[go: up one dir, main page]

JP5376458B2 - Group III nitride semiconductor - Google Patents

Group III nitride semiconductor Download PDF

Info

Publication number
JP5376458B2
JP5376458B2 JP2010024715A JP2010024715A JP5376458B2 JP 5376458 B2 JP5376458 B2 JP 5376458B2 JP 2010024715 A JP2010024715 A JP 2010024715A JP 2010024715 A JP2010024715 A JP 2010024715A JP 5376458 B2 JP5376458 B2 JP 5376458B2
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
nitride semiconductor
substrate
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010024715A
Other languages
Japanese (ja)
Other versions
JP2010159207A (en
Inventor
浩 天野
智 上山
素顕 岩谷
Original Assignee
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 名城大学 filed Critical 学校法人 名城大学
Priority to JP2010024715A priority Critical patent/JP5376458B2/en
Publication of JP2010159207A publication Critical patent/JP2010159207A/en
Application granted granted Critical
Publication of JP5376458B2 publication Critical patent/JP5376458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III nitride semiconductor containing, as a main component, a composition component expressed by Al<SB>x</SB>Ga<SB>1-x-y</SB>In<SB>y</SB>N (where x and y satisfy 0&le;x, y, 1-x-y&le;1) and oriented in a direction except for the c-axis to inhibit generation of a built-in electric field, for example, in a crystal direction having inversion symmetry. <P>SOLUTION: The semiconductor is oriented in a direction inclined by at least 8&deg; from the c-axis, and contains, as a main component, a composition component expressed by Al<SB>x</SB>Ga<SB>1-x-y</SB>In<SB>y</SB>N (where x and y satisfy 0&le;x, y, 1-x-y&le;1) and contains B by less than 1 atom%. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、III族窒化物半導体に関する。   The present invention relates to a group III nitride semiconductor.

低温堆積緩衝層(非特許文献1)、p型伝導性制御(非特許文献2)、n型伝導性制御(非特許文献3)、および高効率発光層の作製法(非特許文献4)など基幹技術の積み重ねにより、AlxGa1-x-yInyN(0≦x,y、1-x-y≦1)なる組成成分を主成分として含むIII族窒化物半導体を用いた高輝度の青色、緑色および白色発光ダイオードが既に実用化されている。 Low temperature deposition buffer layer (Non-patent document 1), p-type conductivity control (Non-patent document 2), n-type conductivity control (Non-patent document 3), and manufacturing method of high-efficiency light-emitting layer (Non-patent document 4) High-brightness blue and green using Group III nitride semiconductors that contain the main component of Al x Ga 1-xy In y N (0 ≤ x, y, 1-xy ≤ 1) through the accumulation of core technologies White light emitting diodes have already been put into practical use.

図1及び図2は、前記III族窒化物半導体を用いた発光ダイオードの代表的な構造例を示す。サファイアを基板とする場合は、サファイア(0001)面基板上またはサファイア(11-20)面基板上101に低温堆積緩衝層102を介し、SiCを基板とする場合はSiC(0001)面基板201上にAlGaN層202を介して、それぞれの基板上においてn型GaN:Si層103または203、GaInN発光層104または204、p-AlGaN:Mg電子ブロック層105または205、p-GaN:Mg層106または206が積層されている。更にn層の電極として107または207及びp層の電極として108または208が積層されている。   1 and 2 show a typical structure example of a light emitting diode using the group III nitride semiconductor. When using sapphire as the substrate, the low-temperature deposition buffer layer 102 is provided on the sapphire (0001) surface substrate or 101 on the sapphire (11-20) surface substrate, and when using SiC as the substrate, on the SiC (0001) surface substrate 201. N-type GaN: Si layer 103 or 203, GaInN light-emitting layer 104 or 204, p-AlGaN: Mg electron blocking layer 105 or 205, p-GaN: Mg layer 106 or 206 is laminated. Further, 107 or 207 is stacked as an n-layer electrode and 108 or 208 is stacked as a p-layer electrode.

サファイア基板上およびSiC基板上いずれの場合においても、現在実用化されているAlxGa1-x-yInyN(0≦x,y、1-x-y≦1)系発光ダイオードのヘテロ構造は全て(0001)面上に積層されている。 (0001)面の積層構造が用いられる最大の理由は、現在、発光素子作製に用いられている有機金属化合物気相成長法では、プレーナ型の素子作製に必須の原子的に平坦な面が得やすいからである。 All the heterostructures of Al x Ga 1-xy In y N (0 ≤ x, y, 1-xy ≤ 1) light emitting diodes currently in practical use on both sapphire and SiC substrates ( 0001) plane. The biggest reason why the (0001) plane laminated structure is used is that the metal-organic vapor phase epitaxy currently used for fabricating light-emitting elements provides an atomically flat surface that is essential for planar-type element fabrication. It is easy.

AlxGa1-x-yInyN(0≦x,y、1-x-y≦1)III族窒化物半導体は発光素子のみならず、受光素子や電子素子としても有望であるが、現在までに学術雑誌等に報告されている受光素子および電子素子に関しても、全て(0001)面上に積層構造が形成されている。 Al x Ga 1-xy In y N (0 ≤ x, y, 1-xy ≤ 1) Group III nitride semiconductors are promising not only for light-emitting elements, but also for light-receiving elements and electronic elements. All the light receiving elements and electronic elements reported in magazines and the like have a laminated structure on the (0001) plane.

