[go: up one dir, main page]

JP5380908B2 - Winding electrode body and non-aqueous electrolyte secondary battery - Google Patents

Winding electrode body and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5380908B2
JP5380908B2 JP2008142738A JP2008142738A JP5380908B2 JP 5380908 B2 JP5380908 B2 JP 5380908B2 JP 2008142738 A JP2008142738 A JP 2008142738A JP 2008142738 A JP2008142738 A JP 2008142738A JP 5380908 B2 JP5380908 B2 JP 5380908B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode terminal
wound
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008142738A
Other languages
Japanese (ja)
Other versions
JP2009289662A (en
Inventor
広隆 酒井
貴弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008142738A priority Critical patent/JP5380908B2/en
Publication of JP2009289662A publication Critical patent/JP2009289662A/en
Application granted granted Critical
Publication of JP5380908B2 publication Critical patent/JP5380908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、正極と負極とをセパレータを介して巻回して成る巻回電極体、これを用いた非水電解質二次電池に関する。   The present invention relates to a wound electrode body formed by winding a positive electrode and a negative electrode through a separator, and a nonaqueous electrolyte secondary battery using the same.

従来、カメラ一体型VTR(videotape recorder)や携帯電話、携帯用コンピュータなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。それに伴い、電子機器のポータブル電源として、電池、特に二次電池の開発が活発に進められている。中でも、リチウムイオン二次電池は、高いエネルギー密度を実現できるものとして注目されている。   2. Description of the Related Art Conventionally, many portable electronic devices such as a camera-integrated VTR (videotape recorder), a mobile phone, and a portable computer have appeared, and their size and weight have been reduced. Accordingly, the development of batteries, particularly secondary batteries, has been actively promoted as portable power sources for electronic devices. Among these, lithium ion secondary batteries are attracting attention as being capable of realizing a high energy density.

このようなリチウムイオン二次電池としては、従来、外装部材にアルミニウム(Al)や鉄(Fe)などの金属製の電池缶を用い、これに発電要素を電解液と共に密封したタイプのものがある。
近年では、金属製の電池缶の替わりに外装部材としてラミネートフィルムを用い、固体状のゲル状電解質を使用して、発電要素をラミネートフィルムで封止するタイプのものなどが開発されている。
As such a lithium ion secondary battery, there is a conventional type in which a metal battery can such as aluminum (Al) or iron (Fe) is used as an exterior member, and a power generation element is sealed together with an electrolytic solution. .
In recent years, a type in which a laminate film is used as an exterior member instead of a metal battery can, a solid gel electrolyte is used, and a power generation element is sealed with a laminate film has been developed.

外装部材にラミネートフィルムを用いたリチウムイオン二次電池は、電池の小型化、軽量化、高容量化の点で電池缶を用いたリチウムイオン電池よりも有利であり、正極と負極との間を固体状のゲル状電解質が隔離しているために、過充電などの異常な使用条件に対する安全性が優れているという利点を有する。
しかし、リチウムイオン二次電池の正極と負極との間に配置されたゲル状電解質に欠陥があったり、ゲル状電解質の厚さが不均一であると、欠陥部分や厚さの薄い部分で電気抵抗が著しく低下する場合がある。
A lithium ion secondary battery using a laminate film as an exterior member is more advantageous than a lithium ion battery using a battery can in terms of reducing the size, weight and capacity of the battery. Since the solid gel electrolyte is isolated, there is an advantage that safety against abnormal use conditions such as overcharge is excellent.
However, if the gel electrolyte placed between the positive electrode and the negative electrode of the lithium ion secondary battery has a defect, or if the gel electrolyte has a non-uniform thickness, it will be Resistance may be significantly reduced.

正極と負極との極板間隔(ゲル状電解質の厚さ)を一定に保つために、例えば、特許文献1には、正極板と隔離体と負極板とを巻回して成る発電要素を袋状単電池ケースに収容した非水電解質二次電池において、発電要素として、発電要素の中心軸に平行な一方の側壁から、この発電要素の縦方向(巻き軸方向)の一方向に突出した正極端子と負極端子の間を通って、発電要素の周囲の一周に亘って、巻き止めテープで固定したものが開示されている(特許文献1)。
また、特許文献2には、正極板と隔離体と負極板とを巻回して成る発電要素を袋状単電池ケースに収容した非水電解質二次電池において、発電要素として、発電要素の中心軸に平行な一方の側壁から、この発電要素の縦方向(巻き軸方向)の一方向に突出した正極端子と負極端子の間を通って、発電要素の周囲の一周に亘って、第1の巻き止めテープで固定し、この縦方向の巻き止めテープに直交するように、横方向から発電要素の周囲の一周に亘って第2の巻き止めテープで固定したものが開示されている(特許文献2)。
特開2000−277162号公報 特開2001−185224号公報
In order to keep the electrode plate interval (the thickness of the gel electrolyte) between the positive electrode and the negative electrode constant, for example, Patent Document 1 discloses a power generation element formed by winding a positive electrode plate, a separator, and a negative electrode plate in a bag shape. In a non-aqueous electrolyte secondary battery housed in a single battery case, as a power generation element, a positive electrode terminal projecting in one direction in the longitudinal direction (winding axis direction) of the power generation element from one side wall parallel to the central axis of the power generation element And a negative electrode terminal are disclosed that are fixed with a winding tape over the circumference of the power generation element (Patent Document 1).
Further, in Patent Document 2, a non-aqueous electrolyte secondary battery in which a power generation element formed by winding a positive electrode plate, a separator, and a negative electrode plate is accommodated in a bag-shaped single battery case, the central axis of the power generation element is used as the power generation element. From one side wall parallel to the first power winding element, passing between the positive electrode terminal and the negative electrode terminal protruding in one direction of the longitudinal direction (winding axis direction) of the power generation element, It is fixed with a stop tape and is fixed with a second stop tape from the lateral direction over the circumference of the power generating element so as to be orthogonal to the longitudinal stop tape (Patent Document 2). ).
JP 2000-277162 A JP 2001-185224 A

しかし、上記特許文献1及び2に開示された発電要素は、巻き止めテープで発電要素の周囲を一周に亘って巻き止めているため、巻き止めテープで固定した部位の厚さが他の部位よりも厚くなる。
例えば、特許文献1の発電要素は、巻き止めテープで固定した部位が、他の部位よりも巻き止めテープの厚さの2倍だけ厚くなる。また、特許文献2の発電要素は、縦方向と横方向で直交するように固定した第1の巻き止めテープと第2の巻き止めテープが重なる部位が、他の部位よりも巻き止めテープの厚さの4倍だけ厚くなる。
However, since the power generation elements disclosed in Patent Documents 1 and 2 are wound around the circumference of the power generation element with a winding tape, the thickness of the portion fixed with the winding tape is larger than that of other portions. Also thicken.
For example, in the power generation element of Patent Document 1, the portion fixed by the winding tape is thicker than the other portion by twice the thickness of the winding tape. Further, in the power generation element of Patent Document 2, the portion where the first winding tape and the second winding tape fixed so as to be orthogonal to each other in the vertical direction and the horizontal direction overlap with the thickness of the winding tape more than other portions. It will be 4 times thicker.

ところで、非水電解質二次電池の発電要素を構成する、正極と負極との間に介在させるゲル状電解質は、比較的柔らかい材料から成るものであるため、ゲル状電解質を、正極、負極及びセパレータに密着させるために、発電要素を真空状態で加圧すると、厚さの大きい部位のゲル状電解質が厚さの小さい部位に逃げて、発電要素全体の厚さを均一化する傾向にある。そのため、上記特許文献1及び2のように、発電要素の厚さが不均一であると、真空状態で加圧した際に、発電要素のゲル状電解質の厚さが不均一になり、巻き止めテープで固定されている部位のゲル状電解質の厚さが薄くなる傾向にある。   By the way, since the gel electrolyte which comprises the power generation element of a nonaqueous electrolyte secondary battery and is interposed between the positive electrode and the negative electrode is made of a relatively soft material, the gel electrolyte is used as the positive electrode, the negative electrode, and the separator. When the power generation element is pressurized in a vacuum state in order to make it closely contact, the gel electrolyte in the thick part tends to escape to the small thickness part and tends to make the thickness of the entire power generation element uniform. Therefore, as in Patent Documents 1 and 2, if the thickness of the power generation element is not uniform, the gel electrolyte of the power generation element becomes non-uniform when pressed in a vacuum state, so There is a tendency that the thickness of the gel electrolyte in the portion fixed with the tape becomes thin.

このようにゲル状電解質の厚さが不均一である発電要素を非水電解質二次電池に用いると、非水電解質二次電池は、ゲル状電解質の厚さの違いにより、内部の電気抵抗に高低差ができ、繰り返しの充放電によって、放電差が生じ、サイクル特性が低下する。
また、ゲル状電解質の厚さが不均一である発電要素を非水電解質二次電池に用いると、非水電解質二次電池は、外部短絡などの異常時に、ゲル状電解質の厚さの薄い部分に特異的に大容量の電流が流れて熱暴走等が起こる場合がある。
When a power generation element having a non-uniform gel electrolyte thickness is used in a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery has an internal electrical resistance due to the difference in the thickness of the gel electrolyte. Differences in height can be made, and repeated charge / discharge results in a difference in discharge, which degrades cycle characteristics.
In addition, if a power generation element with a non-uniform gel electrolyte thickness is used for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery will have a thin portion of the gel electrolyte when an abnormality such as an external short circuit occurs. In some cases, a large amount of current flows to cause thermal runaway.

本発明は、上記した従来の課題に着目してなされたものであり、ゲル状電解質の厚さを可能な限り均一にして、電気抵抗を均一化し、サイクル特性及びエネルギー密度を向上させると共に、異常時における熱暴走等を抑制して安全性を向上させた巻回電極体及び非水電解質二次電池を提供することを目的とする。   The present invention has been made paying attention to the above-described conventional problems, and makes the thickness of the gel electrolyte as uniform as possible, uniforming electric resistance, improving cycle characteristics and energy density, It is an object of the present invention to provide a wound electrode body and a non-aqueous electrolyte secondary battery in which safety is improved by suppressing thermal runaway at the time.

本発明者らは、上記目的を達成すべく鋭意検討した結果、正極、負極及びセパレータを巻回した最外周端部を固定した固定用のテープを、扁平形状に形成された巻回電極体の扁平面上で、平面視で正極端子及び負極端子と重ならない位置に存在させたことにより、上記目的が達成できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have found that the fixing tape that fixes the outermost peripheral edge around which the positive electrode, the negative electrode, and the separator are fixed is formed into a flat-shaped wound electrode body. The present inventors have found that the above object can be achieved by the presence of the flat surface in a position that does not overlap with the positive electrode terminal and the negative electrode terminal in plan view, and the present invention has been completed.

即ち、本発明の巻回電極体は、帯状の正極及び負極と、上記正極と負極との間に介在させた帯状のセパレータと、上記正極に接続され、上記正極と負極とセパレータとを重ねて巻回された巻回軸方向に沿って突出させた平板状の正極端子と、上記負極に接続され、上記巻回軸方向に沿って突出させた平板状の負極端子とを備え、上記巻回軸に直交する断面が、巻回軸を中心として長軸及び短軸を有する扁平形状となるように巻回された上記正極と負極とセパレータとの最外周端部を固定した固定用テープを、上記平板状の正極端子及び/又は負極端子の主面に対向する2つの扁平面のうちの一方の扁平面上のみに存在させ、且つ、平面視で上記正極端子及び負極端子の巻回軸方向の端部に対向して上記正極端子及び負極端子と重ならない位置に存在させ、上記正極及び負極の少なくとも一方と上記セパレータとの間に、電解液を高分子に支持させて成る高分子支持体層を介在させたものである。 That is, the wound electrode body of the present invention includes a strip-shaped positive electrode and a negative electrode, a strip-shaped separator interposed between the positive electrode and the negative electrode, connected to the positive electrode, and the positive electrode, the negative electrode, and the separator stacked. A flat plate-like positive electrode terminal protruding along the wound winding axis direction; and a flat plate-like negative electrode terminal connected to the negative electrode and protruding along the winding axis direction. A fixing tape that fixes the outermost peripheral ends of the positive electrode, the negative electrode, and the separator wound so that a cross section perpendicular to the axis has a flat shape having a major axis and a minor axis around the winding axis, It exists only on one flat surface of two flat surfaces facing the main surface of the flat positive electrode terminal and / or negative electrode terminal, and the winding axis direction of the positive electrode terminal and the negative electrode terminal in plan view position that does not overlap with the positive and negative terminals so as to face the end It is present, between at least one and the separator of the positive electrode and the negative electrode, in which an electrolytic solution is interposed a polymeric support layer made by supporting the polymer.

また、本発明の非水電解質二次電池は、上記巻回電極体と、非水電解液と、上記巻回電極体及び非水電解液を収容する外装体を備えたものである。   Moreover, the nonaqueous electrolyte secondary battery of the present invention comprises the above wound electrode body, a nonaqueous electrolyte solution, and an exterior body that accommodates the above wound electrode body and the nonaqueous electrolyte solution.

本発明によれば、巻回電極体の最外周端部を固定した固定用テープを、上記正極と負極とセパレータとを重ねて、巻回軸方向に直交する断面が扁平形状となるように巻回された巻回電極体の、平板状の正極端子及び/又は負極端子の主面に対向する1つの扁平面上であり、且つ、平面視で上記正極端子及び負極端子と重ならない位置に存在させたことにより、巻回電極体の2つの対向する扁平面の間に存在するゲル状電解質の厚さを略均一にして、電気抵抗を均一化し、サイクル特性及びエネルギー密度を向上させる共に、異常時における熱暴走等を抑制して安全性を向上させた巻回電極体及び非水電解質二次電池を提供することができる。   According to the present invention, the fixing tape that fixes the outermost peripheral end portion of the wound electrode body is wound so that the positive electrode, the negative electrode, and the separator are overlapped so that the cross section perpendicular to the winding axis direction has a flat shape. The wound wound electrode body is on one flat surface facing the main surface of the flat plate-like positive electrode terminal and / or negative electrode terminal, and is present at a position that does not overlap the positive electrode terminal and the negative electrode terminal in plan view. As a result, the thickness of the gel electrolyte existing between the two opposing flat surfaces of the wound electrode body is made substantially uniform, the electric resistance is made uniform, the cycle characteristics and the energy density are improved, and abnormal It is possible to provide a wound electrode body and a non-aqueous electrolyte secondary battery that are improved in safety by suppressing thermal runaway at the time.

以下、本発明を図面に基づき詳細に説明する。
図1は、本発明の非水電解質二次電池の好ましい実施形態の第1の例を示す分解斜視図である。
図1に示すように、本例の非水電解質二次電池10は、正極端子11と負極端子12が取り付けられた巻回電極体(巻回電池素子)20をバスタブ状の凹部が形成された外装部材30Aと、この外装部材30Aのバスタブ状の凹部に対向して配置される矩形状の外装部材30Bとから成る外装体30の内部に封入して構成される。
正極端子11及び負極端子12は、外装体30の内部から外部に向かって、本例では同一方向に導出される。正極端子11及び負極端子12は、例えばアルミニウム(Al)、銅(Cu)、ニッケル(Ni)又はステンレスなどの金属材料によりそれぞれ構成される。
正極端子11及び負極端子12は、それぞれの厚さが40〜100μmの平板状体のものを用いた。平板状の正極端子(又は負極端子)において、正極端子(又は負極端子)の主面とは、平板状の正極端子(又は負極端子)を構成する平面のうち、最も大きい面積を有する平面を意味する。
なお、後述する非水電解質二次電池においても、上記正極端子及び負極端子と同様の材料及び厚さの正極端子及び負極端子を用いた。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an exploded perspective view showing a first example of a preferred embodiment of the nonaqueous electrolyte secondary battery of the present invention.
As shown in FIG. 1, in the nonaqueous electrolyte secondary battery 10 of this example, a wound electrode body (winding battery element) 20 to which a positive electrode terminal 11 and a negative electrode terminal 12 are attached is formed with a bathtub-shaped recess. An exterior member 30A and a rectangular exterior member 30B disposed opposite to a bathtub-shaped recess of the exterior member 30A are enclosed in an exterior body 30.
The positive electrode terminal 11 and the negative electrode terminal 12 are led out in the same direction in this example from the inside of the exterior body 30 toward the outside. The positive electrode terminal 11 and the negative electrode terminal 12 are each made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel.
The positive electrode terminal 11 and the negative electrode terminal 12 were each a flat plate having a thickness of 40 to 100 μm. In the flat positive electrode terminal (or negative electrode terminal), the main surface of the positive electrode terminal (or negative electrode terminal) means the plane having the largest area among the flat surfaces constituting the flat plate positive electrode terminal (or negative electrode terminal). To do.
In the nonaqueous electrolyte secondary battery described later, the positive electrode terminal and the negative electrode terminal having the same material and thickness as the positive electrode terminal and the negative electrode terminal were used.

外装部材30A,30Bと正極端子11及び負極端子12との間には、外気の侵入を防止するための密着フィルム31が挿入される。密着フィルム31は、正極端子11及び負極端子12に対して密着性を有する材料により構成され、例えば正極端子11及び負極端子12が上記の金属材料から構成される場合には、ポリエチレン、ポリプロピレン、変性ポリエチレン又は変性ポリプロピレンなどのポリオレフィン樹脂により構成されることが好ましい。   An adhesion film 31 for preventing intrusion of outside air is inserted between the exterior members 30 </ b> A and 30 </ b> B and the positive electrode terminal 11 and the negative electrode terminal 12. The adhesion film 31 is made of a material having adhesion to the positive electrode terminal 11 and the negative electrode terminal 12. For example, when the positive electrode terminal 11 and the negative electrode terminal 12 are made of the above metal material, polyethylene, polypropylene, modified It is preferably composed of a polyolefin resin such as polyethylene or modified polypropylene.

図2は、図1に示した巻回電極体のII−II仮想線に沿った模式的な断面図である。
図2において、巻回電極体(巻回電池要素)20は、正極21と負極22とが、高分子支持体層23及びセパレータ24を介して対向して配置され、巻回された構成を有している。なお、図2においては模式的に巻回軸に直交する断面が矩形状となる巻回電極体を示しているが、本例に限らず、図1に示すように、巻回軸に直交する断面が、巻回軸を中心として長軸及び短軸を有する楕円形状となるものであってもよく、巻回軸に直交する断面が楕円形状となる巻回電極体の対向する部位が、2つの扁平面となるように形成されていてもよい。
図2に示すように、巻回電極体20は、図示を省略した巻き取り軸に、高分子支持体層23及びセパレータ24が巻き取り軸に固定され、この高分子支持体層23及びセパレータ24の間に、正極21又は負極22が挿入されて、4層が積層された状態で巻回された構成を有するものである。
なお、巻き取り軸は、巻回した後取り除かれる。本明細書において、巻き取り軸が除かれた巻回電極体の軸中心を巻回体軸と称する。
正極21又は負極22の始端部は、保護テープ25a,25bにより保護される。なお、保護テープ25a,25bの厚さは15〜35μmであり、保護テープの存在は、巻回電極体及びゲル状電解質の厚さにほとんど影響を及ぼさない。なお、後述する非水電解質二次電池においても、上記保護テープと同様の保護テープを用いた。
FIG. 2 is a schematic cross-sectional view taken along an imaginary line II-II of the spirally wound electrode body illustrated in FIG.
In FIG. 2, a wound electrode body (wound battery element) 20 has a configuration in which a positive electrode 21 and a negative electrode 22 are disposed so as to face each other with a polymer support layer 23 and a separator 24 interposed therebetween. doing. In addition, in FIG. 2, although the cross section orthogonal to a winding axis shows the winding electrode body which becomes a rectangular shape typically, it is not only this example but orthogonal to a winding axis as shown in FIG. The cross section may be an ellipse having a major axis and a minor axis with the winding axis as the center, and the opposing part of the wound electrode body in which the cross section perpendicular to the winding axis is an ellipse is 2 You may form so that it may become two flat surfaces.
As shown in FIG. 2, in the wound electrode body 20, a polymer support layer 23 and a separator 24 are fixed to a take-up shaft (not shown), and the polymer support layer 23 and the separator 24 are fixed to the take-up shaft. Between them, the positive electrode 21 or the negative electrode 22 is inserted, and it has the structure wound by the state where four layers were laminated | stacked.
Note that the winding shaft is removed after winding. In this specification, the axis center of the wound electrode body from which the winding shaft is removed is referred to as a wound body axis.
The starting end of the positive electrode 21 or the negative electrode 22 is protected by protective tapes 25a and 25b. Note that the thickness of the protective tapes 25a and 25b is 15 to 35 μm, and the presence of the protective tape hardly affects the thickness of the wound electrode body and the gel electrolyte. In the nonaqueous electrolyte secondary battery described later, the same protective tape as the protective tape was used.

図3は、図1に示す非水電解質二次電池10の平面図である。
巻回電極体20は、巻回電極体20の最外周端部を構成する正極21、負極22及びセパレータ24の少なくとも1つが、固定用テープ(巻き止めテープ)26Aで固定された構造を有している。
固定用テープ(巻き止めテープ)は、厚さが40〜100μmである。
また、固定用テープとしては、例えばポリプロピレンから成る帯状の基材の両面又は片面に、例えば粘着剤としてアクリル系粘着剤を塗布したものを用いることができる。なお、後述する非水電解質二次電池においても、上記固定用テープと同様の材料及び厚さの固定用テープを用いた。
FIG. 3 is a plan view of the nonaqueous electrolyte secondary battery 10 shown in FIG.
The wound electrode body 20 has a structure in which at least one of the positive electrode 21, the negative electrode 22, and the separator 24 that constitutes the outermost peripheral end portion of the wound electrode body 20 is fixed with a fixing tape (winding tape) 26 </ b> A. ing.
The fixing tape (winding tape) has a thickness of 40 to 100 μm.
Further, as the fixing tape, for example, a tape-like base material made of polypropylene, for example, having an acrylic adhesive applied as an adhesive can be used. In the nonaqueous electrolyte secondary battery described later, a fixing tape having the same material and thickness as the fixing tape was used.

図3に示すように、巻回電極体20は、巻回電極体の最外周端部を固定した固定用テープ26Aを、平板状の正極端子及び/又は負極端子の主面に対向する、巻回電極体20の1つの扁平面上であり、且つ平面視で正極端子11及び負極端子12と重ならない位置に存在させた構造を有している。
なお、本明細書において、巻回電極体の扁平面とは、曲率を有する面も含まれることを意味する。例えば、巻回電極体の巻回軸方向に直交する断面の形状が、楕円形状であり、巻回電極体の外部方向に凸状の膨らみを有する面も、巻回電極体の扁平面に含まれるものとする。
As shown in FIG. 3, the wound electrode body 20 includes a winding tape 26 </ b> A that fixes the outermost peripheral end of the wound electrode body, facing the main surface of the flat plate-like positive electrode terminal and / or negative electrode terminal. It has a structure that is on one flat surface of the rotating electrode body 20 and is present at a position that does not overlap the positive electrode terminal 11 and the negative electrode terminal 12 in plan view.
In the present specification, the flat surface of the wound electrode body means that a surface having a curvature is also included. For example, the cross-sectional shape orthogonal to the winding axis direction of the wound electrode body is an elliptical shape, and the surface having a convex bulge in the external direction of the wound electrode body is also included in the flat surface of the wound electrode body Shall be.

本明細書において、高分子支持体層とは、電解液を高分子に支持させて成るものを意味する。
巻回電極体20の高分子支持体層としては、正極21及び負極22の少なくとも一方とセパレータ24との間に形成された電解液を含んだポリマー(高分子)層が挙げられる。
また、巻回電極体20の高分子支持体層としては、正極21及び負極22の少なくとも一方とセパレータ24との間に、電解液を含まないポリマー(高分子)層を形成し、正極21、負極22、セパレータ及びポリマー(高分子)層を重ねて巻回し、巻回されたもの外装部材30A,30Bから成る外装体30に封入し、モノマーを含む電解液を外装体30に注入して、電解液に含まれるモノマーを重合して電解液がポリマー(高分子)層に支持されたものが挙げられる。
In the present specification, the polymer support layer means a layer formed by supporting an electrolytic solution on a polymer.
Examples of the polymer support layer of the wound electrode body 20 include a polymer (polymer) layer containing an electrolytic solution formed between at least one of the positive electrode 21 and the negative electrode 22 and the separator 24.
Further, as the polymer support layer of the wound electrode body 20, a polymer (polymer) layer not containing an electrolytic solution is formed between at least one of the positive electrode 21 and the negative electrode 22 and the separator 24, and the positive electrode 21, The negative electrode 22, the separator, and the polymer (polymer) layer are stacked and wound, and the wound material is sealed in the exterior body 30 composed of the exterior members 30A and 30B, and an electrolytic solution containing a monomer is injected into the exterior body 30, Examples include those in which a monomer contained in an electrolytic solution is polymerized and the electrolytic solution is supported by a polymer (polymer) layer.

非水電解質二次電池10を構成する部材のうち、正極端子11、負極端子12、固定用テープ26Aは、各々の厚さが40〜100μmと大きい。
そのため、巻回電極体において、正極端子11、負極端子12及び固定用テープ26Aを、平面視で互いに重なり合う位置に存在させると、巻回電極体は、これらの部材が存在する部位が、他の部位よりも厚くなる。このような巻回電極体を真空加圧等すると、厚さの大きい部位に存在するゲル状となった高分子支持体層23が、厚さが小さい部位に逃げて、ゲル状電解質の厚さが不均一になる場合がある。
Among the members constituting the nonaqueous electrolyte secondary battery 10, the positive electrode terminal 11, the negative electrode terminal 12, and the fixing tape 26A each have a large thickness of 40 to 100 μm.
Therefore, in the wound electrode body, when the positive electrode terminal 11, the negative electrode terminal 12, and the fixing tape 26A are present at positions where they overlap each other in plan view, the wound electrode body has a portion where these members exist, Thicker than the part. When such a wound electrode body is subjected to vacuum pressurization or the like, the gel-like polymer support layer 23 existing in the thick portion escapes to the small thickness portion, and the thickness of the gel electrolyte is increased. May become uneven.

本例の非水電解質二次電池10は、巻回電極体20を構成する部材のうち、厚さが比較的大きい、正極端子11、負極端子12及び固定用テープ26Aを、いずれも互いに平面視で重ならない位置に存在させているので、巻回電極体20の対向する2つの扁平面の間の厚さを略均一にすることができ、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。   In the nonaqueous electrolyte secondary battery 10 of this example, the positive electrode terminal 11, the negative electrode terminal 12, and the fixing tape 26 </ b> A having relatively large thickness among the members constituting the wound electrode body 20 are all viewed from above. Therefore, the thickness between the two flat surfaces facing each other of the spirally wound electrode body 20 can be made substantially uniform, and the polymer support layer 23 that is gelled by the electrolytic solution. Can be made uniform in thickness.

このように巻回電極体20の対向する2つの扁平面の間の厚さが略均一であると、この巻回電極体20を用いて、加圧されて形成された非水電解質二次電池10は、電解液によりゲル状となった高分子支持体層(ゲル状電解質)23の厚さを均一化することができる。
その結果、本例の巻回電極体20を用いた非水電解質二次電池10は、電気抵抗の高低差が抑制され、サイクル特性を向上させることができる。
また、非水電解質二次電池10のゲル状電解質層の厚さが均一化されていると、非水電解質二次電池のエネルギー密度を向上させることができる。
また、本例の非水電解質二次電池10は、ゲル状電解質層の厚さが均一化されているので、電池の内部抵抗を均一にすることができ、外部短絡等の異常時に抵抗が小さい部分に特異的に大容量の電流が流れることがないので、安全性を向上させることができる。
In this way, when the thickness between the two flat surfaces facing each other of the wound electrode body 20 is substantially uniform, the non-aqueous electrolyte secondary battery formed by pressurization using the wound electrode body 20 10 can make the thickness of the polymer support layer (gel electrolyte) 23 gelled by the electrolytic solution uniform.
As a result, the non-aqueous electrolyte secondary battery 10 using the wound electrode body 20 of this example can suppress the difference in height of the electrical resistance and can improve the cycle characteristics.
Further, when the thickness of the gel electrolyte layer of the nonaqueous electrolyte secondary battery 10 is made uniform, the energy density of the nonaqueous electrolyte secondary battery can be improved.
In addition, since the non-aqueous electrolyte secondary battery 10 of this example has a uniform thickness of the gel electrolyte layer, the internal resistance of the battery can be made uniform, and the resistance is small when an abnormality such as an external short circuit occurs. Since a large amount of current does not flow specifically in the portion, safety can be improved.

次に、本発明の非水電解質二次電池の好ましい実施形態の他の例について説明する。
図4は、本発明の非水電解質二次電池の好ましい実施形態の第2の例を示す平面図である。図5は、図4に示す非水電解質二次電池のII−II仮想線に沿った模式的な断面図である。II−II仮想線は、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20の1つの扁平面の対称中心点Cを通過し、巻回体軸方向に直交する方向(横方向)に延びる線である。図4及び図5において、図1〜3の非水電解質二次電池と同様の部材には、同一の符号を付した。
なお、本明細書において、巻回電極体の対称中心点Cとは、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20の1つの扁平面を構成する形状の対称中心点Cをいい、1つの扁平面が四角形状である場合は、この四角形状の対向する一辺と他辺との間の中心点をいう。
図4に示すように、本例の非水電解質二次電池10Bは、巻回電極体20Bの対称中心点Cを通過するII−II仮想線に到達しない、短い正極端子11B及び負極端子12Bを備えている。
Next, another example of a preferred embodiment of the nonaqueous electrolyte secondary battery of the present invention will be described.
FIG. 4 is a plan view showing a second example of a preferred embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 5 is a schematic cross-sectional view taken along the phantom line II-II of the nonaqueous electrolyte secondary battery shown in FIG. The II-II imaginary line is symmetrical with one flat plane of the wound electrode body 20 formed so that the cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis with the winding axis as the center. It is a line that passes through the center point C and extends in a direction (lateral direction) orthogonal to the wound body axis direction. 4 and 5, the same members as those in the nonaqueous electrolyte secondary battery in FIGS.
In the present specification, the symmetrical center point C of the wound electrode body is formed such that a cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis about the winding axis. It refers to the symmetrical center point C of the shape constituting one flat surface of the wound electrode body 20, and when one flat surface is a quadrangle, the center point between one side and the other side of the quadrilateral Say.
As shown in FIG. 4, the non-aqueous electrolyte secondary battery 10B of this example includes a short positive electrode terminal 11B and a negative electrode terminal 12B that do not reach the II-II imaginary line passing through the symmetry center point C of the wound electrode body 20B. I have.

図4及び図5に示すように、本例の巻回電極体20Bは、巻回電極体20Bの最外周端部を固定した固定用テープ26Bを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Bの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを含み、平面視で正極端子11B及び負極端子12Bと重ならない位置に存在させた構造を有している。
本例の巻回電極体20Bは、固定用テープ26Bを、巻回電極体20Bの1つの扁平面上で、該扁平面の対称中心点Cを中心として、略均一に広がる領域(矩形状の領域)に存在させているので、巻回電極体20の対向する2つの扁平面の間の厚さが略均一となり、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。
As shown in FIGS. 4 and 5, the wound electrode body 20 </ b> B of this example is formed by fixing a fixing tape 26 </ b> B with the outermost peripheral end portion of the wound electrode body 20 </ b> B fixed in a cross section perpendicular to the winding axis direction. On one flat plane of the wound electrode body 20B formed so as to have a flat shape having a major axis and a minor axis with the axis as a center, a symmetrical center point C of the shape constituting the flat plane is included, and is seen in a plan view Thus, the positive electrode terminal 11B and the negative electrode terminal 12B are not overlapped with each other.
In the wound electrode body 20B of this example, the fixing tape 26B is an area (rectangular shape) that spreads substantially uniformly on the one flat surface of the wound electrode body 20B around the symmetry center point C of the flat surface. Therefore, the thickness between the two flat surfaces facing each other of the spirally wound electrode body 20 is substantially uniform, and the thickness of the polymer support layer 23 that is gelled by the electrolytic solution is made uniform. can do.

図6は、本発明の非水電解質二次電池の好ましい参考形態の第の例を示す平面図である。図7は、図6に示す非水電解質二次電池のII−II仮想線に沿った模式的な断面図である。II−II仮想線は、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Cの対称中心点Cを通過し、巻回体軸方向に直交する方向(横方向)に延びる線である。図6及び図7において、図1〜3の非水電解質二次電池と同様の部材には、同一の符号を付した。
図6及び図7に示すように、本例の非水電解質二次電池10Cは、巻回電極体20Cの対称中心点Cを通過するII−II仮想線を超える長さの正極端子11C及び負極端子12Cを備えている。
FIG. 6 is a plan view showing a first example of a preferred reference embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 7 is a schematic cross-sectional view taken along an imaginary line II-II of the nonaqueous electrolyte secondary battery shown in FIG. The II-II imaginary line passes through the symmetrical center point C of the wound electrode body 20C formed so that the cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis about the winding axis. And it is a line extended in the direction (horizontal direction) orthogonal to a wound body axial direction. 6 and 7, the same members as those of the nonaqueous electrolyte secondary battery of FIGS.
As shown in FIGS. 6 and 7, the nonaqueous electrolyte secondary battery 10C of this example includes a positive electrode terminal 11C and a negative electrode having a length exceeding the II-II imaginary line passing through the symmetry center point C of the wound electrode body 20C. A terminal 12C is provided.

図6及び図7に示すように、巻回電極体20Cは、巻回電極体20Cの最外周端部を固定した固定用テープ26Cを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Cの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを含み、平面視で正極端子11B及び負極端子12Bと重ならない位置に存在させた構造を有している。
本例の巻回電極体20Cは、比較的厚さの大きい部材である正極端子11C、固定用テープ26C、負極端子12Cを、平面視で巻回体軸方向(縦方向)に並列に存在させているので、巻回電極体20Cの対向する2つの扁平面の間の厚さが略均一になり、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。
As shown in FIGS. 6 and 7, the wound electrode body 20 </ b> C includes a fixing tape 26 </ b> C that fixes the outermost peripheral end of the wound electrode body 20 </ b> C, and a cross section perpendicular to the winding axis direction is centered on the winding axis. As a flat terminal of a spirally wound electrode body 20C formed so as to have a flat shape having a major axis and a minor axis. 11B and the negative electrode terminal 12B.
In the wound electrode body 20C of this example, the positive electrode terminal 11C, the fixing tape 26C, and the negative electrode terminal 12C, which are relatively thick members, are arranged in parallel in the axial direction (longitudinal direction) of the wound body in plan view. Therefore, the thickness between the two flat surfaces facing each other of the spirally wound electrode body 20C becomes substantially uniform, and the thickness of the polymer support layer 23 that is gelled by the electrolytic solution can be made uniform. .

図8は、本発明の非水電解質二次電池の好ましい実施形態の第の例を示す平面図である。図9は、図8に示す非水電解質二次電池のII−II仮想線に沿った模式的な断面図である。II−II仮想線は、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Dの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを通過し、巻回体軸方向に直交する方向(横方向)に延びる線である。図8及び図9において、図1〜3の非水電解質二次電池と同様の部材には、同一の符号を付した。
図8及び図9に示すように、本例の非水電解質二次電池10Dは、巻回電極体20Dの対称中心点Cを通過するII−II仮想線まで到達せず、II−II仮想線を中心線として対向し、互いに反対の巻回体軸方向に突出する、短い正極端子11D及び負極端子12Dを備えている。
FIG. 8 is a plan view showing a third example of a preferred embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 9 is a schematic cross-sectional view taken along an imaginary line II-II of the nonaqueous electrolyte secondary battery shown in FIG. The II-II imaginary line is on one flat surface of the wound electrode body 20D formed so that a cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis with the winding axis as the center. These are lines that pass through the symmetry center point C of the shape constituting the flat surface and extend in a direction (lateral direction) orthogonal to the winding body axis direction. 8 and 9, the same members as those of the nonaqueous electrolyte secondary battery of FIGS.
As shown in FIGS. 8 and 9, the nonaqueous electrolyte secondary battery 10D of this example does not reach the II-II imaginary line passing through the symmetry center point C of the spirally wound electrode body 20D, but the II-II imaginary line. Is provided with a short positive electrode terminal 11D and a negative electrode terminal 12D that protrude in the axial direction of the wound body opposite to each other.

図8及び図9に示すように、巻回電極体20Dは、巻回電極体20Dの最外周端部を固定した固定用テープ26Dを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Dの1つの扁平面上で、対向配置させた正極端子11Dと負極端子12Dとの間であり、平面視で巻回電極体20Dの対称中心点Cを通過する巻回体軸に直交する仮想線(II−II仮想線)上に存在させた構造を有している。
本例の巻回電極体20Dは、比較的厚さの大きい部材である正極端子11D、固定用テープ26D、負極端子12Dを、平面視で各々重ならない位置に存在させたので、巻回電極体20Dの対向する2つの扁平面の間の厚さが略均一となり、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。
As shown in FIGS. 8 and 9, the wound electrode body 20 </ b> D includes a fixing tape 26 </ b> D that fixes the outermost peripheral end portion of the wound electrode body 20 </ b> D, and a cross section perpendicular to the winding axis direction is centered on the winding axis. Between the positive electrode terminal 11D and the negative electrode terminal 12D arranged to face each other on one flat surface of the wound electrode body 20D formed so as to have a flat shape having a major axis and a minor axis. It has a structure that exists on a virtual line (II-II virtual line) orthogonal to the wound body axis passing through the symmetry center point C of the wound electrode body 20D.
In the wound electrode body 20D of the present example, the positive electrode terminal 11D, the fixing tape 26D, and the negative electrode terminal 12D, which are relatively thick members, are present at positions that do not overlap each other in plan view. The thickness between two flat surfaces facing each other in 20D becomes substantially uniform, and the thickness of the polymer support layer 23 that becomes a gel by the electrolytic solution can be made uniform.

図10は、本発明の非水電解質二次電池の好ましい参考形態の第の例を示す平面図である。図11は、図10に示す非水電解質二次電池のII−II仮想線に沿った模式的な断面図である。II−II仮想線は、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Eの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを通過し、巻回体軸方向に直交する方向(横方向)に延びる線である。図10及び図11において、図1〜3の非水電解質二次電池と同様の部材には、同一の符号を付した。
図10及び図11に示すように、本例の非水電解質二次電池10Eは、巻回電極体20Eの対称中心点Cを通過するII−II仮想線まで到達する長さを有し、互いに反対の巻回体軸方向に突出した正極端子11E及び負極端子12Eを備えている。
FIG. 10 is a plan view showing a second example of a preferred reference embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 11 is a schematic cross-sectional view taken along an imaginary line II-II of the nonaqueous electrolyte secondary battery shown in FIG. The II-II imaginary line is on one flat surface of the wound electrode body 20E formed so that a cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis with the winding axis as the center. These are lines that pass through the symmetry center point C of the shape constituting the flat surface and extend in a direction (lateral direction) orthogonal to the winding body axis direction. 10 and 11, the same members as those of the nonaqueous electrolyte secondary battery of FIGS.
As shown in FIGS. 10 and 11, the non-aqueous electrolyte secondary battery 10E of this example has a length that reaches the II-II imaginary line that passes through the symmetry center point C of the spirally wound electrode body 20E. A positive electrode terminal 11E and a negative electrode terminal 12E protruding in the opposite winding body axial direction are provided.

図10及び図11に示すように、巻回電極体20Eは、巻回電極体20Eの最外周端部を固定した固定用テープ26Eを、少なくとも対向する2つの平面を有するように巻回した巻回電極体20Eの1つの平面上で、平面視で正極端子11Eと負極端子12Eとの間であり、平面視で巻回電極体20Eの巻回体軸上に存在させた構造を有している。
本例の巻回電極体20は、比較的厚さの大きい部材である正極端子11E、固定用テープ26E、負極端子12Eを、平面視で巻回体軸方向(縦方向)に並列に存在させているので、巻回電極体20Eの対向する2つの平面の間の厚さが略均一となり、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。
As shown in FIGS. 10 and 11, the wound electrode body 20 </ b> E is formed by winding a fixing tape 26 </ b> E that fixes the outermost peripheral end of the wound electrode body 20 </ b> E so as to have at least two opposed planes. On one plane of the rotating electrode body 20E, there is a structure between the positive electrode terminal 11E and the negative electrode terminal 12E in plan view and on the winding body axis of the wound electrode body 20E in plan view. Yes.
In the wound electrode body 20 of the present example, the positive electrode terminal 11E, the fixing tape 26E, and the negative electrode terminal 12E, which are relatively thick members, are arranged in parallel in the wound body axial direction (vertical direction) in plan view. Therefore, the thickness between the two opposing flat surfaces of the spirally wound electrode body 20E becomes substantially uniform, and the thickness of the polymer support layer 23 that is gelled by the electrolytic solution can be made uniform.

図12は、本発明の非水電解質二次電池の好ましい実施形態の第の例を示す平面図である。図13は、図12に示す非水電解質二次電池のII−II仮想線に沿った模式的な断面図である。II−II仮想線は、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Fの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを通過し、巻回体軸方向に直交する方向(横方向)に延びる線である。図12及び図13において、図1〜3の非水電解質二次電池と同様の部材には、同一の符号を付した。
図12に示すように、本例の非水電解質二次電池10Fは、巻回電極体20Fの対称中心点Cを通過するII−II仮想線に到達しない、短い正極端子11F及び負極端子12Fを備える。
図14は、図12に示す非水電解質二次電池10Fに用いた巻回電極体20Fの背面図である。
図14に示すように、この正極端子11Fは、正極端子11Fを構成する正極21に接続した例えばアルミニウム(Al)箔が巻回電極体20Fから突出し、この突出したアルミニウム(Al)箔に端子が取り付けられた構造を有している。
負極端子12Fも正極端子11Fと同様に、負極端子12Fを構成する負極22に接続した例えば銅(Cu)箔が、巻回電極体20Fから突出し、この突出した銅(Cu)箔に端子が取り付けられた構造を有している。
FIG. 12 is a plan view showing a fourth example of a preferred embodiment of the nonaqueous electrolyte secondary battery of the present invention. FIG. 13 is a schematic cross-sectional view taken along an imaginary line II-II of the nonaqueous electrolyte secondary battery shown in FIG. The II-II imaginary line is on one flat plane of the wound electrode body 20F formed so that a cross section perpendicular to the winding axis direction has a flat shape having a major axis and a minor axis with the winding axis as the center. These are lines that pass through the symmetry center point C of the shape constituting the flat surface and extend in a direction (lateral direction) orthogonal to the winding body axis direction. 12 and 13, the same members as those in the nonaqueous electrolyte secondary battery in FIGS.
As shown in FIG. 12, the nonaqueous electrolyte secondary battery 10F of this example includes short positive terminal 11F and negative terminal 12F that do not reach the II-II imaginary line passing through the symmetry center point C of the wound electrode body 20F. Prepare.
FIG. 14 is a rear view of the wound electrode body 20F used in the nonaqueous electrolyte secondary battery 10F shown in FIG.
As shown in FIG. 14, in this positive electrode terminal 11F, for example, an aluminum (Al) foil connected to the positive electrode 21 constituting the positive electrode terminal 11F protrudes from the wound electrode body 20F, and the terminal is provided on the protruded aluminum (Al) foil. It has an attached structure.
Similarly to the positive electrode terminal 11F, for example, a copper (Cu) foil connected to the negative electrode 22 constituting the negative electrode terminal 12F protrudes from the wound electrode body 20F, and the terminal is attached to the protruded copper (Cu) foil. Has the structure.

図12〜図14に示すように、本例の巻回電極体20Fは、巻回電極体20Fの最外周端部を固定した固定用テープ26Fを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Fの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを含み、平面視で正極端子11F及び負極端子12Fと重ならない位置に存在させた構造を有している。
本例の巻回電極体20Fは、固定用テープ26Fを、巻回電極体20Fの1つの扁平面上で、該扁平面の対称中心点Cを中心として、略均一に広がる領域(矩形状の領域)に存在させているので、巻回電極体20Fの対向する2つの扁平面の間の厚さが略均一となり、電解液によりゲル状となる高分子支持体層23の厚さを均一化することができる。
As shown in FIGS. 12 to 14, the wound electrode body 20 </ b> F of the present example is formed by fixing a fixing tape 26 </ b> F with the outermost peripheral end portion of the wound electrode body 20 </ b> F fixed in a cross section perpendicular to the winding axis direction. On one flat plane of the wound electrode body 20F formed so as to have a flat shape having a major axis and a minor axis with the axis as a center, a symmetrical center point C of the shape constituting the flat plane is included, and is seen in a plan view And has a structure in which the positive electrode terminal 11F and the negative electrode terminal 12F are not overlapped with each other.
In the wound electrode body 20F of this example, the fixing tape 26F is a region (rectangular shape) that spreads substantially uniformly on the one flat surface of the wound electrode body 20F around the symmetry center point C of the flat surface. Therefore, the thickness between the two flat surfaces facing each other of the spirally wound electrode body 20F is substantially uniform, and the thickness of the polymer support layer 23 that is gelled by the electrolyte is uniformized. can do.

次に、上記した例の非水電解質二次電池の各構成要素について詳細に説明する。
[正極]
正極21は、例えば対向する一対の面を有する、帯状の正極集電体21Aの両面又は片面に正極活物質層21Bが被覆された構造を有している。正極集電体21Aには、長手方向における一方の端部に正極活物質層21Bが被覆されずに露出している部分があり、この露出部分に正極端子11が取り付けられている。
正極集電体21Aは、例えばアルミニウム箔、ニッケル箔又はステンレス箔などの金属箔により構成される。
Next, each component of the nonaqueous electrolyte secondary battery of the above example will be described in detail.
[Positive electrode]
The positive electrode 21 has, for example, a structure in which a positive electrode active material layer 21B is coated on both surfaces or one surface of a strip-shaped positive electrode current collector 21A having a pair of opposed surfaces. The positive electrode current collector 21 </ b> A has a portion exposed without being covered with the positive electrode active material layer 21 </ b> B at one end portion in the longitudinal direction, and the positive electrode terminal 11 is attached to the exposed portion.
The positive electrode current collector 21A is made of a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.

正極活物質層21Bは、正極活物質として、リチウムを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じて導電材及び結着剤を含んでいてもよい。
リチウムを吸蔵及び放出することが可能な正極材料としては、例えば硫黄(S)や、二硫化鉄(FeS)、二硫化チタン(TiS)、二硫化モリブデン(MoS)、二セレン化ニオブ(NbSe)、酸化バナジウム(V)、二酸化チタン(TiO)及び二酸化マンガン(MnO)などのリチウムを含有しないカルコゲン化物(特に層状化合物やスピネル型化合物)、リチウムを含有するリチウム含有化合物、並びに、ポリアニリン、ポリチオフェン、ポリアセチレン及びポリピロールなどの導電性高分子化合物が挙げられる。
The positive electrode active material layer 21B includes one or more positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and includes a conductive material and a binder as necessary. You may go out.
Examples of the positive electrode material capable of inserting and extracting lithium include sulfur (S), iron disulfide (FeS 2 ), titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium diselenide. lithium (NbSe 2), vanadium oxide (V 2 O 5), chalcogenides containing no lithium, such as titanium dioxide (TiO 2) and manganese dioxide (MnO 2) (especially layered compound and the spinel-type compound), containing lithium Examples thereof include conductive compounds such as polyaniline, polythiophene, polyacetylene, and polypyrrole.

これらの中でも、リチウム含有化合物は、高電圧及び高エネルギー密度を得ることができるものがあるので好ましい。このようなリチウム含有化合物としては、例えばリチウムと遷移金属元素とを含む複合酸化物や、リチウムと遷移金属元素とを含むリン酸化合物が挙げられるが、より高い電圧を得る観点からは、特にコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)、チタン(Ti)又はこれらの任意の混合物を含むものが好ましい。   Among these, lithium-containing compounds are preferable because some compounds can obtain a high voltage and a high energy density. Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, and a phosphate compound containing lithium and a transition metal element. From the viewpoint of obtaining a higher voltage, cobalt is particularly preferred. (Co), nickel (Ni), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), vanadium (V), titanium (Ti) or any mixture thereof. The inclusion is preferred.

かかるリチウム含有化合物は、代表的には、次の一般式(1)又は(2)
Li…(1)
LiIIPO…(2)
(式中のMI及びMIIは1種類以上の遷移金属元素を示し、x及びyの値は電池の充放電状態によって異なるが、通常0.05≦x≦1.10、0.05≦y≦1.10である。)で表され、(1)式の化合物は一般に層状構造を有し、(2)式の化合物は一般にオリビン構造を有する。
Such lithium-containing compounds are typically represented by the following general formula (1) or (2)
Li x M I O 2 (1)
Li y M II PO 4 (2)
(MI and MII in the formula indicate one or more transition metal elements, and the values of x and y vary depending on the charge / discharge state of the battery, but are generally 0.05 ≦ x ≦ 1.10, 0.05 ≦ y ≦ The compound of formula (1) generally has a layered structure, and the compound of formula (2) generally has an olivine structure.

また、リチウムと遷移金属元素とを含む複合酸化物の具体例としては、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物(LiNi1−zCo(0<z<1)、スピネル型構造を有するリチウムマンガン複合酸化物(LiMn)などが挙げられる。
更に、リチウムと遷移金属元素とを含むリン酸化合物の具体例としては、例えばオリビン構造を有するリチウム鉄リン酸化合物(LiFePO)又はリチウム鉄マンガンリン酸化合物(LiFe1−vMnPO(v<1))が挙げられる。
これらの複合酸化物において、構造を安定化させる等の目的から、遷移金属の一部をAlやMgその他の遷移金属元素で置換したり結晶粒界に含ませたもの、酸素の一部をフッ素等で置換したもの等も挙げることができる。更に、正極活物質表面の少なくとも一部に他の正極活物質を被覆したものとしてもよい。また、正極活物質は、複数種類を混合して用いてもよい。
Specific examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), lithium nickel cobalt composite oxide ( Examples include Li x Ni 1-z Co z O 2 (0 <z <1), lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel structure.
Furthermore, specific examples of the phosphate compound containing lithium and a transition metal element include, for example, a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-v Mn v PO 4 ( v <1)).
In these composite oxides, for the purpose of stabilizing the structure, a transition metal is partially substituted with Al, Mg or other transition metal elements or included in the crystal grain boundary, and a part of oxygen is fluorine. The thing substituted by etc. can also be mentioned. Further, at least a part of the surface of the positive electrode active material may be coated with another positive electrode active material. Moreover, you may use a positive electrode active material in mixture of multiple types.

[負極]
一方、負極22は、正極21と同様に、例えば対向する一対の面を有する、帯状の負極集電体22Aの両面又は片面に負極活物質層22Bが被覆された構造を有している。負極集電体22Aには、長手方向における一方の端部に負極活物質層22Bが設けられず露出している部分があり、この露出部分に負極端子12が取り付けられている。
負極集電体22Aは、例えば銅箔、ニッケル箔又はステンレス箔などの金属箔により構成される。
[Negative electrode]
On the other hand, the negative electrode 22 has a structure in which, for example, a negative electrode active material layer 22B is coated on both surfaces or one surface of a strip-shaped negative electrode current collector 22A having a pair of opposed surfaces, similarly to the positive electrode 21. The negative electrode current collector 22A has an exposed portion without being provided with the negative electrode active material layer 22B at one end in the longitudinal direction, and the negative electrode terminal 12 is attached to the exposed portion.
The anode current collector 22A is made of a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.

負極活物質層22Bは、負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、金属リチウムのいずれか1種又は2種以上を含んでおり、必要に応じて導電材及び結着剤を含んでいてもよい。
リチウムを吸蔵及び放出することが可能な負極材料としては、例えば炭素材料、金属酸化物及び高分子化合物が挙げられる。炭素材料としては、難黒鉛化炭素材料、人造黒鉛材料やや黒鉛系材料などが挙げられ、より具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭及びカーボンブラックなどがある。
The negative electrode active material layer 22B includes one or more of a negative electrode material capable of inserting and extracting lithium ions and metallic lithium as a negative electrode active material, and a conductive material and a binder as necessary. An adhesive may be included.
Examples of the negative electrode material capable of inserting and extracting lithium include a carbon material, a metal oxide, and a polymer compound. Examples of the carbon material include non-graphitizable carbon materials, artificial graphite materials, and graphite-based materials. More specifically, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound firing Body, carbon fiber, activated carbon and carbon black.

このうち、コークス類にはピッチコークス、ニードルコークス及び石油コークスなどがあり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいう。また、金属酸化物としては、酸化鉄、酸化ルテニウム及び酸化モリブテンなどが挙げられ、高分子化合物としてはポリアセチレンやポリピロールなどが挙げられる。   Among these, coke includes pitch coke, needle coke and petroleum coke, and the organic polymer compound fired body is carbonized by firing a polymer material such as phenol resin or furan resin at an appropriate temperature. Say things. In addition, examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide, and examples of the polymer compound include polyacetylene and polypyrrole.

また、リチウムを吸蔵及び放出することが可能な負極材料としては、リチウムと合金を形成可能な金属元素及び半金属元素のうちの少なくとも1種を構成元素として含む材料も挙げられる。この負極材料は金属元素又は半金属元素の単体でも合金でも化合物でもよく、またこれらの1種又は2種以上の相を少なくとも一部に有するようなものでもよい。
なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物又はこれらのうちの2種以上が共存するものがある。
In addition, examples of the negative electrode material capable of inserting and extracting lithium include materials containing at least one of a metal element and a metalloid element capable of forming an alloy with lithium as a constituent element. The negative electrode material may be a single element, alloy or compound of a metal element or a metalloid element, or may have at least a part of one or more of these phases.
In the present invention, alloys include those containing one or more metal elements and one or more metalloid elements in addition to those composed of two or more metal elements. Moreover, the nonmetallic element may be included. Some of the structures include a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or a mixture of two or more of these.

このような金属元素又は半金属元素としては、例えばスズ(Sn)、鉛(Pb)、アルミニウム、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ハフニウム(Hf)、ジルコニウム(Zr)及びイットリウム(Y)が挙げられる。
中でも、長周期型周期表における14族の金属元素又は半金属元素が好ましく、特に好ましいのはケイ素又はスズである。ケイ素及びスズは、リチウムを吸蔵及び放出する能力が大きく、高いエネルギー密度を得ることができるからである。
Examples of such metal elements or metalloid elements include tin (Sn), lead (Pb), aluminum, indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), Examples include gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), hafnium (Hf), zirconium (Zr), and yttrium (Y).
Among them, a group 14 metal element or metalloid element in the long-period type periodic table is preferable, and silicon or tin is particularly preferable. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.

スズの合金としては、例えばスズ以外の第2の構成元素として、ケイ素、マグネシウム(Mg)、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン(Ti)、ゲルマニウム、ビスマス、アンチモン及びクロム(Cr)から成る群のうちの少なくとも1種を含むものが挙げられる。
ケイ素の合金としては、例えばケイ素以外の第2の構成元素として、スズ、マグネシウム、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムから成る群のうちの少なくとも1種を含むものが挙げられる。
Examples of the tin alloy include silicon, magnesium (Mg), nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium (Ti), germanium, bismuth, and antimony as second constituent elements other than tin. And at least one selected from the group consisting of chromium (Cr).
As an alloy of silicon, for example, as a second constituent element other than silicon, tin, magnesium, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, and chromium can be used. The thing containing at least 1 sort (s) of them is mentioned.

スズの化合物又はケイ素の化合物としては、例えば酸素(O)又は炭素(C)を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。   Examples of the tin compound or the silicon compound include those containing oxygen (O) or carbon (C), and may contain the second constituent element described above in addition to tin or silicon.

なお、上記のような負極材料としては、チタンのようにリチウムと複合酸化物を形成する元素でもよい。もちろん、金属リチウムを析出溶解させてもよく、リチウム以外のマグネシウムやアルミニウムを析出溶解させることもできる。   The negative electrode material as described above may be an element that forms a complex oxide with lithium, such as titanium. Of course, metallic lithium may be precipitated and dissolved, and magnesium and aluminum other than lithium may be precipitated and dissolved.

[高分子支持体層]
次に、高分子支持体層23は、イオン伝導性を有し、非水電解液を保持することが可能である。図1〜14に示す実施形態及び参考形態において、この高分子支持体層23は、セパレータ24に密着ないし接着しているが、セパレータ24と正極21、セパレータ24と負極22のように、セパレータと電極とに密着ないし接着していてもよいし、セパレータに密着ないし接着せず、正極21又は負極22のいずれか一方又は両方にのみ密着ないし接着していてもよい。
ここで、「密着」とは、高分子支持体層23とセパレータ24や正極21、負極22とが、所定の力を加えなければ互いに相対的に移動しない程度まで隙間なく接していることをいう。
[Polymer support layer]
Next, the polymer support layer 23 has ionic conductivity and can hold a non-aqueous electrolyte. In the embodiment and the reference embodiment shown in FIGS. 1 to 14, the polymer support layer 23 is in close contact with or bonded to the separator 24, but the separator 24 and the positive electrode 21, the separator 24 and the negative electrode 22, The electrode may be in close contact with or bonded to the electrode, or may not be in close contact with or bonded to the separator, and may be in close contact with or bonded to only one or both of the positive electrode 21 and the negative electrode 22.
Here, “adhesion” means that the polymer support layer 23 and the separator 24, the positive electrode 21, and the negative electrode 22 are in contact with each other to the extent that they do not move relative to each other unless a predetermined force is applied. .

高分子支持体層23とセパレータ24と、又は高分子支持体層23と正極や負極とが密着ないし接着していることにより、高分子支持体層23が非水電解液を保持しゲル状の非水電解質層となった状態において、正極21又は負極22とセパレータ24とがこの非水電解質層を介して接着された状態となる。この接着の程度は、例えば、正極21及び負極22のうち活物質層が設けられておらず集電体が露出している露出部とセパレータとの剥離強度が5mN/mm以上となる程度が好ましい。なお、剥離強度は、集電体を支持台上に配置し、10cm/分の速度で180゜方向に引っ張り、セパレータから集電体を剥離して、引っ張り始めてから6秒から25秒の間に、剥離するのに必要とされた力の平均値である。   The polymer support layer 23 and the separator 24, or the polymer support layer 23 and the positive electrode or the negative electrode are in close contact or bonded to each other, so that the polymer support layer 23 holds the non-aqueous electrolyte and has a gel-like shape. In a state where the nonaqueous electrolyte layer is formed, the positive electrode 21 or the negative electrode 22 and the separator 24 are bonded via the nonaqueous electrolyte layer. The degree of adhesion is preferably such that, for example, the peel strength between the exposed portion of the positive electrode 21 and the negative electrode 22 where the active material layer is not provided and the current collector is exposed and the separator is 5 mN / mm or more. . The peel strength is measured between 6 seconds and 25 seconds after the current collector is placed on a support stand, pulled in a 180 ° direction at a speed of 10 cm / min, and the current collector is peeled off from the separator. , The average force required to peel.

かかる密着ないし接着により、電池反応に実質的に関与しない余剰の非水電解液を低減することができ、図1〜14に示す実施形態及び参考形態では、均一な厚さに形成された高分子支持体層を介して、非水電解液が電極活物質の周囲に効率よく供給される。
従って、図1〜14に示す実施形態及び参考形態の非水電解質二次電池は、非水電解液量が従来よりも少量であっても、優れたサイクル寿命特性を発揮し、また、使用する非水電解液量が少量であるので耐漏液性にも優れることになる。
Such adhesion or adhesion can reduce excess non-aqueous electrolyte that does not substantially participate in the battery reaction. In the embodiment and the reference embodiment shown in FIGS. 1 to 14, the polymer formed in a uniform thickness is used. The nonaqueous electrolyte is efficiently supplied around the electrode active material through the support layer.
Therefore, the non-aqueous electrolyte secondary battery of the embodiment and the reference embodiment shown in FIGS. 1 to 14 exhibits excellent cycle life characteristics and is used even when the amount of the non-aqueous electrolyte is smaller than the conventional amount. Since the amount of the non-aqueous electrolyte is small, the liquid leakage resistance is also excellent.

上記の高分子支持体層を構成する高分子支持体としては、非水電解液を保持してイオン伝導性を発揮する限り特に限定されるものではないが、アクリロニトリルの共重合量が50%以上、特に80%以上のアクリロニトリル系重合体、芳香族ポリアミド、アクリロニトリル/ブタジエンコポリマー、アクリレート又はメタクリレートの単独重合体又は共重合体よりなるアクリル系重合体、アクリルアミド系重合体、フッ化ビニリデン等の含フッ素ポリマー、ポリスルホン、ポリアリルスルホン等を挙げることができる。特にアクリロニトリルの共重合量が50%以上の重合体はその側鎖にCN基を有しているため誘電率が高く、イオン伝導性の高い高分子ゲル電解質が作製できる。
これら重合体に対する非水電解液の担持性向上やこれら重合体よりの高分子ゲル電解質のイオン伝導性を向上させるため、アクリロニトリルとアクリル酸、メタクリル酸、イタコン酸等のビニルカルボン酸、アクリルアミド、メタクリルスルホン酸、ヒドロキシアルキレングリコール(メタ)アクリレート、アルコキシアルキレングリコール(メタ)アクリレート、塩化ビニル、塩化ビニリデン、酢酸ビニル、各種(メタ)アクリレート等を好ましくは50%以下、特に20%以下の割合で共重合したものも用いることができる。
The polymer support constituting the polymer support layer is not particularly limited as long as it retains the non-aqueous electrolyte and exhibits ionic conductivity, but the copolymerization amount of acrylonitrile is 50% or more. 80% or more of acrylonitrile polymer, aromatic polyamide, acrylonitrile / butadiene copolymer, acrylic polymer comprising acrylate or methacrylate homopolymer or copolymer, acrylamide polymer, vinylidene fluoride, etc. Examples thereof include a polymer, polysulfone, and polyallylsulfone. In particular, a polymer having a copolymerization amount of 50% or more of acrylonitrile has a CN group in its side chain, so that a polymer gel electrolyte having a high dielectric constant and high ion conductivity can be produced.
In order to improve the support of non-aqueous electrolytes for these polymers and the ionic conductivity of polymer gel electrolytes from these polymers, acrylonitrile and vinyl carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, acrylamide, methacrylic Copolymerization of sulfonic acid, hydroxyalkylene glycol (meth) acrylate, alkoxyalkylene glycol (meth) acrylate, vinyl chloride, vinylidene chloride, vinyl acetate, various (meth) acrylates, preferably at a ratio of 50% or less, particularly 20% or less. It is also possible to use.

また、芳香族ポリアミドは、高耐熱性ポリマーであることより、自動車用バッテリーの如く高耐熱性が要求される高分子ゲル電解質が求められる場合には好ましい高分子重合体である。また、ブタジエン等を共重合せしめ架橋構造を有する重合体も用い得る。
特に、構成成分としてフッ化ビニリデンを含む重合体、即ち単独重合体、共重合体及び多元共重合体が好ましく、具体的には、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、及びポリフッ化ビニリデン−ヘキサフルオロプロピレン−クロロトリフルオロエチレン共重合体(PVdF−HEP−CTFE)を挙げることができる。
In addition, since the aromatic polyamide is a high heat-resistant polymer, it is a preferable high-molecular polymer when a polymer gel electrolyte that requires high heat resistance such as an automobile battery is required. Further, a polymer having a crosslinked structure obtained by copolymerizing butadiene or the like can also be used.
In particular, a polymer containing vinylidene fluoride as a constituent component, that is, a homopolymer, a copolymer, and a multi-component copolymer are preferable. Specifically, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer A combination (PVdF-HFP) and a polyvinylidene fluoride-hexafluoropropylene-chlorotrifluoroethylene copolymer (PVdF-HEP-CTFE) can be mentioned.

[セパレータ]
また、セパレータ24としては、例えばポリプロピレン(PP)若しくはポリエチレン(PE)などのポリオレフィン系の合成樹脂から成る多孔質膜、又はセラミック製の不織布などの無機材料から成る多孔質膜など、イオン透過度が大きく、所定の機械的強度を有する絶縁性の薄膜から構成されており、これら2種以上の多孔質膜を積層した構造としてもよい。特に、ポリオレフィン系の多孔質膜を含むものは、正極と負極との分離性に優れ、内部短絡や開回路電圧の低下をいっそう低減できるので好適である。
[Separator]
As the separator 24, for example, a porous film made of a polyolefin-based synthetic resin such as polypropylene (PP) or polyethylene (PE), or a porous film made of an inorganic material such as a ceramic nonwoven fabric has an ion permeability. It is large and is comprised from the insulating thin film which has predetermined | prescribed mechanical strength, It is good also as a structure which laminated | stacked these 2 or more types of porous films. In particular, those containing a polyolefin-based porous membrane are suitable because they have excellent separability between the positive electrode and the negative electrode, and can further reduce internal short circuit and open circuit voltage drop.

[非水電解液]
非水電解液は、電解質塩と非水溶媒を含むものであればよい。
ここで、電解質塩としては、後述する非水溶媒に溶解ないしは分散してイオンを生ずるものであればよく、六フッ化リン酸リチウム(LiPF)を好適に使用することができるが、これに限定されないことはいうまでもない。
即ち、四フッ化ホウ酸リチウム(LiBF)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化アンチモン酸リチウム(LiSbF)、過塩素酸リチウム(LiClO)、四塩化アルミニウム酸リチウム(LiAlCl)等の無機リチウム塩や、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CFSO)、リチウムビス(ペンタフルオロメタンスルホン)イミド(LiN(CSO)、及びリチウムトリス(トリフルオロメタンスルホン)メチド(LiC(CFSO)等のパーフルオロアルカンスルホン酸誘導体のリチウム塩なども使用可能であり、これらを1種単独で又は2種以上を組み合わせて使用することも可能である。
[Non-aqueous electrolyte]
The nonaqueous electrolytic solution may be any one containing an electrolyte salt and a nonaqueous solvent.
Here, as the electrolyte salt, any electrolyte salt may be used as long as it dissolves or disperses in a nonaqueous solvent described later, and lithium hexafluorophosphate (LiPF 6 ) can be suitably used. Needless to say, it is not limited.
That is, lithium tetrafluoroborate (LiBF 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium perchlorate (LiClO 4), four lithium aluminum chloride acid ( Inorganic lithium salts such as LiAlCl 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoromethanesulfone) imide (LiN (C 2 F 5 SO 2 ) 2 ) and lithium salts of perfluoroalkanesulfonic acid derivatives such as lithium tris (trifluoromethanesulfone) methide (LiC (CF 3 SO 2 ) 3 ) can also be used. These can be used alone or in combination of two or more. It is also possible to use it.

なお、このような電解質塩の含有量は、溶媒1リットル(L)に対して0.1mol〜0.3molの範囲内が好ましく、0.5mol〜2.0molの範囲内であればより好ましい。この範囲内においてより高いイオン伝導性を得ることができるからである。   In addition, the content of such an electrolyte salt is preferably in the range of 0.1 mol to 0.3 mol, and more preferably in the range of 0.5 mol to 2.0 mol, with respect to 1 liter (L) of the solvent. This is because higher ion conductivity can be obtained within this range.

また、非水溶媒としては、各種の高誘電率溶媒や低粘度溶媒を挙げることができる。
高誘電率溶媒としては、エチレンカーボネートとプロピレンカーボネート等を好適に用いることができるが、これに限定されるものではなく、ブチレンカーボネート、ビニレンカーボネート、4−フルオロ−1,3−ジオキソラン−2−オン(フルオロエチレンカーボネート)、4−クロロ−1,3−ジオキソラン−2−オン(クロロエチレンカーボネート)、及びトリフルオロメチルエチレンカーボネートなどの環状カーボネートを用いることができる。
Examples of the non-aqueous solvent include various high dielectric constant solvents and low viscosity solvents.
As the high dielectric constant solvent, ethylene carbonate, propylene carbonate, and the like can be suitably used, but are not limited thereto, butylene carbonate, vinylene carbonate, 4-fluoro-1,3-dioxolan-2-one Cyclic carbonates such as (fluoroethylene carbonate), 4-chloro-1,3-dioxolan-2-one (chloroethylene carbonate), and trifluoromethylethylene carbonate can be used.

また、高誘電率溶媒として、環状カーボネートの代わりに又はこれと併用して、γ−ブチロラクトン及びγ−バレロラクトン等のラクトン、N−メチルピロリドン等のラクタム、N−メチルオキサゾリジノン等の環状カルバミン酸エステル、テトラメチレンスルホン等のスルホン化合物なども使用可能である。   Further, as a high dielectric constant solvent, instead of or in combination with a cyclic carbonate, a lactone such as γ-butyrolactone and γ-valerolactone, a lactam such as N-methylpyrrolidone, and a cyclic carbamate such as N-methyloxazolidinone A sulfone compound such as tetramethylene sulfone can also be used.

一方、低粘度溶媒としては、ジエチルカーボネートを好適に使用することができるが、これ以外にも、ジメチルカーボネート、エチルメチルカーボネート及びメチルプロピルカーボネート等の鎖状カーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル及びトリメチル酢酸エチル等の鎖状カルボン酸エステル、N,N−ジメチルアセトアミド等の鎖状アミド、N,N−ジエチルカルバミン酸メチル及びN,N−ジエチルカルバミン酸エチル等の鎖状カルバミン酸エステル、並びに1,2−ジメトキシエタン、テトラヒドロフラン、テトラヒドロピラン及び1,3−ジオキソラン等のエーテルを用いることができる。   On the other hand, diethyl carbonate can be preferably used as the low-viscosity solvent, but besides this, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate, methyl acetate, ethyl acetate, methyl propionate Chain carboxylic acid esters such as ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate, chain amides such as N, N-dimethylacetamide, methyl N, N-diethylcarbamate and N, Chain carbamates such as ethyl N-diethylcarbamate and ethers such as 1,2-dimethoxyethane, tetrahydrofuran, tetrahydropyran and 1,3-dioxolane can be used.

なお、本発明の非水電解質二次電池に用いる非水電解液としては、上記の高誘電率溶媒及び低粘度溶媒は、その1種を単独で又は2種以上を任意に混合して用いることができるが、20〜50%の環状カーボネートと50〜80%の低粘度溶媒(低粘度非水溶媒)を含むものが好ましく、特に低粘度溶媒として沸点が130℃以下の鎖状カーボネートであるものが望ましい。
このような非水電解液を用いることにより、少量の非水電解液で、高分子支持体層を良好に膨潤させることができ、電池の膨れ抑制や漏れ防止と高い伝導性との両立を図ることができる。
環状カーボネートと低粘度溶媒との比率が上述の範囲を逸脱すると、電解液の伝導率が低下し、サイクル特性が低下するおそれがある。具体的には、低粘度溶媒が多すぎる場合には誘電率が低くなり、逆に低粘度溶媒が少なすぎる場合には粘度が低くなってしまい、どちらの場合にも十分な伝導率が得られず、良好な電池特性が得られなくなるおそれがある。
In addition, as a non-aqueous electrolyte used for the non-aqueous electrolyte secondary battery of the present invention, the high dielectric constant solvent and the low-viscosity solvent may be used alone or in combination of two or more. However, those containing 20 to 50% cyclic carbonate and 50 to 80% low viscosity solvent (low viscosity non-aqueous solvent) are preferred, and those having a boiling point of 130 ° C. or less as the low viscosity solvent are particularly preferred Is desirable.
By using such a non-aqueous electrolyte, the polymer support layer can be swelled satisfactorily with a small amount of the non-aqueous electrolyte, and both battery swelling suppression and leakage prevention and high conductivity are achieved. be able to.
If the ratio between the cyclic carbonate and the low-viscosity solvent deviates from the above range, the conductivity of the electrolytic solution is lowered, and the cycle characteristics may be lowered. Specifically, when the amount of the low-viscosity solvent is too large, the dielectric constant becomes low. On the other hand, when the amount of the low-viscosity solvent is too small, the viscosity becomes low. In either case, sufficient conductivity is obtained. Therefore, there is a possibility that good battery characteristics cannot be obtained.

なお、沸点が130℃以下の鎖状カーボネートとしては、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネートなどを例示することができる。
また、非水電解液中に、上記の環状カーボネートとして、ハロゲン原子を有する環状炭酸エステル誘導体が含まれる場合、サイクル特性が改善されるのでより好ましい。環状炭酸エステル誘導体としては、4−フルオロ−1,3−ジオキソラン−2−オンや4−クロロ−1,3−ジオキソラン−2−オンなどが挙げられる。これらを単独で又は組み合わせて用いることができる。含有量としては、0.5〜2%が好ましい。含有量が少ないとサイクル特性向上効果が小さく、逆に多すぎると、高温保存時の膨れが大きくなってしまうからである。
Examples of the chain carbonate having a boiling point of 130 ° C. or lower include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
In addition, when the cyclic carbonate derivative having a halogen atom is included as the above cyclic carbonate in the nonaqueous electrolytic solution, it is more preferable because cycle characteristics are improved. Examples of the cyclic carbonate derivative include 4-fluoro-1,3-dioxolan-2-one and 4-chloro-1,3-dioxolan-2-one. These can be used alone or in combination. As content, 0.5 to 2% is preferable. This is because if the content is small, the effect of improving the cycle characteristics is small, whereas if the content is too large, the swelling during high-temperature storage becomes large.

[外装体]
外装体30は、例えばナイロンフィルム、アルミニウム箔及びポリエチレンフィルムをこの順に張り合わせた外装部材であるラミネートフィルム30A,30Bにより構成されている。外装部材30は、例えばポリエチレンフィルム側と巻回電極体(巻回電池素子)20とが対向するように配設されており、各外縁部が融着又は接着剤により互いに接合されている。
[Exterior body]
The exterior body 30 is configured by laminate films 30A and 30B that are exterior members in which, for example, a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 30 is disposed so that, for example, the polyethylene film side and the wound electrode body (wound battery element) 20 face each other, and the outer edge portions are joined to each other by fusion or an adhesive.

なお、外装部材は、上述したラミネートフィルムに代えて、他の構造、例えば金属材料を有さないラミネートフィルム、ポリプロピレンなどの高分子フィルム又は金属フィルムなどにより構成してもよい。
ここで、外装部材の一般的な構成は、外装層/金属箔/シーラント層の積層構造で表すことができ(但し、外装層及びシーラント層は複数層で構成されることがある。)、上記の例では、ナイロンフィルムが外装層、アルミニウム箔が金属箔、ポリエチレンフィルムがシーラント層に相当する。
なお、金属箔としては、耐透湿性のバリア膜として機能すれば十分であり、アルミニウム箔のみならず、ステンレス箔、ニッケル箔及びメッキを施した鉄箔などを使用することができるが、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることができる。
Note that the exterior member may be formed of another structure, for example, a laminate film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-described laminate film.
Here, the general structure of an exterior member can be represented by the laminated structure of an exterior layer / metal foil / sealant layer (however, the exterior layer and the sealant layer may be composed of a plurality of layers), and the above. In this example, the nylon film corresponds to the exterior layer, the aluminum foil corresponds to the metal foil, and the polyethylene film corresponds to the sealant layer.
In addition, as metal foil, it is sufficient if it functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless steel foil, nickel foil and plated iron foil can be used, but it is thin and lightweight. Thus, an aluminum foil excellent in workability can be suitably used.

外装部材として、使用可能な構成を(外装層/金属箔/シーラント層)の形式で列挙すると、Ny(ナイロン)/Al(アルミ)/CPP(無延伸ポリプロピレン)、PET(ポリエチレンテレフタレート)/Al/CPP、PET/Al/PET/CPP、PET/Ny/Al/CPP、PET/Ny/Al/Ny/CPP、PET/Ny/Al/Ny/PE(ポリエチレン)、Ny/PE/Al/LLDPE(直鎖状低密度ポリエチレン)、PET/PE/Al/PET/LDPE(低密度ポリエチレン)、及びPET/Ny/Al/LDPE/CPPなどがある。   The structures that can be used as the exterior member are listed in the form of (exterior layer / metal foil / sealant layer): Ny (nylon) / Al (aluminum) / CPP (unstretched polypropylene), PET (polyethylene terephthalate) / Al / CPP, PET / Al / PET / CPP, PET / Ny / Al / CPP, PET / Ny / Al / Ny / CPP, PET / Ny / Al / Ny / PE (polyethylene), Ny / PE / Al / LLDPE (direct) Chain low density polyethylene), PET / PE / Al / PET / LDPE (low density polyethylene), and PET / Ny / Al / LDPE / CPP.

次に、本例の非水電解質二次電池の製造方法の一例につき説明する。
上記非水電解質二次電池は、以下のようにして製造することができる。
まず、正極21を作製する。例えば粒子状の正極活物質を用いる場合には、正極活物質と必要に応じて導電材及び結着剤とを混合して正極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて正極合剤スラリーを作製する。
次いで、この正極合剤スラリーを正極集電体21Aに塗布し乾燥させ、圧縮成型して正極活物質層21Bを形成する。
Next, an example of a method for producing the nonaqueous electrolyte secondary battery of this example will be described.
The non-aqueous electrolyte secondary battery can be manufactured as follows.
First, the positive electrode 21 is produced. For example, when a particulate positive electrode active material is used, a positive electrode mixture is prepared by mixing a positive electrode active material and, if necessary, a conductive material and a binder, and a dispersion medium such as N-methyl-2-pyrrolidone. To produce a positive electrode mixture slurry.
Next, the positive electrode mixture slurry is applied to the positive electrode current collector 21A, dried, and compression molded to form the positive electrode active material layer 21B.

次に、負極22を作製する。例えば粒子状の負極活物質を用いる場合には、負極活物質と必要に応じて導電材及び結着剤とを混合して負極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて負極合剤スラリーを作製する。この後、この負極合剤スラリーを負極集電体22Aに塗布し乾燥させ、圧縮成型して負極活物質層22Bを形成する。   Next, the negative electrode 22 is produced. For example, when a particulate negative electrode active material is used, a negative electrode mixture is prepared by mixing a negative electrode active material and, if necessary, a conductive material and a binder, and a dispersion medium such as N-methyl-2-pyrrolidone. To prepare a negative electrode mixture slurry. Thereafter, the negative electrode mixture slurry is applied to the negative electrode current collector 22A, dried, and compression molded to form the negative electrode active material layer 22B.

そして、高分子支持体層23をセパレータ24上に形成する。高分子支持体層23をセパレータ24に形成する手法としては、セパレータ24の表面に高分子支持体を含有する溶液を塗布してその溶媒を除去する手法、及び別途形成した高分子支持体層をセパレータ24表面に密着固定する手法が挙げられる。
高分子支持体を含有する溶液をセパレータ24表面に塗布する手法としては、セパレータを高分子支持体含有溶液に浸漬する手法、Tダイ押出法等により供給塗布する手法、スプレー法・ロールコーター・ナイフコーター等により溶液を基材表面に塗布する手法などが挙げられる。
溶媒を除去する脱溶媒処理の手法としては、乾燥除去する手法、高分子支持体の貧溶媒に浸漬して溶媒を抽出除去した後、貧溶媒を乾燥除去する手法、又はこれらの組合せによる手法等を用いることができる。
別途形成した高分子支持体層をセパレータ24の表面に密着固定させる手法としては、接着剤により接着することも可能であるが、この場合、使用する電解液の種類(酸、アルカリ、有機溶剤など)に応じて接着剤を適当に選定する必要があり、また目詰まりを生じないようにする必要がある。
また、セパレータ上に形成された高分子支持体層を密着させる手法としては、ゲル転移点以上の温度による熱融着が挙げられる。特に、熱ロール圧縮等の加圧しながらの熱融着が好ましい。
Then, the polymer support layer 23 is formed on the separator 24. As a method of forming the polymer support layer 23 on the separator 24, a method of applying a solution containing the polymer support to the surface of the separator 24 and removing the solvent, and a separately formed polymer support layer are used. A technique of closely fixing to the surface of the separator 24 is exemplified.
As a method of applying a solution containing a polymer support to the surface of the separator 24, a method of immersing the separator in a solution containing a polymer support, a method of supplying and applying by a T-die extrusion method, a spray method, a roll coater, a knife A technique of applying the solution to the surface of the substrate with a coater or the like can be mentioned.
Examples of the solvent removal treatment method for removing the solvent include a method for drying and removing, a method for extracting and removing the solvent by immersing it in a poor solvent for the polymer support, and a method for drying and removing the poor solvent, or a combination thereof. Can be used.
As a method of closely fixing the separately formed polymer support layer to the surface of the separator 24, it is possible to adhere using an adhesive, but in this case, the type of electrolyte used (acid, alkali, organic solvent, etc.) ), It is necessary to select an adhesive appropriately and to prevent clogging.
Moreover, as a method of closely attaching the polymer support layer formed on the separator, heat fusion at a temperature equal to or higher than the gel transition point can be mentioned. In particular, heat fusion while applying pressure such as hot roll compression is preferable.

次いで、正極21に正極端子11を取り付けるとともに、負極22に負極端子12を取り付けた後、高分子支持体層23付のセパレータ24、正極21、同様のセパレータ24及び負極22を順次積層して巻回し、最外周部に保護テープ25を接着して巻回電極体を形成する。更に、この巻回電極体を外装部材30A,30Bで挟み、一辺を除く外周縁部を熱融着して袋状とする。   Next, the positive electrode terminal 11 is attached to the positive electrode 21 and the negative electrode terminal 12 is attached to the negative electrode 22, and then the separator 24 with the polymer support layer 23, the positive electrode 21, the same separator 24, and the negative electrode 22 are sequentially laminated and wound. Rotate and adhere the protective tape 25 to the outermost periphery to form a wound electrode body. Further, the wound electrode body is sandwiched between the exterior members 30A and 30B, and the outer peripheral edge except one side is heat-sealed to form a bag shape.

しかる後、六フッ化リン酸リチウムなどの電解質塩と、エチレンカーボネートなどの非水溶媒を含む非水電解液を準備し、外装部材30の開口部から巻回電極体の内部に注入して、外装部材30の開口部を熱融着し封入する。これにより、非水電解液が高分子支持体層23に保持され、図1〜14に示した非水電解質二次電池が完成する。
このように高分子支持体層を形成し収納した後に、電解液を膨潤させて電解質を形成する手法では、高分子支持体を形成する原料となる前駆体や溶媒を予め除去し電解質内にほとんど残さないようにすることができ、また、高分子支持体形成工程を良好に制御できる。そのため、セパレータや正極、負極と、高分子支持体層とを、密着させることが可能である。
Thereafter, an electrolyte salt such as lithium hexafluorophosphate and a non-aqueous electrolyte solution containing a non-aqueous solvent such as ethylene carbonate are prepared, and injected into the wound electrode body from the opening of the exterior member 30, The opening of the exterior member 30 is heat-sealed and sealed. Thereby, the non-aqueous electrolyte is held on the polymer support layer 23, and the non-aqueous electrolyte secondary battery shown in FIGS. 1 to 14 is completed.
In this way, after the polymer support layer is formed and stored, the electrolyte is swollen to form an electrolyte. In this method, the precursor and solvent that are the raw materials for forming the polymer support are removed in advance, and the electrolyte is almost completely removed from the electrolyte. It is possible not to leave it, and the polymer support forming step can be well controlled. Therefore, the separator, the positive electrode, the negative electrode, and the polymer support layer can be adhered to each other.

以上に説明した二次電池では、充電を行うと、正極活物質層21Bからリチウムイオンが放出され、高分子支持体層23に保持された非水電解液を介して負極活物質層22Bに吸蔵される。放電を行うと、負極活物質層22Bからリチウムイオンが放出され、高分子支持体層23及び非水電解液を介して正極活物質層21Bに吸蔵される。   In the secondary battery described above, when charged, lithium ions are released from the positive electrode active material layer 21 </ b> B and occluded in the negative electrode active material layer 22 </ b> B through the non-aqueous electrolyte held in the polymer support layer 23. Is done. When discharging is performed, lithium ions are released from the negative electrode active material layer 22B, and are inserted in the positive electrode active material layer 21B through the polymer support layer 23 and the nonaqueous electrolytic solution.

以下、本発明を図面を参照にして実施例及び比較例により更に詳細に説明するが、本発明は次の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail with reference to drawings, this invention is not limited to the following Example.

(実施例1)
PEから成るセパレータの両面にPVdFの高分子支持体層を成膜し、正極、負極と一緒に巻回して、巻回した最外周端部を固定用テープで固定して、図1〜3に示す第1の例と同様の構造を有する巻回電極体20を作製した。
平板状の正極端子11は、厚さ70μmのAl箔を用い、平板状の負極端子12は、厚さ70μmのNi箔を用い、固定用テープは、帯状のポリプロピレンからなる基材の片面にアクリル系粘着剤を塗布した厚さ65μmのものを用いた。
この巻回電極体20を電解液と共に、バスタブ状に成型したアルミラミネートフィルムから成る外装部材に、減圧下で密閉し、PVdF高分子支持体層をゲル化させた。
その後、2枚の鉄板に挟んで、70℃、3分間、3kNで加圧し、正極21及び負極22の両極とセパレータ24とを密着させると共に、平板状の正極端子11及び負極端子12の主面に対向する巻回電極体20の部位を平滑化して、巻回軸に直交する断面が長軸と短軸を有する扁平形状となるように巻回電極体20を形成した。
これにより、図1〜3と同様の構造を有する、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
Example 1
A polymer support layer of PVdF is formed on both sides of a separator made of PE, wound together with the positive electrode and the negative electrode, and the wound outermost peripheral end is fixed with a fixing tape, as shown in FIGS. A wound electrode body 20 having the same structure as that of the first example shown was produced.
The flat positive electrode terminal 11 uses an Al foil having a thickness of 70 μm, the flat negative electrode terminal 12 uses an Ni foil having a thickness of 70 μm, and the fixing tape is made of acrylic on one side of a base material made of strip-shaped polypropylene. The thing of 65 micrometers in thickness which apply | coated the type | system | group adhesive was used.
The wound electrode body 20 was hermetically sealed under reduced pressure with an exterior member made of an aluminum laminate film molded into a bathtub shape together with the electrolytic solution to gel the PVdF polymer support layer.
Thereafter, sandwiched between two iron plates and pressurized at 3 kN at 70 ° C. for 3 minutes to bring both electrodes of the positive electrode 21 and the negative electrode 22 into contact with the separator 24, and the main surfaces of the plate-like positive electrode terminal 11 and negative electrode terminal 12 The spirally wound electrode body 20 was formed such that the portion of the spirally wound electrode body 20 facing the surface was smoothed so that the cross section perpendicular to the spiral axis had a flat shape having a major axis and a minor axis.
Thus, a nonaqueous electrolyte secondary battery having a structure similar to that shown in FIGS. 1 to 3 and having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced.

なお、図2の断面図においては、巻回電極体20の中心部(巻回体軸部分)に、空隙があるように記載されているが、実際には減圧下(真空脱気)において巻回電極体20と電解液を外装体30に密封し、その後、加圧して正極21及び負極22の両極とゲル化した高分子支持体層23及びセパレータ24を密着させているため、非水電解質二次電池10の巻回電極体20の内部には、空隙は存在しない。
本実施例の非水電解質二次電池10は、巻回電極体20を構成する部材のうち、厚さが大きい部材、即ち、正極端子11、負極端子12及び固定用テープ26Aが、いずれも平面視で重ならない位置に存在するので、巻回電極体20の対向する2つの扁平面の間の厚さが略均一であり、電解液によりゲル化した高分子支持体層23の厚さが均一であった。
In the cross-sectional view of FIG. 2, it is described that there is a gap in the central portion (winding body shaft portion) of the wound electrode body 20. Since the rotating electrode body 20 and the electrolytic solution are sealed in the exterior body 30 and then pressurized, both the positive electrode 21 and the negative electrode 22 are brought into close contact with the gelled polymer support layer 23 and the separator 24. There is no air gap inside the wound electrode body 20 of the secondary battery 10.
In the non-aqueous electrolyte secondary battery 10 of the present embodiment, among the members constituting the wound electrode body 20, the members having a large thickness, that is, the positive electrode terminal 11, the negative electrode terminal 12, and the fixing tape 26A are all flat. Since it exists in the position which does not overlap in view, the thickness between the two flat surfaces which the winding electrode body 20 opposes is substantially uniform, and the thickness of the polymer support body layer 23 gelatinized with electrolyte solution is uniform. Met.

(実施例2)
図4及び図5に示す第2例と同様の構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本実施例の非水電解質二次電池10Bは、巻回電極体20Bの固定用テープ26Bを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Bの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを含み、平面視で正極端子11B及び負極端子12Bと重ならない位置に存在させた構造を有する。
なお、図5の断面図においては、巻回電極体20Bの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Bの巻回電極体20Bの内部には、空隙は存在しない。
本実施例の巻回電極体20Bは、対向する2つの扁平面の間の厚さが略均一であり、本実施例の非水電解質二次電池10Bは、ゲル化した高分子支持体層23の厚さが均一であった。
(Example 2)
A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm, in the same manner as in Example 1, except that it has the same structure as that of the second example shown in FIGS. A battery was produced.
The non-aqueous electrolyte secondary battery 10B of the present example has a fixing tape 26B for the wound electrode body 20B, a flat shape in which a cross section perpendicular to the winding axis direction has a major axis and a minor axis with the winding axis as the center. On one flat surface of the wound electrode body 20B formed to include the symmetrical center point C of the shape constituting the flat surface, and present in a position that does not overlap with the positive electrode terminal 11B and the negative electrode terminal 12B in plan view Has a structure.
In the cross-sectional view of FIG. 5, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20 </ b> B, but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> B. There is no void inside 20B.
The wound electrode body 20B of this example has a substantially uniform thickness between two flat surfaces facing each other, and the nonaqueous electrolyte secondary battery 10B of this example has a gelled polymer support layer 23. The thickness was uniform.

参考例3)
図6及び図7に示す第例と同様の構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
参考例の非水電解質二次電池10Cは、巻回電極体20Cの固定用テープ26Cを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Cの1つの扁平面上で、平面視で正極端子11Cと負極端子12Cとの間であり、巻回電極体20Cの巻回体軸と平行な位置に存在させた構造を有する。
なお、図7の断面図においては、巻回電極体20Cの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Cの巻回電極体20Cの内部には、空隙は存在しない。
参考例の巻回電極体20Cは、対向する2つの扁平面の間の厚さが略均一であり、本参考例の非水電解質二次電池10Cは、ゲル化した高分子支持体層23の厚さが均一であった。
( Reference Example 3)
A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm in the same manner as in Example 1 except that it has the same structure as that of the first example shown in FIGS. A battery was produced.
The nonaqueous electrolyte secondary battery 10C of the present reference example has a tape 26C for fixing the wound electrode body 20C having a flat shape in which a cross section perpendicular to the winding axis direction has a major axis and a minor axis about the winding axis. On one flat surface of the wound electrode body 20 </ b> C formed to be between the positive electrode terminal 11 </ b> C and the negative electrode terminal 12 </ b> C in a plan view and at a position parallel to the wound body axis of the wound electrode body 20 </ b> C. It has an existing structure.
In the cross-sectional view of FIG. 7, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20 </ b> C, but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> C. There is no void inside 20C.
Wound electrode body 20C of the present embodiment, the thickness between the two flat surfaces facing a is substantially uniform, non-aqueous electrolyte secondary battery 10C of this reference example, the polymeric support layer 23 gelled The thickness was uniform.

(実施例4)
図8及び図9に示す第例と同様の構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本実施例の非水電解質二次電池10Dは、巻回電極体20Dの固定用テープ26Dを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Dの1つの扁平面上で、平面視で対向配置した正極端子11Dと負極端子12Dとの間であり、平面視で巻回電極体20Dの対称中心点Cを通過する巻回体軸に直交する仮想線(II−II仮想線)上に存在させた構造を有する。
なお、図9の断面図においては、巻回電極体20Dの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Dの巻回電極体20Dの内部には、空隙は存在しない。
本実施例の巻回電極体20Dは、対向する2つの扁平面の間の厚さが略均一であり、本実施例の非水電解質二次電池10Dは、ゲル化した高分子支持体層23の厚さが均一であった。
Example 4
A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm, as in Example 1, except that it has the same structure as that of the third example shown in FIGS. A battery was produced.
The non-aqueous electrolyte secondary battery 10D of the present embodiment has a fixing tape 26D for the winding electrode body 20D, which has a flat shape in which a cross section perpendicular to the winding axis direction has a major axis and a minor axis with the winding axis as the center. Between the positive electrode terminal 11D and the negative electrode terminal 12D arranged to face each other in a plan view on one flat surface of the wound electrode body 20D formed to be a symmetrical center point of the wound electrode body 20D in a plan view It has a structure that exists on an imaginary line (II-II imaginary line) perpendicular to the winding axis passing through C.
In the cross-sectional view of FIG. 9, the winding electrode body 20 </ b> D is described so that there is a gap in the center portion (winding body shaft portion), but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> D. There is no void inside 20D.
The wound electrode body 20D of this example has a substantially uniform thickness between two flat surfaces facing each other, and the nonaqueous electrolyte secondary battery 10D of this example has a gelled polymer support layer 23. The thickness was uniform.

参考例5)
図10及び図11に示す第例と同様の構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
参考例の非水電解質二次電池10Eは、巻回電極体20Eの固定用テープ26Eを、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Eの1つの扁平面上で、平面視で正極端子11Eと負極端子12Eとの間であり、平面視で巻回電極体20Eの巻回体軸上に存在させた構造を有する。
なお、図11の断面図においては、巻回電極体20Eの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Eの巻回電極体20Eの内部には、空隙は存在しない。
参考例の巻回電極体20Eは、対向する2つの扁平面の間の厚さが略均一であり、本参考例の非水電解質二次電池10Eは、ゲル化した高分子支持体層23の厚さが均一であった。
( Reference Example 5)
A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm, in the same manner as in Example 1, except that it has the same structure as that of the second example shown in FIGS. A battery was produced.
The non-aqueous electrolyte secondary battery 10E of the present reference example has a tape 26E for fixing the wound electrode body 20E with a flat shape in which a cross section perpendicular to the winding axis direction has a major axis and a minor axis about the winding axis. On one flat surface of the wound electrode body 20E formed to be between the positive electrode terminal 11E and the negative electrode terminal 12E in plan view and on the wound body axis of the wound electrode body 20E in plan view It has an existing structure.
In the cross-sectional view of FIG. 11, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20 </ b> E, but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> E. There is no void inside 20E.
The wound electrode body 20E of this reference example has a substantially uniform thickness between two flat surfaces facing each other, and the nonaqueous electrolyte secondary battery 10E of this reference example has a gelled polymer support layer 23. The thickness was uniform.

(実施例6)
図12〜図14に示す第例と同様の構造を有する実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本実例の非水電解質二次電池は、巻回電極体20の固定用テープ26Fを、平面視で正極端子11F及び負極端子12Fと重ならない位置であり、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Eの1つの扁平面上で、この扁平面を構成する形状の対称中心点Cを含む位置に存在させた構造を有する。
なお、図9の断面図においては、巻回電極体20Dの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Dの巻回電極体20Dの内部には、空隙は存在しない。
本実施例の巻回電極体20Fは、対向する2つの扁平面の間の厚さが略均一であり、本実施例の非水電解質二次電池10Fは、ゲル化した高分子支持体層23の厚さが均一であった。
(Example 6)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 having the same structure as that of the fourth example shown in FIGS. .
In the nonaqueous electrolyte secondary battery of this example, the fixing tape 26F of the wound electrode body 20 is in a position where it does not overlap with the positive electrode terminal 11F and the negative electrode terminal 12F in plan view, and the cross section orthogonal to the winding axis direction is wound. On one flat plane of the wound electrode body 20E formed so as to have a flat shape having a major axis and a minor axis with the rotation axis as the center, a position including a symmetry center point C of the shape constituting the flat plane It has an existing structure.
In the cross-sectional view of FIG. 9, the winding electrode body 20 </ b> D is described so that there is a gap in the center portion (winding body shaft portion), but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> D. There is no void inside 20D.
The wound electrode body 20F of this example has a substantially uniform thickness between two flat surfaces facing each other. The nonaqueous electrolyte secondary battery 10F of this example has a gelled polymer support layer 23. The thickness was uniform.

(比較例1)
図15及び図16に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Gは、巻回電極体20Gの固定用テープ26Gを、平面視で正極端子11G及び負極端子12Gの両方と重なり、巻回軸方向に直交する断面が巻回軸を中心として長軸及び短軸を有する扁平形状となるように形成された巻回電極体20Gの1つの扁平面上で、該扁平面を構成する形状の対称中心点Cを含み、巻回体軸方向(縦方向)の一方に偏在させた構造を有する。
なお、図16の断面図においては、巻回電極体20Gの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Gの巻回電極体20Gの内部には、空隙は存在しない。
本比較例の巻回電極体20Gは、固定用テープ26Gと正極端子11Gとが重なった部位及び固定用テープ26Gと負極端子12Gとが重なった部位が、他の部位よりも厚くなった。
そのため、本比較例の非水電解質二次電池10Gは、正極21又は負極22と、高分子支持体層23及びセパレータ24を密着させるために加圧した際に、重なった部位に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS. 15 and 16 was used.
In the nonaqueous electrolyte secondary battery 10G of this comparative example, the fixing tape 26G of the wound electrode body 20G is overlapped with both the positive electrode terminal 11G and the negative electrode terminal 12G in a plan view, and the cross section orthogonal to the winding axis direction is wound. On one flat plane of the wound electrode body 20G formed so as to have a flat shape having a major axis and a minor axis with the rotation axis as the center, a symmetrical center point C of the shape constituting the flat plane is included, It has a structure that is unevenly distributed in one direction of the rotating body axis (longitudinal direction).
In the cross-sectional view of FIG. 16, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20G, but the winding electrode body of the nonaqueous electrolyte secondary battery 10G is described. There is no void inside 20G.
In the wound electrode body 20G of this comparative example, the part where the fixing tape 26G and the positive electrode terminal 11G overlap and the part where the fixing tape 26G and the negative electrode terminal 12G overlap each other are thicker than the other parts.
For this reason, the nonaqueous electrolyte secondary battery 10G of this comparative example has a gelation that exists in the overlapping portion when the positive electrode 21 or the negative electrode 22, the polymer support layer 23, and the separator 24 are pressurized to be in close contact with each other. The polymer support layer 23 thus evacuated to a thin portion, and the thickness of the gelled polymer support layer 23 was non-uniform.

(比較例2)
図17及び図18に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Hは、巻回電極体20Hの固定用テープ26Hを、平面視で負極端子12と重なる位置に存在し、しかも一方の側壁の近くに偏在させた構造を有する。
なお、図18の断面図においては、巻回電極体20Hの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Hの巻回電極体20Hの内部には、空隙は存在しない。
本比較例の巻回電極体20Hは、固定用テープ26Hが偏在する部位と、固定用テープ26Iが偏在しない部位とでは厚さが異なる。
そのため、本比較例の非水電解質二次電池10Hは、高分子支持体層23及びセパレータ24を電極に密着させるために加圧した際に、平面視で固定用テープ26Hと重なる部位に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS. 17 and 18 was used.
The nonaqueous electrolyte secondary battery 10H of this comparative example has a structure in which the fixing tape 26H of the wound electrode body 20H is present at a position overlapping the negative electrode terminal 12 in a plan view and is unevenly distributed near one side wall. Have.
In the cross-sectional view of FIG. 18, the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> H is described as having a gap in the center portion (winding body shaft portion) of the winding electrode body 20 </ b> H. There is no void inside 20H.
The thickness of the wound electrode body 20H of this comparative example differs between the portion where the fixing tape 26H is unevenly distributed and the portion where the fixing tape 26I is not unevenly distributed.
Therefore, the non-aqueous electrolyte secondary battery 10H of this comparative example exists in a portion overlapping the fixing tape 26H in a plan view when the polymer support layer 23 and the separator 24 are pressurized to adhere to the electrodes. The gelled polymer support layer 23 escaped to a thin portion, and the gelled polymer support layer 23 had a non-uniform thickness.

(比較例3)
図19及び図20に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Iは、巻回電極体20Iの固定用テープ20Iを、平面視で正極端子11及び負極端子12と重ならない位置であり、平面視で巻回体軸方向と直交する方向(横方向)に延びるII−II仮想線上に存在させた構造を有する。
なお、図20の断面図においては、巻回電極体20Iの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Iの巻回電極体20Iの内部には、空隙は存在しない。
本比較例の巻回電極体20Iは、固定用テープ26Iが存在する部位と、固定用テープ26Iが存在しない部位とでは厚さが異なる。
そのため、本比較例の非水電解質二次電池10Iは、高分子支持体層23及びセパレータ24を電極に密着させるために加圧した際に、平面視で固定用テープ26Iと重なる部位に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS. 19 and 20 was used.
The nonaqueous electrolyte secondary battery 10I of this comparative example is a position where the fixing tape 20I for the wound electrode body 20I does not overlap with the positive electrode terminal 11 and the negative electrode terminal 12 in a plan view, and the wound body axial direction in the plan view. It has the structure which existed on the II-II imaginary line extended in the direction (lateral direction) orthogonal to.
In the cross-sectional view of FIG. 20, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20I. However, the winding electrode body of the nonaqueous electrolyte secondary battery 10I is described. There is no void inside 20I.
The thickness of the wound electrode body 20I of this comparative example differs between the portion where the fixing tape 26I exists and the portion where the fixing tape 26I does not exist.
Therefore, the nonaqueous electrolyte secondary battery 10I of the present comparative example exists in a portion overlapping the fixing tape 26I in a plan view when the polymer support layer 23 and the separator 24 are pressurized to adhere to the electrodes. The gelled polymer support layer 23 escaped to a thin portion, and the gelled polymer support layer 23 had a non-uniform thickness.

(比較例4)
図21及び図22に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Jは、巻回電極体20Jの固定用テープ26Jを、平面視で正極端子11Jと負極端子12Jの間であり、巻回体軸(縦方向)と同一方向に、巻回電極体20Jの周囲の一周に亘って存在させた構造を有する。
なお、図22の断面図においては、巻回電極体20Jの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Jの巻回電極体20Jの内部には、空隙は存在しない。
本比較例の巻回電極体10Jは、固定用テープ26Jが存在する部位と、固定用テープ26Iが存在しない部位とでは厚さが異なる。
そのため、本比較例の非水電解質二次電池10Jは、高分子支持体層23及びセパレータ24を電極に密着させるために加圧した際に、平面視で固定用テープ26I同士が重なる位置に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 4)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS. 21 and 22 was used.
In the nonaqueous electrolyte secondary battery 10J of this comparative example, the fixing tape 26J of the wound electrode body 20J is between the positive electrode terminal 11J and the negative electrode terminal 12J in plan view, and is the same as the wound body axis (longitudinal direction). In the direction, it has a structure that exists around the circumference of the wound electrode body 20J.
In the cross-sectional view of FIG. 22, it is described that there is a gap in the central portion (winding body shaft portion) of the wound electrode body 20 </ b> J, but the wound electrode body of the nonaqueous electrolyte secondary battery 10 </ b> J. There is no void inside 20J.
The wound electrode body 10J of the present comparative example has a different thickness at a portion where the fixing tape 26J is present and a portion where the fixing tape 26I is not present.
Therefore, the nonaqueous electrolyte secondary battery 10J of the present comparative example is present at a position where the fixing tapes 26I overlap each other in plan view when the polymer support layer 23 and the separator 24 are pressurized to adhere to the electrodes. The gelled polymer support layer 23 escaped to a thin portion, and the gelled polymer support layer 23 had a non-uniform thickness.

(比較例5)
図23及び図24に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解二次電池を作製した。
本比較例の非水電解質二次電池10Kは、巻回電極体20Kの固定用テープ26Kを、平面視で正極端子11K及び負極端子12Kと重ならない位置であり、巻回電極体20の対向する2つの平面の一方の平面、この2つの平面を連接する側面、他方の平面の3面に亘って存在させた構造を有する。
なお、図24の断面図においては、巻回電極体20Kの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Kの巻回電極体20Kの内部には、空隙は存在しない。
本比較例の巻回電極体20Kは、固定用テープ26Kが存在する部位と、固定用テープ26Kが存在しない部位とでは厚さが異なる。
そのため、本比較例の非水電解質二次電池10Kは、高分子支持体層23及びセパレータ24を電極に密着させるために加圧した際に、平面視で固定用テープ26K同士が重なる部位に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 5)
A nonaqueous electrolytic secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS.
The nonaqueous electrolyte secondary battery 10K of this comparative example is a position where the fixing tape 26K of the wound electrode body 20K does not overlap with the positive electrode terminal 11K and the negative electrode terminal 12K in a plan view, and the wound electrode body 20 faces. It has a structure that exists over one of two planes, a side surface connecting the two planes, and the other plane.
In the cross-sectional view of FIG. 24, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20K, but the winding electrode body of the non-aqueous electrolyte secondary battery 10K. There is no void inside 20K.
The thickness of the wound electrode body 20K of this comparative example differs between the portion where the fixing tape 26K is present and the portion where the fixing tape 26K is not present.
Therefore, the nonaqueous electrolyte secondary battery 10K of the present comparative example exists in a portion where the fixing tapes 26K overlap each other in a plan view when the polymer support layer 23 and the separator 24 are pressed to adhere to the electrodes. The gelled polymer support layer 23 escaped to a thin portion, and the gelled polymer support layer 23 had a non-uniform thickness.

(比較例6)
図25及び図26に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Lは、巻回電極体20Lの固定用テープ26Lを、平面視で正極端子11L及び負極端子12Lと重ならない位置であり、巻回電極体20Lの対向する2つの平面の一方の平面と他方の平面で、平面視で固定用テープ26L同士が重なる位置に存在させた構造を有する。
なお、図26の断面図においては、巻回電極体20Lの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Lの巻回電極体20Lの内部には、空隙は存在しない。
本比較例の巻回電極体20Lは、固定用テープ26Lが存在する部位と、固定用テープ26Lが存在しない部位とでは、厚さが異なる。
そのため、本比較例の非水電解質二次電池10Lは、高分子支持体層23及びセパレータ24を電極に密着させるために加圧した際に、平面視で固定用テープ26K同士が重なる部位に存在するゲル化した高分子支持体層23が厚さの薄い部位に逃げて、ゲル化した高分子支持体層23の厚さが不均一であった。
(Comparative Example 6)
A nonaqueous electrolyte secondary battery having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm was produced in the same manner as in Example 1 except that the structure shown in FIGS. 25 and 26 was used.
The nonaqueous electrolyte secondary battery 10L of this comparative example is a position where the fixing tape 26L of the wound electrode body 20L does not overlap with the positive electrode terminal 11L and the negative electrode terminal 12L in a plan view, and faces the wound electrode body 20L. In one of the two planes, the other plane has a structure in which the fixing tape 26L is present at a position where the two tapes 26L overlap in a plan view.
In the cross-sectional view of FIG. 26, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20L, but the winding electrode body of the nonaqueous electrolyte secondary battery 10L is described. There is no void inside 20L.
The thickness of the wound electrode body 20L of this comparative example is different between a portion where the fixing tape 26L exists and a portion where the fixing tape 26L does not exist.
Therefore, the nonaqueous electrolyte secondary battery 10L of the present comparative example exists in a portion where the fixing tapes 26K overlap each other in a plan view when the polymer support layer 23 and the separator 24 are pressed to adhere to the electrodes. The gelled polymer support layer 23 escaped to a thin portion, and the gelled polymer support layer 23 had a non-uniform thickness.

(比較例7)
PVdFの高分子支持体層を有さないPEのみから成るセパレータと、正極、負極とを一緒に巻回して、巻回した最外周端部を固定用テープで固定して、ゲル化した高分子支持体層が存在しない図27及び図28に示す構造を有すること以外は、実施例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本実施例の非水電解質二次電池10Mは、巻回電極体20Mを構成する部材のうち、厚さが大きい部材、即ち、正極端子11M、負極端子12M及び固定用テープ26Mが、いずれも平面視で重ならない位置に存在するので、巻回電極体20Mの対向する2つの扁平面の間の厚さが略均一であった。
しかし、本比較例の非水電解質二次電池10Mでは、正極21又は負極22と、セパレータ24の間隙に流動性の高い電解液しか存在しないため、正極21、負極22、セパレータ24それぞれの間隔は不均一となった。
なお、図28の断面図においては、巻回電極体20Mの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Mの巻回電極体20Mの内部には、空隙は存在しない。
(Comparative Example 7)
A separator made only of PE not having a polymer support layer of PVdF, a positive electrode, and a negative electrode are wound together, and the wound outermost end is fixed with a fixing tape to gel the polymer. A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm, in the same manner as in Example 1, except that the structure shown in FIGS. 27 and 28 does not exist. A battery was produced.
In the non-aqueous electrolyte secondary battery 10M of the present embodiment, among the members constituting the wound electrode body 20M, the members having a large thickness, that is, the positive electrode terminal 11M, the negative electrode terminal 12M, and the fixing tape 26M are all flat. Since it exists in the position which does not overlap visually, the thickness between the two flat surfaces which the winding electrode body 20M opposes was substantially uniform.
However, in the non-aqueous electrolyte secondary battery 10M of this comparative example, since there is only a highly fluid electrolyte in the gap between the positive electrode 21 or the negative electrode 22 and the separator 24, the intervals between the positive electrode 21, the negative electrode 22, and the separator 24 are It became uneven.
In the cross-sectional view of FIG. 28, it is described that there is a gap in the center portion (winding body shaft portion) of the winding electrode body 20 </ b> M, but the winding electrode body of the nonaqueous electrolyte secondary battery 10 </ b> M. There is no void inside 20M.

(比較例8)
PVdFの高分子支持体層を有さないPEのみから成るセパレータと、正極、負極とを一緒に巻回して、巻回した最外周端部を固定用テープで固定して、ゲル化した高分子支持体層が存在しない図29及び図30に示す構造を有すること以外は、比較例1と同様にして、厚さ3.8mm×幅35.0mm×高さ62.0mmの非水電解質二次電池を作製した。
本比較例の非水電解質二次電池10Nは、巻回電極体20Nの固定用テープ26Nを、平面視で正極端子11N及び負極端子12Nの両方と重なり、巻回電極体20Nの1つの扁平面上で、該扁平面を構成する形状の対称中心点Cを含み、巻回体軸方向(縦方向)の一方に偏在させた構造を有する。
本比較例の巻回電極体20Nは、固定用テープ26Nと正極端子11Nとが重なった部位及び固定用テープ26Nと負極端子12Nとが重なった部位が、他の部位よりも厚くなった。
本比較例の非水電解質二次電池10Nでは、正極21又は負極22と、セパレータ24の間隙に流動性の高い電解液しか存在しないため、正極21、負極22、セパレータ24それぞれの間隔は不均一となった。
なお、図30の断面図においては、巻回電極体20Nの中心部(巻回体軸部分)に、空隙があるように記載されているが、非水電解質二次電池10Nの巻回電極体20Nの内部には、空隙は存在しない。
(Comparative Example 8)
A separator made only of PE not having a polymer support layer of PVdF, a positive electrode, and a negative electrode are wound together, and the wound outermost end is fixed with a fixing tape to gel the polymer. A nonaqueous electrolyte secondary having a thickness of 3.8 mm, a width of 35.0 mm, and a height of 62.0 mm, in the same manner as in Comparative Example 1 except that the structure shown in FIGS. 29 and 30 does not exist. A battery was produced.
In the nonaqueous electrolyte secondary battery 10N of this comparative example, the tape 26N for fixing the wound electrode body 20N is overlapped with both the positive electrode terminal 11N and the negative electrode terminal 12N in plan view, and one flat surface of the wound electrode body 20N is obtained. Above, it has a structure including the symmetrical center point C of the shape constituting the flat surface and unevenly distributed in one direction of the wound body axis (vertical direction).
In the wound electrode body 20N of this comparative example, the portion where the fixing tape 26N and the positive electrode terminal 11N overlap and the portion where the fixing tape 26N and the negative electrode terminal 12N overlap each other are thicker than the other portions.
In the non-aqueous electrolyte secondary battery 10N of this comparative example, since only a highly fluid electrolyte exists in the gap between the positive electrode 21 or the negative electrode 22 and the separator 24, the intervals between the positive electrode 21, the negative electrode 22, and the separator 24 are not uniform. It became.
In the cross-sectional view of FIG. 30, the winding electrode body 20N is described as having a gap in the center (winding body shaft portion), but the winding electrode body of the nonaqueous electrolyte secondary battery 10N is described. There is no void inside 20N.

[性能評価]
以上にようにして得られた各例の電池につき、次のようにして300サイクル充放電後の放電容量維持率(%)と、外部短絡試験時の電池表面の最高温度(℃)を測定した。結果を表1に示す。
[Performance evaluation]
With respect to the battery of each example obtained as described above, the discharge capacity maintenance rate (%) after 300 cycles of charge and discharge and the maximum temperature (° C.) of the battery surface during the external short circuit test were measured as follows. . The results are shown in Table 1.

<300サイクル充放電後の放電容量維持率(%)>
23℃で500mAの定電流定電圧充電を上限4.2Vまで2時間行い、次に500mAの定電流放電を終止電圧3.0Vまで行うという充放電を300サイクル繰返した。
サイクル特性は、500mA放電における1サイクル目の放電容量を100%としたときの300サイクル目の容量維持率、すなわち、(500mA放電における100サイクル目の放電容量/500mA放電における1サイクル目の放電容量)×100(%)により求めた。
<Discharge capacity maintenance rate after charge / discharge of 300 cycles (%)>
Charging / discharging of 500 mA constant current constant voltage charging at 23 ° C. to an upper limit of 4.2 V for 2 hours and then 500 mA constant current discharging to a final voltage of 3.0 V was repeated 300 cycles.
The cycle characteristics are the capacity retention rate at the 300th cycle when the discharge capacity at the first cycle in the 500 mA discharge is 100%, that is, (discharge capacity at the 100th cycle at 500 mA discharge / discharge capacity at the first cycle at 500 mA discharge). ) × 100 (%).

<外部短絡試験時の電池表面の最高温度(℃)>
20℃の環境下で、80mΩの外部抵抗に電池を接続し、図31に示すように、電池表面の最高温度を測定した。電池表面の温度は、電池の発熱を再現性よく測定するために、電池の対向する2つの平面のうち、固定用テープを設けていない平面側の対称中心点Cに熱電対40を粘着テープ41で固定して測定した。なお、比較例3又は4のように、巻回電極体20の対向する2つの平面の両面とも固定用テープが存在する場合は、どちらか一方の平面側の対称中心点Cに熱電対を粘着テープで固定して測定した。
<Maximum temperature of battery surface during external short circuit test (℃)>
Under an environment of 20 ° C., the battery was connected to an external resistance of 80 mΩ, and the maximum temperature on the battery surface was measured as shown in FIG. In order to measure the heat generation of the battery with high reproducibility, the temperature of the battery surface is such that the thermocouple 40 is attached to the symmetrical central point C on the plane side where the fixing tape is not provided, between the two opposing planes of the battery. Measured by fixing with In addition, when the fixing tape exists on both surfaces of the two opposing flat surfaces of the wound electrode body 20 as in Comparative Example 3 or 4, the thermocouple is adhered to the symmetrical center point C on either one of the flat surfaces. Measurement was carried out by fixing with tape.

Figure 0005380908
Figure 0005380908

表1に示すように、実施例1、2、4、、参考例3、5の非水電解質二次電池は、正極端子、負極端子及び固定用テープがいずれも重ならない位置に配置されているので、電解液によりゲル状となる高分子支持体層の厚さを均一化することができ、比較例1〜8と比べて、サイクル特性を向上させることができた。なお、比較例7又は8の非水電解質二次電池は、300サイクル充放電後の放電容量維持率が著しく低下した。
また、実施例1、2、4、、参考例3、5の非水電解質二次電池は、電解液によりゲル状となった高分子支持体層の厚さが均一化されているので、外部短絡試験時における電池表面の最高温度が、比較例1〜8の電池表面の最高温度と比べて、15〜25℃程度低く、異常時の発熱が抑制され、安全性が向上されていることが確認できた。
As shown in Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 , 2, 4, 6 and Reference Examples 3 and 5 are arranged at positions where the positive electrode terminal, the negative electrode terminal and the fixing tape do not overlap. Therefore, the thickness of the polymer support layer that is gelled by the electrolytic solution can be made uniform, and the cycle characteristics can be improved as compared with Comparative Examples 1-8. In the nonaqueous electrolyte secondary battery of Comparative Example 7 or 8, the discharge capacity retention rate after 300 cycles of charge / discharge was significantly reduced.
In addition, since the non-aqueous electrolyte secondary batteries of Examples 1 , 2, 4, 6 and Reference Examples 3 and 5 have a uniform thickness of the polymer support layer that is gelled by the electrolytic solution, The maximum temperature of the battery surface during the external short-circuit test is about 15 to 25 ° C. lower than the maximum temperature of the battery surface of Comparative Examples 1 to 8, and heat generation at the time of abnormality is suppressed and safety is improved. Was confirmed.

本発明の非水電解質二次電池の実施形態の第1の例を示す分解斜視図であるIt is a disassembled perspective view which shows the 1st example of embodiment of the nonaqueous electrolyte secondary battery of this invention. 本発明の巻回電極体の実施形態の第1の例に係り、図1に示した巻回電極体のII−II仮想線に沿った模式的な断面図である。FIG. 2 is a schematic cross-sectional view taken along a phantom line II-II of the spirally wound electrode body illustrated in FIG. 1 according to the first example of the embodiment of the spirally wound electrode body of the present invention. 図1に示す非水電解質二次電池の平面図である。It is a top view of the nonaqueous electrolyte secondary battery shown in FIG. 本発明の非水電解質二次電池の実施形態の第2の例を示す平面図である。It is a top view which shows the 2nd example of embodiment of the nonaqueous electrolyte secondary battery of this invention. 図4に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II imaginary line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 本発明の非水電解質二次電池の参考形態の第の例を示す平面図である。It is a top view which shows the 1st example of the reference form of the nonaqueous electrolyte secondary battery of this invention. 図6に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 本発明の非水電解質二次電池の実施形態の第の例を示す平面図である。It is a top view which shows the 3rd example of embodiment of the nonaqueous electrolyte secondary battery of this invention. 図8に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II imaginary line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 本発明の非水電解質二次電池の参考形態の第の例を示す平面図である。It is a top view which shows the 2nd example of the reference form of the nonaqueous electrolyte secondary battery of this invention. 図10に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 本発明の非水電解質二次電池の実施形態の第の例を示す平面図である。It is a top view which shows the 4th example of embodiment of the nonaqueous electrolyte secondary battery of this invention. 図12に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II imaginary line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 図12に示す非水電解質二次電池の巻回電極体の背面図である。It is a rear view of the winding electrode body of the nonaqueous electrolyte secondary battery shown in FIG. 第1の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 1st comparative example. 図15に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II imaginary line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第2の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 2nd comparative example. 図17に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第3の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 3rd comparative example. 図19に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第4の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 4th comparative example. 図21に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第5の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 5th comparative example. 図23に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第6の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 6th comparative example. 図25に示す非水電解質二次電池に用いた巻回電極体のX−X仮想線に沿った模式的な断面図である。It is typical sectional drawing along the XX imaginary line of the wound electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第7の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of a 7th comparative example. 図27に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 第8の比較例の非水電解質二次電池を示す平面図である。It is a top view which shows the nonaqueous electrolyte secondary battery of the 8th comparative example. 図29に示す非水電解質二次電池に用いた巻回電極体のII−II仮想線に沿った模式的な断面図である。It is typical sectional drawing along the II-II virtual line of the winding electrode body used for the nonaqueous electrolyte secondary battery shown in FIG. 外部短絡試験時の電池表面の最高温度を測定する方法を模式的に示す説明図である。It is explanatory drawing which shows typically the method of measuring the maximum temperature of the battery surface at the time of an external short circuit test.

符号の説明Explanation of symbols

10、10B〜10N…非水電解質二次電池、11…正極端子、12…負極端子、20、20B〜20N…巻回電極体(巻回電池素子)、21…正極、21A…正極集電体、21B…正極活物質層、22…負極、22A…負極集電体、22B…負極活物質、23…高分子支持体層,24…セパレータ、25a,25b…保護テープ、26A〜26N…固定用テープ、30…外装体、30A,30B…外装部材、31…密着フィルム、40…熱電対、41…粘着テープ DESCRIPTION OF SYMBOLS 10, 10B-10N ... Nonaqueous electrolyte secondary battery, 11 ... Positive electrode terminal, 12 ... Negative electrode terminal, 20, 20B-20N ... Winding electrode body (winding battery element), 21 ... Positive electrode, 21A ... Positive electrode collector , 21B ... positive electrode active material layer, 22 ... negative electrode, 22A ... negative electrode current collector, 22B ... negative electrode active material, 23 ... polymer support layer, 24 ... separator, 25a, 25b ... protective tape, 26A-26N ... for fixing Tape, 30 ... exterior body, 30A, 30B ... exterior member, 31 ... adhesion film, 40 ... thermocouple, 41 ... adhesive tape

Claims (4)

帯状の正極及び負極と、
上記正極と負極との間に介在させた帯状のセパレータと、
上記正極に接続され、上記正極と負極とセパレータとを重ねて巻回された巻回軸方向に沿って突出させた平板状の正極端子と、
上記負極に接続され、上記巻回軸方向に沿って突出させた平板状の負極端子とを備え、
上記巻回軸に直交する断面が、巻回軸を中心として長軸及び短軸を有する扁平形状となるように巻回された上記正極と負極とセパレータとの最外周端部を固定した固定用テープを、上記平板状の正極端子及び/又は負極端子の主面に対向する2つの扁平面のうちの一方の扁平面上のみに存在させ、且つ、平面視で上記正極端子及び負極端子の巻回軸方向の端部に対向して上記正極端子及び負極端子と重ならない位置に存在させ、
上記正極及び負極の少なくとも一方と上記セパレータとの間に、電解液を高分子に支持させて成る高分子支持体層を介在させた巻回電極体。
A belt-like positive electrode and a negative electrode;
A strip-shaped separator interposed between the positive electrode and the negative electrode;
A plate-like positive electrode terminal connected to the positive electrode and projecting along a winding axis direction in which the positive electrode, the negative electrode, and the separator are wound together;
A flat negative electrode terminal connected to the negative electrode and protruding along the winding axis direction;
For fixing the outermost peripheral ends of the positive electrode, the negative electrode, and the separator wound so that the cross section perpendicular to the winding axis has a flat shape having a major axis and a minor axis with the winding axis as the center The tape is present only on one flat surface of the two flat surfaces facing the main surface of the flat plate-like positive electrode terminal and / or negative electrode terminal, and the positive electrode terminal and the negative electrode terminal are wound in plan view . Opposing to the end in the direction of the rotation axis and present at a position that does not overlap the positive electrode terminal and the negative electrode terminal,
A wound electrode body in which a polymer support layer formed by supporting an electrolyte solution on a polymer is interposed between at least one of the positive electrode and the negative electrode and the separator.
上記固定用テープを、上記扁平面を構成する形状の対称中心点を含む位置に存在させた請求項1に記載の巻回電極体。   The wound electrode body according to claim 1, wherein the fixing tape is present at a position including a symmetrical center point of the shape constituting the flat surface. 上記固定用テープを、平面視で対向配置させた上記正極端子及び負極端子との間に存在させた請求項1〜2のいずれか1つの項に記載の巻回電極体。 The spirally wound electrode body according to any one of claims 1 and 2, wherein the fixing tape is present between the positive electrode terminal and the negative electrode terminal arranged to face each other in plan view. 正極と負極との間に介在させた帯状のセパレータと、
上記正極及び負極の少なくとも一方と上記セパレータとの間に介在させた、電解液を高分子に支持させて成る高分子支持体層と、
上記正極に接続され、上記正極と負極とセパレータとを重ねて巻回された巻回軸方向に沿って突出させた平板状の正極端子と、
上記負極に接続され、上記巻回軸方向に沿って突出させた平板状の負極端子とを備え、
上記正極と負極とセパレータとを重ねて、上記巻回軸に直交する断面が、巻回軸を中心として長軸及び短軸を有する扁平形状となるように巻回して、巻回した最外周端部を構成する正極、負極及びセパレータの少なくとも1つを固定した固定用テープを、上記平板状の正極端子及び/又は負極端子の主面に対向する2つの扁平面のうちの一方の扁平面上のみに存在させ、且つ、平面視で上記正極端子及び負極端子の巻回軸方向の端部に対向して上記正極端子及び負極端子と重ならない位置に存在させた巻回電極体と、
非水電解液と、
上記巻回電極体及び非水電解液を収容する外装体を備えた非水電解質二次電池。
A strip-shaped separator interposed between the positive electrode and the negative electrode;
A polymer support layer that is interposed between at least one of the positive electrode and the negative electrode and the separator, and is formed by supporting an electrolytic solution on a polymer;
A plate-like positive electrode terminal connected to the positive electrode and projecting along a winding axis direction in which the positive electrode, the negative electrode, and the separator are wound together;
A flat negative electrode terminal connected to the negative electrode and protruding along the winding axis direction;
The outermost peripheral end wound by winding the positive electrode, the negative electrode, and the separator so that the cross section perpendicular to the winding axis is a flat shape having a major axis and a minor axis around the winding axis. A fixing tape that fixes at least one of the positive electrode, the negative electrode, and the separator that constitutes the portion is mounted on one flat surface of two flat surfaces that face the main surface of the flat plate positive electrode terminal and / or negative electrode terminal. A wound electrode body that is present only in a plan view and opposed to the ends in the winding axis direction of the positive electrode terminal and the negative electrode terminal in a plan view and does not overlap the positive electrode terminal and the negative electrode terminal;
A non-aqueous electrolyte,
The nonaqueous electrolyte secondary battery provided with the exterior body which accommodates the said winding electrode body and nonaqueous electrolyte.
JP2008142738A 2008-05-30 2008-05-30 Winding electrode body and non-aqueous electrolyte secondary battery Active JP5380908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142738A JP5380908B2 (en) 2008-05-30 2008-05-30 Winding electrode body and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142738A JP5380908B2 (en) 2008-05-30 2008-05-30 Winding electrode body and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2009289662A JP2009289662A (en) 2009-12-10
JP5380908B2 true JP5380908B2 (en) 2014-01-08

Family

ID=41458672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142738A Active JP5380908B2 (en) 2008-05-30 2008-05-30 Winding electrode body and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5380908B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283544B2 (en) * 2009-03-10 2013-09-04 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5964102B2 (en) * 2012-03-27 2016-08-03 三洋電機株式会社 Manufacturing method of battery having flat electrode body
WO2022065129A1 (en) * 2020-09-24 2022-03-31 株式会社村田製作所 Secondary battery
CN115117557A (en) * 2021-03-19 2022-09-27 比亚迪股份有限公司 Coiled battery diaphragm, coiled battery and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277126A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2003168421A (en) * 2001-12-03 2003-06-13 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4737949B2 (en) * 2004-06-03 2011-08-03 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4741526B2 (en) * 2006-08-14 2011-08-03 ソニー株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2009289662A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4968182B2 (en) Winding electrode body and non-aqueous electrolyte secondary battery
KR101513194B1 (en) Nonaqueous electrolyte secondary cell
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
JP4952658B2 (en) Battery element exterior member and non-aqueous electrolyte secondary battery using the same
JP5168850B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4872950B2 (en) Nonaqueous electrolyte secondary battery
JP2008047398A (en) Nonaqueous electrolyte secondary battery
JP5257569B2 (en) Secondary battery
JP4297166B2 (en) Nonaqueous electrolyte secondary battery
JP5103822B2 (en) Nonaqueous electrolyte secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP2010198757A (en) Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP4741526B2 (en) Nonaqueous electrolyte secondary battery
JP5380908B2 (en) Winding electrode body and non-aqueous electrolyte secondary battery
JP4815845B2 (en) Polymer battery
JP2007194104A (en) Gelatinous electrolyte battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP5109381B2 (en) Nonaqueous electrolyte secondary battery
JP2008047402A (en) Nonaqueous electrolyte secondary battery
WO2021261083A1 (en) Cell and electronic device
JP2008016252A (en) Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2006286431A (en) Nonaqueous electrolyte battery
JP2008016378A (en) Anode for nonaqueous electrolyte secondary battery, and the nonaqueous secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5380908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250