[go: up one dir, main page]

JP5365005B2 - Neutral and cleavable resin for nucleic acid synthesis - Google Patents

Neutral and cleavable resin for nucleic acid synthesis Download PDF

Info

Publication number
JP5365005B2
JP5365005B2 JP2008008384A JP2008008384A JP5365005B2 JP 5365005 B2 JP5365005 B2 JP 5365005B2 JP 2008008384 A JP2008008384 A JP 2008008384A JP 2008008384 A JP2008008384 A JP 2008008384A JP 5365005 B2 JP5365005 B2 JP 5365005B2
Authority
JP
Japan
Prior art keywords
nucleic acid
resin
linker
coo
acid synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008008384A
Other languages
Japanese (ja)
Other versions
JP2009165422A (en
Inventor
健志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008008384A priority Critical patent/JP5365005B2/en
Publication of JP2009165422A publication Critical patent/JP2009165422A/en
Application granted granted Critical
Publication of JP5365005B2 publication Critical patent/JP5365005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Description

本発明は、DNA,RNAを含む核酸の固相合成に関する。   The present invention relates to solid phase synthesis of nucleic acids including DNA and RNA.

核酸固相(自動)合成は、20年以上も前から行われており、自動合成装置もその時点で販売されていた。現在でも、アンチセンスDNA、siRNAおよび核酸の蛍光ラベル等の修飾のためマイルドな条件で核酸を得ることができる核酸原料(アミダイドおよびレジン)の改良が行われている。   Nucleic acid solid phase (automated) synthesis has been performed for over 20 years, and automatic synthesizers were also on sale at that time. Even now, nucleic acid raw materials (amidides and resins) that can obtain nucleic acids under mild conditions for modification of antisense DNA, siRNA, and fluorescent labels of nucleic acids are being improved.

従来のリンカーは、使用される核酸の種類によっては分解等を起こすため、好ましくないことが多かった。この問題を緩和できる固相レジンから核酸を回収可能なリンカーとしては、図1に示された構造が既に報告されている(たとえば非特許文献1参照)。しかしながら、この場合には、あらかじめPdによるアリルカルバメート基の脱保護が必要であり、実用には向かなかった。なお、本明細書において、CPGとはレジン(具体的にはControlled Pore Glass)を意味している。
Nucleic Acids Research,1996年,第24巻,p.2793
Conventional linkers are often undesirable because they cause degradation or the like depending on the type of nucleic acid used. As a linker capable of recovering a nucleic acid from a solid phase resin capable of alleviating this problem, the structure shown in FIG. 1 has already been reported (for example, see Non-Patent Document 1). However, in this case, deprotection of the allyl carbamate group with Pd is necessary in advance, which is not suitable for practical use. In the present specification, CPG means a resin (specifically, Controlled Pore Glass).
Nucleic Acids Research, 1996, 24, p. 2793

本発明は、新規なリンカーを使用した核酸合成用レジンを提供することを目的としている。本発明のさらに他の目的および利点は、以下の説明から明らかになるであろう。なお、この場合の核酸には、天然品も合成品も含まれ、更に、天然品や合成品を修飾したものも含まれる。   An object of the present invention is to provide a resin for nucleic acid synthesis using a novel linker. Still other objects and advantages of the present invention will become apparent from the following description. The nucleic acid in this case includes natural products and synthetic products, and further includes natural products and modified products.

本発明の一態様によれば、リンカーを介して核酸がレジンに結合している核酸合成用レジンであって、当該リンカーが中性条件で切断可能である、核酸合成用レジンが提供される。   According to one embodiment of the present invention, there is provided a resin for nucleic acid synthesis in which a nucleic acid is bound to a resin via a linker, and the linker can be cleaved under neutral conditions.

本発明態様により、核酸の分解等を起こさないまたは分解等を起こすことの少ない条件で切断できるリンカーを使用した核酸合成用レジンが得られる。   According to the embodiment of the present invention, a resin for nucleic acid synthesis using a linker that can be cleaved under conditions that do not cause degradation of nucleic acids or cause degradation or the like is obtained.