しかしながら、AlxGa1-x-yInyN(0≦x,y、1-x-y≦1)III族窒化物半導体は、[0001]軸方向、すなわちc軸方向に対して反転対称性を持たないため、その結晶構造が歪んだ場合、結晶内部に圧電電界を生じる。更に、積層界面において、材料の違いにより自発分極を発生する。発光素子において、内蔵電界の存在は電子と正孔の空間的分離をもたらし、電子と正孔の発光再結合のための遷移確率を減少させる。したがって、発光素子の発光効率は、内蔵電界のない場合と比較して低下してしまう。 However, Al x Ga 1-xy In y N (0 ≦ x, y, 1-xy ≦ 1) group III nitride semiconductor does not have inversion symmetry with respect to the [0001] axis direction, that is, the c axis direction. Therefore, when the crystal structure is distorted, a piezoelectric electric field is generated inside the crystal. Furthermore, spontaneous polarization occurs at the laminated interface due to the material difference. In a light emitting device, the presence of a built-in electric field results in the spatial separation of electrons and holes and reduces the transition probability for luminescence recombination of electrons and holes. Therefore, the light emission efficiency of the light emitting element is reduced as compared with the case without a built-in electric field.

現在実用化されているAlxGa1-x-yInyN(0≦x,y、1-x-y≦1)III族窒化物半導体を用いた発光素子は、全て発光層が歪んでいるため圧電電界が存在し、その発光効率は歪のない場合と比べて低下している。もし、反転対称性のある結晶面方位においてヘテロ接合構造が形成できれば、結晶が歪んでいても圧電電界を生じないため、現在実用化されているものと比較して更に効率の良い発光素子が実現できる可能性がある。 All light-emitting elements using Al x Ga 1-xy In y N (0 ≦ x, y, 1-xy ≦ 1) group III nitride semiconductors that are currently in practical use are distorted in the light-emitting layer. And the luminous efficiency is lower than that without distortion. If a heterojunction structure can be formed in a crystal plane orientation with inversion symmetry, a piezoelectric electric field will not be generated even if the crystal is distorted. Therefore, a more efficient light-emitting element than that currently in practical use is realized. There is a possibility.

一方、電子素子においては、上述した圧電電界や自発分極により積層界面に誘起される高密度の二次元電子を利用し、デプレッション型の電界効果トランジスタが試作されている。また、電子素子に関しては、従来作製が不可能であったエンハンスメント型の電界効果トランジスタが実現できる可能性がある。   On the other hand, as an electronic device, a depletion type field effect transistor has been prototyped using the high-density two-dimensional electrons induced at the laminated interface by the above-described piezoelectric electric field and spontaneous polarization. In addition, with regard to electronic elements, there is a possibility that an enhancement type field effect transistor, which could not be manufactured conventionally, can be realized.

反転対称性のある結晶面方位での積層構造に関しては、主に二つの方法が提案されている。一つは、サファイアやSiCなどの(0001)面あるいは(11-20)面を主面として用い、このような主面を有する基板上に、AlxGa1-x-yInyN(0≦x,y、1-x-y≦1)III族窒化物半導体の(0001)面以外の斜めの結晶面、例えば(10-11)面ファセットが形成される結晶成長条件で成長を行い、前記主面に対して斜めの方向において所定の積層構造を作製する方法である(非特許文献5)。しかしながら、この方法では、(0001)面以外の斜めファセットを形成する際の結晶成長条件の制御範囲が狭いために再現性が悪く、現在までに高効率の発光素子は実現されていない。 Two methods have been proposed mainly for a laminated structure with crystal plane orientation having inversion symmetry. One uses (0001) or (11-20) planes such as sapphire and SiC as the main plane, and Al x Ga 1-xy In y N (0 ≦ x , y, 1-xy ≦ 1) Growing under a crystal growth condition in which an oblique crystal plane other than the (0001) plane of the group III nitride semiconductor, for example, a (10-11) plane facet is formed, In contrast, this is a method for producing a predetermined laminated structure in an oblique direction (Non-Patent Document 5). However, this method has poor reproducibility due to the narrow control range of crystal growth conditions when forming oblique facets other than the (0001) plane, and a highly efficient light emitting device has not been realized so far.

もう一つは(0001)面以外を主面とする基板を用いる方法であり、例えば(1)ハロゲン輸送気相成長法を用いてLiAlO2(100)面基板上に厚膜のGaN(1-100)面を成長させ、それを基板として所望の積層構造を成長する方法(非特許文献6)や、(2)誘電体マスクなどを部分的に形成したサファイアやSiCなどの(10-10)面や(10-12)面基板の上に積層構造を形成する方法(例えば非特許文献7)などが報告されている。 The other is a method using a substrate whose principal surface is other than the (0001) plane.For example, (1) a thick film of GaN (1--) is formed on a LiAlO 2 (100) plane substrate by using a halogen transport vapor deposition method. (100) surface growth method using the substrate as a substrate (Non-patent Document 6), (2) sapphire partially formed with a dielectric mask, etc. (10-10) A method of forming a laminated structure on a plane or a (10-12) plane substrate (for example, Non-Patent Document 7) has been reported.

(1)の方法では、得られたGaN(1-100)面の平坦性は劣悪であり、素子作製に必要な高品質積層構造の実現には至っていない。また(2)の方法では、GaNの成長を複数回行う必要があることや、10μm以上の厚膜にしないと平坦な層を得ることができないなど、製造上の問題がある。   In the method (1), the flatness of the obtained GaN (1-100) surface is inferior, and a high-quality multilayer structure necessary for device fabrication has not been realized. In addition, the method (2) has manufacturing problems such as the need to grow GaN a plurality of times, and a flat layer cannot be obtained unless the film is thicker than 10 μm.

「1986年H.Amano,N.Sawaki,I.Akasaki and Y.Toyoda:Appl.Phys.Lett.,48(1986)353」“1986 H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda: Appl. Phys. Lett., 48 (1986) 353” 「1989年H.Amano,M.Kito,K.Hiramatsu and I.Akasaki:Jpn.J.Appl.Phys.28(1989)L2112」“1989 H. Amano, M. Kito, K. Hiramatsu and I. Akasaki: Jpn. J. Appl. Phys. 28 (1989) L2112” 「1991年H.Amano and I.Akasaki:Mat.Res.Soc.Ext Abst.,EA-21(1991)165)」"1991 H. Amano and I. Akasaki: Mat. Res. Soc. Ext Abst., EA-21 (1991) 165)" 「1991年N.Yoshimoto,T.Matsuoka,T.Sasaki and A.Katsui,Appl.Phys.Lett.,59(1991)2251」“1991 N. Yoshimoto, T. Matsuoka, T. Sasaki and A. Katsui, Appl. Phys. Lett., 59 (1991) 2251” 「T. Takeuchi,S. Lester,D. Basile,G. Gilorami,R. Twist,F. Mertz,M. Wong,R. Schneider,H. Amano and I. Akasaki,IPAP Conf. Ser.,Nitride Semicond. 2000,137」“T. Takeuchi, S. Lester, D. Basile, G. Gilorami, R. Twist, F. Mertz, M. Wong, R. Schneider, H. Amano and I. Akasaki, IPAP Conf. Ser., Nitride Semicond. 2000,137 " 「E.Kuokstis,C.Q.Chen,M.E.Gaevski,W.H.Sun,J.Wl.Yang,G.Simin,M.A.Khan,H.P,Maruska,D.W.Hill and M.C.Chou,Appl.Phys.Lett.,81(2002)41230」“E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. Wl. Yang, G. Simin, M. A. Khan, H. P, Maruska, D. W. Hill. and M. C. Chou, Appl. Phys. Lett., 81 (2002) 41230 " 「2003年 C.Chen,J.Yang,H.Wang,J.Zhang,V.Adivarahan,M.Gaevski,E.Kuokstis,Z.Gong,M.Su and M.A.Khan,Jpn.J.Appl.Phys.,42(2003)L640」“2003 C. Chen, J. Yang, H. Wang, J. Zhang, V. Adivarahan, M. Gaevski, E. Kuokstis, Z. Gong, M. Su and M. A. Khan, Jpn. J. Appl. Phys., 42 (2003) L640 "

本発明は、内蔵電界などの生成を抑制すべくc軸以外の方位、例えば反転対称性を有する結晶方位などへ配向した、AlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含むIII族窒化物半導体を提供することを目的とする。 In the present invention, AlxGa1-x-yInyN (0 ≦ x, y, 0 < 1-xy ≦) oriented in a direction other than the c-axis, for example, a crystal orientation having inversion symmetry to suppress generation of a built-in electric field or the like. It is an object of the present invention to provide a group III nitride semiconductor containing the composition component 1) as a main component.

上記目的を達成すべく、本発明は、
c軸より8°以上傾斜した方位に配向した主面を有するサファイア基板または4H-SiC基板(以下、単にSiC基板ともいう)を準備する工程と、
Bを含む雰囲気において成膜処理を実行し、前記基板上にAlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含み、かつBを1原子%未満で含むIII族窒化物半導体を、そのc軸より8°以上傾斜した方位に配向するようにして形成する工程と、
を具えるIII族窒化物半導体の作製方法によって得られたもので、
主面がc軸より8°以上傾斜した方位に配向し、AlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含み、かつBを1原子%未満で含むことを特徴とする、III族窒化物半導体に関する。
In order to achieve the above object, the present invention provides:
preparing a sapphire substrate or a 4H-SiC substrate (hereinafter also simply referred to as a SiC substrate) having a principal surface oriented in an orientation inclined at an angle of 8 ° or more from the c-axis;
A film formation process is performed in an atmosphere containing B, and the composition component AlxGa1-x-yInyN (0 ≦ x, y, 0 <1-xy ≦ 1) is included as a main component on the substrate, and B is one atom. Forming a group III nitride semiconductor containing less than% in such a manner that it is oriented in an orientation inclined at least 8 ° from its c-axis;
Obtained by a method for producing a group III nitride semiconductor comprising:
The main surface is oriented in an orientation inclined at least 8 ° from the c-axis, contains as a main component a composition component of AlxGa1-x-yInyN (0≤x, y, 0 <1-xy≤1), and one atom of B The present invention relates to a group III nitride semiconductor, characterized in that the content is less than%.

上記目的を達成すべく本発明者らは鋭意検討を実施した。その結果、サファイア又はSiCなどのc軸から8°以上傾斜した方位に配向した主面を有する基板を準備し、Bを含む存在下において成膜処理を行うことにより、前記基板上に、主面がc軸より8°以上傾斜した方位に配向したAlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含むIII族窒化物半導体をエピタキシャル成長できることを見出した。 In order to achieve the above object, the present inventors have conducted intensive studies. As a result, a substrate having a main surface oriented in an orientation inclined by 8 ° or more from the c-axis, such as sapphire or SiC, is prepared, and film formation is performed in the presence of B, whereby the main surface is formed on the substrate. Is capable of epitaxially growing a group III nitride semiconductor containing, as a main component, a composition component of AlxGa1-x-yInyN (0 ≦ x, y, 0 <1-xy ≦ 1) oriented in a direction inclined at least 8 ° from the c-axis I found it.

その結果、前記基板上においてc軸より8°以上傾斜した方位、例えば反転対称性を有する方位においてヘテロ接合構造を形成することができ、前記III族窒化物半導体中に生成させる内蔵電界を減少させることができ、電子と正孔との発光再結合のための遷移確率を増大させることができる。したがって、前記III族窒化物半導体から所定の発光素子を作製することにより、その発光効率を増大させることができる。   As a result, a heterojunction structure can be formed on the substrate at an inclination of 8 ° or more from the c-axis, for example, an orientation having inversion symmetry, and the built-in electric field generated in the group III nitride semiconductor is reduced. And the transition probability for luminescence recombination of electrons and holes can be increased. Therefore, the luminous efficiency can be increased by fabricating a predetermined light emitting device from the group III nitride semiconductor.

また、圧電電界による二次元電子ガスが存在しないため、エンハンスメント型の電界効果トランジスタを得ることもできる。   Further, since there is no two-dimensional electron gas due to the piezoelectric electric field, an enhancement type field effect transistor can be obtained.

なお、前記Bを含む雰囲気での成膜処理は、例えば、前記Bを含む物質を前記基板の近傍に配置した状態、あるいは前記Bを含むガス物質を供給した雰囲気中で前記成膜処理を行うことなどによって、実行することができる。さらには、前記Bを含む物質を前記基板上に予め蒸着した状態、あるいは前記Bを含む物質からなる装置部材を含む装置を用いることによって、実行することができる。   The film formation process in the atmosphere containing B is performed, for example, in a state where the substance containing B is arranged in the vicinity of the substrate or in an atmosphere supplied with a gas substance containing B. It can be executed depending on the situation. Furthermore, it can be carried out by using a state in which the substance containing B is vapor-deposited on the substrate in advance, or using an apparatus including an apparatus member made of the substance containing B.

上述したいずれの場合においても、前記Bを含む雰囲気は、成膜処理を実施した後に、前記III族窒化物半導体中に前記Bが極微量含まれるようにして設定する。具体的には、前記III族窒化物半導体中における前記Bの含有量が1原子%未満となるように設定する。   In any of the cases described above, the atmosphere containing B is set so that a very small amount of B is contained in the group III nitride semiconductor after the film forming process is performed. Specifically, the B content in the group III nitride semiconductor is set to be less than 1 atomic%.

例えば、前記Bを含む物質を前記基板の近傍に配置する場合においては、前記物質を前記成膜処理による影響を受けるような環境に配置する。具体的には、前記物質を前記基板を配置するサセプタ上において、原料ガスに晒されるような環境下に配置する。また、前記装置部材を前記Bを含む物質から構成する場合は、前記サセプタやこのサセプタなどからの十分な熱輻射を受ける成膜室内の内壁部分を前記物質から構成する。   For example, when the substance containing B is arranged in the vicinity of the substrate, the substance is arranged in an environment that is affected by the film forming process. Specifically, the substance is placed on the susceptor on which the substrate is placed, in an environment where it is exposed to the source gas. In the case where the device member is made of the substance containing B, the susceptor and the inner wall portion in the film forming chamber that receives sufficient heat radiation from the susceptor are made of the substance.

また、前記Bを含むガス物質を供給する場合は、そのガス物質の流量を適宜制御し、前記Bを含む物質を蒸着する場合は、その蒸着層の厚さ及び蒸着層上に前記III族窒化物半導体を形成する際の、前記蒸着層中のBが前記III族窒化物半導体中に十分に拡散するように、前記III族窒化物半導体の形成温度を適宜制御する。   Further, when supplying the gas substance containing B, the flow rate of the gas substance is appropriately controlled, and when depositing the substance containing B, the thickness of the vapor deposition layer and the group III nitride on the vapor deposition layer The formation temperature of the group III nitride semiconductor is appropriately controlled so that B in the vapor deposition layer is sufficiently diffused into the group III nitride semiconductor when forming the compound semiconductor.

以上説明したように、本発明によれば、内蔵電界などの生成を抑制すべくc軸以外の方位、例えば反転対称性を有する結晶方位などへ配向した、AlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含むIII族窒化物半導体を提供することができる。 As described above, according to the present invention, AlxGa1-x-yInyN (0 ≦ x, 0) oriented in a direction other than the c axis, for example, a crystal orientation having inversion symmetry, to suppress generation of a built-in electric field or the like. It is possible to provide a group III nitride semiconductor containing a composition component y, 0 < 1-xy ≦ 1) as a main component.

発光ダイオードの一例を示す構成図である。It is a block diagram which shows an example of a light emitting diode. 同じく、発光ダイオードの一例を示す構成図である。Similarly, it is a block diagram which shows an example of a light emitting diode. 本発明のIII族窒化物半導体の作製方法に使用する装置の一例を概略的に示す構成図である。It is a block diagram which shows roughly an example of the apparatus used for the manufacturing method of the group III nitride semiconductor of this invention. AlN/GaNヘテロ構造の表面SEM写真である。It is a surface SEM photograph of an AlN / GaN heterostructure. 同じく、AlN/GaNヘテロ構造の表面SEM写真である。Similarly, it is a surface SEM photograph of an AlN / GaN heterostructure.

以下、本発明の詳細、並びにその他の特徴及び利点について、最良の形態に基づいて詳細に説明する。   The details of the present invention and other features and advantages will be described in detail below based on the best mode.

図3は、本発明のIII族窒化物半導体の作製方法に使用する装置の一例を概略的に示す構成図である。図3に示す装置においては、サセプタ303上に基板301が載置されるとともに、サセプタ303上の基板101に近接した領域においてB供給源302が配置されている。なお、基板101及びB供給源302を含むサセプタ303は、所定の成膜容器304内に配置されている。   FIG. 3 is a block diagram schematically showing an example of an apparatus used in the method for producing a group III nitride semiconductor of the present invention. In the apparatus shown in FIG. 3, the substrate 301 is placed on the susceptor 303, and the B supply source 302 is arranged in a region close to the substrate 101 on the susceptor 303. The susceptor 303 including the substrate 101 and the B supply source 302 is disposed in a predetermined film formation container 304.

また、成膜容器304内には、前記III族窒化物半導体の原料ガスである、TMGa、TMAl、TMIn、及びNH3などが所定のキャリアガスとともに導入できるように構成されている。 In addition, the film formation container 304 is configured such that TMGa, TMAl, TMIn, NH 3 , and the like, which are source gases of the group III nitride semiconductor, can be introduced together with a predetermined carrier gas.

基板301は、その主面がc軸から8°以上傾斜していることが要求される。かような基板301としては、サファイア基板やSiC基板を用いる。   The main surface of the substrate 301 is required to be inclined by 8 ° or more from the c-axis. As such a substrate 301, a sapphire substrate or a SiC substrate is used.

また、B供給源302は、所定のB含有物質を単にサセプタ303上に直接配置することもできるし、サセプタ303の上面の一部に凹部を形成し、この凹部内に配置するようにすることもできる。さらには、所定のボートを準備し、このボート内に入れておくこともできる。なお、前記B含有物質は、粉末状、粒状、ペレット状、及びブロック状のいずれであっても良く、使いやすさに応じて、任意の形態のものを適宜選択して使用することができる。   In addition, the B supply source 302 can simply place a predetermined B-containing substance directly on the susceptor 303, or form a recess in a part of the upper surface of the susceptor 303 and place it in this recess. You can also. Furthermore, a predetermined boat can be prepared and placed in this boat. The B-containing substance may be any of powder, granules, pellets, and blocks, and any form can be appropriately selected and used according to ease of use.

基板301は、サセプタ303によって所定温度に加熱され、上述した原料ガスが供給されることによって、CVD法の原理に基づき、基板301上にAlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含む前記III族窒化物半導体が形成される。このとき、B供給源もサセプタ303によって併せて加熱される。具体的には、サセプタ303による基板301の加熱温度は約400℃〜1200℃であるので、基板301の加熱に伴って、B供給源302も十分高温に加熱されることになる。一方、B供給源302は、前記原料ガスにも晒されるため、B供給源302からB含有物質が部分的に蒸発し、成膜中の基板301上に供給されるようになる。この結果、前記III族窒化物半導体の成膜処理は、前記原料ガスに加えてBを含む雰囲気中で行われることになる。 The substrate 301 is heated to a predetermined temperature by the susceptor 303 and supplied with the above-described source gas, whereby AlxGa1-x-yInyN (0 ≦ x, y, 0 < 1) is formed on the substrate 301 based on the principle of the CVD method. The group III nitride semiconductor containing a composition component of −xy ≦ 1) as a main component is formed. At this time, the B supply source is also heated by the susceptor 303. Specifically, since the heating temperature of the substrate 301 by the susceptor 303 is about 400 ° C. to 1200 ° C., the B supply source 302 is also heated to a sufficiently high temperature as the substrate 301 is heated. On the other hand, since the B supply source 302 is also exposed to the source gas, the B-containing material partially evaporates from the B supply source 302 and is supplied onto the substrate 301 during film formation. As a result, the film forming process of the group III nitride semiconductor is performed in an atmosphere containing B in addition to the source gas.

この結果、基板301上における前記III族窒化物半導体の(0001)面ファセットの形成を抑制し、前記III族窒化物半導体の成長方向をc軸より8°以上傾斜させるようにすることができる。この結果、基板301上において、c軸より8°以上傾斜した方位に配向した前記III族窒化物半導体を得ることができる。   As a result, formation of the (0001) plane facet of the group III nitride semiconductor on the substrate 301 can be suppressed, and the growth direction of the group III nitride semiconductor can be inclined by 8 ° or more from the c-axis. As a result, it is possible to obtain the group III nitride semiconductor oriented on the substrate 301 in the direction inclined by 8 ° or more from the c-axis.

このようなIII族窒化物半導体は、内蔵電界が小さく、電子と正孔との発光再結合のための遷移確率を増大させることができる。したがって、前記III族窒化物半導体から所定の発光素子を作製することにより、その発光効率を増大させることができる。また、圧電電界による二次元電子ガスが生じないために、エンハンスメント型の電界効果トランジスタを得ることもできる。   Such a group III nitride semiconductor has a small built-in electric field and can increase the transition probability for light-emitting recombination of electrons and holes. Therefore, the luminous efficiency can be increased by fabricating a predetermined light emitting device from the group III nitride semiconductor. Further, since the two-dimensional electron gas due to the piezoelectric electric field is not generated, an enhancement type field effect transistor can be obtained.

なお、前記III族窒化物半導体は、B含有雰囲気中で行うため、その主成分であるAlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分の他に、Bを1原子%未満の割合で含む。すなわち、前記III族窒化物半導体中のB含有割合がこのような範囲を満足するようにB供給源302を配置することによって、c軸より8°以上傾斜した方位に配向した前記III族窒化物半導体を簡易に得ることができるようになる。 In addition, since the group III nitride semiconductor is performed in a B-containing atmosphere, in addition to the composition component AlxGa1-x-yInyN (0 ≦ x, y, 0 < 1-xy ≦ 1) as the main component, B is contained at a ratio of less than 1 atomic%. That is, by arranging the B supply source 302 so that the B content in the group III nitride semiconductor satisfies such a range, the group III nitride is oriented in an orientation inclined at least 8 ° from the c-axis. A semiconductor can be obtained easily.

このように、前記III族窒化物半導体の配向は、そのc軸より8°以上傾斜させる必要がある。これによって、前記(0001)面ファセットの形成を効果的に抑制することができ、上述した内蔵電界をより効果的に減少せしめることができるとともに、二次元電子ガスを生じさせないという効果を増大させることができる。   Thus, the orientation of the group III nitride semiconductor needs to be inclined by 8 ° or more from its c-axis. As a result, the formation of the (0001) facet can be effectively suppressed, the built-in electric field described above can be reduced more effectively, and the effect of not generating a two-dimensional electron gas can be increased. Can do.

(実施例1)
本実施例では、図3に示すような作製装置を用いてIII族窒化物半導体の作製を実施した。最初に、(10-12)面サファイア基板を準備し、このサファイア基板上に450℃で厚さ25nmのAlNを形成し、さらに前記AlN上に1050℃で厚さ2.0μmのGaNを形成した。なお、B供給源として、単結晶のZrB2をサファイア基板上流側に近接して、配置した。
(比較例1)
B供給源を使用しなかった以外は、実施例1と同様にして、(10-12)面サファイア基板
上に厚さ2.5nmのAlN及び2.0μmnmのGaNを形成した。
Example 1
In this example, a group III nitride semiconductor was manufactured using a manufacturing apparatus as shown in FIG. First, a (10-12) plane sapphire substrate was prepared, AlN having a thickness of 25 nm was formed on the sapphire substrate at 450 ° C., and GaN having a thickness of 2.0 μm was formed on the AlN at 1050 ° C. As a B supply source, single crystal ZrB 2 was arranged close to the upstream side of the sapphire substrate.
(Comparative Example 1)
Except that the B supply source was not used, 2.5 nm thick AlN and 2.0 μm nm GaN were formed on the (10-12) plane sapphire substrate in the same manner as in Example 1.

図4(a)は実施例1で得たAlN/GaNヘテロ構造の表面SEM写真であり、図4(b)は比較例1で得たAlN/GaNヘテロ構造の表面SEM写真である。実施例1及び比較例1のいずれにおいても、得られたAlN/GaNヘテロ構造の配向方位は(1-100)面であった。しかしながら、図4から明らかなように、本発明に従ってZrB2なるB供給源を用いて作製した実施例1のAlN/GaNヘテロ構造においては、表面が極めて平坦であり、素子作製に際して高品質な積層構造が得られていることが分かる。一方、比較例1のAlN/GaNヘテロ構造においては、表面平坦性が劣悪であって、素子作製に際して高品質な積層構造が得られていないことが分かる。 4A is a surface SEM photograph of the AlN / GaN heterostructure obtained in Example 1, and FIG. 4B is a surface SEM photograph of the AlN / GaN heterostructure obtained in Comparative Example 1. In both Example 1 and Comparative Example 1, the orientation direction of the obtained AlN / GaN heterostructure was (1-100) plane. However, as is apparent from FIG. 4, the AlN / GaN heterostructure of Example 1 fabricated using the ZrB 2 B supply source according to the present invention has a very flat surface, and a high-quality laminated layer for device fabrication. It can be seen that the structure is obtained. On the other hand, in the AlN / GaN heterostructure of Comparative Example 1, the surface flatness is inferior, and it can be seen that a high-quality laminated structure is not obtained in device fabrication.

なお、実施例1で得たAlN/GaNヘテロ構造を用いて図1に示すようなp-n接合構造を形成し、発光ダイオードを作製したところ、前記発光ダイオードからの発光が確認された。また、実施例1で得たAlN/GaNヘテロ構造に対してオーム性及びショットキー性の電極を形成した電界効果トランジスタを作製したところ、前記電界効果トランジスタの動作が確認された。
(実施例2)
本実施例では、図3に示すような作製装置を用いてIII族窒化物半導体の作製を実施した。最初に、(30-38)面に配向した主面を有する4H-SiC基板を準備し、このSiC基板上に、実施例1と同じ条件で、厚さ300nmのAlN及び厚さ2.0μmのGaNを形成した。
(比較例2)
B供給源を使用しなかった以外は、実施例2と同様にして、(30-38)面に配向した主面を有する4H-SiC基板上に厚さ300nmのAlN及び2.0μmのGaNを形成した。
In addition, when a pn junction structure as shown in FIG. 1 was formed using the AlN / GaN heterostructure obtained in Example 1 to produce a light emitting diode, light emission from the light emitting diode was confirmed. In addition, when a field effect transistor in which ohmic and Schottky electrodes were formed on the AlN / GaN heterostructure obtained in Example 1 was fabricated, the operation of the field effect transistor was confirmed.
(Example 2)
In this example, a group III nitride semiconductor was manufactured using a manufacturing apparatus as shown in FIG. First, a 4H-SiC substrate having a main surface oriented in the (30-38) plane was prepared, and on this SiC substrate, AlN having a thickness of 300 nm and GaN having a thickness of 2.0 μm were formed under the same conditions as in Example 1. Formed.
(Comparative Example 2)
A 300 nm thick AlN and 2.0 μm GaN are formed on a 4H—SiC substrate having a main surface oriented in the (30-38) plane in the same manner as in Example 2 except that the B supply source is not used. did.

図5(a)は実施例2で得たAlN/GaNヘテロ構造の表面SEM写真であり、図5(b)は比較例2で得たAlN/GaNヘテロ構造の表面SEM写真である。実施例2において、得られたAlN/GaNヘテロ構造の配向方位は基板と同じ(30-38)面であった。一方、比較例2において、得られたAlN/GaNヘテロ構造の配向方位は基板と同じ(30-38)面を含むとともに、(0001)面から7°傾斜した方位に配向したものをも含んでいた。   FIG. 5A is a surface SEM photograph of the AlN / GaN heterostructure obtained in Example 2, and FIG. 5B is a surface SEM photograph of the AlN / GaN heterostructure obtained in Comparative Example 2. In Example 2, the orientation direction of the obtained AlN / GaN heterostructure was the same (30-38) plane as the substrate. On the other hand, in Comparative Example 2, the orientation orientation of the obtained AlN / GaN heterostructure includes the same (30-38) plane as that of the substrate, and also includes those oriented in an orientation inclined by 7 ° from the (0001) plane. It was.

さらに、図5から明らかなように、本発明に従ってZrB2なるB供給源を用いて作製した実施例2のAlN/GaNヘテロ構造においては、表面が極めて平坦であり、素子作製に際して高品質な積層構造が得られていることが分かる。一方、比較例2のAlN/GaNヘテロ構造においては、表面平坦性が劣悪であって、素子作製に際して高品質な積層構造が得られていないことが分かる。 Further, as is apparent from FIG. 5, the AlN / GaN heterostructure of Example 2 fabricated using a B source of ZrB 2 according to the present invention has a very flat surface, and a high-quality stack is produced in the fabrication of the device. It can be seen that the structure is obtained. On the other hand, in the AlN / GaN heterostructure of Comparative Example 2, the surface flatness is inferior, and it can be seen that a high-quality laminated structure is not obtained in device fabrication.

なお、実施例2で得たAlN/GaNヘテロ構造を用いて図1に示すようなp-n接合構造を形成し、発光ダイオードを作製したところ、前記発光ダイオードからの発光が確認された。また、実施例2で得たAlN/GaNヘテロ構造に対してオーム性及びショットキー性の電極を形成した電界効果トランジスタを作製したところ、前記電界効果トランジスタの動作が確認された。   In addition, when a pn junction structure as shown in FIG. 1 was formed using the AlN / GaN heterostructure obtained in Example 2 to produce a light emitting diode, light emission from the light emitting diode was confirmed. Further, when a field effect transistor in which ohmic and Schottky electrodes were formed on the AlN / GaN heterostructure obtained in Example 2 was fabricated, the operation of the field effect transistor was confirmed.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

例えば、上記具体例においては、B供給源302をIII族窒化物半導体を形成すべき基板301の近傍に配置することによって、成膜処理をB含有雰囲気中で実施するようにしている。しかしながら、前述した原料ガスに加えてB含有ガスを成膜容器304内に供給することによって、前記B含有雰囲気を形成することもできる。また、基板301上にB含有物質を予め蒸着し、III族窒化物半導体形成時の温度を適宜に制御して、Bが成膜中の前記III族窒化物半導体中の含有(拡散)するようにすることもできる。また、装置部材、例えばサセプタ303を前記B含有物質から構成し、その加熱を温度を適宜に制御して、Bを蒸発させて、前記成膜処理をB含有雰囲気で実施するようにすることもできる。   For example, in the above specific example, the B supply source 302 is disposed in the vicinity of the substrate 301 on which the group III nitride semiconductor is to be formed, so that the film forming process is performed in a B-containing atmosphere. However, the B-containing atmosphere can also be formed by supplying a B-containing gas into the film forming container 304 in addition to the above-described source gas. Further, a B-containing material is previously deposited on the substrate 301, and the temperature at the time of forming the group III nitride semiconductor is appropriately controlled so that B is contained (diffused) in the group III nitride semiconductor being formed. It can also be. Further, an apparatus member, for example, a susceptor 303 may be made of the B-containing material, and the film forming process may be performed in a B-containing atmosphere by appropriately controlling the temperature of the heating to evaporate B. it can.

また、上記具体例においてはCVD法を用いて前記III族窒化物半導体を形成する場合について述べたが、当然にその他の成膜手法を用いることもできる。   Further, in the above specific example, the case where the group III nitride semiconductor is formed by using the CVD method has been described, but other film forming methods can naturally be used.

301 基板
302 B供給源
303 サセプタ
304 成膜容器
301 substrate
302 B supply source
303 Susceptor
304 Deposition container

Claims (1)

主面がc軸より8°以上傾斜した方位に配向し、AlxGa1-x-yInyN(0≦x,y、0<1-x-y≦1)なる組成成分を主成分として含み、かつBを1原子%未満で含むことを特徴とする、III族窒化物半導体。 The main surface is oriented in an orientation inclined at least 8 ° from the c-axis, contains as a main component a composition component of AlxGa1-x-yInyN (0≤x, y, 0 <1-xy≤1), and one atom of B Group III nitride semiconductor, characterized by comprising less than%.
JP2010024715A 2010-02-05 2010-02-05 Group III nitride semiconductor Expired - Fee Related JP5376458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024715A JP5376458B2 (en) 2010-02-05 2010-02-05 Group III nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024715A JP5376458B2 (en) 2010-02-05 2010-02-05 Group III nitride semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004067457A Division JP4556034B2 (en) 2004-03-10 2004-03-10 Method for manufacturing group III nitride semiconductor

Publications (2)

Publication Number Publication Date
JP2010159207A JP2010159207A (en) 2010-07-22
JP5376458B2 true JP5376458B2 (en) 2013-12-25

Family

ID=42576675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024715A Expired - Fee Related JP5376458B2 (en) 2010-02-05 2010-02-05 Group III nitride semiconductor

Country Status (1)

Country Link
JP (1) JP5376458B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716440B2 (en) * 1995-03-01 2005-11-16 住友電気工業株式会社 Boron-containing aluminum nitride thin film and manufacturing method
JP3925132B2 (en) * 2000-09-27 2007-06-06 セイコーエプソン株式会社 Surface acoustic wave device, frequency filter, frequency oscillator, electronic circuit, and electronic device
JP2002305155A (en) * 2001-04-09 2002-10-18 Nikko Materials Co Ltd CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL

Also Published As

Publication number Publication date
JP2010159207A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US6593016B1 (en) Group III nitride compound semiconductor device and producing method thereof
CN101438429B (en) Group III nitride compound semiconductor stacked structure
TWI489668B (en) Method for heteroepitaxial growth of high-quality n-face gan, inn, and aln and their alloys by metal organic chemical vapor deposition
CN101111945B (en) Nitride semiconductor device and method of growing nitride semiconductor crystal layer
JP5378829B2 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor device
US20130087762A1 (en) Nitride semiconductor wafer, nitride semiconductor device, and method for growing nitride semiconductor crystal
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
JP4963763B2 (en) Semiconductor element
CN100524621C (en) Method for growing crystalline gallium nitride-based compound and semiconductor device comprising gallium nitride-based compound
JP2009238772A (en) Epitaxial substrate and method for manufacturing epitaxial substrate
US20150221502A1 (en) Epitaxial wafer and method for producing same
CN115295693A (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
US20150332914A1 (en) Semiconductor substrate, method of manufacturing semiconductor substrate, and semiconductor device
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP2012204540A (en) Semiconductor device and method of manufacturing the same
KR100935974B1 (en) Method of manufacturing nitride semiconductor light emitting device
US8253125B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2006100518A (en) Method for treating surface of substrate and method for manufacturing group iii nitride compound semiconductor light-emitting element
WO2020075849A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light-emitting element, and method for producing semiconductor element
JP4556034B2 (en) Method for manufacturing group III nitride semiconductor
CN105140360A (en) Nitride light-emitting diode and preparation method therefor
JP5376458B2 (en) Group III nitride semiconductor
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer
TWI545798B (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2007109713A (en) Group iii nitride semiconductor light emitting element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees