[go: up one dir, main page]

JP5368121B2 - Gas leak detection device - Google Patents

Gas leak detection device Download PDF

Info

Publication number
JP5368121B2
JP5368121B2 JP2009010714A JP2009010714A JP5368121B2 JP 5368121 B2 JP5368121 B2 JP 5368121B2 JP 2009010714 A JP2009010714 A JP 2009010714A JP 2009010714 A JP2009010714 A JP 2009010714A JP 5368121 B2 JP5368121 B2 JP 5368121B2
Authority
JP
Japan
Prior art keywords
gas
pressure
flow rate
regulator
appliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009010714A
Other languages
Japanese (ja)
Other versions
JP2010169461A (en
Inventor
和俊 大城
龍雄 藤本
正登 近藤
和弘 森村
清志 小田
洋 小野
敏 菅信
富功 山下
健 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2009010714A priority Critical patent/JP5368121B2/en
Publication of JP2010169461A publication Critical patent/JP2010169461A/en
Application granted granted Critical
Publication of JP5368121B2 publication Critical patent/JP5368121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly detect a fault of a device and gives a call to a processing center or the like, in regard to the system for detecting a minute leak of gas in a gas supply pipe 30. <P>SOLUTION: The gas is made to flow to a master-and-slave type differential pressure regulator 1 from a propane gas cylinder 10 through a main regulator 20. A master regulator 11 of the master-and-slave type differential regulator 1 supplies the gas to the apartment house 40 side from the gas supply pipe 30. A slave regulator 12 is connected to a bypass gas passage 2 continuous to the gas supply pipe 30, bypassing the master regulator 11. A microcomputer gas meter 3 is provided for the bypass gas passage 2. The gas pressure is sampled at a high speed by a pressure sensor of the microcomputer gas meter 3 so as to detect a state of the use of a gas appliance 50. A flow rate of the gas is detected by the flow sensor of the microcomputer gas meter 3. When the gas appliance 50 is in the state of the use and a flow rate can not be detected for a prescribed time, fault alarm processing is performed and the call is given to the processing center. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ガスボンベ等のガス供給源からガス燃焼機器等のガス消費源にガスを供給するガス供給設備に設けられ、埋設管等のガス供給管の微少漏洩を検知するガス漏洩検知装置に関する。   The present invention relates to a gas leakage detection device that is provided in a gas supply facility that supplies gas from a gas supply source such as a gas cylinder to a gas consumption source such as a gas combustion device and that detects a minute leak in a gas supply pipe such as an embedded pipe.

従来、この種の装置として、例えば特開平3−41300号公報(特許文献1)、特開平5−296873号公報(特許文献2)に開示されたものがある。これらのガス漏洩検知装置は、プロパンガスボンベから集合住宅等にガスを供給するガス供給管に、親調整器をバイパスするバイパス流路を設けるとともに、このバイパス流路に親調整器よりも調整圧力を高くした子調整器と、微少流量を検知する流量検知手段を有するマイコンメータを設けたものである。   Conventionally, as this type of apparatus, there are those disclosed in, for example, Japanese Patent Application Laid-Open No. 3-41300 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-296873 (Patent Document 2). These gas leak detection devices are provided with a bypass flow path that bypasses the parent regulator in a gas supply pipe that supplies gas from a propane gas cylinder to an apartment house and the like. A micrometer having a raised child regulator and a flow rate detecting means for detecting a minute flow rate is provided.

これらの構成は、夜間や深夜のガス消費がほとんどなくなるときに親調整器が閉となっても、子調整器を介してマイコンメータで微少流量を検出できるようにしたものである。そして、マイコンメータで微少流量を監視し、30日間連続して3リットル/時間以上の流量があるときにはガスの微少漏洩が生じていると判断してその旨をランプの点灯により表示するものである。   These configurations are designed so that a micro flow rate can be detected by a microcomputer meter via a slave regulator even when the parent regulator is closed when there is almost no gas consumption at night or at midnight. The minute flow rate is monitored by a microcomputer meter, and when there is a flow rate of 3 liters / hour or more for 30 consecutive days, it is judged that a slight gas leakage has occurred and this is indicated by lighting the lamp. .

特開平3−41300号公報JP-A-3-41300 特開平5−296873号公報JP-A-5-296873

前記従来のガス漏洩検知装置では、親調整器、子調整器及びマイコンメータが正常に機能していることを前提としてガスの微少漏洩を検知できる。この何れの機能が損なわれていても正確な検知を行うことができない。   In the conventional gas leak detection apparatus, it is possible to detect minute gas leaks on the assumption that the parent adjuster, the slave adjuster, and the microcomputer meter are functioning normally. Even if any of these functions is impaired, accurate detection cannot be performed.

例えば、子調整器が、その内部に異物が混入して故障したり、経年劣化で調整圧力が変化してしまうと、子調整器の出力部と、親調整器の出力部との差圧が一定圧力値(例えば50Pa)以上確保できなくなり、マイコンメータに流量が流れなくなり、配管に微少漏洩が発生していてもそれを検出することができなくなる。   For example, if the child adjuster breaks down due to foreign matter inside, or if the adjustment pressure changes due to deterioration over time, the differential pressure between the output of the child adjuster and the output of the parent adjuster A certain pressure value (for example, 50 Pa) or more cannot be secured, the flow rate does not flow to the microcomputer meter, and even if a slight leak occurs in the piping, it cannot be detected.

そこで、従来は定期点検を行うようにしているが、この定期点検は、子調整器の出力部と親調整器の出力部との差圧を測定し、一定圧力値以上の差圧があれば正常であるという判断をしていた。   Therefore, in the past, periodic inspections are performed, but this periodic inspection measures the differential pressure between the output of the child regulator and the output of the parent regulator, and if there is a differential pressure greater than a certain pressure value. It was judged that it was normal.

しかしながら、この定期点検作業は、作業員が現地へ訪問し、圧力計を設置して測定を行うという作業が必要であり、手間がかかっていた。また、定期点検にてマイコンメータに故障が発見された場合、それまでの期間、ガスの漏洩があった可能性もあり、ガス漏洩検知装置としての信頼性に疑問があった。   However, this regular inspection work required labor for the operator to visit the site, install a pressure gauge, and perform measurement. In addition, when a failure was discovered in the microcomputer meter during regular inspection, there was a possibility that gas had leaked during the period up to that point, and there was doubt about the reliability of the gas leak detection device.

本発明は、ガス漏洩検知装置において自己診断機能を持たせ、装置自体の異常を速やかにセンター等に通報できるようにすることを課題とする。   It is an object of the present invention to provide a gas leakage detection device with a self-diagnosis function so that an abnormality of the device itself can be quickly reported to a center or the like.

請求項1のガス漏洩検知装置は、ガス供給管に設けた親調整器をバイパスするバイパスガス流路に前記親調整器より調整圧力の高い子調整器と前記バイパスガス流路の流量を検知する流量検知手段とを設け、該流量検知手段によって所定期間継続して流量があることを検出して微少ガス漏洩を検知するようにしたガス漏洩検知装置において、前記バイパスガス流路の圧力を検出して圧力検出信号を出力する圧力検出手段と、前記圧力検出手段からの圧力検出信号のガス使用開始時の圧力振動波形の圧力振動周波数及び圧力振動振幅に基づいて、前記バイパスガス流路の下流側に接続されたガス器具の使用状態を判別する判別手段と、前記判別手段でガス器具の使用状態と判別され、かつ前記流量検知手段で流量が検出されないとき故障警報処理をする故障診断手段と、を備え、前記判別手段は、前記圧力検出手段で検出される圧力を高速サンプリングし、サンプリングした圧力データにより圧力振動波形の圧力振動周波数及び圧力振動振幅を分析し、10Hz以上の圧力振動周波数をもつ圧力振動波形が得られた場合と、圧力振動振幅がガス使用開始直前の圧力やガス使用量変化直前の圧力を0.015kPa以上越えている圧力振動波形が得られた場合は、ガバナ付きガス器具使用中と判別し、圧力振動周波数にかかわらず、圧力振動振幅が前記ガス使用開始直前の圧力や前記ガス使用量変化直前の圧力より0.015kPaを越えない圧力振動波形が得られた場合は、ガバナなしガス器具使用中と判別することを特徴とする。 The gas leakage detection device according to claim 1 detects the flow rate of the child regulator having a higher regulation pressure than the parent regulator and the flow rate of the bypass gas passage in the bypass gas passage bypassing the parent regulator provided in the gas supply pipe. And a flow rate detection means for detecting a minute gas leak by detecting the presence of a flow rate for a predetermined period of time by the flow rate detection means, and detecting the pressure of the bypass gas flow path. A pressure detection means for outputting a pressure detection signal and a downstream side of the bypass gas flow path based on a pressure vibration frequency and a pressure vibration amplitude of a pressure vibration waveform at the start of gas use of the pressure detection signal from the pressure detection means A determination means for determining a use state of the gas appliance connected to the gas appliance, and a failure alarm process when the determination means determines that the gas appliance is in use and the flow rate detection means does not detect the flow rate. And a fault diagnosis means for the said determination means, a pressure detected by said pressure detecting means and speed sampling, analyzing the pressure oscillation frequency and the pressure oscillation amplitude of the pressure vibration waveform by the pressure data sampled, 10 Hz When a pressure vibration waveform having the above pressure vibration frequency was obtained, and a pressure vibration waveform in which the pressure vibration amplitude exceeded the pressure immediately before the start of gas use or the pressure immediately before the change in the amount of gas used by 0.015 kPa or more. If determines that the governor with gas appliance in use, regardless of the pressure oscillation frequency, pressure oscillation pressure oscillation amplitude not exceeding 0.015kPa than pressure of the pressure and the gas consumption immediately before the change just before the start the gas used When a waveform is obtained, it is determined that the gas appliance without a governor is being used.

請求項2のガス漏洩検知装置は、請求項1に記載のガス漏洩検知装置であって、前記故障診断手段が、前記判別手段で前記ガス器具の使用状態と判別されてから所定時間経過後に、前記流量検知手段で流量が検出されているか否かを判別することを特徴とする。   The gas leakage detection device according to claim 2 is the gas leakage detection device according to claim 1, wherein the failure diagnosis unit is determined to be in use of the gas appliance by the determination unit after a predetermined time has elapsed. It is characterized by determining whether the flow rate is detected by the flow rate detection means.

ガス器具が使用されているのにガスの流量が検出できないということは、子調整器や流量検知手段が故障している可能性が高いが、請求項1のガス漏洩検知装置によれば、定期点検を待たずに、この故障を速やかに検出して故障警報処理により通報することができる。   The fact that the gas flow rate cannot be detected even though the gas appliance is used is highly likely that the slave regulator or the flow rate detection means is out of order. Without waiting for inspection, this failure can be detected quickly and reported by failure alarm processing.

請求項2のガス漏洩検知装置によれば、請求項1の効果に加えて、ガス器具の点火直後の流量の減衰振動の影響を受けずに正確に流量の判定を行うことができ、故障検出の検出精度が高まる。   According to the gas leak detection device of claim 2, in addition to the effect of claim 1, it is possible to accurately determine the flow rate without being affected by the damping vibration of the flow rate immediately after ignition of the gas appliance. The accuracy of detection increases.

本発明の一実施形態のガス漏洩検知装置の要部ブロック図である。It is a principal part block diagram of the gas leak detection apparatus of one Embodiment of this invention. 実施形態のガス漏洩検知装置を適用したガス供給システムの外観図である。1 is an external view of a gas supply system to which a gas leakage detection device of an embodiment is applied. 実施形態における制御部の制御プログラムの要部フローチャートである。It is a principal part flowchart of the control program of the control part in embodiment. 実施形態における制御部のタイマ割り込み処理のフローチャートである。It is a flowchart of the timer interruption process of the control part in embodiment. 実施形態に係るガバナ付きガス器具におけるガス使用開始時またはガス使用量変化時の圧力特性の一例を示す図である。It is a figure which shows an example of the pressure characteristic at the time of the gas use start in the gas appliance with a governor which concerns on embodiment, or a gas usage-amount change. 参考例における制御部の制御プログラムの要部フローチャートである。It is a principal part flowchart of the control program of the control part in a reference example .

次に、本発明の実施の形態を図面に基づいて説明する。図1は本発明の一実施形態のガス漏洩検知装置の要部ブロック図、図2は実施形態のガス漏洩検知装置を適用したガス供給システムの外観図である。この実施形態のガス漏洩検知装置は、ガス供給源であるプロパンガスボンベ10と、ガス消費源であるマンション等の集合住宅40との間に配設されている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a main part of a gas leak detection apparatus according to an embodiment of the present invention, and FIG. 2 is an external view of a gas supply system to which the gas leak detection apparatus according to the embodiment is applied. The gas leak detection apparatus of this embodiment is disposed between a propane gas cylinder 10 that is a gas supply source and an apartment house 40 such as an apartment that is a gas consumption source.

プロパンガスボンベ10には元調整器20を介して親子式差圧調整器1が接続されており、元調整器20はプロパンガスボンベ10のガスを所定の圧力にして親子式差圧調整器1に供給する。親子式差圧調整器1は親調整器11と子調整器12とからなり、元調整器20からのガスは親調整器11と子調整器12にそれぞれ供給される。親調整器11の出口11aは集合住宅40側にガスを供給するガス供給管30に接続されている。また、子調整器12の出口12aは、親調整器11をバイパスしてガス供給管30に導通するバイパスガス流路2に接続されている。そして、このバイパスガス流路2にマイコンガスメータ3が設けられている。   The propane gas cylinder 10 is connected to the parent-child differential pressure regulator 1 via the original regulator 20, and the original regulator 20 supplies the gas from the propane gas cylinder 10 to a predetermined pressure and supplies it to the parent-child differential pressure regulator 1. To do. The parent-child differential pressure regulator 1 includes a parent regulator 11 and a child regulator 12, and the gas from the original regulator 20 is supplied to the parent regulator 11 and the child regulator 12, respectively. The outlet 11a of the parent regulator 11 is connected to a gas supply pipe 30 that supplies gas to the apartment house 40 side. The outlet 12 a of the child adjuster 12 is connected to the bypass gas flow path 2 that bypasses the parent adjuster 11 and is connected to the gas supply pipe 30. A microcomputer gas meter 3 is provided in the bypass gas passage 2.

子調整器12の調整圧力は親調整器11の調整圧力より高く設定されている。例えば親調整器11の調整圧力が280mmH2 Oに設定されているときは、子調整器12の調整圧力は約300mmH2 Oに設定する。これにより、集合住宅40側で通常のガス消費があるときは、親調整器11及び子調整器12を介してガスが供給される。一方、夜間や深夜のガス消費がほとんどなくなるときにはガス供給管30の圧力が高くなって親調整器11が閉となり、子調整器12及びマイコンガスメータ3にのみガスが流れるようになる。これにより、バイパスガス流路2を通じて流れる微少なガス流量をマイコンガスメータ3により監視することができる。 The adjustment pressure of the child adjuster 12 is set higher than the adjustment pressure of the parent adjuster 11. For example, when the adjustment pressure of the parent adjuster 11 is set to 280 mmH 2 O, the adjustment pressure of the child adjuster 12 is set to about 300 mmH 2 O. As a result, when there is normal gas consumption on the apartment house 40 side, gas is supplied via the parent regulator 11 and the child regulator 12. On the other hand, when there is almost no gas consumption at night or in the middle of the night, the pressure of the gas supply pipe 30 is increased, the parent regulator 11 is closed, and gas flows only to the child regulator 12 and the microcomputer gas meter 3. Thereby, the micro gas flow rate which flows through the bypass gas flow path 2 can be monitored by the microcomputer gas meter 3.

図1に示すように、マイコンガスメータ3は、判別手段及び故障診断手段を構成する制御部31、流量検知手段としての流量センサ32、圧力検知手段としての圧力センサ33、EEPROM34、表示部35及び通信部36を含んで構成されている。制御部31は、CPU、ROM及びRAM等を有するマイコンで構成されており、CPUがROMに記憶されている制御プログラムを実行することにより、後述の処理を行う。   As shown in FIG. 1, the microcomputer gas meter 3 includes a control unit 31 that constitutes a determination unit and a failure diagnosis unit, a flow rate sensor 32 as a flow rate detection unit, a pressure sensor 33 as a pressure detection unit, an EEPROM 34, a display unit 35, and a communication. The unit 36 is configured to be included. The control unit 31 is configured by a microcomputer having a CPU, a ROM, a RAM, and the like, and performs processing described later when the CPU executes a control program stored in the ROM.

流量センサ32は、バイパスガス流路2を通過するガスの流量を検出するための検出素子であり、微少流量(例えば3リットル/時間程度)の流量を正確に積算できる。この流量センサ32でガスの流量を検出し、ガスが30日間ずっと連続して流れ続けている場合は、ガス供給管30のどこかにガスの微少漏洩があると判断し、その旨を表示部35で表示するとともに、通信部36によりセンターに対して発呼を行う。   The flow rate sensor 32 is a detection element for detecting the flow rate of the gas passing through the bypass gas flow path 2, and can accurately integrate a minute flow rate (for example, about 3 liters / hour). When the flow rate of the gas is detected by the flow rate sensor 32 and the gas continues to flow continuously for 30 days, it is determined that there is a slight leak of the gas somewhere in the gas supply pipe 30, and the display unit displays the fact. In addition, the communication unit 36 makes a call to the center.

また、圧力センサ33は周知の検出素子であり、この圧力センサ33は、子調整器12より下流側のバイパスガス流路2の内部圧力を検出する。この圧力センサ33でバイパスガス流路2の内部圧力を監視し、集合住宅40におけるガス器具50の使用状態を検出する。そして、この使用状態と流量センサ32で検知する流量に応じて自己診断を行い、故障と判断したときは、その旨を表示部35で表示するとともに、通信部36によりセンターに対して発呼を行う。   The pressure sensor 33 is a known detection element, and the pressure sensor 33 detects the internal pressure of the bypass gas flow path 2 on the downstream side of the child adjuster 12. The pressure sensor 33 monitors the internal pressure of the bypass gas flow path 2 and detects the usage state of the gas appliance 50 in the apartment house 40. Then, a self-diagnosis is performed in accordance with the use state and the flow rate detected by the flow sensor 32. When it is determined that there is a failure, the fact is displayed on the display unit 35 and a call is made to the center by the communication unit 36. Do.

ここで、最近のガス器具には、ガスグリル、ガス給湯器、ガス食器洗い乾燥機、ガスオーブン、ガスファンヒータ、ガス瞬間湯沸かし器、ガス床暖房、ガスヒートポンプ(GHP)等があるが、そのほとんどの器具に圧力調整手段としてのガバナが内蔵されており、器具ごとにガス圧力の調整を行っている。なお、ガスコンロ(ガステーブル)は、ガバナが内蔵されていないものが多い。   Here, recent gas appliances include a gas grill, a gas water heater, a gas dishwasher, a gas oven, a gas fan heater, a gas instantaneous water heater, a gas floor heater, a gas heat pump (GHP), etc. A governor as a pressure adjusting means is built in, and the gas pressure is adjusted for each instrument. Many gas stoves (gas tables) do not have a built-in governor.

図5はガバナ付きガス器具におけるガス使用開始時またはガス使用量変化時の圧力特性の一例を示す図である。ガバナは、その構造上、ガス流量変化時、すなわち、ガス使用開始時やガス使用量変化時に、瞬時ではあるがガスの調圧動作による圧力変動を引き起こす。これは、0.3〜1秒程度かかって収束する減衰振動である。この振動は、使用されているガバナ特有の特徴(圧力波形)を示す。したがって、圧力センサ33で圧力を高速サンプリングし、ガス使用開始時またはガス使用量変化時の圧力変動波形を基にして、ガス器具50が使用され始めたのを短時間で判定することが可能となる。   FIG. 5 is a diagram illustrating an example of pressure characteristics at the start of gas use or when the amount of gas used changes in a gas appliance with a governor. Due to its structure, the governor causes a pressure fluctuation due to a gas pressure regulating operation instantaneously when the gas flow rate changes, that is, when the gas usage starts or when the gas usage amount changes. This is a damped vibration that converges in about 0.3 to 1 second. This vibration shows the characteristic (pressure waveform) specific to the governor being used. Accordingly, it is possible to quickly sample the pressure with the pressure sensor 33, and to determine in a short time that the gas appliance 50 has started to be used based on the pressure fluctuation waveform at the start of gas use or when the gas usage changes. Become.

すなわち、サンプリングした圧力データにより圧力波形の圧力振動周波数及び圧力振動振幅を分析し、ガス器具使用かの判別を行う。例えば、10Hz以上の周波数をもつ圧力振動波形が得られれば、ガバナ付きガス器具使用中と判別できる。また、振動振幅がガス使用開始直前の圧力(すなわち、元圧)やガス使用量変化直前の圧力を所定の圧力値(0.015kPa)以上越えている圧力振動波形が得られれば、同様に、ガバナ付きガス器具使用中と判別できる。また、周波数にかかわらず、圧力振動振幅がガス使用開始直前の圧力(すなわち、元圧)やガス使用量変化直前の圧力程度に上昇している圧力振動波形が得られれば、同様に、ガバナなしガス器具使用中と判別できる。   That is, the pressure vibration frequency and pressure vibration amplitude of the pressure waveform are analyzed based on the sampled pressure data to determine whether the gas appliance is used. For example, if a pressure vibration waveform having a frequency of 10 Hz or more is obtained, it can be determined that the gas appliance with a governor is being used. Similarly, if a pressure vibration waveform is obtained in which the vibration amplitude exceeds the pressure immediately before the start of gas use (that is, the original pressure) or the pressure immediately before the gas use amount change more than a predetermined pressure value (0.015 kPa), It can be determined that the gas appliance with governor is in use. Similarly, if there is a pressure vibration waveform in which the pressure vibration amplitude rises to the pressure just before the start of gas use (ie, the original pressure) or the pressure just before the gas usage change, regardless of the frequency, there will be no governor. It can be determined that the gas appliance is in use.

図3は実施形態における制御部31(マイコン)の制御プログラムの要部フローチャート、図4は同制御部31のタイマ割り込み処理のフローチャートであり、同図に基づいて動作を説明する。なお、以下の説明で、微少漏洩判定の日数(期間)をカウントするためのカウンタを「微少漏洩カウンタ」とする。   FIG. 3 is a main part flowchart of a control program of the control unit 31 (microcomputer) in the embodiment, and FIG. 4 is a flowchart of timer interrupt processing of the control unit 31, and the operation will be described based on the same figure. In the following description, a counter for counting the number of days (period) for determination of microleakage is referred to as “microleakage counter”.

図4のタイマ割り込み処理では、ステップS21において1日が経過したか否かを判定し、この判定がYESのときにはステップS22に進み、NOのときには何もしないで元のルーチンに復帰する。ステップS22においては微少漏洩カウンタをカウントアップし、ステップS23で微少漏洩カウンタの内容が30に等しいか否かを判定する。判定がNOのときには元のルーチンに復帰し、判定がYESのときには、連続して30日の間、流量が0になることがなく微少漏洩が生じていると判断し、ステップS24で漏洩警報処理を行って元のルーチンに復帰する。   In the timer interrupt process of FIG. 4, it is determined whether or not one day has passed in step S21. If this determination is YES, the process proceeds to step S22. If NO, the process returns to the original routine without doing anything. In step S22, the minute leak counter is counted up, and in step S23, it is determined whether or not the content of the minute leak counter is equal to 30. When the determination is NO, the process returns to the original routine, and when the determination is YES, it is determined that a slight leak has occurred for 30 days without the flow rate becoming zero, and a leakage alarm process is performed in step S24. To return to the original routine.

図3の処理では、まず、ステップS1で、圧力センサ33により圧力を計測するとともに、流量センサ32で流量の計測を行う。次に、ステップS2で流量が0であるかを判定し、流量が0であれば微少漏洩カウンタをクリアしてステップS4に進み、流量が0でなければそのままステップS13に進む。この処理は、流量がない場合には微少漏洩もないことになるのでその場合に常に微少漏洩カウンタをクリアする処理である。   In the process of FIG. 3, first, in step S <b> 1, the pressure is measured by the pressure sensor 33 and the flow rate is measured by the flow rate sensor 32. Next, in step S2, it is determined whether the flow rate is 0. If the flow rate is 0, the minute leak counter is cleared and the process proceeds to step S4. If the flow rate is not 0, the process proceeds to step S13. This process is a process that always clears the micro-leakage counter because there is no micro-leakage when there is no flow rate.

ステップS4では、計測した圧力が判別のために予め設定された計測開始圧力値より小さくなったか否かを判定する。圧力が計測開始圧力値より小さくなっていなければ、ステップS13に進み、小さくなっていれば、ガス使用が開始されたかまたはガス使用量が変化したことになるので、ステップS5で、所定データ数だけ圧力を高速サンプリングする。この所定データ数は、ガス使用開始時またはガス使用量変化時の圧力振動波形の周波数分析及び振幅分析に必要なデータ数が集まるように設定される。   In step S4, it is determined whether or not the measured pressure has become smaller than a measurement start pressure value set in advance for determination. If the pressure is not smaller than the measurement start pressure value, the process proceeds to step S13. If the pressure is smaller, the gas usage has started or the gas usage has changed. High speed sampling of pressure. The predetermined number of data is set so that the number of data necessary for the frequency analysis and the amplitude analysis of the pressure vibration waveform at the start of gas use or when the gas use amount changes is collected.

次に、ステップS6で、サンプリングした圧力のデータに基づいて周波数分析及び振幅分析を行って、集合住宅40におけるガス器具50の使用状態を判定する。そして、ステップS7でガス器具50の使用状態を記憶し、ステップS8に進む。なお、集合住宅40では、多くの世帯の住人がガス給湯器、ガスコンロ、ガスストーブ等の点火/消火を繰り返している。しかし、どの部屋の住人がどのガス器具を点火したかなど、詳細な判別は行う必要がなく、ガス器具50が点火されたという使用状態を把握すればよい。   Next, in step S6, frequency analysis and amplitude analysis are performed based on the sampled pressure data to determine the usage state of the gas appliance 50 in the apartment house 40. And the use condition of the gas appliance 50 is memorize | stored by step S7, and it progresses to step S8. In the housing complex 40, residents of many households repeat ignition / extinguishing of gas water heaters, gas stoves, gas stoves, and the like. However, it is not necessary to make a detailed determination, such as which resident in which room the gas appliance has ignited, and it is only necessary to grasp the use state in which the gas appliance 50 is lit.