リンカーの構造としては、−S−S−(CH−COO−結合を有し、そのCOO−側に核酸が結合していることが好ましい。S−S結合が容易に切断でき、環化によって、COO−側結合した核酸を離脱させることができる利点を有する。 The linker structure preferably has a —SS— (CH 2 ) n —COO— bond, and a nucleic acid is preferably bound to the COO— side. The S—S bond can be easily cleaved and the COO-side bonded nucleic acid can be released by cyclization.

別の言い方をすれば、核酸とレジンとに結合したリンカーの構造によらず、リンカーの切断後の構造として、HS−(CH−COO−結合を有し、そのCOO−側に核酸が結合している中間体を生じるものが好ましいと言える。 In other words, regardless of the structure of the linker bonded to the nucleic acid and the resin, the structure after cleavage of the linker has an HS— (CH 2 ) n —COO— bond, and the nucleic acid is present on the COO− side. It can be said that the thing which produces the intermediate body which has couple | bonded is preferable.

なお、これらの構造のリンカーを有する核酸合成用レジンはこれまで知られていない。   In addition, a nucleic acid synthesis resin having a linker having such a structure has not been known so far.

リンカーの切断には、ジチオスレイトールまたはTCEP{トリス(2−カルボキシエチル)フォスフィン}等の還元剤を使用することが好ましい。これらの還元剤を用いると中性条件で還元を行うことができる。   For the cleavage of the linker, it is preferable to use a reducing agent such as dithiothreitol or TCEP {Tris (2-carboxyethyl) phosphine}. When these reducing agents are used, the reduction can be performed under neutral conditions.

本発明により、新規なリンカーを使用した核酸合成用レジンが得られる。また、核酸の分解等を起こさないまたは分解等を起こすことの少ない条件で切断できるリンカーを使用した核酸合成用レジンが得られる。   According to the present invention, a resin for nucleic acid synthesis using a novel linker can be obtained. In addition, a resin for nucleic acid synthesis using a linker that can be cleaved under conditions that do not cause degradation of nucleic acids or cause little degradation or the like can be obtained.

以下に、本発明の実施の形態を図、式、実施例等を使用して説明する。なお、これらの図、式、実施例等及び説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, formulas, examples and the like. In addition, these figures, formulas, examples, etc., and explanations illustrate the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

下記に示す新規なリンカーを介して核酸がレジンに結合している核酸合成用レジンが開発された。このレジンは、中性条件でリンカーを切断することができる。
中性条件で切断可能なリンカーはこれまで知られていない。
A resin for nucleic acid synthesis in which a nucleic acid is bonded to the resin through a novel linker shown below has been developed. This resin can cleave the linker under neutral conditions.
No linker is known so far that is cleavable under neutral conditions.

この「中性条件で切断可能なリンカー」を介して核酸がレジンに結合している核酸合成用レジンでは、たとえば修飾DNAのように塩基性や酸性に弱い核酸であっても、分解等を起こさず、または分解等を起こすことが少ない。このため、自動合成が可能になる。なお、この場合の「中性条件」とは、単にpH7.0を指す意味で使用されているにとどまるわけではなく、使用される核酸の塩基性や酸性の程度に応じて幅を持たせて考えることができる。たとえばpH6.0〜8.0の範囲にあってもよい。   A nucleic acid synthesis resin in which a nucleic acid is bound to the resin via this “linker that can be cleaved under neutral conditions” causes degradation or the like even if the nucleic acid is weak in basicity or acidity, such as modified DNA. Is less likely to occur or decompose. For this reason, automatic composition becomes possible. In this case, the “neutral conditions” are not limited to merely indicating a pH of 7.0, but may vary depending on the basicity or acidity of the nucleic acid used. Can think. For example, it may be in the range of pH 6.0 to 8.0.

上記において、リンカーが結合するレジンや核酸の種類には特に制限はなく、公知の物から適宜選択することができる。酸性や塩基性で分解しやすい核酸について使用することが好ましいのは上記の通りである。   In the above, there is no restriction | limiting in particular in the kind of resin and nucleic acid which a linker couple | bonds, It can select suitably from a well-known thing. As described above, it is preferable to use a nucleic acid that is acidic or basic and easily decomposes.

開発された新規なリンカーは、−S−S−(CH−COO−結合を有することが特徴である(ここで、nは3または4である)。COO−側に核酸が結合する。したがって、−S−S側にレジンが結合する。 The new linker that has been developed is characterized by having a —SS— (CH 2 ) n —COO— linkage, where n is 3 or 4. Nucleic acids bind to the COO- side. Therefore, the resin binds to the -SS side.

リンカーと核酸との結合の様式には、上記以外には特に制限はなく、公知の結合を利用できる。最も容易なのは核酸の水酸基と核酸とリンカー前駆体(すなわち、核酸と結合する前のリンカー)のCOOH基との反応による結合である。   There is no particular limitation on the mode of binding between the linker and the nucleic acid other than those described above, and known binding can be used. The easiest is the binding by the reaction between the hydroxyl group of the nucleic acid, the nucleic acid and the COOH group of the linker precursor (ie, the linker before binding to the nucleic acid).

リンカーとレジンとの結合の様式にも、上記以外には特に制限はなく、公知の結合を利用できる。合成の都合により、リンカーの−S−S結合に、更に、メチレン基、アミノ基、エステル結合等を配し、その末端でレジンとエステル結合で結合する様式を例示することができる。   There is no particular limitation on the mode of bonding between the linker and the resin, other than the above, and a known bond can be used. For the convenience of synthesis, a mode in which a methylene group, an amino group, an ester bond and the like are further arranged on the —S—S bond of the linker, and the resin and the ester bond are bonded at the terminal can be exemplified.

リンカーが−S−S−(CH−COO−結合を有し、そのCOO−側に核酸が結合している核酸合成用レジン(ここで、nは3または4である)を用いると、リンカーの切断による、核酸を含む部分のレジンからの脱離は、S−S間の結合の開裂によって生じるものと思われる。この開裂には、どのような手段を使用してもよいが、還元剤を使用し得、好ましい。この開裂は、中性条件以外の塩基性条件または酸性条件で使用されるものであってもよいが、中性条件で切断できれば、「中性条件でリンカーを切断する」条件が充足される。したがって、たとえば修飾DNAのように塩基性や酸性に弱い核酸であっても、分解等を起こさず、または分解等を起こすことが少なくなる。 When using a nucleic acid synthesis resin (where n is 3 or 4) in which the linker has a —S—S— (CH 2 ) n —COO— bond, and a nucleic acid is bound to the COO— side. The elimination of the moiety containing the nucleic acid from the resin due to the cleavage of the linker is considered to be caused by the cleavage of the bond between SS. Any means may be used for this cleavage, but a reducing agent can be used, which is preferable. This cleavage may be used under basic conditions or acidic conditions other than neutral conditions, but if it can be cleaved under neutral conditions, the condition “cleave the linker under neutral conditions” is satisfied. Therefore, even a nucleic acid that is weak in basicity or acidity, such as modified DNA, does not cause degradation or the like, and is less likely to cause degradation.

このS−S間の結合の開裂によって、HS−(CH−COO−結合を有し、そのCOO−側に核酸が結合している中間体が得られることが、中間体とマレインイミドとの反応で、HSのSがマレインイミドと結合した安定な物質を得ることで確認された。このことから、上記の新規な核酸合成用レジンを、リンカーが切断された場合に、HS−(CH−COO−結合を有し、そのCOO−側に核酸が結合している中間体を生じる核酸合成用レジン(ここで、nは3または4である)として把握することも可能である。この場合にも、中性条件で切断可能である。中性条件で切断すれば、たとえば修飾DNAのように塩基性や酸性に弱い核酸であっても、分解等を起こさず、または分解等を起こすことが少なくなる。 It is possible to obtain an intermediate having an HS— (CH 2 ) n —COO— bond and a nucleic acid bonded to the COO— side by cleavage of the bond between S—S. It was confirmed by obtaining a stable substance in which S of HS was bonded to maleimide by the reaction with. From this, the above-mentioned novel resin for nucleic acid synthesis has an HS— (CH 2 ) n —COO— bond when the linker is cleaved, and an intermediate in which the nucleic acid is bound to the COO− side. It is also possible to grasp as a resin for nucleic acid synthesis that yields (where n is 3 or 4). Also in this case, cutting is possible under neutral conditions. If the nucleic acid is cleaved under neutral conditions, even a nucleic acid that is weak in basicity or acidity, such as modified DNA, will not cause degradation or decrease.

