥空気発生装置5から乾燥空気供給管路L2に供給された常圧乾燥空気は、管路L2に設置された空気流量制御弁7Aにより流量を調節することができ、その流量は空気流量センサ7Bにより検出され、空気流量センサ7Bの検出値が制御装置3へ送られ、制御装置3により空気流量制御弁7Aが制御される。
さらに、混合ガス供給管路L3に供給された前記常圧水蒸気及び常圧乾燥空気の混合ガスは、管路L3に設置された混合ガス流量制御弁8Aにより流量を調節することができ、その流量は混合ガス流量センサ8Bにより検出され、混合ガス流量センサ8Bの検出値が制御装置3へ送られ、制御装置3により混合ガス流量制御弁8Aが制御される。
As shown in FIG. 1, normal-pressure steam is supplied to a steam supply line L1 from a steam generator 4 that is a boiler for pure water, for example, and is dried from a dry air generator 5 that is, for example, an air tank, a compressor, and a dryer. Since normal pressure dry air is supplied to the air supply line L2, the normal pressure is supplied to the apparatus main body 1A of the electromagnetic induction heating device 1 via the mixed gas supply line L3 where the lines L1 and L2 merge. A mixed gas of water vapor and atmospheric dry air is supplied.
Here, the normal-pressure steam supplied from the steam generator 4 to the steam supply pipe L1 can be adjusted in flow rate by the steam flow control valve 6A installed in the pipe L1, and the flow rate is determined by the steam flow sensor 6B. The detected value of the steam flow sensor 6B is sent to the control device 3, and the steam flow control valve 6A is controlled by the control device 3.
The normal pressure dry air supplied from the dry air generator 5 to the dry air supply pipe L2 can be adjusted in flow rate by an air flow rate control valve 7A installed in the pipe L2, and the flow rate is the air flow rate. Detected by the sensor 7B, the detected value of the air flow sensor 7B is sent to the control device 3, and the control device 3 controls the air flow control valve 7A.
Furthermore, the flow rate of the mixed gas of the normal pressure steam and the normal pressure dry air supplied to the mixed gas supply line L3 can be adjusted by the mixed gas flow rate control valve 8A installed in the line L3. Is detected by the mixed gas flow rate sensor 8B, and the detected value of the mixed gas flow rate sensor 8B is sent to the control device 3, which controls the mixed gas flow rate control valve 8A.

混合ガス供給管路L3から電磁誘導加熱装置1の装置本体1Aに供給された前記常圧水蒸気及び常圧乾燥空気の混合ガスは、約200℃以上で透明となった常圧過熱水蒸気を発生させるように電磁誘導加熱装置1により加熱される。
このように発生した約200℃以上で透明となった常圧過熱水蒸気の温度は、過熱水蒸気及び加熱乾燥空気供給管路L4(図2に示す噴出部2A,2A又は2B,2Bまでの管路L41又はL42も含む。)を通して、被乾燥材に適した所定温度である活物質溶液の溶剤の沸点(前記溶剤がN−メチル−2−ピロリドンである場合、204℃)未満の温度であり、且つ、集電体Aと活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで低下させた状態とされ、この状態の常圧過熱水蒸気が乾燥チャンバ2内へ導入される。
The mixed gas of the normal pressure steam and the normal pressure dry air supplied from the mixed gas supply line L3 to the apparatus main body 1A of the electromagnetic induction heating apparatus 1 generates normal pressure superheated steam that becomes transparent at about 200 ° C. or higher. Thus, the electromagnetic induction heating device 1 is heated.
The temperature of the normal-pressure superheated steam that became transparent at about 200 ° C. or more generated in this way is the superheated steam and heated and dried air supply pipe L4 (pipe section 2A, 2A or 2B, 2B shown in FIG. 2). L41 or L42 is also included), and the temperature is lower than the boiling point of the solvent of the active material solution that is a predetermined temperature suitable for the material to be dried (204 ° C. when the solvent is N-methyl-2-pyrrolidone), In addition, the pressure is reduced to a high temperature (for example, 180 ° C.) within a range where the binding force between the current collector A and the active material does not decrease, and the atmospheric superheated steam in this state is introduced into the drying chamber 2. Is done.

なお、約200℃以上で透明となった常圧過熱水蒸気の温度を被乾燥材に適した所定温度まで低下させるための、電磁誘導加熱装置1から噴出部2A,2A又は2B,2Bまでの管路L4の長さは、被乾燥材の種類や厚さにより異なるため、実験又は試作等により決定することができ、このように約200℃以上で透明となった常圧過熱水蒸気の温度を目標温度(被乾燥材に適した所定温度)にするための微調整は、例えば蒸気流量制御弁6A又は混合ガス流量制御弁8Aを操作する流量調整により行うことができる。
また、電磁誘導加熱装置1の装置本体1Aには前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給されるため、前記所定温度まで温度が低下した常圧過熱水蒸気とともに、前記常圧過熱水蒸気と同じ温度の常圧乾燥空気も管路L4を経由して乾燥チャンバ2内へ導入される。
In addition, the tube from the electromagnetic induction heating device 1 to the jetting parts 2A, 2A or 2B, 2B for reducing the temperature of the normal pressure superheated steam that becomes transparent at about 200 ° C. or more to a predetermined temperature suitable for the material to be dried Since the length of the path L4 varies depending on the type and thickness of the material to be dried, it can be determined by experiment or trial production. Thus, the temperature of the atmospheric superheated steam that becomes transparent at about 200 ° C. or higher is targeted. The fine adjustment for adjusting the temperature (a predetermined temperature suitable for the material to be dried) can be performed, for example, by adjusting the flow rate by operating the steam flow rate control valve 6A or the mixed gas flow rate control valve 8A.
Further, since the mixed gas of the normal pressure steam and the normal pressure dry air is supplied to the apparatus main body 1A of the electromagnetic induction heating apparatus 1, the normal pressure superheated steam is used together with the normal pressure superheated steam whose temperature is lowered to the predetermined temperature. The normal pressure dry air at the same temperature is also introduced into the drying chamber 2 via the line L4.

例えば、図2の概略縦断面図に示すように、乾燥チャンバ2内を搬送される活物質溶液が両面に塗布された集電体Aに対し、その両面に離間するように設置された、例えば直径1〜2mm程度の多数の通孔が集電体Aに対向する面に形成された箱体である噴出部2A,2A及び2B,2Bから、上述のとおり過熱水蒸気及び加熱乾燥空気供給管路L4を経由して前記所定温度まで温度が低下した状態の混合ガスGが噴出する。
ここで、乾燥チャンバ2内の温度及び湿度は、図1に示す温度センサ2T及び湿度センサ2Hにより検出され、温度センサ2Tの検出値及び湿度センサ2Hの検出値が制御装置3へ送られ、制御装置3により、後述するように乾燥チャンバ2内の温度及び湿度が制御される。
なお、活物質溶液が片面に塗布された集電体Aに対しては、活物質溶液が塗布された片面に対向する側から混合ガスGが噴出するように、噴出部2A,2A及び噴出部2B,2Bの一方のみとする。
また、制御装置3によりダンパ9を開閉するアクチュエータが制御され、活物質溶液の溶剤が気化したガスは、排気管路L5を経由してダンパ9から排気される。
For example, as shown in the schematic longitudinal cross-sectional view of FIG. 2, the current collector A applied on both sides of the active material solution transported in the drying chamber 2 is installed so as to be separated on both sides. As described above, the superheated steam and heated dry air supply pipes are formed from the ejection portions 2A, 2A and 2B, 2B, which are boxes formed with a large number of through holes having a diameter of about 1 to 2 mm on the surface facing the current collector A. The mixed gas G in a state where the temperature is lowered to the predetermined temperature is ejected via L4.
Here, the temperature and humidity in the drying chamber 2 are detected by the temperature sensor 2T and the humidity sensor 2H shown in FIG. 1, and the detected value of the temperature sensor 2T and the detected value of the humidity sensor 2H are sent to the control device 3 for control. The device 3 controls the temperature and humidity in the drying chamber 2 as will be described later.
For the current collector A on which the active material solution is applied on one side, the ejection parts 2A, 2A and the ejection part so that the mixed gas G is ejected from the side facing the one side on which the active material solution is applied. Only one of 2B and 2B is assumed.
Further, the actuator that opens and closes the damper 9 is controlled by the control device 3, and the gas vaporized by the solvent of the active material solution is exhausted from the damper 9 via the exhaust line L5.

次に、本発明の実施の形態に係る乾燥方法について説明する。
(乾燥チャンバ内予熱工程)
図1に示す構成の乾燥装置において、蒸気流量制御弁6Aを閉じ、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3を経由して、常圧乾燥空気のみを電磁誘導加熱装置1の装置本体1Aに供給する。
この常圧乾燥空気を電磁誘導加熱装置1により所定温度(例えば、150℃〜160℃程度)まで加熱し、このように加熱された常圧加熱乾燥空気を管路L4から乾燥チャンバ2内へ供給することにより、温度センサ2Tで検出した乾燥チャンバ2内の温度を100℃以上の所定温度(例えば120℃)に昇温し、乾燥チャンバ2の内壁の温度を100℃以上にする。
この工程により、冷えた乾燥チャンバ2内に過熱水蒸気を供給することによる結露の発生を抑制することができる。
Next, the drying method according to the embodiment of the present invention will be described.
(Preheating process in drying chamber)
In the drying apparatus having the configuration shown in FIG. 1, the steam flow rate control valve 6A is closed, the air flow rate control valve 7A is opened, and the normal pressure dry air is supplied from the dry air generator 5 to the line L2, and the line L3 is passed through. Thus, only the normal pressure dry air is supplied to the apparatus main body 1A of the electromagnetic induction heating apparatus 1.
The normal pressure dry air is heated to a predetermined temperature (for example, about 150 ° C. to 160 ° C.) by the electromagnetic induction heating device 1, and the normal pressure heated dry air thus heated is supplied into the drying chamber 2 from the line L 4. By doing so, the temperature in the drying chamber 2 detected by the temperature sensor 2T is increased to a predetermined temperature of 100 ° C. or higher (for example, 120 ° C.), and the temperature of the inner wall of the drying chamber 2 is set to 100 ° C. or higher.
By this step, it is possible to suppress the occurrence of condensation due to supplying superheated steam into the cooled drying chamber 2.

(被乾燥材の乾燥工程)
次に、図1に示す構成の乾燥装置において、蒸気流量制御弁6Aを開いて水蒸気発生装置4から常圧水蒸気を管路L1に供給するとともに、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3を経由して、常圧水蒸気及び常圧乾燥空気の混合ガスを電磁誘導加熱装置1の装置本体1Aに供給する。
前記混合ガスを電磁誘導加熱装置1により加熱して常圧で約200℃以上に加熱されて透明となった常圧過熱水蒸気を発生させ、上述のとおり管路L4を経由させて、活物質溶液の溶剤の沸点未満の温度であり、且つ、集電体Aと活物質との結着力が低下しない範囲で高く設定した温度(例えば、180℃)まで低下させた状態の常圧過熱水蒸気と加熱乾燥空気との混合ガスG(図2参照。)を乾燥チャンバ2に供給する。
そして、活物質溶液が表面に塗布された集電体Aを前記搬送系により所定搬送速度で下流側へ搬送しながら、混合ガスGにより蓄熱効果を利用しながら加熱を行うとともに、上述のとおり約200℃以上の領域に達した常圧過熱水蒸気の温度を下げても維持される高い浸透力等の特性を活かして、表面からの乾燥ではなく集電体A(芯材)を発熱させ、蓄熱効果を利用しながら活物質溶液の溶剤を内側から乾燥蒸発させることができることから、乾燥表面が焼けない乾燥表面の良い状態を保ちながら効率的に乾燥することができるため、予熱ゾーンを不要にすることができる。
(Drying process of material to be dried)
Next, in the drying apparatus having the configuration shown in FIG. 1, the steam flow control valve 6A is opened to supply atmospheric steam from the steam generator 4 to the pipe L1, and the air flow control valve 7A is opened to dry the air generator. The normal pressure dry air is supplied from 5 to the line L2, and the mixed gas of normal pressure water vapor and normal pressure dry air is supplied to the apparatus main body 1A of the electromagnetic induction heating apparatus 1 via the line L3.
The mixed gas is heated by the electromagnetic induction heating device 1 to generate normal-pressure superheated steam that is heated to about 200 ° C. or higher at normal pressure and becomes transparent, and passes through the pipe L4 as described above, and the active material solution Normal pressure superheated steam and heating in a state where the temperature is lower than the boiling point of the solvent and the temperature is lowered to a high temperature (for example, 180 ° C.) within a range where the binding force between the current collector A and the active material does not decrease A mixed gas G with dry air (see FIG. 2) is supplied to the drying chamber 2.
And while conveying the collector A coated with the active material solution on the downstream side at a predetermined conveyance speed by the conveyance system, while heating using the heat storage effect by the mixed gas G, about as described above Utilizing characteristics such as high osmotic power that can be maintained even if the temperature of atmospheric superheated steam reaching 200 ° C or higher is lowered, heat is collected from current collector A (core material) instead of drying from the surface, thereby storing heat. Since the solvent of the active material solution can be dried and evaporated from the inside while utilizing the effect, the dry surface can be efficiently dried while keeping the dry surface in a good condition, thus eliminating the need for a preheating zone. be able to.

ここで、温度センサ2Tの検出値が制御装置3へ送られることから、制御装置3は、搬送速度センサ10により検出した搬送速度を参照して活物質溶液の溶剤を乾燥蒸発させるための単位時間当たりの熱エネルギを考慮しながら、乾燥チャンバ2内へ供給すべき図2に示す混合ガスGの流量を、例えば混合ガス流量制御弁8Aを調節することにより制御して、温度センサ2Tの検出値が低下し過ぎないように温度制御することができる。
また、このように被乾燥材(集電体A及び活物質)を乾燥する際には、湿度センサ2Hの検出値が制御装置3へ送られることから、制御装置3により空気流量制御弁7Aを操作して常圧乾燥空気の供給量を調節することにより、乾燥チャンバ2に供給する常圧加熱乾燥空気の量を調節することができるため、乾燥チャンバ2内の湿度を所定湿度以下(例えば、20%以下)又は所定湿度範囲内(例えば、10%〜20%)にすることにより、乾燥チャンバ2内の湿度を、通常の乾燥装置における乾燥チャンバ内の湿度(例えば、70〜80%)よりも大幅に低い状態に保つことができるため、集電体A及び活物質の乾燥をさらに効率的に行うことができる。
さらに、乾燥チャンバ2内に常圧過熱蒸気が充満することから、乾燥チャンバ2内を無酸素状態にすることができるため、集電体A及び活物質の酸化防止を促すことができる。
Here, since the detected value of the temperature sensor 2T is sent to the control device 3, the control device 3 refers to the transport speed detected by the transport speed sensor 10 and unit time for drying and evaporating the solvent of the active material solution. 2, the flow rate of the mixed gas G shown in FIG. 2 to be supplied into the drying chamber 2 is controlled by adjusting the mixed gas flow rate control valve 8A, for example, and the detected value of the temperature sensor 2T is taken into consideration. The temperature can be controlled so as not to decrease too much.
Further, when the material to be dried (the current collector A and the active material) is dried in this way, the detection value of the humidity sensor 2H is sent to the control device 3, so that the control device 3 controls the air flow rate control valve 7A. By operating and adjusting the supply amount of the normal pressure dry air, the amount of the normal pressure heated dry air supplied to the drying chamber 2 can be adjusted. 20% or less) or within a predetermined humidity range (for example, 10% to 20%), the humidity in the drying chamber 2 is more than the humidity (for example, 70 to 80%) in the drying chamber in a normal drying apparatus. Therefore, the current collector A and the active material can be dried more efficiently.
Furthermore, since the atmospheric pressure superheated steam is filled in the drying chamber 2, the inside of the drying chamber 2 can be brought into an oxygen-free state, so that the current collector A and the active material can be prevented from being oxidized.

(運転停止工程)
図1に示す構成の乾燥装置の運転を停止させる際には、乾燥チャンバ2内の結露を防ぐために、蒸気流量制御弁6Aを閉じ、空気流量制御弁7Aを開いて乾燥空気発生装置5から常圧乾燥空気を管路L2に供給し、管路L3から常圧乾燥空気のみを電磁誘導加熱装置1の装置本体1Aに供給し、電磁誘導加熱装置1により加熱された加熱乾燥空気のみを管路L4から乾燥チャンバ2に供給し、加熱乾燥空気の温度を少しずつ下げるように制御装置3により電磁誘導加熱装置1を制御して運転を停止する。
(Operation stop process)
When the operation of the drying apparatus having the configuration shown in FIG. 1 is stopped, in order to prevent condensation in the drying chamber 2, the steam flow rate control valve 6A is closed and the air flow rate control valve 7A is opened so that the dry air generator 5 always Pressure dry air is supplied to the pipe L2, only normal pressure dry air is supplied from the pipe L3 to the main body 1A of the electromagnetic induction heating apparatus 1, and only the heated dry air heated by the electromagnetic induction heating apparatus 1 is supplied to the pipe L2. L4 is supplied to the drying chamber 2 and the operation is stopped by controlling the electromagnetic induction heating device 1 by the control device 3 so as to gradually lower the temperature of the heated and dried air.

以上の説明においては、常圧水蒸気及び常圧乾燥空気の混合ガスを電磁誘導加熱装置1に供給して加熱する構成を示したが、常圧水蒸気の加熱と常圧乾燥空気の加熱とを別の加熱装置により行う構成としてもよく、例えば常圧水蒸気の供給及び加熱ルートと分離した加熱乾燥空気供給装置の構成、すなわち常圧乾燥空気を電磁誘導加熱装置1と別体の加熱装置に供給して加熱し、このように加熱された常圧加熱乾燥空気を乾燥チャンバに供給するようにしてもよい。
ただし、図1に示す構成の乾燥装置のように電磁誘導加熱装置1に常圧水蒸気及び常圧乾燥空気の混合ガスを供給し、電磁誘導加熱装置1により、約200℃以上の領域に達した常圧過熱水蒸気を発生するための常圧水蒸気の加熱及び乾燥チャンバ2内の湿度制御に用いる常圧乾燥空気の加熱の両方を行う構成によれば、常圧加熱乾燥空気を乾燥チャンバ2に供給する加熱乾燥空気供給装置を別途設ける必要がないため、より好ましい実施態様である。
In the above description, a configuration in which a mixed gas of atmospheric pressure steam and atmospheric pressure dry air is supplied to the electromagnetic induction heating device 1 and heated is shown. However, heating of atmospheric pressure steam and heating of atmospheric pressure dry air are different. For example, the structure of the heated dry air supply apparatus separated from the supply and heating route of atmospheric steam, that is, the atmospheric dry air is supplied to the electromagnetic induction heating apparatus 1 and a separate heating apparatus. The atmospheric pressure heated dry air heated in this manner may be supplied to the drying chamber.
However, the mixed gas of atmospheric pressure steam and atmospheric pressure dry air was supplied to the electromagnetic induction heating apparatus 1 as in the drying apparatus having the configuration shown in FIG. 1, and the electromagnetic induction heating apparatus 1 reached an area of about 200 ° C. or higher. According to the configuration that performs both the heating of the normal pressure steam for generating the normal pressure superheated steam and the heating of the normal pressure dry air used for controlling the humidity in the drying chamber 2, the normal pressure heated dry air is supplied to the drying chamber 2. This is a more preferable embodiment because there is no need to separately provide a heated and dry air supply device.

A 集電体
F 搬送方向
G 混合ガス
L1 水蒸気供給管路
L2 乾燥空気供給管路
L3 混合ガス供給管路
L4,L41,L42 過熱水蒸気及び加熱乾燥空気供給管路
L5 排気管路
1 電磁誘導加熱装置
1A 装置本体
1B 高周波電流発生器
1T 温度センサ
2 乾燥チャンバ
2A,2B 噴出部
2T 温度センサ
2H 湿度センサ
3 制御装置
4 水蒸気発生装置
5 乾燥空気発生装置
6A 蒸気流量制御弁
6B 蒸気流量センサ
7A 空気流量制御弁
7B 空気流量センサ
8A 混合ガス流量制御弁
8B 混合ガス流量センサ
9 ダンパ
10 搬送速度センサ
A Current collector F Transport direction G Mixed gas L1 Water vapor supply line L2 Dry air supply line L3 Mixed gas supply lines L4, L41, L42 Superheated steam and heated dry air supply line L5 Exhaust line 1 Electromagnetic induction heating device DESCRIPTION OF SYMBOLS 1A Apparatus main body 1B High frequency current generator 1T Temperature sensor 2 Drying chamber 2A, 2B Spout part 2T Temperature sensor 2H Humidity sensor 3 Controller 4 Steam generator 5 Dry air generator 6A Steam flow control valve 6B Steam flow sensor 7A Air flow control Valve 7B Air flow rate sensor 8A Mixed gas flow rate control valve 8B Mixed gas flow rate sensor 9 Damper 10 Transport speed sensor

Claims (3)

乾燥チャンバ内の被乾燥材を乾燥させる乾燥装置であって、
管路を通して水又は水蒸気が供給される電磁誘導加熱装置と、
前記水又は水蒸気を加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、
前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気供給管路とを備え、
前記約200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気供給管路を通すことにより、前記被乾燥材に適した所定温度まで温度を低下させた状態として前記乾燥チャンバに供給し、
前記被乾燥材が、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質であり、前記被乾燥材に適した所定温度が、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度であることを特徴とする乾燥装置。
A drying device for drying a material to be dried in a drying chamber,
An electromagnetic induction heating device to which water or steam is supplied through a pipeline;
A control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the water or steam;
A superheated steam supply line connected to the drying chamber and an electromagnetic induction heating device;
The normal pressure superheated steam that has become transparent at about 200 ° C. or higher is supplied to the drying chamber in a state where the temperature is lowered to a predetermined temperature suitable for the material to be dried by passing through the superheated steam supply pipe. ,
The material to be dried is the current collector and the active material after the active material solution is applied to the current collector of the non-aqueous electrolyte secondary battery, and a predetermined temperature suitable for the material to be dried is the active material. a temperature below the boiling point of the solvent of the solution, and drying and wherein the temperature der Rukoto the bonding strength between the active material and the current collector is set high within a range that does not decrease.
管路を通して常圧加熱乾燥空気を前記乾燥チャンバに供給する加熱乾燥空気供給装置と、
前記乾燥チャンバ内の湿度を検出する湿度センサとを備え、
前記加熱乾燥空気供給装置により前記乾燥チャンバに供給する前記常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置を備えてなる請求項1記載の乾燥装置。
A heated and dried air supply device for supplying atmospheric pressure heated and dried air to the drying chamber through a conduit;
A humidity sensor for detecting the humidity in the drying chamber;
The humidity in the drying chamber detected by the humidity sensor is controlled to be equal to or lower than a predetermined humidity or within a predetermined humidity range by adjusting the amount of the atmospheric pressure heated dry air supplied to the drying chamber by the heated dry air supply device. 2. The drying apparatus according to claim 1, further comprising a control device that performs the control.
乾燥チャンバ内の被乾燥材である、非水系電解液二次電池の集電体に活物質溶液を塗布した後の前記集電体及び活物質を乾燥させる乾燥装置であって、
常圧水蒸気を発生する水蒸気発生装置と、
常圧乾燥空気を発生する乾燥空気発生装置と、
前記水蒸気発生装置に接続されて前記常圧水蒸気が供給される水蒸気供給管路及び前記乾燥空気発生装置に接続されて前記常圧乾燥空気が供給される乾燥空気供給管路が合流する混合ガス供給管路を通して前記常圧水蒸気及び常圧乾燥空気の混合ガスが供給される電磁誘導加熱装置と、
前記混合ガスを加熱して約200℃以上で透明となった常圧過熱水蒸気を発生させるように前記電磁誘導加熱装置を制御する制御装置と、
前記乾燥チャンバ及び電磁誘導加熱装置に接続された過熱水蒸気及び加熱乾燥空気供給管路と、
前記乾燥チャンバ内の湿度を検出する湿度センサと、
前記過熱水蒸気及び加熱乾燥空気供給管路を通して前記乾燥チャンバに供給する常圧加熱乾燥空気の量を調節することにより、前記湿度センサにより検出した前記乾燥チャンバ内の湿度を所定湿度以下又は所定湿度範囲内に制御する制御装置とを備え、
前記200℃以上で透明となった常圧過熱水蒸気を、前記過熱水蒸気及び加熱乾燥空気供給管路を通すことにより、前記活物質溶液の溶剤の沸点未満の温度であり、且つ、前記集電体と前記活物質との結着力が低下しない範囲で高く設定した温度まで温度を低下させた状態として前記乾燥チャンバに供給することを特徴とする乾燥装置。
A drying apparatus for drying the current collector and the active material after applying an active material solution to a current collector of a non-aqueous electrolyte secondary battery, which is a material to be dried in a drying chamber,
A steam generator for generating atmospheric steam,
A dry air generator for generating atmospheric dry air;
A mixed gas supply in which a steam supply line connected to the steam generator and supplied with the normal pressure steam and a dry air supply line connected to the dry air generator and supplied with the normal pressure dry air join together An electromagnetic induction heating device to which a mixed gas of the atmospheric steam and the atmospheric dry air is supplied through a pipe;
A control device for controlling the electromagnetic induction heating device so as to generate atmospheric superheated steam that is transparent at about 200 ° C. or more by heating the mixed gas;
Superheated steam and heated dry air supply lines connected to the drying chamber and electromagnetic induction heating device;
A humidity sensor for detecting humidity in the drying chamber;
The humidity in the drying chamber detected by the humidity sensor is controlled to be equal to or lower than a predetermined humidity or in a predetermined humidity range by adjusting the amount of atmospheric pressure heated dry air supplied to the drying chamber through the superheated steam and heated dry air supply line. And a control device for controlling inside,
The normal pressure superheated steam that becomes transparent at 200 ° C. or higher is passed through the superheated steam and heated dry air supply pipe, so that the temperature is lower than the boiling point of the solvent of the active material solution, and the current collector A drying apparatus, wherein the drying chamber is supplied in a state where the temperature is lowered to a temperature set high in a range in which the binding force between the active material and the active material does not decrease.
JP2011202085A 2011-09-15 2011-09-15 Drying equipment Active JP5392332B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011202085A JP5392332B2 (en) 2011-09-15 2011-09-15 Drying equipment
CN201280044980.4A CN104040275B (en) 2011-09-15 2012-09-07 Drying device and drying means
PCT/JP2012/072929 WO2013039005A1 (en) 2011-09-15 2012-09-07 Drying device and drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202085A JP5392332B2 (en) 2011-09-15 2011-09-15 Drying equipment

Publications (2)

Publication Number Publication Date
JP2013064516A JP2013064516A (en) 2013-04-11
JP5392332B2 true JP5392332B2 (en) 2014-01-22

Family

ID=47883236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202085A Active JP5392332B2 (en) 2011-09-15 2011-09-15 Drying equipment

Country Status (3)

Country Link
JP (1) JP5392332B2 (en)
CN (1) CN104040275B (en)
WO (1) WO2013039005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224234A1 (en) * 2022-05-19 2023-11-23 Lg Energy Solution, Ltd. Method and system for drying a battery part

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934235B (en) * 2014-03-23 2019-12-31 东莞东阳光科研发有限公司 Preparation method of electrode for supercapacitor
KR102257673B1 (en) * 2014-05-15 2021-05-28 삼성에스디아이 주식회사 Apparatus for drying electrode plate and method for drying the same
KR101822593B1 (en) 2015-03-17 2018-01-26 주식회사 엘지화학 Electrode having porous binder coating layer, method for preparation thereof, and lithium secondary battery comprising the same
CN104928966B (en) * 2015-06-17 2017-02-01 湖南广信科技股份有限公司 Drying technology for paper and paperboard
JP6604055B2 (en) * 2015-07-02 2019-11-13 凸版印刷株式会社 Method and apparatus for manufacturing laminated sheet
KR101765471B1 (en) * 2015-11-30 2017-08-07 씨아이에스(주) Superheated steam generating apparatus for manufacturing process of secondary cell
KR102752344B1 (en) * 2019-08-01 2025-01-10 주식회사 엘지에너지솔루션 Dryer for electrode with water spraying unit and electrode drying method thereof
JPWO2022131295A1 (en) * 2020-12-16 2022-06-23
CN113694873A (en) * 2021-09-14 2021-11-26 朱枫 Production and processing equipment and process of polyurethane waterproof coating
CN116829890A (en) * 2021-11-18 2023-09-29 株式会社Lg新能源 Electrode manufacturing apparatus and electrode manufacturing method
CN114279182B (en) * 2021-12-27 2023-01-17 奉节县夔宇农业开发有限责任公司 Raw materials quick drying device convenient to chinese-medicinal material processing usefulness
JP2023145181A (en) * 2022-03-28 2023-10-11 東レエンジニアリング株式会社 drying system
CN115377503A (en) * 2022-06-16 2022-11-22 岳阳耀宁新能源科技有限公司 Electromagnetic heating accelerated electrolyte infiltration device and infiltration method
CN117968365B (en) * 2024-02-29 2024-07-02 广西广投正润新材料科技有限公司 Visual recognition drying method and device for electronic aluminum foil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039470A (en) * 1983-08-10 1985-03-01 株式会社高分子加工研究所 Continuous fiber heat method and apparatus
JP4330488B2 (en) * 2004-05-12 2009-09-16 達實 小野 Heat treatment equipment using superheated steam
JP2006318809A (en) * 2005-05-13 2006-11-24 Toyota Motor Corp Manufacturing method of electrode assembly for fuel cell and electrode assembly for fuel cell
JP2008103098A (en) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd Manufacturing method of electrode plate for nonaqueous electrolyte secondary battery and its manufacturing equipment
JP4793317B2 (en) * 2007-04-23 2011-10-12 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method, membrane electrode assembly, membrane electrode assembly manufacturing apparatus, and fuel cell
JP2009004268A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Diffusion layer, fuel cell using the same, and method of manufacturing the same
JP5401998B2 (en) * 2009-01-09 2014-01-29 セイコーエプソン株式会社 Recording device
CN101628779B (en) * 2009-08-21 2011-05-11 北京大学 Method and device for drying sludge by utilizing high-temperature steam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224234A1 (en) * 2022-05-19 2023-11-23 Lg Energy Solution, Ltd. Method and system for drying a battery part

Also Published As

Publication number Publication date
CN104040275B (en) 2015-11-25
JP2013064516A (en) 2013-04-11
CN104040275A (en) 2014-09-10
WO2013039005A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5392332B2 (en) Drying equipment
ES2767400T3 (en) Device for the formation of coatings on surfaces of a constructive part, a material in the form of a band or a tool
US10184717B2 (en) Apparatus for drying electrode plate
KR101467640B1 (en) Method and apparatus for drying electrode
JP5909986B2 (en) Electrode drying method and electrode drying apparatus
US20140050850A1 (en) Vacuum apparatus, method for cooling heat source in vacuum, and thin film manufacturing method
CN204795670U (en) Respond to roller device that generates heat
JP2011064406A (en) Composite material sheet manufacturing machine and method of manufacturing composite material sheet
CN103237917B (en) Dry method coating unit
CN105363348B (en) Distillation device and the membrane distillation system with the distillation device
JP5887437B2 (en) Drying equipment and heat treatment system
JP2012013383A (en) Drying device in thin film coating device
JP5359148B2 (en) Solvent recovery system and solvent recovery method
JP2015124982A (en) Heat pump drying device and heat pump drying device operation method
JP7462161B2 (en) Drying method and drying device
WO2016181692A1 (en) Steam circulation regeneration system
JP2009235520A (en) Cold spray method, and cold spray device
CN112436100B (en) Isothermal die head device for substrate surface and application method
JP6200304B2 (en) Continuous superheated steam heat treatment apparatus and method for producing conductive coating film
JP4445481B2 (en) Thin plate joining apparatus and thin plate joining method using the same
WO2014141421A1 (en) Oil diffusion pump and vacuum film formation device
CN221566292U (en) Electromagnetic induction evaporation device
CN106871487A (en) Absorption heat pump
JP2024528204A (en) Coating installation for coating an object, method for coating an object and use thereof
JP3636588B2 (en) Drying equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130411

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5392332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250