ステップS8では、ガス器具50が使用中の状態であるかを判定する。使用中でなければステップS13に進み、使用中であればステップS9でガス使用開始あるいはガス使用量変化時から所定の遅延時間が経過するのを監視する。この遅延時間を設ける理由は、ガス器具50が点火した直後は圧力、流量ともに減衰振動波形が生じるので、この減衰振動が消滅してから流量を計測しないと、誤計測をしてしまう可能性があるからである。遅延時間が経過すると、ステップS10で流量センサ32により一定時間(例えば2〜3分間)、流量を監視する。そして、ステップS11で、流量=0の状態が一定時間継続したか否かを判定し、一定時間継続しなければステップS13に進み、一定時間継続したらステップS12で故障警報処理を行い、ステップS13に進む。この故障警報処理としては、通信部36によりセンター等に発呼する処理を行う。ステップS13では圧力異常監視などその他の処理を行い、ステップS1に戻る。   In step S8, it is determined whether the gas appliance 50 is in use. If it is not in use, the process proceeds to step S13, and if it is in use, in step S9, it is monitored whether a predetermined delay time has elapsed since the start of gas use or the change in gas use amount. The reason for providing this delay time is that immediately after the gas appliance 50 is ignited, a damped vibration waveform is generated for both pressure and flow rate. Because there is. When the delay time elapses, the flow rate is monitored by the flow rate sensor 32 for a predetermined time (for example, 2 to 3 minutes) in step S10. Then, in step S11, it is determined whether or not the state where the flow rate = 0 continues for a certain period of time. If it does not continue for a certain period of time, the process proceeds to step S13. move on. As the failure alarm process, a process of calling the center or the like by the communication unit 36 is performed. In step S13, other processes such as pressure abnormality monitoring are performed, and the process returns to step S1.

以上のように、ガス器具が使用状態であるのに流量が0である場合、すなわち流量が検出できないときには、流量センサ32や子調整器12で何らかの故障が発生していると判断でき、この故障を速やかに通報することができる。   As described above, when the flow rate is 0 even when the gas appliance is in use, that is, when the flow rate cannot be detected, it can be determined that some failure has occurred in the flow rate sensor 32 or the slave adjuster 12, and this failure has occurred. Can be promptly reported.

図6は参考例における制御部31(マイコン)の制御プログラムの要部フローチャートである。なお、この参考例でも微少漏洩の検出及び漏洩警報のために図4の割り込み処理を行う。この参考例では圧力センサ33検出される圧力の変化によりガス器具50の使用状態を判断し、使用状態と見なされて、かつ流量が検出できないとき故障警報を行う。 FIG. 6 is a main part flowchart of a control program of the control unit 31 (microcomputer) in the reference example . In this reference example , the interruption process shown in FIG. 4 is performed for detection of a minute leak and a leak alarm. In this reference example , the usage state of the gas appliance 50 is determined based on a change in pressure detected by the pressure sensor 33, and a failure alarm is given when the gas appliance 50 is regarded as being in use and the flow rate cannot be detected.

まず、ステップS31で、圧力センサ33により圧力を計測するとともに、流量センサ32で流量の計測を行う。次に、ステップS32で流量が0であるかを判定し、流量が0であれば微少漏洩カウンタをクリアしてステップS34に進み、流量が0でなければそのままステップS40に進む。この処理は、流量がない場合には微少漏洩もないことになるのでその場合に常に微少漏洩カウンタをクリアする処理である。   First, in step S <b> 31, the pressure is measured by the pressure sensor 33 and the flow rate is measured by the flow rate sensor 32. Next, in step S32, it is determined whether the flow rate is 0. If the flow rate is 0, the minute leak counter is cleared and the process proceeds to step S34. If the flow rate is not 0, the process proceeds to step S40. This process is a process that always clears the micro-leakage counter because there is no micro-leakage when there is no flow rate.

ステップS34では、計測した圧力P0 を記憶し、ステップS35,S36で一定時間の間に圧力がP0 から所定値(例えば、0.05kPa)以上急激に低下するのを監視する。なお、この一定時間の監視中に低下がなくても、実質的にはステップS31〜S36,S40が繰り返される。圧力がP0から所定値以上急激に低下したら、ステップS37で流量センサ32により一定時間(例えば2〜3分間)、流量を監視する。そして、ステップS38で流量=0であるか否かを判定し、流量=0でなければ(流量があれば)ステップS40に進み、流量=0であれば(流量がなければ)ステップS25で故障警報処理を行い、ステップS40に進む。この故障警報処理としては、通信部36によりセンター等に発呼する処理を行う。ステップS40では圧力異常監視などその他の処理を行い、ステップS31に戻る。 In step S34, it stores the pressure P 0 measured, predetermined value the pressure from P 0 during the predetermined time at step S35, S36 (e.g., 0.05 kPa) for monitoring a decrease or rapidly. Note that steps S31 to S36 and S40 are substantially repeated even if there is no decrease during the monitoring for a certain period of time. If the pressure rapidly decreases from P 0 by a predetermined value or more, the flow rate is monitored by the flow rate sensor 32 for a certain time (for example, 2 to 3 minutes) in step S37. In step S38, it is determined whether or not the flow rate is 0. If the flow rate is not 0 (if there is a flow rate), the process proceeds to step S40. If the flow rate is 0 (if there is no flow rate), a failure occurs in step S25. An alarm process is performed, and the process proceeds to step S40. As the failure alarm process, a process of calling the center or the like by the communication unit 36 is performed. In step S40, other processes such as pressure abnormality monitoring are performed, and the process returns to step S31.


集合住宅において、例えば深夜すべての住人がガスを全く使用していないとき、流量は0で、閉塞状態となり、バイパスガス流路2(圧力センサ33)のガス圧力は、例えば、3.10kPaとなる。ガス給湯器やガスコンロ等1台が使用されると、バイパスガス流路2のガス圧力は、例えば、3.00kPaとなり、0.10kPa程度低下する。

In an apartment house, for example, when all the residents in the middle of the night are not using any gas, the flow rate is 0 and the block is closed, and the gas pressure in the bypass gas passage 2 (pressure sensor 33) is, for example, 3.10 kPa. . When one unit such as a gas water heater or a gas stove is used, the gas pressure in the bypass gas passage 2 is, for example, 3.00 kPa, which is reduced by about 0.10 kPa.

また、子調整器12が正常な場合、圧力が急激に所定値(例えば、0.05kPa)以上低下すれば、流量は少なくともガス器具1台分以上は検出されるはずであり、流量=0とはならない。一方、子調整器12が経年劣化してくると、この子調整器12における差圧が徐々に小さくなり、例えばコンロで弱火程度の流量があっても、流量が検出できなくなる。したがって、上記の処理によりこのような子調整器12の故障を検出することができる。   Further, when the child adjuster 12 is normal, if the pressure suddenly drops by a predetermined value (for example, 0.05 kPa) or more, the flow rate should be detected at least for one gas appliance, and the flow rate = 0. Must not. On the other hand, when the child adjuster 12 deteriorates over time, the differential pressure in the child adjuster 12 gradually decreases. For example, even if there is a flow rate on the stove with low heat, the flow rate cannot be detected. Therefore, such a failure of the child adjuster 12 can be detected by the above processing.

1 親子式差圧調整器
11 親調整器
12 子調整器
2 バイパスガス流路
3 マイコンガスメータ
31 制御部(判別手段及び故障診断手段)
32 流量センサ(流量検知手段)
33 圧力センサ(圧力検知手段)
34 EEPROM
35 表示部
36 通信部
10 プロパンガスボンベ
20 元調整器
30 ガス供給管
40 集合住宅
50 ガス器具
DESCRIPTION OF SYMBOLS 1 Parent-child type differential pressure regulator 11 Parent regulator 12 Child regulator 2 Bypass gas flow path 3 Microcomputer gas meter 31 Control part (discriminating means and failure diagnosis means)
32 Flow rate sensor (flow rate detection means)
33 Pressure sensor (pressure detection means)
34 EEPROM
35 Display unit 36 Communication unit 10 Propane gas cylinder 20 Original regulator 30 Gas supply pipe 40 Apartment house 50 Gas appliance

Claims (2)

ガス供給管に設けた親調整器をバイパスするバイパスガス流路に前記親調整器より調整圧力の高い子調整器と前記バイパスガス流路の流量を検知する流量検知手段とを設け、該流量検知手段によって所定期間継続して流量があることを検出して微少ガス漏洩を検知するようにしたガス漏洩検知装置において、
前記バイパスガス流路の圧力を検出して圧力検出信号を出力する圧力検出手段と、
前記圧力検出手段からの圧力検出信号のガス使用開始時の圧力振動波形の圧力振動周波数及び圧力振動振幅に基づいて、前記バイパスガス流路の下流側に接続されたガス器具の使用状態を判別する判別手段と、
前記判別手段でガス器具の使用状態と判別され、かつ前記流量検知手段で流量が検出されないとき故障警報処理をする故障診断手段と、
を備え、
前記判別手段は、前記圧力検出手段で検出される圧力を高速サンプリングし、サンプリングした圧力データにより圧力振動波形の圧力振動周波数及び圧力振動振幅を分析し、
10Hz以上の圧力振動周波数をもつ圧力振動波形が得られた場合と、圧力振動振幅がガス使用開始直前の圧力やガス使用量変化直前の圧力を0.015kPa以上越えている圧力振動波形が得られた場合は、ガバナ付きガス器具使用中と判別し、
圧力振動周波数にかかわらず、圧力振動振幅が前記ガス使用開始直前の圧力や前記ガス使用量変化直前の圧力より0.015kPaを越えない圧力振動波形が得られた場合は、ガバナなしガス器具使用中と判別する
ことを特徴とするガス漏洩検知装置。
A bypass gas passage bypassing the parent regulator provided in the gas supply pipe is provided with a child regulator having a higher regulation pressure than the parent regulator and a flow rate detecting means for sensing the flow rate of the bypass gas passage, and the flow rate detection In the gas leak detection device that detects a minute gas leak by detecting that there is a flow rate for a predetermined period by means,
Pressure detecting means for detecting the pressure of the bypass gas flow path and outputting a pressure detection signal;
Based on the pressure vibration frequency and the pressure vibration amplitude of the pressure vibration waveform at the start of gas use of the pressure detection signal from the pressure detection means, the use state of the gas appliance connected to the downstream side of the bypass gas flow path is determined. Discrimination means;
A failure diagnosis means for performing a failure alarm process when it is determined that the gas appliance is in use by the determination means and no flow rate is detected by the flow rate detection means;
With
The discrimination means samples the pressure detected by the pressure detection means at a high speed, analyzes the pressure vibration frequency and pressure vibration amplitude of the pressure vibration waveform based on the sampled pressure data,
When a pressure vibration waveform having a pressure vibration frequency of 10 Hz or more is obtained, and a pressure vibration waveform in which the pressure vibration amplitude exceeds 0.015 kPa or more than the pressure immediately before the start of gas use or the pressure immediately before the change of gas usage is obtained. If it is determined that the gas appliance with governor is in use,
Regardless pressure oscillation frequency, if the pressure vibration waveform whose pressure oscillation amplitude not exceeding 0.015kPa than pressure of the pressure and the gas consumption immediately before the change just before the start the gas used was obtained, no governor gas appliance used A gas leak detection device characterized by being determined as being inside.
前記故障診断手段が、前記判別手段で前記ガス器具の使用状態と判別されてから所定時間経過後に、前記流量検知手段で流量が検出されているか否かを判別することを特徴とする請求項1に記載のガス漏洩検知装置。   2. The failure diagnosis unit determines whether or not a flow rate is detected by the flow rate detection unit after a predetermined time has elapsed after the determination unit determines that the gas appliance is in use. The gas leak detection device described in 1.
JP2009010714A 2009-01-21 2009-01-21 Gas leak detection device Expired - Fee Related JP5368121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010714A JP5368121B2 (en) 2009-01-21 2009-01-21 Gas leak detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010714A JP5368121B2 (en) 2009-01-21 2009-01-21 Gas leak detection device

Publications (2)

Publication Number Publication Date
JP2010169461A JP2010169461A (en) 2010-08-05
JP5368121B2 true JP5368121B2 (en) 2013-12-18

Family

ID=42701764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010714A Expired - Fee Related JP5368121B2 (en) 2009-01-21 2009-01-21 Gas leak detection device

Country Status (1)

Country Link
JP (1) JP5368121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20130085A1 (en) * 2013-06-07 2014-12-08 Ermanno Bianchi APPARATUS AND METHOD TO DETECT AND QUANTIFY LOSSES OF FLUIDS IN DOMESTIC OR INDUSTRIAL PLANTS
CN103500481B (en) * 2013-10-09 2015-11-25 杨启梁 Intelligent control gas meter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109210B2 (en) * 1992-01-27 2000-11-13 松下電器産業株式会社 Ignition flow rate detector
JP2927773B2 (en) * 1993-02-26 1999-07-28 矢崎総業株式会社 Gas leak detection device
JP3475509B2 (en) * 1994-08-31 2003-12-08 松下電器産業株式会社 Gas shut-off device
JP3334373B2 (en) * 1994-10-26 2002-10-15 松下電器産業株式会社 Gas shut-off device
JP3476966B2 (en) * 1995-06-19 2003-12-10 東邦瓦斯株式会社 Gas flow meter
JP2000065672A (en) * 1998-08-26 2000-03-03 Yazaki Corp Apparatus for detecting gas leak
JP2001041793A (en) * 1999-08-02 2001-02-16 Yazaki Corp Self-diagnostic device of gas meter

Also Published As

Publication number Publication date
JP2010169461A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
CN102007343B (en) Gas shut-off device and alarm-compatible system meter
JP5294388B2 (en) Flow measuring device
JP4770507B2 (en) Fluid safety device
CN101779104B (en) Flow rate metering device, flow rate measuring system, and flow rate measuring method
JP5368121B2 (en) Gas leak detection device
CN109595464A (en) Gas leakage detection system
WO2009110214A1 (en) Flow measuring device
JP5428518B2 (en) Gas shut-off device
JP5108275B2 (en) Gas appliance discrimination device and discrimination method
JP5213225B2 (en) Flow rate measuring device, flow rate measuring system, and flow rate measuring method
JP3117837B2 (en) Gas leak detection method
JP4956392B2 (en) Gas leak detection system
JP5563202B2 (en) Gas leak detection device and method, and controller for gas leak detection device
JP5074791B2 (en) Gas leak detection device
JP2008134124A (en) Gas shut-off device
JPH08201128A (en) Gas leak inspection system
JP2009085692A (en) Flow rate measuring device and gas supply system using this device
JP5213221B2 (en) Flow rate measuring device, communication system, flow rate measuring method, flow rate measuring program, and fluid supply system
JP5259297B2 (en) Gas shut-off device
JP2010139360A (en) Gas supply security apparatus and gas meter
JP5213220B2 (en) Flow rate measuring device, communication system, flow rate measuring method, flow rate measuring program, and fluid supply system
JP2003130705A (en) Measurement equipment control device
JP2002090200A (en) Gas metering device
JP5169846B2 (en) Flow rate measuring device and flow rate measuring system using the same
JP2001281037A (en) Gas meter, gas consuming equipment and gas leak detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5368121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees