[go: up one dir, main page]

JP5378899B2 - Optical communication system and optical communication method - Google Patents

Optical communication system and optical communication method Download PDF

Info

Publication number
JP5378899B2
JP5378899B2 JP2009169525A JP2009169525A JP5378899B2 JP 5378899 B2 JP5378899 B2 JP 5378899B2 JP 2009169525 A JP2009169525 A JP 2009169525A JP 2009169525 A JP2009169525 A JP 2009169525A JP 5378899 B2 JP5378899 B2 JP 5378899B2
Authority
JP
Japan
Prior art keywords
transmitter
wavelength
transmitters
allocated
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009169525A
Other languages
Japanese (ja)
Other versions
JP2011024133A5 (en
JP2011024133A (en
Inventor
學 吉野
一貴 原
浩崇 中村
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009169525A priority Critical patent/JP5378899B2/en
Publication of JP2011024133A publication Critical patent/JP2011024133A/en
Publication of JP2011024133A5 publication Critical patent/JP2011024133A5/ja
Application granted granted Critical
Publication of JP5378899B2 publication Critical patent/JP5378899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、波長分割多重技術又は方路多重技術を用いた光通信システム及び光通信方法に関する。   The present invention relates to an optical communication system and an optical communication method using a wavelength division multiplexing technique or a path multiplexing technique.

経済的な高速アクセスネットワークを実現するための光ネットワークとしてPON(Passive Optical Network)が知られている。PONは、アクセスで従来用いられているのと同様な安価なSiGe−BiCMOSプロセス、強度変調−直接検波、時分割多重(TDM;Time Division Multiplexing)を想定すると、電子デバイスの制約により総帯域10ギガビットが一つの上限と考えられている。   PON (Passive Optical Network) is known as an optical network for realizing an economical high-speed access network. The PON assumes an inexpensive SiGe-BiCMOS process, intensity modulation-direct detection, and time division multiplexing (TDM) similar to those conventionally used for access. Is considered an upper limit.

そこで、更なる高速大容量化を図るため、ユーザ多重に波長分割多重(WDM;Wavelength Division Multiplexing)や方路(芯線)多重を適用する技術も考えられている。しかし、波長分割多重を用いる技術はユーザ毎に異なる波長を用いるため、ユーザ側機器であるONU(Optical Network Unit)の更改およびユーザ数分の波長の割当及び制御が必要であり、かつ局側装置であるOLT(Optical Line Terminal)にユーザ数分の光送受信器が必要となるため、コスト上昇という課題が発生する。また、方路(芯線)多重を用いる技術は、方路(芯線)分だけ光送受信器と方路が必要となるため、コスト上昇という課題が発生する。   Therefore, in order to further increase the speed and capacity, a technique of applying wavelength division multiplexing (WDM) or route (core line) multiplexing to user multiplexing has been considered. However, since the technology using wavelength division multiplexing uses a different wavelength for each user, it is necessary to renew the ONU (Optical Network Unit) which is a user side device, and to assign and control the number of wavelengths corresponding to the number of users. Since an optical transmitter / receiver for the number of users is required for OLT (Optical Line Terminal), there is a problem of an increase in cost. In addition, the technique using route (core wire) multiplexing requires an optical transmitter / receiver and a route corresponding to the route (core wire), which causes a problem of cost increase.

この課題に対し、ユーザ全体に割り当てうる総帯域を拡張する総帯域拡張方式として、OLT配下のONUを複数グループに分別しグループ間で波長分割多重し、グループ内で時分割多重を行う方式(非特許文献1を参照。)や、ONUの帰属グループを動的に変更するWDM/TDM−PONの方式(非特許文献2及び3を参照。)がある。これらは、波長を複数のONUで共用することで、総帯域拡張に伴うコスト上昇という課題を解決している。また、冗長構成のための予備方路(芯線)を現用方路(芯線)としても利用する方式(非特許文献4を参照。)がある。この方式は、冗長方路(芯線)を活用することで、総帯域拡張に伴うコスト上昇という課題を解決している。   In response to this problem, as a total bandwidth expansion method for expanding the total bandwidth that can be allocated to the entire user, ONUs under the OLT are classified into a plurality of groups, wavelength division multiplexing is performed between the groups, and time division multiplexing is performed within the group (non- There is a WDM / TDM-PON system (see Non-Patent Documents 2 and 3) that dynamically changes the belonging group of an ONU. These have solved the problem of the cost increase accompanying expansion of the total bandwidth by sharing the wavelength among a plurality of ONUs. In addition, there is a method (see Non-Patent Document 4) in which a backup route (core wire) for a redundant configuration is also used as an active route (core wire). This method solves the problem of an increase in cost due to the expansion of the total bandwidth by utilizing a redundant route (core wire).

「G−PONシステムの概要と今後の展開」Fujitsu.2006年7月号 (VOL.57, NO.4)p360−365http://img.jp.fujitsu.com/downloads/jp/jmag/vol57−4/paper04.pdf(2009年2月5日検索)“Outline of G-PON System and Future Development”, Fujitsu. July 2006 (VOL.57, No.4) p360-365http: // img. jp. fujitsu. com / downloads / jp / jmag / vol57-4 / paper04. pdf (searched on February 5, 2009) 「A 10−Gbit/s CMOS Burst−Mode Clock and Data Recovery IC for a WDM/TDM−PON Access Network」S.Kimura 他 LEOS2004 09 NOVEMBER 2004.TuR1“A 10-Gbit / s CMOS Burst-Mode Clock and Data Recovery IC for a WDM / TDM-PON Access Network”. Kimura et al. LEOS 2004 09 NOVEMBER 2004. TuR1 「総帯域拡張型WDM/TDM−PONと動的波長帯域割当の一提案」、吉野學、原一貴、中村浩崇、木村俊二、吉本直人、雲崎清美(日本電信電話株式会社、アクセスサービスシステム研究所)、2009年電子情報通信学会総合大会、通信講演論文集2、426ページ"A proposal for total bandwidth expansion WDM / TDM-PON and dynamic wavelength band allocation", Manabu Yoshino, Kazutaka Hara, Hirotaka Nakamura, Shunji Kimura, Naoto Yoshimoto, Kiyomi Kumozaki (Nippon Telegraph and Telephone Corporation, Access Service) System Research Laboratories), 2009 IEICE General Conference, Communication Lectures 2, 426 pages. 「ATM−PONのプロテクション方式及び動的帯域割当との連携動作の検討」、吉田俊和、向井宏明、岩崎充佳、浅芝慶弘、一番ヶ瀬広、横谷哲也、2001年5月CS方式研究会電子情報通信学会技術研究報告vol. 101(53):CS2001−21, pp. 25−30"Examination of cooperative operation with ATM-PON protection system and dynamic bandwidth allocation", Toshikazu Yoshida, Hiroaki Mukai, Mitsuka Iwasaki, Yoshihiro Asashiba, Hiroshi Ichibanase, Tetsuya Yokoya, May 2001 CS system research IEICE technical report vol. 101 (53): CS2001-21, pp. 25-30

しかし、ONUを複数波長又は方路に振り分けて収容する場合、収容され方により、ユーザに割り当てられる帯域(割当帯域)に不公平が発生するという課題がある。特に、フラグメント化による割当帯域の無効割当の軽減、切替の軽減、省エネルギーのための複数送受信機の一部休眠状態を実現するために、各ONUが一つの波長又は方路にほぼ固定的に収容される際に甚だしくなる。例えば、ONUを収容する複数のグループがあり、一方のグループは振られたONU数が少ないか、帯域を要求するONUが少数の場合、当該グループに割り振られたONUは概ね契約上の最大帯域を利用することができる。他方のグループは、振られたONU数が多いか、帯域を要求するONUが多い場合、当該グループに割り振られたONUは概ね契約上の最大帯域を利用することができない。従って、割り振られたグループによって、利用可能な帯域が異なり不公平となる。例えば、複数波長が2波長であり、収容すべきONU数が3の場合を想定する。この場合、一方の波長に1ONU、他方の波長に2ONUを収容することとなる。波長毎の総割当帯域が等しい場合、1波長に1ONUのみで収容されたONUへの割当帯域は、1波長に2ONUで収容されたONUへの割当帯域の倍となり公平性が実現できていない。   However, when the ONUs are distributed and accommodated in a plurality of wavelengths or routes, there is a problem that unfairness occurs in the band (allocated band) allocated to the user depending on the accommodation method. In particular, each ONU is almost fixedly accommodated in one wavelength or route in order to reduce invalid allocation of allocated bandwidth by fragmentation, reduce switching, and partially sleep state of multiple transceivers for energy saving. When it is done, it becomes awkward. For example, when there are a plurality of groups accommodating ONUs, and one group has a small number of allocated ONUs or a small number of ONUs requesting bandwidth, the ONUs allocated to the group generally have the maximum contracted bandwidth. Can be used. When the other group has a large number of allocated ONUs or a large number of ONUs requesting a bandwidth, the ONU allocated to the group cannot substantially use the contractual maximum bandwidth. Therefore, the available bandwidth differs depending on the allocated group, which is unfair. For example, it is assumed that a plurality of wavelengths are two wavelengths and the number of ONUs to be accommodated is three. In this case, 1 ONU is accommodated in one wavelength and 2 ONUs are accommodated in the other wavelength. When the total allocated bandwidth for each wavelength is the same, the allocated bandwidth to the ONU accommodated by only 1 ONU per wavelength is twice the allocated bandwidth for the ONU accommodated by 2 ONU per wavelength, and fairness cannot be realized.

前記課題を解決するために、本発明は、割当帯域の公平性を確保しつつ、複数のONUを複数の波長、方路、又はこれらに組み合わせに振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することを目的とする。   In order to solve the above-described problems, the present invention provides an optical communication that expands the total band by accommodating a plurality of ONUs divided into a plurality of wavelengths, paths, or combinations thereof while ensuring fairness of the allocated band. It is an object to provide a system and an optical communication method.

上記目的を達成するために、本発明に係る光通信システム及び光通信方法は、要求帯域又は保証帯域に対する割当帯域の比が小さいユーザを収容している波長又は方路の収容ユーザ数を削減し、要求帯域又は保証帯域に対する割当帯域の比が大きいユーザを収容している波長又は方路の収容ユーザ数を増大する操作を行うことでユーザ間の割当帯域の公平性を実現することとした。   In order to achieve the above object, the optical communication system and the optical communication method according to the present invention reduce the number of users accommodated in a wavelength or route accommodating users with a small ratio of the allocated bandwidth to the required bandwidth or guaranteed bandwidth. In addition, the fairness of the allocated bandwidth among users is realized by performing an operation to increase the number of users accommodated in the wavelength or route accommodating the user having a large ratio of the allocated bandwidth to the requested bandwidth or the guaranteed bandwidth.

具体的には、本発明に係る光通信システムは、複数のグループに割り振られる複数の送信機と、前記複数のグループ毎に前記送信機からの信号を受信する受信機と、前記送信機からの信号を前記受信機へ結合する伝送路と、前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の前記送信機の前記割当比が均等になるように前記送信機に対して割り振られるグループを指定するグループ指定指示を出す制御器と、を備える。   Specifically, an optical communication system according to the present invention includes a plurality of transmitters allocated to a plurality of groups, a receiver that receives a signal from the transmitter for each of the plurality of groups, and a transmitter from the transmitter. A transmission path for coupling a signal to the receiver, a guaranteed bandwidth guaranteed by the transmitter, or an allocation ratio of an allocated bandwidth allocated to a requested bandwidth requested by the transmitter; And a controller that issues a group designation instruction for designating a group to be allocated to the transmitter so that the allocation ratios are equal.

前記複数のグループは、複数の波長、複数の方路、又はこれらの組み合わせとすることができる。すなわち、本発明に係る光通信システムは、選択可能な複数の波長のうちの1波長の光信号を出力する又は選択可能な複数の方路のうち1方路に光信号を出力する複数の送信機と、前記複数の波長又は複数の方路毎に前記送信機からの光信号を受信する受信機と、前記送信機からの光信号を波長分割多重且つ時分割多重、方路多重且つ時分割多重、又は波長分割多重且つ時分割多重と方路多重且つ時分割多重とを組合せた多重方式で前記受信機へ結合する1又は複数の光伝送路と、前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の前記送信機の前記割当比が均等になるように前記送信機に対して割り振られる波長、方路、又は波長と方路との組み合わせを指定するグループ指定指示を出す制御器と、を備える。   The plurality of groups may be a plurality of wavelengths, a plurality of paths, or a combination thereof. That is, the optical communication system according to the present invention outputs an optical signal of one wavelength among a plurality of selectable wavelengths, or a plurality of transmissions that output an optical signal to one of the selectable paths. A receiver for receiving an optical signal from the transmitter for each of the plurality of wavelengths or a plurality of paths, and wavelength division multiplexing, time division multiplexing, path multiplexing and time division of the optical signal from the transmitter. Multiplexing, or one or a plurality of optical transmission lines coupled to the receiver in a multiplexing scheme combining wavelength division multiplexing, time division multiplexing, path multiplexing, and time division multiplexing, and a guaranteed bandwidth guaranteed by the transmitter, or the Monitors the allocation ratio of the allocated bandwidth to the requested bandwidth requested by the transmitter, and the wavelength and path allocated to the transmitter so that the allocation ratio of each of the transmitters becomes equal Specify a combination of wavelength and path And a control unit, the issue group designation instruction that.

また、本発明に係る光通信方法は、複数のグループに割り振られる複数の送信機からの信号をグループ毎に受信機へ結合する光通信システムの光通信方法であって、前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の前記送信機の前記割当比が均等になるように前記送信機に対して割り振られるグループを指定するグループ指定指示を出すことを特徴とする。   The optical communication method according to the present invention is an optical communication method of an optical communication system in which signals from a plurality of transmitters allocated to a plurality of groups are combined with a receiver for each group, which is guaranteed by the transmitter. The allocation ratio of the allocated band allocated to the guaranteed band or the requested band requested by the transmitter is monitored, and allocated to the transmitter so that the allocation ratio of each of the transmitters becomes equal. A group designation instruction for designating a group is issued.

前記複数のグループは、複数の波長、複数の方路、又はこれらの組み合わせとすることができる。すなわち、本発明に係る光通信方法は、選択可能な複数の波長のうちの1波長の光信号を出力する又は選択可能な複数の方路のうち1方路に光信号を出力する複数の送信機からの光信号を波長分割多重且つ時分割多重、方路多重且つ時分割多重、又は波長分割多重且つ時分割多重と方路多重且つ時分割多重とを組合せた多重方式で受信機へ結合する光通信システムの光通信方法であって、前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の前記送信機の前記割当比が均等になるように前記送信機に対して波長、方路、又は波長と方路との組み合わせを指定するグループ指定指示を出すことを特徴とする。   The plurality of groups may be a plurality of wavelengths, a plurality of paths, or a combination thereof. That is, the optical communication method according to the present invention outputs an optical signal having one wavelength out of a plurality of selectable wavelengths or outputs a plurality of transmissions outputting an optical signal in one of the selectable paths. The optical signal from the receiver is coupled to the receiver by wavelength division multiplexing and time division multiplexing, path multiplexing and time division multiplexing, or wavelength division multiplexing and a combination of time division multiplexing, path multiplexing and time division multiplexing. An optical communication method of an optical communication system, wherein an allocation ratio of an allocated band allocated to a guaranteed band guaranteed by the transmitter or a requested band requested by the transmitter is monitored, and each of the transmitters A group designation instruction for designating a wavelength, a route, or a combination of a wavelength and a route is issued to the transmitter so that the allocation ratio is uniform.

本発明に係る光通信システム及び光通信方法は、ユーザが有する送信機の割当比を監視し、通信中であっても各送信機の割当比が均等になるように各送信機が送信する信号光の波長を動的に変更する。従って、本発明は、割当帯域の公平性を確保しつつ、複数のユーザを複数の送受信器に振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することができる。   The optical communication system and the optical communication method according to the present invention monitor the allocation ratio of transmitters possessed by a user, and signals transmitted by each transmitter so that the allocation ratios of the respective transmitters are equal even during communication. Dynamically change the wavelength of light. Therefore, the present invention can provide an optical communication system and an optical communication method for expanding the total bandwidth by distributing and accommodating a plurality of users to a plurality of transceivers while ensuring fairness of the allocated bandwidth.

本発明に係る光通信システムの前記制御器は、前記グループ指定指示に基づいて前記送信機が波長又は方路切替を行う際に生ずる通信断で失う帯域である欠損帯域を波長又は方路切替前又は波長又は方路切替後に該送信機に追加で割り当てることが好ましい。また、本発明に係る光通信方法は、前記グループ指定指示に基づいて前記送信機が波長又は方路切替を行う際に生ずる通信断で失う帯域である欠損帯域を波長又は方路切替前又は波長又は方路切替後に該送信機に追加で割り当てることが好ましい。   The controller of the optical communication system according to the present invention provides a loss band that is a band lost due to a communication interruption that occurs when the transmitter performs wavelength or path switching based on the group designation instruction before switching the wavelength or path. Alternatively, it is preferable to additionally assign the transmitter after wavelength or path switching. Further, the optical communication method according to the present invention provides a loss band that is a band lost due to a communication interruption that occurs when the transmitter performs wavelength or path switching based on the group designation instruction. Alternatively, it is preferable to additionally assign the transmitter after the route is switched.

送信機又は方路の波長を切り替える際に通信断の時間が生ずる。波長又は方路を頻繁に切り替えれば、通信断の時間の積算量が大きくなり割当帯域に影響が生じる。本発明は、バッファ溢れが無視でき、通信断時間がトラフィックコントロール上支障のない遅延揺らぎに収まる場合、波長又は方路の切替に伴う通信断時間の帯域を補償することができるので、波長又は方路切替に伴う通信断時間が発生する場合でも、各送信機の割当帯域の公平性を確保できる。   When switching the wavelength of a transmitter or a route, a communication interruption time occurs. If the wavelength or the route is frequently switched, the integrated amount of communication interruption time increases and the allocated bandwidth is affected. In the present invention, when the buffer overflow is negligible and the communication interruption time falls within the delay fluctuation that does not hinder traffic control, the band of the communication interruption time associated with the switching of the wavelength or route can be compensated. Even when the communication interruption time associated with the path switching occurs, the fairness of the allocated bandwidth of each transmitter can be ensured.

本発明に係る光通信システムの前記送信機は、前記要求帯域を過去の一定期間の通信量に基づいて推定することとしてもよい。また、本発明に係る光通信方法は、前記送信機の過去の一定期間の通信量に基づいて前記要求帯域を推定することとすることができる。通信量の実績に基づいて割当帯域を決定するため、割当帯域の公平性をさらに保つことができる。   The transmitter of the optical communication system according to the present invention may estimate the required bandwidth based on a communication amount in a past certain period. In the optical communication method according to the present invention, the required bandwidth can be estimated based on a communication amount of the transmitter for a certain period in the past. Since the allocated bandwidth is determined based on the actual amount of communication, the fairness of the allocated bandwidth can be further maintained.

本発明に係る光通信システムの前記制御器は、前記割当比が1未満の前記送信機のみに前記波長又は方路指定指示を出すこととしてもよい。また、本発明に係る光通信方法は、前記割当比が1未満の前記送信機のみに前記波長又は方路指定指示を出すこととすることができる。送信機の属する波長又は方路の変更に伴う通信断等の不利益が減少し、制御器での操作量も軽減する効果がある。   The controller of the optical communication system according to the present invention may issue the wavelength or route designation instruction only to the transmitter having the allocation ratio of less than 1. Further, the optical communication method according to the present invention can issue the wavelength or route designation instruction only to the transmitter having the allocation ratio of less than 1. Disadvantages such as communication disconnection due to a change in the wavelength or route to which the transmitter belongs are reduced, and the amount of operation at the controller is also reduced.

本発明に係る光通信システムの前記制御器は、保証帯域が設定されている前記送信機が選択している波長又は方路への波長指定指示を出す場合、該送信機の保証帯域を確保できることを確認できたときに他の前記送信機に該波長又は方路指定指示を出すことが望ましい。また、本発明に係る光通信方法は、保証帯域が設定されている前記送信機が選択している波長又は方路への波長又は方路指定指示を出す場合、該送信機の保証帯域を確保できることを確認できたときに他の前記送信機に該波長又は方路指定指示を出すことが望ましい。波長又は方路切替対象の送信機以外の送信機に保証帯域が設定されている場合でも、その送信機の保証帯域を確保することができる。   The controller of the optical communication system according to the present invention can ensure the guaranteed bandwidth of the transmitter when issuing a wavelength designation instruction to the wavelength or route selected by the transmitter for which the guaranteed bandwidth is set. It is desirable to give the wavelength or route designation instruction to the other transmitters when it is confirmed. The optical communication method according to the present invention secures the guaranteed bandwidth of the transmitter when a wavelength or route designation instruction is issued to the wavelength or route selected by the transmitter for which the guaranteed bandwidth is set. It is desirable to give the wavelength or route designation instruction to the other transmitters when it can be confirmed. Even when a guaranteed bandwidth is set for a transmitter other than the transmitter whose wavelength or route is to be switched, the guaranteed bandwidth of the transmitter can be secured.

本発明は、割当帯域の公平性を確保しつつ、複数のユーザを複数のグループに振り分けて収容して総帯域を拡張する光通信システム及び光通信方法を提供することができる。   The present invention can provide an optical communication system and an optical communication method for expanding the total bandwidth by distributing and accommodating a plurality of users in a plurality of groups while ensuring fairness of the allocated bandwidth.

本発明に係る光通信システムを説明する概念図である。It is a conceptual diagram explaining the optical communication system which concerns on this invention. 本発明に係る光通信システムの送信機からの信号光を合波した後の混合信号光を説明する図である。It is a figure explaining the mixed signal light after combining the signal light from the transmitter of the optical communication system which concerns on this invention. 本発明に係る光通信システムにおいて、2波長を32送信機で共用する場合の割当帯域を算出した結果である。It is the result of having calculated the allocation band in case the 2 wavelengths are shared by 32 transmitters in the optical communication system which concerns on this invention. 本発明に係る光通信システムの送信機からの信号光を合波した後の混合信号光を説明する図である。(a)は波長切替の時間を考慮しないで波長割当を行う場合であり、(b)は波長切替の時間を考慮して波長割当を行う場合である。It is a figure explaining the mixed signal light after combining the signal light from the transmitter of the optical communication system which concerns on this invention. (A) is a case where wavelength allocation is performed without considering the wavelength switching time, and (b) is a case where wavelength allocation is performed considering the wavelength switching time. 本発明に係る光通信システムを説明する概念図である。It is a conceptual diagram explaining the optical communication system which concerns on this invention. 本発明に係る光通信システムを説明する概念図である。It is a conceptual diagram explaining the optical communication system which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態の光通信システムを説明する概念図である。本実施形態では波長毎にグループ化されている。光通信システムは、送信機(11A、11B、11C)、光伝送路31、受信機21及び制御器(不図示)を備える。送信機(11A、11B、11C)は各ユーザに所有されており、選択可能な複数の波長のうちの1波長の光信号を出力する。受信機21は、複数の波長毎に送信機(11A、11B、11C)からの光信号を受信する。光伝送路31は、送信機(11A、11B、11C)からの光信号を波長分割多重且つ時分割多重して受信機21へ結合する。
(Embodiment 1)
FIG. 1 is a conceptual diagram illustrating an optical communication system according to the present embodiment. In this embodiment, they are grouped for each wavelength. The optical communication system includes a transmitter (11A, 11B, 11C), an optical transmission line 31, a receiver 21, and a controller (not shown). The transmitter (11A, 11B, 11C) is owned by each user, and outputs an optical signal of one wavelength among a plurality of selectable wavelengths. The receiver 21 receives an optical signal from the transmitter (11A, 11B, 11C) for each of a plurality of wavelengths. The optical transmission line 31 couples the optical signal from the transmitter (11A, 11B, 11C) to the receiver 21 by wavelength division multiplexing and time division multiplexing.

制御器は、送信機(11A、11B、11C)が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の送信機の割当比が均等になるように送信機(11A、11B、11C)に対して波長を指定する波長指定指示を出す。   The controller monitors the allocation ratio of the allocated band allocated to the guaranteed band guaranteed by the transmitter (11A, 11B, 11C) or the requested band requested by the transmitter, and the allocation ratio of each transmitter. A wavelength designation instruction for designating the wavelength is issued to the transmitters (11A, 11B, 11C) so that.

送信機(11A、11B、11C)は、2波長(λ1、λ2)の中から選んだ1波長で信号光を出力する送信機11Aは波長λ1の信号光を送信可能領域(L51、L52)で送信する。送信機11Bは波長λ2の信号光を送信可能領域L53で送信し、続いて波長切替を行い、波長λ1の信号光を送信可能領域L54で送信する。送信機11Cは波長λ2の信号光を送信可能領域(L55、L56)で送信する。なお、図1において送信可能領域(L51〜L56)は、縦方向が送信機に与えられた通信波長領域であり、横方向が送信機に与えられた通信可能時間を示す。   The transmitter (11A, 11B, 11C) outputs signal light at one wavelength selected from two wavelengths (λ1, λ2). The transmitter 11A transmits signal light of wavelength λ1 in the transmittable region (L51, L52). Send. The transmitter 11B transmits the signal light having the wavelength λ2 in the transmittable region L53, subsequently performs wavelength switching, and transmits the signal light having the wavelength λ1 in the transmittable region L54. The transmitter 11C transmits the signal light having the wavelength λ2 in the transmittable region (L55, L56). In FIG. 1, the transmittable areas (L51 to L56) are communication wavelength areas given to the transmitter in the vertical direction and the communicable time given to the transmitter in the horizontal direction.

光伝送路31は、送信機(11A、11B、11C)からの信号光を合波して受信機21に結合する。ここで、受信機21は、後述のように、光合分波器42で分波して波長を個別に受光器(43a,43b)で受信するため、異なる波長の信号光を同時に受信できるが、同一波長の光信号を同時に受信することはできない。そこで、制御器は同一波長の信号光が同時に受信機に到着しないように、送信機(11A、11B、11C)に対して波長を切り替える波長指定指示を出す、あるいは送信可能時間を指定する。   The optical transmission line 31 combines the signal light from the transmitters (11 A, 11 B, 11 C) and couples it to the receiver 21. Here, as will be described later, since the receiver 21 demultiplexes the light with the optical multiplexer / demultiplexer 42 and individually receives the wavelengths with the light receivers (43a, 43b), it can simultaneously receive the signal light with different wavelengths. The optical signals of the same wavelength cannot be received simultaneously. Therefore, the controller issues a wavelength designation instruction to switch wavelengths to the transmitters (11A, 11B, and 11C) or designates a transmittable time so that signal light of the same wavelength does not arrive at the receiver at the same time.

図1で説明すると、制御器は、時間t1で送信機11Aに波長λ1の信号光を出力するよう指示し、送信機11Bに波長λ2の信号光を出力するよう指示し、送信機11Cに信号光の送出を止めるように指示する。制御器は、時間t2で送信機11Aに信号光の送出を止めるように指示し、送信機11Bに波長λ1から波長λ2に切り替えての信号光を出力するよう指示し、送信機11Cに波長λ2の信号光を出力するように指示する。さらに、制御器は、時間t3で送信機11Aに波長λ1の信号光を出力するよう指示し、送信機11Bに信号光の送出を止めるように指示し、送信機11Cに波長λ2の信号光を出力するように指示する。ここで、制御器は、送信機から受信機までの伝送距離が異なる場合、合波したときに重ならないように信号光間の間隔を調整する。信号光がフレームで構成されている場合、制御器はフレーム間隔を調整することになる。   Referring to FIG. 1, at time t1, the controller instructs the transmitter 11A to output the signal light having the wavelength λ1, instructs the transmitter 11B to output the signal light having the wavelength λ2, and transmits the signal to the transmitter 11C. Instructs to stop sending light. The controller instructs the transmitter 11A to stop transmitting the signal light at time t2, instructs the transmitter 11B to output the signal light switched from the wavelength λ1 to the wavelength λ2, and instructs the transmitter 11C to output the wavelength λ2. Instruct to output the signal light. Further, the controller instructs the transmitter 11A to output the signal light having the wavelength λ1 at time t3, instructs the transmitter 11B to stop sending the signal light, and sends the signal light having the wavelength λ2 to the transmitter 11C. Instruct to output. Here, when the transmission distance from the transmitter to the receiver is different, the controller adjusts the interval between the signal lights so that they do not overlap when combined. When the signal light is composed of frames, the controller adjusts the frame interval.

図2は、送信機(11A、11B、11C)からの信号光を合波した後の混合信号光を説明する図である。横軸は時間であり、縦軸は波長又は帯域である。このように、本実施形態の光通信システムは、送信機(11A、11B、11C)からの信号光を波長分割多重且つ時分割多重をして受信機21に結合する。   FIG. 2 is a diagram illustrating the mixed signal light after the signal lights from the transmitters (11A, 11B, and 11C) are multiplexed. The horizontal axis is time, and the vertical axis is wavelength or band. As described above, the optical communication system according to the present embodiment couples the signal light from the transmitters (11A, 11B, and 11C) to the receiver 21 by performing wavelength division multiplexing and time division multiplexing.

受信機21は、光伝送路31からの光を波長毎に分波して分波信号光を出力する光合分波器42と、光合分波器42からの分波信号光をそれぞれ受光する複数の受光器(43a、43b)と、を有する。光合分波器42は、例えば、波長フィルタである。受光器(43a、43b)は、例えば、フォトダイオードである。光合分波器42は、図2のような混合信号光を波長λ1と波長λ2に分波し、それぞれ受光器(43a、43b)に結合する。受光器(43a、43b)は、それぞれ受光した信号光を電気信号として出力する。   The receiver 21 demultiplexes the light from the optical transmission path 31 for each wavelength and outputs a demultiplexed signal light, and a plurality of demultiplexed signal lights from the optical multi / demultiplexer 42, respectively. Light receivers (43a, 43b). The optical multiplexer / demultiplexer 42 is, for example, a wavelength filter. The light receivers (43a, 43b) are, for example, photodiodes. The optical multiplexer / demultiplexer 42 demultiplexes the mixed signal light as shown in FIG. 2 into the wavelength λ1 and the wavelength λ2, and couples them to the light receivers (43a, 43b), respectively. The light receivers (43a, 43b) each output the received signal light as an electrical signal.

なお、図1では、3つの送信機と2波長で例示しているが、送信機の数は増減してもよいし、波長分割多重する波長の数も3以上であってよい。また、図1では、1つの受信機側が波長分割多重した信号を受信しているが、受信機は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。   In FIG. 1, three transmitters and two wavelengths are illustrated, but the number of transmitters may be increased or decreased, and the number of wavelengths to be wavelength division multiplexed may be three or more. In FIG. 1, one receiver receives a wavelength division multiplexed signal, but a plurality of receivers may be provided. Further, the optical communication system may be a bidirectional communication system.

上述のように本光通信システムは、制御器が送信機(11A、11B、11C)に対して信号光を送出できる波長と時間を割り当てている。このように制御器が送信機に割り当てた波長と時間で通信可能な通信量を割当帯域として以下説明する。   As described above, in this optical communication system, the controller allocates a wavelength and a time at which signal light can be transmitted to the transmitters (11A, 11B, and 11C). The communication amount that can be communicated with the wavelength and time allocated to the transmitter by the controller in this way will be described below as an allocated band.

ここで、送信機(11A、11B、11C)には保証しなければならない帯域である保証帯域が設定されている場合がある。また、送信機(11A、11B、11C)には通信を行うために必要な帯域である要求帯域もある。例えば、要求帯域は、過去の通信履歴に従い決定してもよい。通信履歴は過去一定時間間隔のウインドウでの履歴であってもよいし、一定時間のスライディングウインドウの履歴であっても良いし、加重平均による履歴であってもよい。   Here, there is a case where a guaranteed bandwidth, which is a bandwidth that must be guaranteed, is set in the transmitter (11A, 11B, 11C). The transmitters (11A, 11B, 11C) also have a required bandwidth that is a bandwidth necessary for communication. For example, the requested bandwidth may be determined according to past communication history. The communication history may be a history of a window at a fixed time interval in the past, a history of a sliding window for a fixed time, or a history based on a weighted average.

制御器は送信機毎に保証帯域又は要求帯域に対する割当帯域の比である割当比を監視している。例えば、制御器は、この割当比が最小の送信機と割当比が最大の送信機とを探し、割当比が最小の送信機に対して現在使用中の波長から割当比が最大の送信機が使用している波長へ切り替えるように波長指定指示を出す。   The controller monitors the allocation ratio, which is the ratio of the allocated bandwidth to the guaranteed bandwidth or the required bandwidth, for each transmitter. For example, the controller searches for a transmitter with the smallest allocation ratio and a transmitter with the largest allocation ratio, and for the transmitter with the smallest allocation ratio, the transmitter with the largest allocation ratio from the currently used wavelength. A wavelength designation instruction is issued to switch to the wavelength being used.

ここで、保証帯域が絶対量で設定されていない場合でも、送信機間で共用できる帯域を所定の比(例えば、1:1:1等)で割り当てる場合は、共用できる帯域×該当する送信機の比÷全送信機の比の総和を、実効的な保証帯域として、本実施形態の動作を行うことにしても良い。   Here, even when the guaranteed bandwidth is not set as an absolute amount, when a bandwidth that can be shared between transmitters is allocated at a predetermined ratio (for example, 1: 1: 1), the bandwidth that can be shared x the corresponding transmitter The operation of the present embodiment may be performed with the sum of the ratio of ÷ the ratio of all transmitters as an effective guaranteed bandwidth.

また、上記の割当比の比較は、保証帯域に対する割当帯域の比を用いる場合、割当帯域よりも要求帯域が大きい送信機だけに限定して行っても良い。こうすることによって、要求帯域が少ない送信機の割当比が、輻輳ではなく要求帯域が少ないため発生しているのに、割当比を大きくしようとして起す誤動作を抑制することができる。   In addition, when the ratio of the allocated bandwidth to the guaranteed bandwidth is used, the comparison of the allocation ratios described above may be limited to only a transmitter having a required bandwidth larger than the allocated bandwidth. By doing so, it is possible to suppress a malfunction that is caused by trying to increase the allocation ratio even though the allocation ratio of the transmitter having a small required bandwidth is generated because the requested bandwidth is small rather than congestion.

また、上記割当比は、要求帯域によらずに固定的に割り当てた帯域や、優先クラス分の割当帯域を減じた帯域に関して比較を行っても良い。こうした場合、ベストエフォート的に割り当てる帯域のみの公平性を実現できる。   The allocation ratio may be compared with respect to a band that is fixedly allocated without depending on the required band, or a band that is obtained by reducing the allocated band for the priority class. In such a case, fairness of only the bandwidth allocated in a best effort manner can be realized.

図1の光通信システムでは、制御器は、波長λ1に属する送信機と波長λ2に属する送信機への割当波長が公平となるように、各波長に属する送信機を適時変更している。この結果、図2のように、時間t1〜t3の間で、どの送信機も均等に帯域が割り当てられている。   In the optical communication system of FIG. 1, the controller changes the transmitters belonging to the respective wavelengths in a timely manner so that the assigned wavelengths to the transmitters belonging to the wavelength λ1 and the transmitters belonging to the wavelength λ2 are fair. As a result, as shown in FIG. 2, the bandwidths are equally allocated to all the transmitters between the times t1 and t3.

言い換えれば、本光通信システムは、割当比の小さいユーザを収容している波長の送受信機の収容ユーザ数を削減し、割当比が大きいユーザを収容している波長の送受信機の収容ユーザ数を増大する操作を制御器で行うことでユーザ間の割当帯域の公平性を実現している。   In other words, this optical communication system reduces the number of accommodated users of the wavelength transceivers accommodating users with a small allocation ratio and reduces the number of accommodated users of the wavelength transceivers accommodating users with a large allocation ratio. The fairness of the allocated bandwidth between users is realized by performing increasing operations with the controller.

例えば、平日朝8:30の始業時間にトラフィックが集中するようなシステムでは、制御器は、月曜のその時間を送信器11Aに1波を占有させ、火曜のその時間を送信器11Bに1波を占有させ、水曜のその時間を送信器11Cに1波を占有させるように波長割当の制御する。すなわち、特定の時間のみ輻輳するような場合、制御器は、輻輳する時間での各送信器の波長割当の履歴が週間あるいは月間で等しくなるように制御する。特に波長切替時間が大きいときは、1日、1週間、1月、又は1年のレンジで見て輻輳する時間における波長割当の履歴が公平となることが望ましい。なお、ここでは短時間内での均等を示したが、長時間においても均等とすることが望ましい。   For example, in a system in which traffic is concentrated at the start time of 8:30 on weekdays morning, the controller occupies one wave for the transmitter 11A for that time on Monday and one wave for that time on Tuesday for the transmitter 11B. The wavelength allocation is controlled so that the transmitter 11C occupies one wave during that time on Wednesday. That is, in the case where congestion occurs only for a specific time, the controller performs control so that the wavelength allocation history of each transmitter at the time of congestion becomes equal between weeks or months. In particular, when the wavelength switching time is long, it is desirable that the history of wavelength assignment be fair in the time of congestion in the range of 1 day, 1 week, 1 month, or 1 year. In addition, although the equality within a short time is shown here, it is desirable to equalize over a long time.

制御器は、割当比が1未満の送信機のみに波長指定指示を出してもよい。例えば、全送信機(11A、11B、11C)の割当比が1以上であった場合、いずれの送信機も保証帯域や要求帯域を満たしていることになる。この場合、帯域比が最小の送信機があったとしても波長切替を行わない。波長切替に伴う送信機の通信断等による帯域低下を防止でき、制御器での操作量も軽減できる。   The controller may issue a wavelength designation instruction only to a transmitter having an allocation ratio of less than 1. For example, when the allocation ratio of all transmitters (11A, 11B, 11C) is 1 or more, all transmitters satisfy the guaranteed bandwidth and the required bandwidth. In this case, even if there is a transmitter having the smallest bandwidth ratio, wavelength switching is not performed. It is possible to prevent the bandwidth from being lowered due to the communication interruption of the transmitter accompanying the wavelength switching, and to reduce the operation amount at the controller.

また、制御器は、保証帯域が設定されている送信機が選択している波長への指定指示を出す場合、保証帯域が設定されている送信機の保証帯域を確保できることを確認できたときに他の送信機に波長指定指示を出してもよい。例えば、送信機11Aが保証帯域を有し、送信機11Aの割当比が最大で、送信機11Bの割当比が最小であった場合で説明する。制御器は、まず、送信機11Bが現在使用する波長λ2を送信機11Aが使用している波長λ1へ切り替えた場合、切替時間における通信断や切替に伴う輻輳等によって、送信機11Aが保証帯域を維持できるか否かを計算する。その結果、もし、送信機11Aが保証帯域を維持できなければ、制御器は送信機11Bに波長指定指示を出さない。一方、その計算結果で送信機11Aが保証帯域を維持できれば、制御器は送信機11Bに波長指定指示を出す。これにより、送信機11Aが保証帯域を確保できる。ここで、保証帯域の維持の可否は、後述の実施形態に示す割当の追加を加味した上で計算してもよい。なお、保証帯域の確保とは、所定の観測時間(例えば1秒間)における伝送できるデータ量の平均値が保証帯域に到達していることを意味する。   In addition, when issuing a designation instruction for the wavelength selected by the transmitter for which the guaranteed bandwidth is set, the controller can confirm that the guaranteed bandwidth of the transmitter for which the guaranteed bandwidth is set can be secured. A wavelength designation instruction may be issued to another transmitter. For example, the case where the transmitter 11A has a guaranteed bandwidth, the allocation ratio of the transmitter 11A is the maximum, and the allocation ratio of the transmitter 11B is the minimum will be described. When the controller 11B switches the wavelength λ2 currently used by the transmitter 11B to the wavelength λ1 used by the transmitter 11A, the controller 11A causes the guaranteed bandwidth to be reduced due to communication interruption or switching congestion at the switching time. Whether or not can be maintained. As a result, if the transmitter 11A cannot maintain the guaranteed bandwidth, the controller does not issue a wavelength designation instruction to the transmitter 11B. On the other hand, if the transmitter 11A can maintain the guaranteed bandwidth as a result of the calculation, the controller issues a wavelength designation instruction to the transmitter 11B. Thereby, the transmitter 11A can ensure the guaranteed bandwidth. Here, whether or not the guaranteed bandwidth can be maintained may be calculated in consideration of addition of allocation shown in an embodiment described later. Note that ensuring the guaranteed bandwidth means that the average value of the amount of data that can be transmitted in a predetermined observation time (for example, 1 second) has reached the guaranteed bandwidth.

図3は、2波長を32送信機で共用する場合の割当帯域を算出した結果である。図の横軸は送信中の送信機の数で、縦軸は送信中の送信機の内での割当帯域である。黒四角は非特許文献1や非特許文献2に記載される静的波長配置を行っている光通信システムの計算結果である。白丸は非特許文献3に記載される動的波長配置を行っている光通信システムの計算結果である。非特許文献3に記載される光通信システムでは各送信機の割当比が均等になるように制御されていない。実線は本実施形態の光通信システムの計算結果である。図3のように本実施形態の光通信システムは割当帯域が公平になっている。   FIG. 3 shows the result of calculating the allocated bandwidth when two wavelengths are shared by 32 transmitters. In the figure, the horizontal axis represents the number of transmitting transmitters, and the vertical axis represents the allocated bandwidth in the transmitting transmitters. A black square is a calculation result of the optical communication system in which the static wavelength arrangement described in Non-Patent Document 1 and Non-Patent Document 2 is performed. A white circle is a calculation result of the optical communication system in which dynamic wavelength allocation described in Non-Patent Document 3 is performed. In the optical communication system described in Non-Patent Document 3, the allocation ratio of each transmitter is not controlled to be equal. A solid line is a calculation result of the optical communication system of the present embodiment. As shown in FIG. 3, the allocated bandwidth is fair in the optical communication system of this embodiment.

ここで、図3について説明を補足する。図3で説明される各送信機の伝送帯域は10Gbit/sである。最悪条件において割当帯域の公平を実現することが本発明の課題であるため、図3にプロットされている点は、最悪条件の場合の割当帯域である。   Here, the explanation will be supplemented with respect to FIG. The transmission band of each transmitter described in FIG. 3 is 10 Gbit / s. Since it is an object of the present invention to realize fairness of the allocated bandwidth in the worst condition, the point plotted in FIG. 3 is the allocated bandwidth in the worst condition.

ユーザが使用する波長を固定的に割り当てる非特許文献1の静的波長配置の場合(黒四角)、単一波長を通信中の全ユーザで共有する場合が最悪条件となる。つまり、この最悪条件は通信中の送信機が一方の波長に偏っている状況である。この場合、2波長で20Gbit/sの帯域が通信中の全ユーザに割り当てられるのではなく、1波長の10Gbit/sの帯域が通信中の全ユーザに割り当てられることになる。つまり、静的波長配置の最悪条件下では、10Gbit/sをユーザ数で割った値が割当帯域となる。   In the case of the static wavelength arrangement of Non-Patent Document 1 in which the wavelength used by the user is fixedly assigned (black square), the worst condition is that a single wavelength is shared by all users in communication. In other words, this worst condition is a situation where the transmitter in communication is biased to one wavelength. In this case, a band of 20 Gbit / s at two wavelengths is not allocated to all users in communication, but a band of 10 Gbit / s of one wavelength is allocated to all users in communication. That is, under the worst condition of static wavelength arrangement, a value obtained by dividing 10 Gbit / s by the number of users is an allocated band.

一方、非特許文献3の動的波長配置(白丸)の場合は、通信中の帯域を使用しているアクティブなユーザを均等に各波長に割り当てている。非特許文献3の動的波長配置は、通信中の送信機が両方の波長に均等になるように切り替えている。通信中のユーザ数が利用可能な波長数で割り切れる場合、動的波長配置は割当帯域の理想値を得られる。しかし、非特許文献3の動的波長配置は、通信中のユーザ数が利用可能な波長数(ここでは2)で割り切れない(即ち通信中のユーザ数が奇数の)場合、割り切れない余りのユーザを引き受けた側の波長での割当帯域が減少する。例えば、5ユーザの場合は、一方の波長を3ユーザ、もう一方の波長を2ユーザで使用することになる。この場合、1波長を3ユーザで共有する側の波長が最悪条件であり、1ユーザあたり3.3Gが割当帯域となる。一方、割り切れる時(通信中のユーザ数が偶数の時)が理想状態であり、割当帯域は公平となる。その値が図3にプロットされている。   On the other hand, in the case of the dynamic wavelength arrangement (white circle) of Non-Patent Document 3, active users using a band during communication are equally assigned to each wavelength. The dynamic wavelength arrangement of Non-Patent Document 3 is switched so that the transmitter in communication is equal to both wavelengths. When the number of users in communication is divisible by the number of available wavelengths, the dynamic wavelength allocation can obtain the ideal value of the allocated band. However, when the number of users in communication is not divisible by the number of wavelengths that can be used (here, 2) (that is, the number of users in communication is an odd number), the dynamic wavelength allocation of Non-Patent Document 3 is a surplus user that cannot be divided. The allocated bandwidth at the wavelength on the side of taking over decreases. For example, in the case of 5 users, one wavelength is used by 3 users and the other wavelength is used by 2 users. In this case, the wavelength on the side where one wavelength is shared by three users is the worst condition, and 3.3G per user is the allocated bandwidth. On the other hand, when it is divisible (when the number of users in communication is an even number), it is an ideal state, and the allocated bandwidth is fair. The values are plotted in FIG.

各送信機の割当比が均等になるように制御している本実施形態の光通信システムは、割当帯域が最低のユーザに対する割当帯域が、10Gbit/sを上限として、10Gbit/s2波長分合計20Gbit/sを通信中のユーザ数で割った値(図の実線)となる。すなわち、本実施形態の光通信システムは、非特許文献3の光通信システムの割当帯域の理想状態を常に得られる。   In the optical communication system according to the present embodiment in which the allocation ratios of the transmitters are controlled to be equal, the allocation bandwidth for the user with the lowest allocation bandwidth is 10 Gbit / s, with the upper limit being 10 Gbit / s, and a total of 20 Gbit for 10 Gbit / s. This is a value (solid line in the figure) obtained by dividing / s by the number of users in communication. That is, the optical communication system of the present embodiment can always obtain the ideal state of the allocated band of the optical communication system of Non-Patent Document 3.

(実施形態2)
本実施形態の光通信システムにおいて、波長切替の時間を考慮して波長割当を行ってもよい。本光通信システムと実施形態1の光通信システムとの違いは、制御器が波長変更に伴う通信断時間を加味して各送信機の割当帯域を均等にしていることである。制御器は、波長指定指示に基づいて送信機が波長切替を行う際に生ずる通信断で失う帯域である欠損帯域を波長切替前又は波長切替後に送信機に追加で割り当てる。
(Embodiment 2)
In the optical communication system of the present embodiment, wavelength allocation may be performed in consideration of wavelength switching time. The difference between the present optical communication system and the optical communication system according to the first embodiment is that the controller equalizes the allocated bandwidth of each transmitter in consideration of the communication interruption time associated with the wavelength change. The controller additionally allocates a loss band, which is a band lost due to a communication interruption that occurs when the transmitter performs wavelength switching, to the transmitter before or after wavelength switching based on the wavelength designation instruction.

波長を切り替える際に送信機では通信ができない通信断時間が生じてしまう。図5に本実施形態のイメージを示す。本実施形態では、波長切替に伴う通信断時間(L53とL54の間の隙間)分の帯域を、追加帯域27として付与する。この図のイメージでは切替前と切替後の両方に追加帯域を割り当てているが、切替前と切替後のいずれかでよい。また、図5はイメージであり、L53とL54の縦の幅(帯域)を部分的に大きくしているが、瞬間瞬間に波長毎に伝送路の全帯域をいずれかの送信機に割当するPONシステムでは、後述の図4(b)に示すように、縦の幅は一定となるため、割当時間を追加(=時間軸方向に伸張)することにより行う。   When the wavelength is switched, a communication interruption time that cannot be performed by the transmitter occurs. FIG. 5 shows an image of this embodiment. In the present embodiment, a band corresponding to the communication interruption time (gap between L53 and L54) accompanying wavelength switching is added as the additional band 27. In the image of this figure, an additional band is assigned both before and after switching, but it may be either before or after switching. FIG. 5 is an image, and the vertical width (bandwidth) of L53 and L54 is partially enlarged, but the PON that allocates the entire bandwidth of the transmission path to any transmitter for each wavelength at the moment instant. In the system, as shown in FIG. 4B described later, since the vertical width is constant, the allocation time is added (= expanded in the time axis direction).

図4(a)において、この通信断時間を切替時間(2TQ(time−quanta))として示している。図4(a)では送信機11Bの割当帯域が少なくなっている。このため、波長切替を頻繁に行えば、当該送信機の割当帯域が減少することになる。そこで、本光通信システムは、波長変更に伴う通信断時間で失う欠損帯域を、切替対象の送信機に切替前又は切替後に追加で割り当てている。   In FIG. 4A, this communication interruption time is shown as a switching time (2TQ (time-quanta)). In FIG. 4A, the allocated bandwidth of the transmitter 11B is reduced. For this reason, if the wavelength is frequently switched, the allocated bandwidth of the transmitter decreases. Therefore, the present optical communication system additionally allocates the lost band lost due to the communication interruption time associated with the wavelength change to the transmitter to be switched before or after switching.

ここで、欠損帯域の追加とは、送信機11A、送信機11B及び送信機11Cの波長割当の時間が等しくなるようにすることを意味する。具体的には、制御器は、図4(b)のように、送信可能領域L51の時間が12TQ、送信可能領域L52の時間が8TQ、送信可能領域(L53〜L56)の時間が10TQとなるように、各送信機に波長割当を行う。全送信機の送信時間は20TQづつ割り当てられることになる。   Here, the addition of the missing band means that the wavelength allocation times of the transmitter 11A, the transmitter 11B, and the transmitter 11C are made equal. Specifically, as shown in FIG. 4B, the controller sets the time of the transmittable area L51 to 12TQ, the time of the transmittable area L52 to 8TQ, and the time of the transmittable area (L53 to L56) to 10TQ. Thus, wavelength allocation is performed for each transmitter. The transmission time of all transmitters is allocated in units of 20 TQ.

例えば、現在の伝送帯域がBi,通信断時間がTiとすると欠損帯域はBiTiとなり、追加帯域27としてBiTiだけ多く割り当てる。図4を用いてさらに説明する。波長切替対象は送信機11Bである。波長切替後の波長λ1では送信機11B以外(送信機11A)はそれまで帯域を多く割り当てられていることを考慮すると、波長切替後の波長λ1で追加帯域27を送信機11Bに割り当てることが望ましい。但し、波長切替前の波長λ2で追加帯域27を割り当てたとしても、送信機11B以外(送信機11C)は送信機11Bが波長切替を実行した後で割当帯域が大きくなるので、全体的な割当比の低下は生じない。   For example, if the current transmission band is Bi and the communication interruption time is Ti, the missing band is BiTi, and only BiTi is allocated as the additional band 27. This will be further described with reference to FIG. The wavelength switching target is the transmitter 11B. In consideration of the fact that many bands other than the transmitter 11B (transmitter 11A) have been allocated until then at the wavelength λ1 after wavelength switching, it is desirable to allocate the additional band 27 to the transmitter 11B at the wavelength λ1 after wavelength switching. . However, even if the additional band 27 is allocated at the wavelength λ2 before wavelength switching, the allocated band becomes larger after the transmitter 11B performs wavelength switching except for the transmitter 11B (transmitter 11C). The ratio does not decrease.

また、送信機11B以外の送信機(11A、11C)に保証帯域が設定されている場合、制御器はその保証帯域を確保できるように追加帯域27を送信機11Bに割り当てる。具体的には、制御器は、送信機(11A、11C)の保証帯域を維持するために、追加帯域27を波長切替前の波長λ2に追加するか、波長切替後の波長λ1に追加するかを考慮する。   When a guaranteed band is set for a transmitter (11A, 11C) other than the transmitter 11B, the controller allocates an additional band 27 to the transmitter 11B so that the guaranteed band can be secured. Specifically, the controller adds the additional band 27 to the wavelength λ2 before the wavelength switching or the wavelength λ1 after the wavelength switching in order to maintain the guaranteed band of the transmitter (11A, 11C). Consider.

さらに制御器は、波長切替の頻度について、保証帯域が設定されている送信機の保証帯域を確保できる頻度に抑えることが望ましい。本実施形態は、バッファ溢れが無視でき、通信断時間がトラフィックコントロール上支障のない遅延揺らぎに収まる場合、波長又は方路の切替に伴う通信断時間の帯域を補償することができるので、波長又は方路切替に伴う通信断時間が発生する場合でも、各送信機の割当帯域の公平性を確保できる。
(実施形態3)
Furthermore, it is desirable that the controller suppresses the frequency of wavelength switching to a frequency that can ensure the guaranteed bandwidth of the transmitter for which the guaranteed bandwidth is set. In the present embodiment, when the buffer overflow can be ignored and the communication interruption time falls within the delay fluctuation that does not hinder traffic control, the bandwidth of the communication interruption time associated with the switching of the wavelength or the route can be compensated. Even when the communication interruption time associated with the route switching occurs, the fairness of the allocated bandwidth of each transmitter can be ensured.
(Embodiment 3)

本実施形態では方路毎にグループ化されている。図6は、本実施形態の光通信システムを説明する概念図である。光通信システムは、送信機(11A、11B、11C)、方路(31−1、31−2)、受信機21及び制御器(不図示)を備える。送信機(11A、11B、11C)は各ユーザに所有されており、選択可能な複数の方路のうちの1方路に光信号を出力する。受信機21は、複数の波長毎に送信機(11A、11B、11C)からの光信号を受信する。光伝送路31は、送信機(11A、11B、11C)からの光信号を波長分割多重且つ時分割多重して受信機21へ結合する。   In this embodiment, each route is grouped. FIG. 6 is a conceptual diagram illustrating the optical communication system of the present embodiment. The optical communication system includes a transmitter (11A, 11B, 11C), a route (31-1, 31-2), a receiver 21, and a controller (not shown). The transmitter (11A, 11B, 11C) is owned by each user, and outputs an optical signal to one of a plurality of selectable routes. The receiver 21 receives an optical signal from the transmitter (11A, 11B, 11C) for each of a plurality of wavelengths. The optical transmission line 31 couples the optical signal from the transmitter (11A, 11B, 11C) to the receiver 21 by wavelength division multiplexing and time division multiplexing.

制御器は、送信機(11A、11B、11C)が保証する保証帯域又は前記送信機が要求する要求帯域に対して割り当てられている割当帯域の割当比を監視し、各々の送信機の割当比が均等になるように送信機(11A、11B、11C)に対して方路を指定する方路指定指示を出す。   The controller monitors the allocation ratio of the allocated band allocated to the guaranteed band guaranteed by the transmitter (11A, 11B, 11C) or the requested band requested by the transmitter, and the allocation ratio of each transmitter. To the transmitters (11A, 11B, 11C) so as to specify a route.

送信機(11A、11B、11C)は、2つの方路(31−1、31−2)の中から割り当てられた1方路で信号光を出力する。送信機11Aは方路31−1で信号光を送信可能領域(L51、L52)で送信する。送信機11Bは方路31−2の信号光を送信可能領域L53で送信し、続いて方路切替を行い、方路31−1の信号光を送信可能領域L54で送信する。送信機11Cは方路31−2の信号光を送信可能領域(L55、L56)で送信する。なお、図1において送信可能領域(L11〜L16)は、縦方向が送信機に与えられた方路であり、横方向が送信機に与えられた通信可能時間を示す。即ち、波長を方路に読み替えれば図1と同様である。   The transmitters (11A, 11B, 11C) output signal light in one route assigned from the two routes (31-1, 31-2). The transmitter 11A transmits the signal light in the transmittable area (L51, L52) along the route 31-1. The transmitter 11B transmits the signal light of the route 31-2 in the transmittable region L53, subsequently performs route switching, and transmits the signal light of the route 31-1 in the transmittable region L54. The transmitter 11C transmits the signal light of the route 31-2 in the transmittable area (L55, L56). In FIG. 1, transmission possible areas (L11 to L16) are paths given to the transmitter in the vertical direction, and communication possible times given to the transmitter in the horizontal direction. That is, if the wavelength is read as a route, it is the same as FIG.

方路(31−1、31−2)は、送信機(11A、11B、11C)からの信号光をそれぞれ合波して受信機21に結合する。ここで、受信機21は、後述のように方路毎に受光器(43a,43b)を備えるため、異なる方路の信号光は同時に受信できるが、同一方路の光信号を同時に受信することはできない。そこで、制御器は同一方路の信号光が同時に受信機に到着しないように、送信機(11A、11B、11C)に対して方路を切り替える方路指定指示を出す、あるいは送信可能時間を指定する。   The paths (31-1, 31-2) combine the signal lights from the transmitters (11A, 11B, 11C) and couple them to the receiver 21, respectively. Here, since the receiver 21 includes a light receiver (43a, 43b) for each route as will be described later, it is possible to simultaneously receive the signal light of different routes, but to simultaneously receive the light signal of the same route. I can't. Therefore, the controller issues a route designation instruction to switch the route to the transmitters (11A, 11B, 11C) or designates a transmittable time so that the signal light of the same route does not reach the receiver at the same time. To do.

図6で説明すると、制御器は、時間t1で送信機11Aに方路31−1で信号光を出力するよう指示し、送信機11Bに方路31−2で信号光を出力するよう指示し、送信機11Cに信号光の送出を止めるように指示する。制御器は、時間t2で送信機11Aに信号光の送出を止めるように指示し、送信機11Bに方路31−1から方路31−2に切り替えての信号光を出力するよう指示し、送信機11Cに方路31−2の信号光を出力するように指示する。さらに、制御器は、時間t3で送信機11Aに方路31−1の信号光を出力するよう指示し、送信機11Bに信号光の送出を止めるように指示し、送信機11Cに波長λ2の信号光を出力するように指示する。ここで、制御器は、送信機から受信機までの伝送距離が異なる場合、合波したときに重ならないように信号光間の間隔を調整する。信号光がフレームで構成されている場合、制御器はフレーム間隔を調整することになる。   Referring to FIG. 6, the controller instructs the transmitter 11A to output signal light on the route 31-1 at time t1, and instructs the transmitter 11B to output signal light on the route 31-2. Instruct the transmitter 11C to stop sending the signal light. The controller instructs the transmitter 11A to stop sending the signal light at time t2, instructs the transmitter 11B to output the signal light switched from the path 31-1 to the path 31-2, The transmitter 11C is instructed to output the signal light of the route 31-2. Further, the controller instructs the transmitter 11A to output the signal light of the route 31-1 at time t3, instructs the transmitter 11B to stop sending the signal light, and instructs the transmitter 11C to have the wavelength λ2. Instruct to output signal light. Here, when the transmission distance from the transmitter to the receiver is different, the controller adjusts the interval between the signal lights so that they do not overlap when combined. When the signal light is composed of frames, the controller adjusts the frame interval.

図6の光通信システムの混合信号光は、図2の縦軸を波長を方路に読み替えることで、送信機(11A、11B、11C)からの信号光を合波した後の混合信号光を説明として実施形態1と同様に説明できる。このように、本実施形態の光通信システムは、送信機(11A、11B、11C)からの信号光を方路多重且つ時分割多重をして受信機21に結合する。   The mixed signal light of the optical communication system of FIG. 6 is obtained by combining the signal light from the transmitters (11A, 11B, 11C) by combining the wavelength of the vertical axis in FIG. The description can be made in the same manner as in the first embodiment. As described above, the optical communication system according to the present embodiment couples the signal light from the transmitters (11A, 11B, and 11C) to the receiver 21 through path multiplexing and time division multiplexing.

受信機21は、方路(31−1、31−2)からの光を方路毎にそれぞれ受光する複数の受光器(43a、43b)と、を有する。受光器(43a、43b)は、例えば、フォトダイオードである。受光器(43a、43b)は、それぞれ受光した信号光を電気信号として出力する。   The receiver 21 includes a plurality of light receivers (43a, 43b) that receive light from the routes (31-1, 31-2) for each route. The light receivers (43a, 43b) are, for example, photodiodes. The light receivers (43a, 43b) each output the received signal light as an electrical signal.

なお、図6では、3つの送信機と2方路で例示しているが、送信機の数は増減してもよいし、方路多重する方路の数も3以上であってよい。また、図6では、1つの受信機側が方路多重した信号を受信しているが、受信機は複数であってもよい。さらに、本光通信システムは双方向通信のシステムであってもよい。   In FIG. 6, three transmitters and two routes are illustrated, but the number of transmitters may be increased or decreased, and the number of routes to be multiplexed may be three or more. In FIG. 6, one receiver side receives a route multiplexed signal, but there may be a plurality of receivers. Further, the optical communication system may be a bidirectional communication system.

制御器の動作は、本発明の実施形態1及び2に示す制御器の動作の波長を方路に置き換えれば同様に説明できる。
なお、実施形態1及び2では波長のグループによらず帯域を公平に割り当て、本実施例では方路のグループによらず帯域を公平に割り当てているが、波長と方路を組合せたグループを送信機で共用するするシステムとしてもよく、この場合、波長と方路を組合せたグループによらず帯域を公平に割り当てる。
The operation of the controller can be similarly explained by replacing the wavelength of the operation of the controller shown in the first and second embodiments of the present invention with a route.
In the first and second embodiments, bands are allocated fairly regardless of wavelength groups, and in this embodiment, bands are allocated fairly regardless of route groups. However, a group in which wavelengths and paths are combined is transmitted. The system may be shared by machines, and in this case, the bandwidth is allocated fairly regardless of the group combining the wavelength and the route.

本発明は、複数の送信機と受光器の組を、波長毎の送信機及び受信機とすれば、例えばリンクアグリゲーションしている複数回線に適用することも可能である。   The present invention can also be applied to, for example, a plurality of lines that are link-aggregated if a set of a plurality of transmitters and light receivers is a transmitter and a receiver for each wavelength.

11A、11B、11C:送信機
21:受信機
27:追加帯域
31:光伝送路
31−1、31−2:方路
42:光合分波器
43a、43b:受光器
L51、L52、L53、L54、L55、L56:送信可能領域
11A, 11B, 11C: Transmitter 21: Receiver 27: Additional band 31: Optical transmission path 31-1, 31-2: Path 42: Optical multiplexer / demultiplexer 43a, 43b: Light receivers L51, L52, L53, L54 , L55, L56: Transmission possible area

Claims (12)

複数のグループに割り振られる複数の送信機と、
前記複数のグループ毎に前記送信機からの信号を受信する受信機と、
前記送信機からの信号を前記受信機へ結合する伝送路と、
前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対する、割り当てられている割当帯域の比である割当比を監視し、他の前記送信機より前記割当比の小さい前記送信機を収容している前記グループの送信機の収容数を削減し、他の前記送信機より前記割当比の大きい前記送信機を収容している前記グループの送信機の収容数を増大する操作を行うグループ指定指示を出す制御器と、
を備える光通信システム。
Multiple transmitters assigned to multiple groups;
A receiver for receiving a signal from the transmitter for each of the plurality of groups;
A transmission line for coupling the signal from the transmitter to the receiver;
Against the required bandwidth guaranteed bandwidth or that the transmitter requests the transmitter to ensure monitors the ratio a is allocated ratio Allocated allocated bandwidth, smaller the transmission of the allocation ratio than the other of said transmitters An operation to reduce the number of transmitters of the group that accommodates the transmitter and to increase the number of transmitters of the group that accommodates the transmitter having the larger allocation ratio than other transmitters. A controller for issuing a group designation instruction to be performed ;
An optical communication system comprising:
選択可能な複数の波長のうちの1波長の光信号を出力する又は選択可能な複数の方路のうち1方路に光信号を出力する複数の送信機と、
前記複数の波長又は複数の方路毎に前記送信機からの光信号を受信する受信機と、
前記送信機からの光信号を波長分割多重且つ時分割多重、方路多重且つ時分割多重、又は波長分割多重且つ時分割多重と方路多重且つ時分割多重とを組合せた多重方式で前記受信機へ結合する1又は複数の光伝送路と、
前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対する、割り当てられている割当帯域の比である割当比を監視し、他の前記送信機より前記割当比の小さい前記送信機を収容する波長、方路、又は波長と方路との組み合わせから送信機の収容数を削減し、他の前記送信機より前記割当比の大きい前記送信機を収容している波長、方路、又は波長と方路との組み合わせから送信機の収容数を増大する操作を行うグループ指定指示を出す制御器と、
を備える光通信システム。
A plurality of transmitters that output an optical signal of one of a plurality of selectable wavelengths, or that output an optical signal to one of a plurality of selectable paths;
A receiver for receiving an optical signal from the transmitter for each of the plurality of wavelengths or a plurality of paths;
The receiver in a wavelength division multiplexing and time division multiplexing, a path multiplexing and a time division multiplexing, or a wavelength division multiplexing, a combination of a time division multiplexing, a path multiplexing and a time division multiplexing, for the optical signal from the transmitter. One or more optical transmission lines coupled to
Against the required bandwidth guaranteed bandwidth or that the transmitter requests the transmitter to ensure monitors the ratio a is allocated ratio Allocated allocated bandwidth, smaller the transmission of the allocation ratio than the other of said transmitters Wavelengths and paths accommodating the transmitter, reducing the number of transmitters accommodated from the combination of wavelengths, paths, or combinations of wavelengths and paths, and accommodating the transmitter having a larger allocation ratio than the other transmitters Or a controller for issuing a group designation instruction for performing an operation for increasing the number of transmitters accommodated from a combination of a wavelength and a route ;
An optical communication system comprising:
前記制御器は、前記グループ指定指示に基づいて前記送信機が波長、方路、又は波長と方路との組み合わせの切替を行う際に生ずる通信断で失う帯域である欠損帯域を波長、方路、又は波長と方路との組み合わせの切替前、あるいは波長、方路、又は波長と方路との組み合わせの切替後に該送信機に追加で割り当てることを特徴とする請求項1又は2に記載の光通信システム。   The controller, based on the group designation instruction, a loss band, which is a band lost due to communication disconnection that occurs when the transmitter switches a wavelength, a path, or a combination of a wavelength and a path. Or before switching the combination of wavelength and path, or after switching the combination of wavelength, path, or combination of wavelength and path, and additionally assigning to the transmitter Optical communication system. 前記制御器は、前記要求帯域を過去の一定期間の通信量に基づいて推定し、推定に応じて前記送信機に対して割り振られるグループを指定することを特徴とする請求項1から3のいずれかに記載の光通信システム。   4. The controller according to claim 1, wherein the controller estimates the requested bandwidth based on a communication amount in a past fixed period, and specifies a group allocated to the transmitter according to the estimation. An optical communication system according to claim 1. 前記制御器は、前記割当比が所定の値未満の前記送信機のみ前記割当比が所定の値以上になるように前記グループ指定指示を出すことを特徴とする請求項1から4のいずれかに記載の光通信システム。   5. The controller according to claim 1, wherein the controller issues the group designation instruction so that only the transmitter having the allocation ratio less than a predetermined value has the allocation ratio equal to or higher than a predetermined value. The optical communication system described. 前記制御器は、保証帯域が設定されている前記送信機が選択している波長、方路、又は波長と方路との組み合わせの前記グループ指定指示を出す場合、該送信機の保証帯域を確保できることを確認できたときに他の前記送信機に前記グループ指定指示を出すことを特徴とする請求項1から5のいずれかに記載の光通信システム。   When the controller issues the group designation instruction for the wavelength, route, or combination of wavelength and route selected by the transmitter for which the guaranteed bandwidth is set, the guaranteed bandwidth of the transmitter is secured. The optical communication system according to any one of claims 1 to 5, wherein the group designation instruction is issued to the other transmitters when it can be confirmed. 複数のグループに割り振られる複数の送信機からの信号をグループ毎に受信機へ結合する光通信システムの光通信方法であって、
前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対する、割り当てられている割当帯域の比である割当比を監視し、他の前記送信機より前記割当比の小さい前記送信機を収容している前記グループの送信機の収容数を削減し、他の前記送信機より前記割当比の大きい前記送信機を収容している前記グループの送信機の収容数を増大する操作を行うグループ指定指示を出すことを特徴とする光通信システムの光通信方法。
An optical communication method of an optical communication system for combining signals from a plurality of transmitters allocated to a plurality of groups to a receiver for each group,
Against the required bandwidth guaranteed bandwidth or that the transmitter requests the transmitter to ensure monitors the ratio a is allocated ratio Allocated allocated bandwidth, smaller the transmission of the allocation ratio than the other of said transmitters An operation to reduce the number of transmitters of the group that accommodates the transmitter and to increase the number of transmitters of the group that accommodates the transmitter having the larger allocation ratio than other transmitters. An optical communication method of an optical communication system, characterized by issuing a group designation instruction to be performed .
選択可能な複数の波長のうちの1波長の光信号を出力する又は選択可能な複数の方路のうち1方路に光信号を出力する複数の送信機からの光信号を波長分割多重且つ時分割多重、方路多重且つ時分割多重、又は波長分割多重且つ時分割多重と方路多重且つ時分割多重とを組合せた多重方式で受信機へ結合する光通信システムの光通信方法であって、
前記送信機が保証する保証帯域又は前記送信機が要求する要求帯域に対する、割り当てられている割当帯域の比である割当比を監視し、他の前記送信機より前記割当比の小さい前記送信機を収容する波長、方路、又は波長と方路との組み合わせから送信機の収容数を削減し、他の前記送信機より前記割当比の大きい前記送信機を収容している波長、方路、又は波長と方路との組み合わせから送信機の収容数を増大する操作を行うグループ指定指示を出すことを特徴とする光通信システムの光通信方法。
Optical signal from a plurality of transmitters that output an optical signal of one of a plurality of selectable wavelengths or output an optical signal to one of a plurality of selectable paths is wavelength division multiplexed and time An optical communication method of an optical communication system that couples to a receiver by division multiplexing, path multiplexing and time division multiplexing, or wavelength division multiplexing and time division multiplexing and path multiplexing and time division multiplexing combined.
Against the required bandwidth guaranteed bandwidth or that the transmitter requests the transmitter to ensure monitors the ratio a is allocated ratio Allocated allocated bandwidth, smaller the transmission of the allocation ratio than the other of said transmitters Wavelengths and paths accommodating the transmitter, reducing the number of transmitters accommodated from the combination of wavelengths, paths, or combinations of wavelengths and paths, and accommodating the transmitter having a larger allocation ratio than the other transmitters Or an optical communication method for an optical communication system, characterized by issuing a group designation instruction for performing an operation for increasing the number of transmitters accommodated from a combination of a wavelength and a route .
前記グループ指定指示に基づいて前記送信機が波長、方路、又は波長と方路との組み合わせの切替を行う際に生ずる通信断で失う帯域である欠損帯域を波長、方路、又は波長と方路との組み合わせの切替前、あるいは波長、方路、又は波長と方路との組み合わせの切替後に該送信機に追加で割り当てることを特徴とする請求項7又は8に記載の光通信方法。   Based on the group designation instruction, a loss band, which is a band lost due to communication disconnection that occurs when the transmitter switches the wavelength, the path, or the combination of the wavelength and the path, the wavelength, the path, or the wavelength and the path. 9. The optical communication method according to claim 7, wherein the transmitter is additionally allocated before switching of a combination with a path, or after switching of a combination of a wavelength, a path, or a combination of a wavelength and a path. 前記送信機の過去の一定期間の通信量に基づいて前記要求帯域を推定し、推定に応じて前記送信機に対して割り振られるグループを指定することを特徴とする請求項7から9のいずれかに記載の光通信方法。   The said request | requirement band is estimated based on the traffic of the said transmitter for a fixed period in the past, The group allocated with respect to the said transmitter according to estimation is designated, The any one of Claim 7 to 9 characterized by the above-mentioned. An optical communication method according to claim 1. 前記割当比が所定の値未満の前記送信機のみ前記割当比が所定の値以上になるように前記グループ指定指示を出すことを特徴とする請求項7から10のいずれかに記載の光通信方法。   The optical communication method according to any one of claims 7 to 10, wherein the group designation instruction is issued so that only the transmitter with the allocation ratio less than a predetermined value has the allocation ratio equal to or greater than a predetermined value. . 保証帯域が設定されている前記送信機が選択している波長、方路、又は波長と方路との組み合わせの前記グループ指定指示を出す場合、該送信機の保証帯域を確保できることを確認できたときに他の前記送信機に前記グループ指定指示を出すことを特徴とする請求項7から11のいずれかに記載の光通信方法。   When issuing the group designation instruction of the wavelength, route, or combination of wavelength and route selected by the transmitter for which the guaranteed bandwidth is set, it was confirmed that the guaranteed bandwidth of the transmitter could be secured The optical communication method according to any one of claims 7 to 11, wherein the group designation instruction is sometimes issued to another transmitter.
JP2009169525A 2009-07-17 2009-07-17 Optical communication system and optical communication method Active JP5378899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169525A JP5378899B2 (en) 2009-07-17 2009-07-17 Optical communication system and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169525A JP5378899B2 (en) 2009-07-17 2009-07-17 Optical communication system and optical communication method

Publications (3)

Publication Number Publication Date
JP2011024133A JP2011024133A (en) 2011-02-03
JP2011024133A5 JP2011024133A5 (en) 2011-11-10
JP5378899B2 true JP5378899B2 (en) 2013-12-25

Family

ID=43633767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169525A Active JP5378899B2 (en) 2009-07-17 2009-07-17 Optical communication system and optical communication method

Country Status (1)

Country Link
JP (1) JP5378899B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585362B1 (en) * 2012-01-17 2016-01-13 니폰 덴신 덴와 가부시끼가이샤 Wavelength bandwidth allocation method
JP5938017B2 (en) * 2013-07-25 2016-06-22 日本電信電話株式会社 Optical subscriber system, dynamic wavelength band allocation method and program
JP5597759B1 (en) * 2013-09-02 2014-10-01 日本電信電話株式会社 Dynamic wavelength band allocation method, dynamic wavelength band allocation program, dynamic wavelength band allocation recording medium, subscriber accommodation apparatus, and passive optical communication network system
US11380209B2 (en) 2017-11-10 2022-07-05 Ntt Docomo, Inc. Information processing apparatus
FR3091085A1 (en) * 2018-12-21 2020-06-26 Orange Method for allocating a point-to-point channel to a user module of an optical communication network, computer program product, storage medium and corresponding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9704587D0 (en) * 1997-03-05 1997-04-23 Fujitsu Ltd Wavelength-division multiplexing in passive optical networks
JP2001251331A (en) * 2000-03-06 2001-09-14 Fujitsu Ltd Subscriber termination device that allocates dynamic bandwidth
JP3770063B2 (en) * 2000-08-23 2006-04-26 日本電気株式会社 Time slot allocation system and method and network side apparatus in communication system
JP3757364B2 (en) * 2002-09-06 2006-03-22 富士通株式会社 PON transmission system
JP2004336578A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Point-multipoint optical transmission system and station-side communication device
JP4655610B2 (en) * 2004-12-07 2011-03-23 沖電気工業株式会社 Optical communication system
JP4804424B2 (en) * 2007-06-26 2011-11-02 三菱電機株式会社 Communication apparatus and optical communication system

Also Published As

Publication number Publication date
JP2011024133A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
US8374194B2 (en) Communication device and bandwidth allocation method
US20110085795A1 (en) Communication device and downstream resource allocation method
US9749079B2 (en) Optical system, and dynamic wavelength bandwidth allocation method for optical system
JP4854823B1 (en) Band control method and communication system
US20090136230A1 (en) System and Method for Managing Wavelength Drift in an Optical Network
JP5109710B2 (en) Band allocation method, station side apparatus, subscriber station apparatus, communication system, and apparatus program
EP2101449A1 (en) Optical communication system, its optical communication method, and communication device
JP5378899B2 (en) Optical communication system and optical communication method
JP5137906B2 (en) Optical access network, optical subscriber unit, and optical access network communication setting method
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
CN108141403B (en) Relay transmission system, relay transmission method, and relay transmission device
JP5068781B2 (en) COMMUNICATION SYSTEM, STATION-side DEVICE, HOST COMMUNICATION DEVICE, AND BAND CONTROL METHOD
JP7307388B2 (en) Optical network with optical core, node using time-slotted reception
CN104218997A (en) Optical network unit and optical link terminal
JP2017175578A (en) Optical transmission device and light wavelength defragmentation method
CN102045126A (en) Wavelength division multiplexing-passive optical network (WDM-PON) system and use method thereof
JP2014135618A (en) Station side device of optical communication system and reception method
JP2009535949A (en) Method for operating a communication system and communication system implementing such a method
JP6852957B2 (en) Subscriber side optical network unit
JP7328596B2 (en) Wavelength multiplexing communication system and wavelength multiplexing communication method
KR100629501B1 (en) Channel Allocation Method in Optical Burst Switching Networks
JP5867233B2 (en) Station side equipment
JP5290917B2 (en) Optical communication system and optical communication method
US7720382B2 (en) Time-domain wavelength interleaved network with communications via hub node
KR20170084160A (en) Transmission method and system for optical burst transport network

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350