得られた、HS−(CH−COO−結合を有し、そのCOO−側に核酸が結合している中間体が環化する際に核酸が切り離されると考えられる。nが3または4であるのは、五員環または六員環が構造として安定であるからである。nが3のものとnが4のものが混在してもよい場合がある。 It is considered that the nucleic acid is cleaved when the obtained intermediate having an HS— (CH 2 ) n —COO— bond and having the nucleic acid bonded to the COO— side cyclizes. n is 3 or 4 because a 5-membered or 6-membered ring is stable as a structure. There may be a case where n is 3 and n is 4.

COO結合が、核酸の水酸基と直接結合している場合には、開発されたリンカーは、デオキシリボ核酸またはリボ核酸の3’水酸基が、4−メルカプト酪酸または5−メルカプト吉草酸とエステル結合によりつながれた中間体を経由して切断されることになる。このような核酸合成用レジンを用いると、末端にメルカプト基を有する酪酸結合部分または吉草酸結合部分が環化する際に核酸が切り離されると考えられる。   In the case where the COO bond is directly linked to the hydroxyl group of the nucleic acid, the developed linker was linked to the 3 'hydroxyl group of deoxyribonucleic acid or ribonucleic acid by an ester bond with 4-mercaptobutyric acid or 5-mercaptovaleric acid. It will be cleaved via an intermediate. When such a resin for nucleic acid synthesis is used, the nucleic acid is considered to be cleaved when the butyric acid binding moiety or valeric acid binding moiety having a mercapto group at the terminal cyclizes.

なお、いずれの場合においても、COO−の右端の「O」は、リンカーの一部であると考えても核酸の一部と考えてもよい。なお、一般的にはCOO−の右端の「O」は核酸の一部と考えられている。   In any case, “O” at the right end of COO— may be considered as a part of the linker or a part of the nucleic acid. In general, “O” at the right end of COO− is considered to be a part of nucleic acid.

使用される還元剤は、公知のものから適宜選択できる、具体的には、DTT(ジチオスレイトール)またはTCEP{トリス(2−カルボキシエチル)フォスフィン}が好ましい。いずれも中性条件で還元を行うことができる。   The reducing agent used can be appropriately selected from known ones, and specifically, DTT (dithiothreitol) or TCEP {tris (2-carboxyethyl) phosphine} is preferable. In any case, the reduction can be performed under neutral conditions.

次に上記諸態様の実施例及び比較例を詳述する。   Next, examples and comparative examples of the above aspects will be described in detail.

[実施例1]
図2に示す経路で、中性条件で切断可能なリンカーを介して核酸がレジンに結合している核酸合成用レジンを合成した。
[Example 1]
In the route shown in FIG. 2, a nucleic acid synthesis resin in which a nucleic acid is bonded to the resin via a linker that can be cleaved under neutral conditions was synthesized.

(1)式(1)で表される化合物〜式(4)で表される化合物までの合成
3,3’−ジチオジ酪酸4.77g(20mmol)を100mLの脱水ジクロロメタンに懸濁し、2塩化オキサリル5.14mLおよびジメチルフォルムアミド62μLを加え室温で2時間撹拌した。本溶液を減圧濃縮した後、残渣に脱水トルエンを加え減圧濃縮した。
(1) Synthesis from compound represented by formula (1) to compound represented by formula (4) 4.77 g (20 mmol) of 3,3′-dithiodibutyric acid was suspended in 100 mL of dehydrated dichloromethane, and oxalyl dichloride was suspended. 5.14 mL and 62 μL of dimethylformamide were added, and the mixture was stirred at room temperature for 2 hours. The solution was concentrated under reduced pressure, dehydrated toluene was added to the residue, and the mixture was concentrated under reduced pressure.

残渣を脱水ジクロロメタン100mLに溶解し、トリアゾール3.35g,ジイソプロピルエチルアミン8.71mLを加え、室温で10分撹拌した。この段階で、式(1)で表される化合物が得られたものと考えられる。   The residue was dissolved in 100 mL of dehydrated dichloromethane, added with 3.35 g of triazole and 8.71 mL of diisopropylethylamine, and stirred at room temperature for 10 minutes. At this stage, it is considered that the compound represented by the formula (1) was obtained.

ついで、本溶液に5’ジメトキシトリチルチミジン5.49g(10mmol)を加え6時間撹拌した。この段階で、式(2)で表される化合物が得られたものと考えられる。   Next, 5.49 g (10 mmol) of 5 'dimethoxytritylthymidine was added to this solution and stirred for 6 hours. At this stage, it is considered that the compound represented by the formula (2) was obtained.

本溶液にN−ヒドロキシスクシンイミド4.60gを加え15分撹拌した。この段階で、式(3)で表される化合物が得られたものと考えられる。   To this solution, 4.60 g of N-hydroxysuccinimide was added and stirred for 15 minutes. At this stage, it is considered that the compound represented by the formula (3) was obtained.

この後、6−ヒドロキシヘキシルアミン4.69gを加え3時間撹拌した。本溶液をジクロロメタンで希釈し水で洗浄した。ジクロロメタン溶液を減圧濃縮し残渣を中圧クロマトグラフィー(酢酸エチル−エタノール1:0→19:1)にて精製し、式(4)で表される化合物5.14g(58%)を得た。図8に示すNMRのチャートから、その構造を確認した。   Thereafter, 4.69 g of 6-hydroxyhexylamine was added and stirred for 3 hours. The solution was diluted with dichloromethane and washed with water. The dichloromethane solution was concentrated under reduced pressure, and the residue was purified by medium pressure chromatography (ethyl acetate-ethanol 1: 0 → 19: 1) to obtain 5.14 g (58%) of the compound represented by the formula (4). The structure was confirmed from the NMR chart shown in FIG.

(2)式(5)で表される化合物〜式(6)で表される構造体までの合成
439mgの式(4)で表される化合物(0.5mmol)を脱水アセトニトリルに溶解し、減圧濃縮する操作を3回行った。残渣を5mLの脱水アセトニトリルに溶解し、ジイソプロピルエチルアミン99μL,無水コハク酸50mgおよびジメチルアミノピリジン6.1mgを加え、室温にて1日撹拌した。この段階で、式(5)で表される化合物が得られたものと考えられる。
(2) Synthesis from the compound represented by the formula (5) to the structure represented by the formula (6) 439 mg of the compound (0.5 mmol) represented by the formula (4) was dissolved in dehydrated acetonitrile, and the pressure was reduced. The operation of concentrating was performed 3 times. The residue was dissolved in 5 mL of dehydrated acetonitrile, 99 μL of diisopropylethylamine, 50 mg of succinic anhydride and 6.1 mg of dimethylaminopyridine were added, and the mixture was stirred at room temperature for 1 day. At this stage, it is considered that the compound represented by the formula (5) was obtained.

その後、genoglass−PG−200−γ−aminoレジン0.5g(NH、10μmol),脱水縮合剤HCTU{1−[ビス−(ジメチルアミノ)−メチレン]−5−クロロー1H−ベンゾトリアゾリウム・ヘキサフルオロフォスフェート・3−オキシド}207mg,ジイソプロピルエチルアミン207μLを加え2時間室温にて穏やかに撹拌した。レジンをろ過により回収し、メタノールおよびジクロロメタンで洗浄し、乾燥することにより式(6)で表される構造体を得た。なお、図2において、チミジンの代わりに、デオキシアデノシン誘導体、デオキシシチジン誘導体,デオキシグアノシン誘導体,ウリジン誘導体、アデノシン誘導体、シチジン誘導体,グアノシン誘導体を使用し得ることは言うまでもない。 Thereafter, genoglass-PG-200-γ-amino resin 0.5 g (NH 2 , 10 μmol), dehydration condensing agent HCTU {1- [bis- (dimethylamino) -methylene] -5-chloro-1H-benzotriazolium Hexafluorophosphate 3-oxide} 207 mg and diisopropylethylamine 207 μL were added and gently stirred at room temperature for 2 hours. The resin was collected by filtration, washed with methanol and dichloromethane, and dried to obtain a structure represented by the formula (6). In FIG. 2, it goes without saying that deoxyadenosine derivatives, deoxycytidine derivatives, deoxyguanosine derivatives, uridine derivatives, adenosine derivatives, cytidine derivatives, and guanosine derivatives can be used instead of thymidine.

[実施例2]
実施例1の方法に従って作製したレジンおよび図9に示す経路で合成したdA,dG,dCアミダイド(図9の左下)を使用し、DNA自動合成機(ジーンワールド社製H8−F)によりdCGATレジンを合成した。平均合成効率98%以上の収率で合成できた。
[Example 2]
Using a resin prepared according to the method of Example 1 and a dA, dG, dC amidite (lower left in FIG. 9) synthesized by the route shown in FIG. Was synthesized. Synthesis was possible with a yield of 98% or more on average synthesis efficiency.

合成されたdCGATレジンに0.01MのDBU(ジアザビシクロウンデセン)−アセトニトリル溶液5mLを1時間かけて流し、保護基を外した。   To the synthesized dCGAT resin, 5 mL of 0.01 M DBU (diazabicycloundecene) -acetonitrile solution was allowed to flow over 1 hour to remove the protecting group.

その後、アセトニトリル、水で洗浄したのち、0.1MのTCEP{トリス(2−カルボキシエチル)フォスフィン}−tris(pH=7.0、250μL)を4時間かけて流すことにより、S−S結合を還元により切断し溶液を回収した。この還元雰囲気のpHは7.0であり、中性条件であった。   Then, after washing with acetonitrile and water, 0.1 M TCEP {Tris (2-carboxyethyl) phosphine} -tris (pH = 7.0, 250 μL) was allowed to flow for 4 hours, whereby the S—S bond was obtained. The solution was recovered by cleaving by reduction. The reducing atmosphere had a pH of 7.0, which was a neutral condition.

4時間かけた回収直後の溶液をHPLC(高圧液体クロマトグラフィ)により解析した。結果を図4,24時間室温で静置した溶液のHPLC解析結果を図5に示した。また、定法に従い合成したdCGATの解析結果を図6に示した。その結果、24時間静置後の主生成物が、定法に従い合成したdCGATに一致することがわかった。すなわち、図5は図3の(C)の生成物に対応するものと考えられる。   The solution immediately after collection over 4 hours was analyzed by HPLC (high pressure liquid chromatography). The results are shown in FIG. 4 and the HPLC analysis results of the solution which was allowed to stand at room temperature for 24 hours. Moreover, the analysis result of dCGAT synthesized according to a conventional method is shown in FIG. As a result, it was found that the main product after standing for 24 hours coincided with dCGAT synthesized according to a conventional method. That is, FIG. 5 is considered to correspond to the product of FIG.

更に、TCEPによる還元直後(すなわち上記4時間後)にマレインイミドを加えた溶液をHPLCを用いて解析した。結果を図7に示した。図7中、最初の二つの大きなピークはマレインイミドとTCEPとの反応生成物に対応し、後にあるシャープなピークが化合物(B)とマレインイミドとの反応物に対応する。このピークの移動度が図6のピークの移動度と異なっていることより、この反応物が、主生成物(C)とは異なる物質であることが理解される。マレインイミドは−SHと特異的に結合するので、末端にメルカプト基を有する酪酸結合部分の環化が防止され得る。このことから、図4は図3の(B)の生成物、すなわち中間体、に対応するものと考えられる。本反応物{図3の(c’)}の溶液を24時間室温静置したがなんら変化は見られなかった。   Further, a solution in which maleimide was added immediately after reduction by TCEP (that is, after 4 hours) was analyzed using HPLC. The results are shown in FIG. In FIG. 7, the first two large peaks correspond to the reaction product of maleimide and TCEP, and the subsequent sharp peak corresponds to the reaction product of compound (B) and maleimide. Since the mobility of this peak is different from the mobility of the peak in FIG. 6, it is understood that this reactant is a substance different from the main product (C). Since maleimide specifically binds to -SH, cyclization of a butyric acid-binding moiety having a mercapto group at the end can be prevented. From this, FIG. 4 is considered to correspond to the product of FIG. 3B, that is, an intermediate. The solution of this reaction product ((c ′) in FIG. 3) was allowed to stand at room temperature for 24 hours, but no change was observed.

これらの結果、DNA切り出しは図3に示した機構で起こっていると考えられる。   As a result, it is considered that DNA excision occurs by the mechanism shown in FIG.

なお、図3において、Tはチミジンを表す。チミジンの代わりに、デオキシアデノシン誘導体、デオキシシチジン誘導体,デオキシグアノシン誘導体,ウリジン誘導体、アデノシン誘導体、シチジン誘導体,グアノシン誘導体を使用し得ることおよび、dCGAの代わりに他の核酸配列を使用し得ることは言うまでもない。   In FIG. 3, T represents thymidine. Of course, deoxyadenosine derivatives, deoxycytidine derivatives, deoxyguanosine derivatives, uridine derivatives, adenosine derivatives, cytidine derivatives, guanosine derivatives can be used in place of thymidine, and other nucleic acid sequences can be used in place of dCGA. Yes.

従来のリンカーの例を示す図である。It is a figure which shows the example of the conventional linker. 上記実施態様のリンカーを介して核酸がレジンに結合している核酸合成用レジンの合成経路を示す図である。It is a figure which shows the synthetic pathway of the resin for nucleic acid synthesis | combination which the nucleic acid couple | bonded with resin through the linker of the said embodiment. リンカーの推定される切断機構を示す図である。It is a figure which shows the presumed cutting | disconnection mechanism of a linker. TCEP処理の回収直後の溶液のHPLC結果を示す図である。It is a figure which shows the HPLC result of the solution immediately after collection | recovery of TCEP process. TCEP処理の回収後24時間室温で静置した後の溶液のHPLC結果を示す図である。It is a figure which shows the HPLC result of the solution after leaving still at room temperature for 24 hours after collection | recovery of TCEP process. 定法に従って合成したdCGATのHPLC結果を示す図である。It is a figure which shows the HPLC result of dCGAT synthesize | combined according to the usual method. TCEP処理の回収直後にマレインイミドを加えた溶液のHPLC結果を示す図である。It is a figure which shows the HPLC result of the solution which added maleimide immediately after collection | recovery of TCEP process. 図2の式(4)で表される化合物のNMRである。It is NMR of the compound represented by Formula (4) of FIG. dA,dG,dCアミダイドの合成経路Synthesis route of dA, dG, dC amidide

Claims (4)

リンカーを介して核酸がレジンに結合している核酸合成用レジンであって、当該リンカーが−S−S−(CH −COO−結合を有し、そのCOO−側に核酸が結合しており(ここで、nは3または4である)、中性条件で当該−S−S−結合が切断可能であり、その結果、水酸基末端を中性条件で生成し得る、核酸合成用レジン。 A resin for nucleic acid synthesis which is bound to nucleic acid resin via the linker, the linker -S-S- (CH 2) n -COO- have binding, nucleic acid bound to the COO- side (Wherein n is 3 or 4) , the -SS-bond can be cleaved under neutral conditions, and as a result, a hydroxyl group-resin can be generated under neutral conditions . 前記水酸基末端を有する核酸を中性条件で生成する反応が自発的なものである、請求項1に記載の核酸合成用レジン。   The resin for nucleic acid synthesis according to claim 1, wherein the reaction for generating the nucleic acid having a hydroxyl group end under neutral conditions is spontaneous. 前記リンカーが切断された場合に、HS−(CH−COO−結合を有し、そのCOO−側に核酸が結合している中間体を生じる、請求項1または2に記載の核酸合成用レジン(ここで、nは3または4である)。 If the linker is cleaved, HS- (CH 2) have a n -COO- bond, its COO- side resulting intermediates nucleic acid is bound to, nucleic acid synthesis according to claim 1 or 2 Resin for use (where n is 3 or 4). 前記リンカーの切断が還元剤により行われ得る、請求項1〜のいずれかに記載の核酸合成用レジン。 Cleavage of the linker can be carried out by a reducing agent, nucleic acid synthesis resin according to any one of claims 1-3.
JP2008008384A 2008-01-17 2008-01-17 Neutral and cleavable resin for nucleic acid synthesis Expired - Fee Related JP5365005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008384A JP5365005B2 (en) 2008-01-17 2008-01-17 Neutral and cleavable resin for nucleic acid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008384A JP5365005B2 (en) 2008-01-17 2008-01-17 Neutral and cleavable resin for nucleic acid synthesis

Publications (2)

Publication Number Publication Date
JP2009165422A JP2009165422A (en) 2009-07-30
JP5365005B2 true JP5365005B2 (en) 2013-12-11

Family

ID=40967353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008384A Expired - Fee Related JP5365005B2 (en) 2008-01-17 2008-01-17 Neutral and cleavable resin for nucleic acid synthesis

Country Status (1)

Country Link
JP (1) JP5365005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987904B2 (en) 2016-03-04 2024-05-21 Aptamer Group Limited Oligonucleotides and methods for preparing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169194B1 (en) * 1997-10-16 2001-01-02 Michael Thompson High surface density covalent immobilization of oligonucleotide monolayers using a 1-(thiotrifluoroacetato)-11-(trichlorososilyl)-undecane linker
US6255476B1 (en) * 1999-02-22 2001-07-03 Pe Corporation (Ny) Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports
JP3158181B2 (en) * 1999-03-15 2001-04-23 北陸先端科学技術大学院大学長 Biosensor and method for immobilizing biomaterial

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987904B2 (en) 2016-03-04 2024-05-21 Aptamer Group Limited Oligonucleotides and methods for preparing

Also Published As

Publication number Publication date
JP2009165422A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US7910726B2 (en) Amidite for synthesizing modified nucleic acid and method for synthesizing modified nucleic acid
US20020028955A1 (en) Chirality conversion method in lactone sugar compounds
JP5195757B2 (en) Dimer amidite for nucleic acid synthesis and nucleic acid synthesis method
JP4012145B2 (en) Solid phase synthesis of pyrrole-imidazole polyamide
JP2021512082A (en) Methods for the preparation of GalNAc oligonucleotide conjugates
JP5750209B2 (en) Functional molecule, amidite for functional molecule synthesis, and target substance analysis method
KR20060135959A (en) Method for preparing valsartan and precursors thereof
JP5365005B2 (en) Neutral and cleavable resin for nucleic acid synthesis
JP5076504B2 (en) Amidite for nucleic acid synthesis and nucleic acid synthesis method
Kachalova et al. Oligonucleotides with 2′-O-carboxymethyl group: synthesis and 2′-conjugation via amide bond formation on solid phase
US9353142B2 (en) Protecting group for indole group, nucleic acid-synthesizing amidite and nucleic acid-synthesizing method
Zubin et al. Oligonucleotides containing 2′-O-[2-(2, 3-dihydroxypropyl) amino-2-oxoethyl] uridine as suitable precursors of 2′-aldehyde oligonucleotides for chemoselective ligation
US7772439B2 (en) Amino or thiol linker building block for the synthesis of amino- or thiol-functionalized nucleic acids and methods of making and use thereof
JP2002503265A (en) Novel monomer constructs for labeling peptide nucleic acids
CN103232507B (en) Modified nucleoside monomer and synthetic method thereof and application
JP7220439B1 (en) Method for producing chimeric molecules
US12168674B1 (en) Reagents and methods for the highly-efficient synthesis and purification of biopolymers
US20030236397A1 (en) Process for preparing beta-L-2'deoxy-thymidine
JP5795819B2 (en) Protecting group for indole group, amidite for nucleic acid automatic synthesis and nucleic acid synthesis method
US20040220397A1 (en) Solid support for the synthesis of 3'-amino oligonucleotides
JP6429264B2 (en) Boranophosphate compounds and nucleic acid oligomers
Marchand et al. Synthesis of a Pyridoxine–Peptide Based Delivery System for Nucleotides
JP7298866B2 (en) Solid phase carrier for nucleic acid synthesis and method for producing nucleic acid using the same
JP2005500391A (en) CNA manufacturing method
KR20250009433A (en) mRNA cap analogue and its manufacturing method, mRNA manufacturing method, and kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees