[go: up one dir, main page]

JP5364352B2 - Novel fucoidan-utilizing microorganism - Google Patents

Novel fucoidan-utilizing microorganism Download PDF

Info

Publication number
JP5364352B2
JP5364352B2 JP2008296993A JP2008296993A JP5364352B2 JP 5364352 B2 JP5364352 B2 JP 5364352B2 JP 2008296993 A JP2008296993 A JP 2008296993A JP 2008296993 A JP2008296993 A JP 2008296993A JP 5364352 B2 JP5364352 B2 JP 5364352B2
Authority
JP
Japan
Prior art keywords
fucoidan
molecular weight
activity
strain
algae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008296993A
Other languages
Japanese (ja)
Other versions
JP2010119352A (en
Inventor
隆 大城
好計 和泉
康成 三木
仁志 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University
Marine Products Kimuraya Co Ltd
Original Assignee
Tottori University
Marine Products Kimuraya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University, Marine Products Kimuraya Co Ltd filed Critical Tottori University
Priority to JP2008296993A priority Critical patent/JP5364352B2/en
Publication of JP2010119352A publication Critical patent/JP2010119352A/en
Application granted granted Critical
Publication of JP5364352B2 publication Critical patent/JP5364352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means/method for not only oligomerizing but also desulfating fucoidan, and to provide a desulfated and oligomerized fucoidan by such a means/method. <P>SOLUTION: The method for producing the desulfated and oligomerized fucoidan includes subjecting fucoidan to fucoidan-assimilative bacteria having the respective activities of desulfating and oligomerizing fucoidan, i.e. bacteria belonging to the genus Flavobacterium such as Flavobacterium limicola NITE AP-674 or Luteolibacter algae AP-675, AP-676, or extract thereof. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、新規フコイダン資化性細菌、それにより得られる低分子化フコイダンに関する。本発明のフコイダン資化性細菌は、フコイダンの低分子化活性と脱硫酸化活性を併せ持つユニークなものである。   The present invention relates to a novel fucoidan-assimilating bacterium and a low-molecular-weight fucoidan obtained thereby. The fucoidan-assimilating bacterium of the present invention is a unique one having both the low molecular weight activity and the desulfation activity of fucoidan.

天然物質であるフコイダンは、オキナワモズク、モズク、ワカメ、昆布などの褐藻海草類に含まれる「ぬめり」成分であり、癌細胞の死滅、免疫系の調節、組織再生の促進など、様々な生物活性を有することが明らかになっている。また、フコイダンは肌を引き締める作用を有していたり、保湿作用を有していたりすることから、化粧品にも利用されている。このように、フコイダンは、健康食品、機能性食品、サプリメント、化粧品および医薬品などの原料あるいは成分として需要が増大している。   Fucoidan, a natural substance, is a slime ingredient in brown seaweeds such as Okinawa mozuku, mozuku, wakame, and kelp, and has various biological activities such as killing cancer cells, regulating the immune system, and promoting tissue regeneration. It has become clear to have. In addition, fucoidan has an action of tightening the skin and has a moisturizing action, so that it is also used in cosmetics. Thus, the demand for fucoidan is increasing as a raw material or ingredient for health foods, functional foods, supplements, cosmetics and pharmaceuticals.

フコイダンが有するこれらの多様な生理活性は、フコイダン分子の硫酸化度と相関性があるといわれているが、硫酸基が多いと生理活性が認められなくなる例もある。分子量で32,000の硫酸基含量が少ないフコイダンは正常リンパ球の増殖を促進するとともに、TNF−a、IL−6等のサイトカインの産生を増強するのに対し、同じ分子量で硫酸基含量が多いフコイダンはこれらの生理活性が認められないとの報告がある(非特許文献1参照)。   These various physiological activities possessed by fucoidan are said to correlate with the degree of sulfation of fucoidan molecules, but there are cases where physiological activity is not recognized when there are many sulfate groups. Fucoidan with a molecular weight of 32,000 and a low sulfate group content promotes the proliferation of normal lymphocytes and enhances the production of cytokines such as TNF-a and IL-6, whereas it has a high sulfate group content at the same molecular weight. There is a report that fucoidan does not show these physiological activities (see Non-Patent Document 1).

このように、フコイダンの分子量と硫酸基の数はフコイダンの生理活性に大きく影響している。フコイダンの低分子化については、これまで加熱処理、酸加水分解、微生物または酵素による分解などが報告されている(特許文献1、非特許文献2〜7参照)。これらの報告において、フコイダンの低分子化に関与する酵素、遺伝子が単離されている例もある。しかし、いずれの場合も酵素的なフコイダンの脱硫酸化反応には言及していない。さらに、水熱反応を利用したフコイダンの低分子化例もあり、水熱反応による低分子化では硫酸基の脱離が認められない(特許文献2参照)。   Thus, the molecular weight of fucoidan and the number of sulfate groups greatly influence the physiological activity of fucoidan. As for the low molecular weight of fucoidan, heat treatment, acid hydrolysis, decomposition by microorganisms or enzymes have been reported so far (see Patent Document 1, Non-Patent Documents 2 to 7). In these reports, there are cases in which enzymes and genes involved in lowering the molecular weight of fucoidan have been isolated. However, in either case, no mention is made of enzymatic desulfation of fucoidan. Furthermore, there are also examples of fucoidan molecular weight reduction utilizing hydrothermal reaction, and the elimination of sulfate groups is not observed when the molecular weight is reduced by hydrothermal reaction (see Patent Document 2).

かかる事情から、フコイダンの低分子化方法または手段であって、しかも硫酸基を脱離させる(脱硫酸化させる)ことのできる方法または手段が開発されれば、従来の加熱、水熱、酸処理、酵素処理等の方法では調製できない硫酸化度が低いフコイダンを取得でき、フコイダンの生理活性の解明や、本来の活性とは異なる活性を有する、あるいは本来の活性が増強された、低硫酸化度かつ低分子化フコイダンの製造が可能になる。
米国特許第6489155号公報 特願2008−50534明細書 日本栄養・食糧学会誌、58,273−280(2005) Marine Biotechnology, 5, 70-78 (2003) Marine Biotechnology, 5, 536-544 (2003) Marine Biotechnology, 6, 335-346 (2004) Marine Biotechnology, 8, 27-39 (2006) Glycobiology, 16, 1021-1032 (2006) J. Microbiol. Biotechnol., 18, 616-623 (2008)
From this situation, if a method or means for reducing the molecular weight of fucoidan, and further capable of desulfating (desulfating) sulfate groups, conventional heating, hydrothermal, acid treatment, Fucoidan with a low degree of sulfation that cannot be prepared by methods such as enzyme treatment can be obtained, elucidation of the physiological activity of fucoidan, a different activity from the original activity, or an increase in the original activity, a low sulfation degree and Low molecular fucoidan can be produced.
US Pat. No. 6,489,155 Japanese Patent Application No. 2008-50534 Japanese Journal of Nutrition and Food, 58, 273-280 (2005) Marine Biotechnology, 5, 70-78 (2003) Marine Biotechnology, 5, 536-544 (2003) Marine Biotechnology, 6, 335-346 (2004) Marine Biotechnology, 8, 27-39 (2006) Glycobiology, 16, 1021-1032 (2006) J. Microbiol. Biotechnol., 18, 616-623 (2008)

本発明は、フコイダンを低分子化させるのみならず脱硫酸化させる手段・方法を開発すること、およびかかる手段・方法により低硫酸化度の低分子化フコイダンを得ることを課題とした。   An object of the present invention is to develop a means / method for desulfating as well as reducing the molecular weight of fucoidan, and to obtain a low molecular weight fucoidan having a low degree of sulfation by such means / method.

本発明者らは上記課題を解決せんと鋭意研究を重ね、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性微生物を海水から単離することに成功し、本発明を完成させるに至った。
すなわち、本発明は:
(1)フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Flavobacterium属の細菌の菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法;
(2)フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter属の細菌の菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法;
(3)細菌が、独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−674として寄託されたFlavobacterium limicola F31株である(1)記載の方法;
(4)細菌が、独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−675として寄託されたLuteolibacter algae H18株である(2)記載の方法;
(5)細菌が、独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−676として寄託されたLuteolibacter algae SWi−1−Y株である(2)記載の方法;
(6)(1)〜(5)のいずれかに記載の方法により得られる脱硫酸化された低分子化フコイダン;
(7)(5)記載の方法により得られる、分子量14万以下である脱硫酸化された低分子化フコイダン;
(8)独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−674として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Flavobacterium limicola F31株;
(9)独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−675として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algae H18株;
(10)独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−676として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algae SWi−1−Y株
を提供するものである。
In order to complete the present invention, the present inventors have intensively studied to solve the above problems and succeeded in isolating fucoidan-utilizing microorganisms having desulfation activity and low molecular weight activity of fucoidan from seawater. It came.
That is, the present invention provides:
(1) A desulfated low-molecular-weight fucoidan characterized in that a fucoidan-utilizing bacterium Flavobacterium bacterium having an activity of desulfating and reducing the molecular weight of fucoidan or an extract thereof is allowed to act on fucoidan. Manufacturing method of
(2) Desulfated low-molecular-weight fucoidan characterized by allowing fucoidan to act on a fucoidan-utilizing bacterium, Luteolibacter genus bacterium having the desulfating activity and low-molecularizing activity, or its extract. Manufacturing method of
(3) The method according to (1), wherein the bacterium is Flavobacterium limicola F31 strain deposited as an accession number NITE AP-674 at the National Institute of Technology and Evaluation of the National Institute of Technology and Evaluation,
(4) The method according to (2), wherein the bacterium is Luteolibacter algae H18 strain deposited at the National Institute of Technology and Evaluation Microorganisms Deposit Center under the receipt number NITE AP-675;
(5) The method according to (2), wherein the bacterium is a Luteolibacter algae SWi-1-Y strain deposited as an accession number NITE AP-676 with the Patent Evaluation Microorganism Depositary, National Institute for Product Evaluation and Technology.
(6) Desulfated low molecular weight fucoidan obtained by the method according to any one of (1) to (5);
(7) Desulfated low molecular weight fucoidan having a molecular weight of 140,000 or less obtained by the method according to (5);
(8) The fucoidan-assimilating bacterium Flavobacterium limicola F31 strain having the desulfation activity and the low molecular weight activity of fucoidan deposited at the National Institute of Technology and Evaluation of Microorganisms of the National Institute of Technology and Evaluation under the receipt number NITE AP-674;
(9) Fucoidan-assimilating bacterium Luteolibacter algae H18 strain having the desulfation activity and the low-molecular-weight activity of fucoidan deposited at the National Institute of Technology and Evaluation of Microorganisms under the accession number NITE AP-675;
(10) Fucoidan-utilizing bacterium Luteolibacter algae SWi-1--having fucoidan desulfation activity and low-molecular-weight activity deposited at the National Institute of Technology and Evaluation of Microorganisms under the accession number NITE AP-676. Y shares are provided.

本発明によれば、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌による、脱硫酸化された低分子化フコイダンの製造方法が提供される。本発明の製造方法を用いて、様々な分子量の硫酸化度の異なる低分子化フコイダンを調製することができ、それらの生理活性を検討することにより、フコイダンの構造と機能の相関性を明らかにすることができる。そして、本発明により得られた低分子化フコイダンは、本来の活性とは異なる活性を有する、あるいは本来の活性が増強された、脱硫酸化された低分子化フコイダンとして用い得る。さらに本発明によれば、本発明の脱硫酸化された低分子化フコイダンの製造方法に適した細菌株も提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the desulfurized low molecular-weight fucoidan by the fucoidan utilization bacterium which has the desulfation activity of a fucoidan and a low molecular-weight activity is provided. By using the production method of the present invention, low molecular weight fucoidans having various molecular weights and different degrees of sulfation can be prepared. By examining their physiological activities, the correlation between the structure and function of fucoidan is clarified. can do. The low molecular weight fucoidan obtained by the present invention can be used as a desulfated low molecular weight fucoidan having an activity different from the original activity or enhanced original activity. Furthermore, according to the present invention, a bacterial strain suitable for the method for producing the desulfated low molecular weight fucoidan of the present invention is also provided.

本発明は、1の態様において、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌の菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法を提供するものである。本発明の脱硫酸化された低分子化フコイダンの製造方法に用いる微生物の菌体またはその抽出物は、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性微生物のものであれば、いずれの微生物のものであってもよいが、好ましくは細菌、より好ましくはFlavobacterium属の細菌(さらに好ましくはFlavobacterium limicola種)、あるいはLuteolibacter属の細菌(さらに好ましくはLuteolibacter algae種)の菌体またはその抽出物を用いることができる。   In one aspect, the present invention is a desulfated low molecule characterized by allowing fucoidan-utilizing bacteria having fucoidan desulfating activity and low molecular weight reducing activity or an extract thereof to act on fucoidan. A method for producing a fucoidan is provided. Any microorganism cell or extract thereof used in the method for producing a desulfated low molecular weight fucoidan of the present invention may be used as long as it is a fucoidan-utilizing microorganism having fucoidan desulfating activity and low molecular weight activity. But preferably a bacterium, more preferably a bacterium of the genus Flavobacterium (more preferably a Flavobacterium limicola species), or a bacterium of a bacterium of the genus Luteolibacterium (more preferably a species of Luteolibacter algae) or its extraction Can be used.

したがって、本発明は、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Flavobacterium属の細菌の菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法を提供する。さらに本発明は、もう1つの態様において、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter属の細菌の菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法を提供する。   Accordingly, the present invention is directed to a desulfated low-activator characterized in that a cell of a bacterium belonging to the genus Flavobacterium having an activity of desulfating fucoidan and a molecule-lowering activity, or an extract thereof, acts on fucoidan. A method for producing molecular fucoidan is provided. Furthermore, the present invention, in another aspect, is characterized in that a fucoidan-utilizing bacterium Luteolibacter bacterium having an activity of desulfating and reducing the molecular weight of fucoidan or an extract thereof is allowed to act on fucoidan. A method for producing a desulfated low molecular weight fucoidan is provided.

本発明の脱硫酸化された低分子化フコイダンの製造方法に用いる、最も好ましい微生物の菌体またはその抽出物は、下記の3株の細菌の菌体またはその抽出物である:
独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−674として寄託されたFlavobacterium limicola F31株、
独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−675として寄託されたLuteolibacter algae H18株、あるいは
独立行政法人製品評価技術基盤機構特許微生物寄託センターに受領番号NITE AP−676として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algae SWi−1−Y株。
The most preferred microbial cells or extracts thereof used in the method for producing a desulfated low molecular weight fucoidan of the present invention are the following three bacterial strains or extracts thereof:
Flavobacterium limicola F31 strain deposited with the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center as receipt number NITE AP-674,
Luteolibacter algae H18 strain deposited at the National Institute of Technology and Evaluation Technology Patent Microorganisms Deposit Center as the receipt number NITE AP-675, or deposited at the National Institute of Technology and Evaluation Microorganisms Deposit Center as the patent number NITE AP-676 The fucoidan-utilizing bacterium Luteolibacter algae SWi-1-Y strain having fucoidan desulfation activity and low molecular weight activity.

本発明に用いるフコイダン資化性微生物は、フコイダンの低分子化活性と脱硫酸化活性を併せ持つ点で、従来のものとは異なる。本発明のフコイダン資化性細菌を用いることにより、硫酸基を脱離させつつフコイダンを低分子化させることができる。しかも、これらの細菌のフコイダンの脱硫酸化パターンとフコイダンの低分子化パターンが異なるので、これらの細菌を適宜用いることによって、フコイダンの分子量および脱硫酸化度を調節することができる。本明細書において、フコイダンの低分子化活性とは、フコイダンの糖鎖を切断して低分子化させる能力をいい、フコイダンの脱硫酸化活性とは、フコイダンの糖残基に結合した硫酸基を遊離させる能力をいう。脱硫酸化とはフコイダンの硫酸基の全部が脱離している場合のみならず、一部が脱離した状態も包含する。さらに、本明細書で用いる他の用語は、当業者に通常理解されている意味を有するものである。   The fucoidan-assimilating microorganism used in the present invention is different from conventional ones in that it has both a low molecular weight activity and a desulfation activity of fucoidan. By using the fucoidan-assimilating bacterium of the present invention, fucoidan can be reduced in molecular weight while releasing sulfate groups. Moreover, since the desulfation pattern of fucoidan of these bacteria is different from the demolecularization pattern of fucoidan, the molecular weight and the degree of desulfation of fucoidan can be adjusted by appropriately using these bacteria. In the present specification, fucoidan molecular weight-reducing activity refers to the ability to cleave fucoidan sugar chains to reduce molecular weight, and fucoidan desulfation activity refers to the release of sulfate groups bound to fucoidan sugar residues. Refers to the ability to Desulfation includes not only the case where all of the sulfate groups of fucoidan are eliminated, but also the state where a portion is eliminated. Furthermore, other terms used herein have meanings that are commonly understood by those of ordinary skill in the art.

上記の最も好ましい3株の本発明のフコイダン資化性細菌は、鳥取市白兎海岸にて採取した海水、海草および土壌中の微生物を、フコイダンを単一炭素源とする培地、ならびに単一炭素源および単一硫黄源とする培地にて培養、スクリーニングすることにより、得られたものである。分離菌株からDNAを抽出し、各菌株の16s rRNA遺伝子をPCR増幅させ、塩基配列を決定することにより、Flavobacterium limicola F31株、Luteolibacter algae H18株、Luteolibacter algae SWi−1−Y株と同定、命名した。これらの菌株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託され、それぞれ、受領番号NITE AP−674、NITE AP−675、NITE AP−676を付与された(受領日はいずれも2008年11月14日)。以下において、Flavobacterium limicolaをF. limicolaと、Luteolibacter algaeをL. algaeと略称することがある。   The most preferred three strains of the fucoidan-assimilating bacterium of the present invention are a medium containing fucoidan as a single carbon source, a medium containing fucoidan as a single carbon source, and a microbe in seawater, seaweed and soil collected at the Shirakaba coast of Tottori City, and a single carbon source. And obtained by culturing and screening in a medium containing a single sulfur source. DNA was extracted from the isolated strain, 16s rRNA gene of each strain was PCR amplified, and the nucleotide sequence was determined to identify and name Flavobacterium limicola F31 strain, Luteolibacter algae strain H18, and Luteolibacter algae SWi-1-Y strain. . These strains were deposited at the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center, and were given receipt numbers NITE AP-674, NITE AP-675, and NITE AP-676, respectively. November 14, In the following, Flavobacterium limicola is referred to as F. limicola and Luteolibacter algae Sometimes abbreviated as algae.

本発明のフコイダン資化性細菌またはその抽出物を用いてフコイダンを脱硫酸化および低分子化させることができる。本発明の脱硫酸化された低分子化フコイダンの製造方法に供するフコイダンは精製品であってもよく、粗精製品または部分精製品であってもよく、蛋白類、脂質類、他の糖類などの夾雑物質を含むものであってもよい。例えば、もずく、こんぶ、わかめ、ひじきなどの海草類をそのまま、あるいはそれらの粗抽出物をフコイダンとして本発明の方法に使用してもよい。好ましくは、フコイダンは水溶液として処理される。微生物またはその酵素の特性を考慮して、かかる水溶液に塩類、バッファーなどの物質を添加してもよい。   Fucoidan can be desulfated and reduced in molecular weight using the fucoidan-assimilating bacterium of the present invention or an extract thereof. The fucoidan used in the method for producing the desulfated low molecular weight fucoidan of the present invention may be a purified product, a crude product or a partially purified product, and may be a protein, lipid, other saccharide, etc. It may contain impurities. For example, seaweeds such as mozuku, kombu, seaweed and hijiki may be used in the method of the present invention as they are, or a crude extract thereof as fucoidan. Preferably fucoidan is treated as an aqueous solution. In consideration of the characteristics of the microorganism or its enzyme, substances such as salts and buffers may be added to the aqueous solution.

本発明のフコイダン資化性微生物の菌体をフコイダンに直接作用させてもよい。この場合、試験管やフラスコ等の器具を用いて通常どおり培養を行ってもよい。スケールアップを図るにはバイオリアクターやタンクを用いて培養を行ってもよい。本発明の細菌は好気的に培養することが好ましく、振盪培養または通気培養が適している。培地にはフコイダンのほか、微生物の成育および酵素活性を促進あるいは制御するために、例えば、塩類、バッファー、ビタミン、フコイダン以外の栄養源などを適宜添加してもよい。本発明のフコイダン資化性細菌の培養温度は通常約15℃〜約40℃、好ましくは約20℃〜約37℃、さらに好ましくは約25℃〜約33℃であり、培養のpHは通常約6〜約10、好ましくは約7〜約9、さらに好ましくは海水のpHの範囲、例えばpH約7.5〜約8.5である。これらの条件は当業者が簡単な試験を行うことにより適宜定めうる。菌体量とフコイダン量の割合も適宜定め得る。フコイダンに作用させる本発明の菌体は1種類であってもよく、2種類またはそれ以上の種類であってもよい。   You may make the fucoidan utilization microorganisms of this invention act on a fucoidan directly. In this case, you may culture | cultivate as usual using instruments, such as a test tube and a flask. In order to increase the scale, culture may be performed using a bioreactor or a tank. The bacterium of the present invention is preferably cultured aerobically, and shaking culture or aeration culture is suitable. In addition to fucoidan, for example, salts, buffers, vitamins, nutrient sources other than fucoidan, and the like may be appropriately added to the medium in order to promote or control the growth and enzyme activity of microorganisms. The culture temperature of the fucoidan-assimilating bacterium of the present invention is usually about 15 ° C. to about 40 ° C., preferably about 20 ° C. to about 37 ° C., more preferably about 25 ° C. to about 33 ° C., and the culture pH is usually about 6 to about 10, preferably about 7 to about 9, more preferably a pH range of seawater, such as a pH of about 7.5 to about 8.5. These conditions can be appropriately determined by a person skilled in the art through simple tests. The ratio of the amount of fungus body and the amount of fucoidan can also be determined appropriately. One type of bacterial cell of the present invention that acts on fucoidan may be used, or two or more types thereof.

培養時間の経過に伴ってフコイダンの低分子化と脱硫酸化が見られる。フコイダンの分子量、フコイダンの硫酸化度(脱硫酸化度)は公知の方法にて測定することができる。フコイダンの分子量は、例えばゲルろ過HPLC(高速液体クロマトグラフィー)を用いて測定することができ、硫酸化度を測定するには、例えば硫酸バリウム沈殿法により硫酸基を定量すればよい。   As the culture time elapses, fucoidan is reduced in molecular weight and desulfated. The molecular weight of fucoidan and the sulfation degree (desulfation degree) of fucoidan can be measured by known methods. The molecular weight of fucoidan can be measured using, for example, gel filtration HPLC (high performance liquid chromatography). To measure the degree of sulfation, sulfate groups can be quantified by, for example, a barium sulfate precipitation method.

本発明のフコイダンの脱硫酸化および低分子化方法において、本発明のフコイダン資化性細菌の菌体の抽出物をフコイダンに作用させてもよい。フコイダン資化性細菌の抽出物は公知の方法により得ることができる。例えば、菌体を超音波または破砕機を用いて破砕したものをそのまま抽出物として用いることができる。あるいは、前記破砕物の上清を抽出物として用いることもできる。さらに、本発明のフコイダン資化性細菌の抽出物を公知の方法により精製して、脱硫酸化活性、低分子化活性の強いフラクションを得て、これを抽出物として使用してもよい。このように、抽出物は粗酵素であってもよく、あるいは単一にまで精製された酵素であってもよい。このような精製は公知の方法にて行うことができ、例えば硫安分画、あるいはイオン交換クロマトグラフィーやゲルろ過クロマトグラフィーなどの各種クロマトグラフィーなどを用いることができる。これらの抽出物、粗酵素、精製フラクションの形状は特に限定されず、液体であってもよく、凍結乾燥物のような粉末または固体であってもよい。   In the method for desulfating and reducing the molecular weight of fucoidan according to the present invention, the cell extract of fucoidan-assimilating bacteria of the present invention may be allowed to act on fucoidan. The extract of fucoidan-assimilating bacteria can be obtained by a known method. For example, what disrupted the microbial cell using the ultrasonic wave or the crusher can be used as an extract as it is. Alternatively, the supernatant of the crushed material can be used as an extract. Further, the extract of the fucoidan-assimilating bacterium of the present invention may be purified by a known method to obtain a fraction having a strong desulfation activity and a low molecular weight activity, and this may be used as the extract. Thus, the extract may be a crude enzyme or an enzyme purified to a single substance. Such purification can be performed by a known method, for example, ammonium sulfate fractionation, or various chromatography such as ion exchange chromatography or gel filtration chromatography. The shapes of these extracts, crude enzymes, and purified fractions are not particularly limited, and may be liquids or powders or solids such as lyophilized products.

上記のごとく得られた抽出物を、フコイダン、好ましくはフコイダン水溶液に添加して、脱硫酸化と低分子化を行うことができる。反応を促進あるいは制御するためにバッファー、塩類などを適宜反応系に添加してもよい。反応温度は通常約15℃〜約40℃、好ましくは約20℃〜約37℃、さらに好ましくは約25℃〜約33℃であり、反応のpHは通常約6〜約10、好ましくは約7〜約9、さらに好ましくは約7.5〜約8.5である。反応は撹拌しながら行うことが好ましい。これらの条件は当業者が簡単な試験を行うことにより適宜定めうる。抽出物量とフコイダン量の割合も適宜定めうる。培養時間の経過に伴ってフコイダンの低分子化と脱硫酸化が見られる。フコイダンの分子量、フコイダンの硫酸化度(脱硫酸化度)は公知の方法にて測定することができる(上記参照)。フコイダンに作用させる本発明の菌体の抽出物は1種類であってもよく、2種類または3種類であってもよい。   The extract obtained as described above can be added to fucoidan, preferably fucoidan aqueous solution, to perform desulfation and molecular reduction. In order to promote or control the reaction, a buffer, salts and the like may be appropriately added to the reaction system. The reaction temperature is usually about 15 ° C. to about 40 ° C., preferably about 20 ° C. to about 37 ° C., more preferably about 25 ° C. to about 33 ° C., and the pH of the reaction is usually about 6 to about 10, preferably about 7 To about 9, more preferably from about 7.5 to about 8.5. The reaction is preferably carried out with stirring. These conditions can be appropriately determined by a person skilled in the art through simple tests. The ratio between the amount of extract and the amount of fucoidan can also be determined as appropriate. As the culture time elapses, fucoidan is reduced in molecular weight and desulfated. The molecular weight of fucoidan and the sulfation degree (desulfation degree) of fucoidan can be measured by known methods (see above). The extract of the microbial cell of the present invention that acts on fucoidan may be one type, or two or three types.

上述のごとく、本発明のフコイダン資化性細菌はいずれもフコイダンの低分子化活性と脱硫酸化活性を併せ持っているが、脱硫酸化パターンと低分子化パターンにはこれらの株において相違が見られる。F. limicola F31株の抽出物による硫酸基の遊離はフコイダンの分子量が2万程度になってから始まるのに対し、L. algae SWi−1−Y株の抽出物を用いた場合はフコイダンの分子量約14万の段階で硫酸基の遊離が見られる。L. algae H18株の場合はF. limicola F31株の場合の似た結果が得られる。   As described above, all of the fucoidan-utilizing bacteria of the present invention have both fucoidan low-molecularization activity and desulfation activity, but there are differences between these strains in the desulfation pattern and the low-molecularization pattern. F. Release of sulfate groups by the extract of limicola strain F31 begins after the molecular weight of fucoidan reaches about 20,000, whereas L. When an extract of algae SWi-1-Y strain is used, the release of sulfate groups can be seen at the stage where the molecular weight of fucoidan is about 140,000. L. in the case of algae H18 strain. Similar results are obtained with the limicola F31 strain.

したがって、F. limicola F31株またはL. algae H18株の菌体またはその抽出物を用いた場合には、脱硫酸化された比較的低分子のフコイダンを得ることができ、L. algae SWi−1−Y株の菌体またはその抽出物を用いた場合には、脱硫酸化された比較的高分子のフコイダンを得ることができる。また、L. algae SWi−1−Y株の菌体またはその抽出物は他の2株に比べて脱硫酸化活性が高い。   Therefore, F.R. limicola F31 strain or L. When the cells of algae H18 strain or an extract thereof are used, a desulfated relatively low-molecular fucoidan can be obtained. When the cells of algae SWi-1-Y strain or an extract thereof are used, a desulfated relatively high molecular fucoidan can be obtained. L. The cells of the algae SWi-1-Y strain or its extract have a higher desulfation activity than the other two strains.

本発明の微生物またはその抽出物を用いて、様々な分子量の硫酸化度の異なる低分子化フコイダンを調製することができる。それらはフコイダンの構造と機能の相関性を調べるための材料として用いることができる。そして、本発明により得られた低分子化フコイダンは、本来の活性とは異なる活性を有する、あるいは本来の活性が増強された、低硫酸化度かつ低分子化フコイダンとして用い得る。ここにフコイダンの本来の活性とは、免疫賦活、抗腫瘍、コレステロールや中性脂肪の低下、胃粘膜の保護、肝機能改善、抗酸化活性などが例示されるが、これらに限定されない。したがって、本発明により得られた低分子化フコイダンは、健康食品、機能性食品、サプリメント、化粧品および医薬品などの原料あるいは成分として用いることができる。   Using the microorganism of the present invention or an extract thereof, low molecular weight fucoidan having various molecular weights and different degrees of sulfation can be prepared. They can be used as materials for investigating the correlation between the structure and function of fucoidan. The low molecular weight fucoidan obtained by the present invention can be used as a low sulfated and low molecular weight fucoidan having an activity different from the original activity or having an enhanced original activity. Examples of the intrinsic activity of fucoidan include, but are not limited to, immunostimulation, antitumor, cholesterol and neutral fat reduction, gastric mucosa protection, liver function improvement, and antioxidant activity. Therefore, the low molecular weight fucoidan obtained by the present invention can be used as a raw material or ingredient for health foods, functional foods, supplements, cosmetics, and pharmaceuticals.

以下に実施例を示して本発明をさらに具体的かつ詳細に説明するが、実施例は本発明を限定するものではない。   EXAMPLES The present invention will be described more specifically and in detail below with reference to examples, but the examples are not intended to limit the present invention.

菌株の単離と同定
フコイダンを単一炭素源として生育できる微生物の単離には下記のF培地を用いた。F培地は蒸留水1L当たり、フコイダン((株)海産物のきむらや製)2.5g、リン酸水素二カリウム4.0g、リン酸二水素カリウム0.5g、硫酸アンモニウム2.0g、硫酸マグネシウム七水和物0.41g、金属混合液−F 10ml、ビタミン混合液−F 1mlを含み、pHを7.4に調整したものである。金属混合液−Fは蒸留水1L当たり、塩化ナトリウム1g、塩化カルシウム2g、硫酸鉄(II)0.5g、硫酸亜鉛0.5g、塩化マンガン四水和物0.5g、硫酸銅(II)0.05g、モリブデン酸ナトリウム二水和物0.1g、タングステン酸ナトリウム二水和物0.05gを含む溶液である。ビタミン混合液−Fは蒸留水1L当たり、ビオチン100mg、チアミン塩酸塩100mg、リボフラビン100mg、パントテン酸カルシウム100mg、ピリドキサールリン酸100mg、ニコチンアミド100mg、パラ安息香酸ナトリウム20mg、シアノコバラミン10mg、リポ酸10mgを含む溶液である。
Isolation and identification of strains The following F medium was used for isolation of microorganisms capable of growing using fucoidan as a single carbon source. F medium is 2.5 g of fucoidan (manufactured by Marine Products Kimuraya Co., Ltd.), 4.0 g of dipotassium hydrogen phosphate, 0.5 g of potassium dihydrogen phosphate, 2.0 g of ammonium sulfate, magnesium sulfate heptahydrate per liter of distilled water. 0.41 g of the product, 10 ml of the metal mixed solution-F, and 1 ml of the vitamin mixed solution-F, and the pH is adjusted to 7.4. Metal mixture-F is 1 g of sodium chloride, 2 g of calcium chloride, 0.5 g of iron (II) sulfate, 0.5 g of zinc sulfate, 0.5 g of manganese chloride tetrahydrate, and 0 of copper (II) sulfate per liter of distilled water. .05 g, a solution containing 0.1 g of sodium molybdate dihydrate and 0.05 g of sodium tungstate dihydrate. Vitamin mixture-F contains 100 mg of biotin, 100 mg of thiamine hydrochloride, 100 mg of riboflavin, 100 mg of calcium pantothenate, 100 mg of pyridoxal phosphate, 100 mg of nicotinamide, 20 mg of sodium parabenzoate, 10 mg of cyanocobalamin and 10 mg of lipoic acid per liter of distilled water. It is a solution.

フコイダンを単一炭素源および単一硫黄源として生育できる微生物の単離には下記のAF培地を用いた。AF培地は蒸留水1L当たり、フコイダン((株)海産物のきむらや製)2.5g、リン酸水素二カリウム4.0g、リン酸二水素カリウム0.5g、塩化アンモニウム1.0g、塩化マグネシウム0.2g、金属混合液−AF 10ml、ビタミン混合液−AF 1mlを含み、pHを7.4に調整したものである。金属混合液−AFは蒸留水1L当たり、塩化ナトリウム1g、塩化カルシウム2g、塩化鉄(II)0.5g、塩化亜鉛0.5g、塩化マンガン四水和物0.5g、塩化銅(II)0.05g、モリブデン酸ナトリウム二水和物0.1g、タングステン酸ナトリウム二水和物0.05gを含む溶液である。ビタミン混合液−AFは蒸留水1L当たり、パントテン酸カルシウム400mg、イノシトール200mg、ピリドキサールリン酸200mg、ニコチンアミド400mg、パラ安息香酸ナトリウム200mg、シアノコバラミン0.5mgを含む溶液である。   The following AF medium was used for isolation of microorganisms capable of growing fucoidan as a single carbon source and a single sulfur source. The AF medium is 2.5 g of fucoidan (manufactured by Kimuraya Co., Ltd.), 1 g of dipotassium hydrogen phosphate, 0.5 g of potassium dihydrogen phosphate, 1.0 g of ammonium chloride, 0.1 g of magnesium chloride per liter of distilled water. 2 g, metal mixture-AF 10 ml, vitamin mixture-AF 1 ml, pH adjusted to 7.4. Metal mixture-AF is 1 g of sodium chloride, 2 g of calcium chloride, 0.5 g of iron (II) chloride, 0.5 g of zinc chloride, 0.5 g of manganese chloride tetrahydrate, and 0 of copper (II) chloride per liter of distilled water. .05 g, a solution containing 0.1 g of sodium molybdate dihydrate and 0.05 g of sodium tungstate dihydrate. Vitamin mixed solution-AF is a solution containing 400 mg of calcium pantothenate, 200 mg of inositol, 200 mg of pyridoxal phosphate, 400 mg of nicotinamide, 200 mg of sodium parabenzoate, and 0.5 mg of cyanocobalamin per liter of distilled water.

土壌、モズク藻体、海水濃縮物などのサンプルを、オートクレーブしたF培地、AF培地に懸濁し、30℃で振とうし、培地の濁度上昇が認められたサンプルを新たな培地に植え継いだ。この操作を10回以上繰り返しても濁度上昇が認められるサンプルを、液体培地と同一組成で寒天を1.5%含む平板培地に塗布し、単一コロニーが得られれば、再びそのコロニーから液体培地へ植菌した。これらの操作を繰り返すことにより、フコイダン資化性微生物を純化し、F培地を用いた系からF31株、H18株と名付けた2株、AF培地を用いた系からSWi−1−Yと名付けた1株の目的微生物を単離した。F31株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託され、平成20年11月14日付けで受領番号NITE AP−674を付与された。H18株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託され、平成20年11月14日付けで受領番号NITE AP−675を付与された。SWi−1−Y株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託され、平成20年11月14日付けで受領番号NITE AP−676を付与された。   Samples such as soil, mozuku algae, and seawater concentrate were suspended in autoclaved F medium and AF medium, shaken at 30 ° C., and samples with increased turbidity of the medium were transplanted to a new medium. . If a sample in which turbidity increase is observed even if this operation is repeated 10 times or more is applied to a plate medium having the same composition as the liquid medium and containing 1.5% of agar, once a single colony is obtained, the liquid is again removed from the colony. Inoculated into the medium. By repeating these operations, fucoidan-assimilating microorganisms were purified and named F31 strain, H18 strain from the system using F medium, and SWi-1-Y from the system using AF medium. One strain of target microorganism was isolated. The F31 strain was deposited at the Patent Evaluation Microorganism Deposit Center of the National Institute of Technology and Evaluation, and was given a receipt number NITE AP-674 as of November 14, 2008. The H18 strain was deposited with the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center, and was given the receipt number NITE AP-675 as of November 14, 2008. The SWi-1-Y strain was deposited with the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, and was given a receipt number NITE AP-676 as of November 14, 2008.

分離菌株から定法に従いDNAを抽出し、それぞれの菌株の16s rRNA遺伝子をPCR増幅させ、塩基配列を決定した。その結果、F31株、H18株についてはFlavobacterium limicola、Luteolibacter algaeの16s rRNA遺伝子とどちらも97%の相同性を有していたことより、これらの菌株をFlavobacterium limicola F31株、Luteolibacter algae H18株と同定、命名した。また、SWi−1−Y株についても同じ実験を行い、Luteolibacter algae SWi−1−Y株と同定、命名した。   DNA was extracted from the isolates according to a conventional method, and the 16s rRNA gene of each strain was PCR amplified to determine the base sequence. As a result, the F31 and H18 strains were 97% homologous to the Flavobacterium limicola and Luteolibacter algae 16s rRNA genes, indicating that these strains were identified as the Flavobacterium limicola F31 strain, the Luteolibacterial strain H Named. In addition, the same experiment was performed on the SWi-1-Y strain, and it was identified and named as a Luteolibacter algae SWi-1-Y strain.

粗酵素の調製と酵素反応
(1)粗酵素の調製方法および酵素反応方法
上記菌株をスクリーニングに用いた培地500mlで培養し、増殖が停止する時点で遠心分離により菌体を集めた。生理食塩水で菌体を洗った後、20mMトリス塩酸バッファー(pH8.0)に菌体を懸濁し、超音波処理により菌体の破砕を行い、その遠心上清を粗酵素とした。
Preparation of crude enzyme and enzyme reaction (1) Preparation method and enzyme reaction method of crude enzyme The above strains were cultured in 500 ml of the medium used for screening, and the cells were collected by centrifugation when the growth stopped. After washing the cells with physiological saline, the cells were suspended in 20 mM Tris-HCl buffer (pH 8.0), and the cells were disrupted by ultrasonic treatment, and the centrifuged supernatant was used as a crude enzyme.

酵素反応は、0.25%フコイダン、100mMトリス塩酸バッファー(pH8.0)を含む反応液に粗酵素を蛋白質濃度が2mg/mlとなるように添加し、30℃で行った。熱処理(80℃、5分)により酵素を失活させて反応を停止させた後、反応液中のフコイダンの分子量と遊離硫酸基の定量を行った。   The enzyme reaction was performed at 30 ° C. by adding the crude enzyme to a reaction solution containing 0.25% fucoidan and 100 mM Tris-HCl buffer (pH 8.0) so that the protein concentration was 2 mg / ml. After the enzyme was inactivated by heat treatment (80 ° C., 5 minutes) to stop the reaction, the molecular weight of fucoidan and free sulfate groups in the reaction solution were quantified.

フコイダンの分子量はゲルろ過HPLCにおけるピークトップのリテンションタイムを基に算出した。プルランを分子量スタンダードとして使用した。HPLC条件は、カラム:TSK−Gel GMPWXL(φ 7.8mm x 300mm)(TOSOH)、検出法:RI、移動相:0.1M NaNO(pH4.9)、流速:0.6ml/minで行った。 The molecular weight of fucoidan was calculated based on the peak top retention time in gel filtration HPLC. Pullulan was used as the molecular weight standard. The HPLC conditions were as follows: Column: TSK-Gel GMPW XL (φ7.8 mm x 300 mm) (TOSOH), detection method: RI, mobile phase: 0.1 M NaNO 3 (pH 4.9), flow rate: 0.6 ml / min went.

硫酸基の定量は、Dodgsonの方法(Biochem.J.,84,350−356(1962))に従い、塩化バリウム−ゼラチン溶液を加えることにより生じる硫酸バリウムの沈殿量を、500nmにおける濁度を測定することにより行った。
また、酵素反応の進行によって生成する糖の還元末端を定量することによっても酵素活性を測定した。酵素反応液にフェリシアン化カリウム溶液を加え、15分加熱した後の420nmの吸光度を測定することにより還元末端量を定量した。
The sulfate group was quantified according to Dodson's method (Biochem. J., 84, 350-356 (1962)). The amount of barium sulfate precipitated by adding a barium chloride-gelatin solution was measured for turbidity at 500 nm. Was done.
The enzyme activity was also measured by quantifying the reducing end of the sugar produced by the progress of the enzyme reaction. The amount of reducing terminal was quantified by measuring the absorbance at 420 nm after adding potassium ferricyanide solution to the enzyme reaction solution and heating for 15 minutes.

(2)F. limicola F31株の粗酵素を用いたフコイダンの低分子化と脱硫酸化
F. limicola F31株の粗酵素によるフコイダンの低分子化・脱硫酸化反応は図1のように進行した。この反応によりフコイダンの低分子化に伴い糖の還元末端の遊離が認められた。脱硫酸化反応はフコイダンの分子量が2万程度になってから始まることがわかった。
(2) F.E. Reduction of molecular weight and desulfation of fucoidan using crude enzyme of limicola F31 strain The low molecular weight desulfation reaction of fucoidan by the crude enzyme of limicola F31 strain proceeded as shown in FIG. As a result of this reaction, release of the reducing end of the sugar was observed as fucoidan was reduced in molecular weight. It was found that the desulfation reaction started after the molecular weight of fucoidan reached about 20,000.

3種類の分離菌株の粗酵素を用いて、24時間まで酵素反応を実施したところ、フコイダンの分子量と遊離硫酸基量は表1、図2のように推移した。F.limicola F31株の粗酵素による硫酸基の遊離はフコイダンの分子量が2万程度になってから始まるのに対し、L. algae SWi−1−Y株の粗酵素を用いた場合はフコイダンの分子量約14万の段階で硫酸基の遊離が見られた。そしてL. algae SWi−1−Y株の粗酵素を用いた場合は、他の2株の粗酵素を用いた場合に比べて硫酸基の遊離量が多い傾向が見られた。L. algae H18株の場合はF.limicola F31株の場合の結果と似ていた。また、L. algae SWi−1−Y株の粗酵素は他の2株の粗酵素に比べて脱硫酸化活性が高かった。

Figure 0005364352

上の四角で囲ったデータは脱硫酸化反応が確認された時点のデータ、下の四角で囲ったデータは反応24時間後のデータであることを示す。 When the enzyme reaction was carried out for 24 hours using the crude enzymes of three types of isolates, the molecular weight and free sulfate group amount of fucoidan changed as shown in Table 1 and FIG. F. Release of sulfate groups by the crude enzyme of limicola F31 strain starts after the molecular weight of fucoidan reaches about 20,000, whereas L. When the crude enzyme of the algae SWi-1-Y strain was used, the release of sulfate groups was observed at the stage where the molecular weight of fucoidan was about 140,000. And L. When the crude enzyme of the algae SWi-1-Y strain was used, there was a tendency that the amount of released sulfate groups was larger than when the other two strains of crude enzyme were used. L. in the case of algae H18 strain. The result was similar to that of limicola F31 strain. L. The crude enzyme of the algae SWi-1-Y strain had higher desulfation activity than the other two strains of the crude enzyme.
Figure 0005364352

The data enclosed in the upper square indicates data at the time when the desulfation reaction was confirmed, and the data enclosed in the lower square indicates data after 24 hours of reaction.

(3)F. limicola F31株の粗酵素を用いた低分子化・脱硫酸化フコイダンの取得
フコイダンを400mg((株)海産物のきむらや製、分子量20万、硫酸基含有率19%)、F. limicola F31株の粗酵素を蛋白質重量として320mgを含む100mM Tris−HClバッファー(pH8.0)を酵素反応液として、30℃で3.5時間、攪拌子で混合しながら酵素反応を行った。
(3) F.E. Acquiring low molecular weight and desulfated fucoidan using crude enzyme of limicola F31 strain 400 mg fucoidan (manufactured by Kimuraya Co., Ltd., molecular weight 200,000, sulfate group content 19%) The enzyme reaction was carried out using a 100 mM Tris-HCl buffer (pH 8.0) containing 320 mg of the crude enzyme of the limicola F31 strain as a protein weight at 30 ° C. for 3.5 hours while mixing with a stir bar.

80℃、15分の熱処理により酵素反応を停止させた後、その遠心上清から分画分子量50,000と10,000の限外ろ過膜により高分子化合物と塩を分離し、分子量8,500の低分子化されたフコイダンを得た。この溶液を凍結乾燥させ、84mgの粉末サンプルを得た。このサンプルを1.7M塩酸存在下で100℃、5時間熱処理することにより、硫酸基の脱離を行い、遊離されてきた硫酸基を定量したところ、得られた低分子化フコイダンの硫酸基含有率は16%と求められた。   After stopping the enzymatic reaction by heat treatment at 80 ° C. for 15 minutes, the high molecular compound and the salt are separated from the centrifuged supernatant by ultrafiltration membranes with a molecular weight cut off of 50,000 and 10,000, and the molecular weight is 8,500. A low molecular weight fucoidan was obtained. This solution was freeze-dried to obtain 84 mg of a powder sample. This sample was heat-treated in the presence of 1.7 M hydrochloric acid at 100 ° C. for 5 hours to remove sulfate groups and quantify the released sulfate groups. The resulting low molecular weight fucoidan contained sulfate groups. The rate was determined to be 16%.

(4)L. algae SWi−1−Y株の粗酵素を用いた低分子化・脱硫酸化フコイダンの取得
フコイダンを500mg((株)海産物のきむらや製、分子量20万、硫酸基含有率19%)、L. algae SWi−1−Y株の粗酵素を蛋白質重量として400mg含む100mM Tris−HClバッファー(pH8.0)を酵素反応液として、30℃で28時間、攪拌子で混合しながら酵素反応を行った。
(4) L. Acquisition of low molecular weight / desulfated fucoidan using crude enzyme of S. algae SWi-1-Y Fucoidan 500 mg (manufactured by Kimuraya Co., Ltd., molecular weight 200,000, sulfate group content 19%) The enzyme reaction was carried out using a 100 mM Tris-HCl buffer (pH 8.0) containing 400 mg of the crude enzyme of the algae SWi-1-Y strain as a protein weight, while mixing with a stir bar at 30 ° C. for 28 hours.

80℃、15分の熱処理により酵素反応を停止させた後、その遠心上清から分画分子量50,000の限外ろ過膜により高分子化合物を分離した。さらにSepharose CL−4Bゲルろ過クロマトグラフィー(φ 2cm x 90cm、移動相は蒸留水)により脱塩を行い、分子量4,000の低分子化されたフコイダンを得た。この溶液を凍結乾燥させ、32mgの粉末サンプルを得た。このサンプルを1.7M塩酸存在下で100℃、5時間熱処理することにより、硫酸基の脱離を行い、遊離されてきた硫酸基を定量したところ、得られた低分子化フコイダンの硫酸基含有率は8.3%と求められた。   After stopping the enzymatic reaction by heat treatment at 80 ° C. for 15 minutes, the polymer compound was separated from the centrifuged supernatant by an ultrafiltration membrane having a molecular weight cut off of 50,000. Further, desalting was performed by Sepharose CL-4B gel filtration chromatography (φ 2 cm × 90 cm, mobile phase was distilled water) to obtain fucoidan having a molecular weight of 4,000. This solution was lyophilized to obtain a 32 mg powder sample. This sample was heat-treated in the presence of 1.7 M hydrochloric acid at 100 ° C. for 5 hours to remove sulfate groups and quantify the released sulfate groups. The resulting low molecular weight fucoidan contained sulfate groups. The rate was determined to be 8.3%.

上記実験例が示すように、本発明の新規微生物が有する酵素を用いることにより硫酸化度が異なる低分子化フコイダンを生成させることができた。L. algae SWi−1−Y株を用いた場合には、比較的高分子のフコイダンであっても脱硫酸化反応が認められたので、他の2株を用いた場合よりも高分子量の脱硫酸化フコイダンが得られることがわかった。微生物量または抽出物(酵素)量、反応時間、その他の反応条件を適宜選択することにより、フコイダンの分子量および硫酸化度をコントロールできることもわかった。   As shown in the above experimental examples, low molecular weight fucoidans having different degrees of sulfation could be generated by using the enzyme of the novel microorganism of the present invention. L. When the algae SWi-1-Y strain was used, a desulfation reaction was observed even with a relatively high molecular weight fucoidan. Therefore, a higher molecular weight desulfated fucoidan was obtained than when the other two strains were used. It turns out that it is obtained. It was also found that the molecular weight and degree of sulfation of fucoidan can be controlled by appropriately selecting the amount of microorganisms or the amount of extract (enzyme), reaction time, and other reaction conditions.

本発明は、フコイダンの活性と分子量と硫酸化度との関係を調べるための研究材料を提供する。さらに本発明により得られる低分子化フコイダンは健康食品、機能性食品、サプリメント、化粧品および医薬品などの原料あるいは成分として用いることができる。   The present invention provides a research material for investigating the relationship among fucoidan activity, molecular weight and degree of sulfation. Furthermore, the low molecular weight fucoidan obtained by the present invention can be used as a raw material or ingredient for health foods, functional foods, supplements, cosmetics and pharmaceuticals.

F. limicola F31株の粗酵素によるフコイダンの低分子化(フコイダン分子量)、脱硫酸化反応(遊離硫酸基量)および還元末端量の経時的変化を示すグラフである。F. It is a graph which shows the time-dependent change of the low molecular weight (fucoidan molecular weight), desulfation reaction (free sulfate group amount), and reducing terminal amount of fucoidan by the crude enzyme of limicola F31 strain. L. algae SWi−1−Y株、L. algae F31株およびL. algae H18株の粗酵素によるフコイダンの低分子化(フコイダン分子量)および脱硫酸化反応(遊離硫酸基量)の経時的変化を示すグラフである。上段のグラフにおける3時間までの反応の進行を、下段のグラフに示した。L. algae SWi-1-Y, L. algae F31 strain and L. It is a graph which shows the time-dependent change of the low molecular weight (fucoidan molecular weight) and desulfation reaction (free sulfate group amount) of fucoidan by the crude enzyme of algae H18 strain. The progress of the reaction up to 3 hours in the upper graph is shown in the lower graph.

Claims (5)

フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algaeの菌体またはその抽出物をフコイダンに作用させることを特徴とする、脱硫酸化された低分子化フコイダンの製造方法。 A method for producing a desulfated low-molecular-weight fucoidan, comprising causing a fucoidan-utilizing bacterium, Luteolibacter algae , having fucoidan-desulfating activity and low-molecular-weight activity to act on fucoidan. 細菌が、独立行政法人製品評価技術基盤機構特許微生物寄託センターに受番号NITE P−675として寄託されたLuteolibacter algae H18株である請求項記載の方法。 Bacteria, National Institute of Technology and Evaluation, Patent Microorganisms Depositary Center entrusted number NITE The method of claim 1 wherein the Luteolibacter algae H18 strain deposited as P-675. 細菌が、独立行政法人製品評価技術基盤機構特許微生物寄託センターに受番号NITE P−676として寄託されたLuteolibacter algae SWi−1−Y株である請求項記載の方法。 Bacteria, National Institute of Technology and Evaluation, Patent Microorganisms Depositary Center entrusted number NITE Luteolibacter algae SWi-1-Y strain The method of claim 1, wherein deposited as P-676. 独立行政法人製品評価技術基盤機構特許微生物寄託センターに受番号NITE P−675として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algae H18株。 National Institute of Technology and Evaluation, Patent Microorganisms Depositary Center entrusted number NITE The Fucoidan-utilizing bacterium Luteolibacter algae H18 strain deposited with P-675 and having fucoidan desulfation activity and low molecular weight activity. 独立行政法人製品評価技術基盤機構特許微生物寄託センターに受番号NITE P−676として寄託された、フコイダンの脱硫酸化活性と低分子化活性を有するフコイダン資化性細菌Luteolibacter algae SWi−1−Y株。 National Institute of Technology and Evaluation, Patent Microorganisms Depositary Center entrusted number NITE Fucoidan-utilizing bacterium Luteolibacter algae SWi-1-Y strain deposited with P-676 and having fucoidan desulfation activity and low molecular weight activity.
JP2008296993A 2008-11-20 2008-11-20 Novel fucoidan-utilizing microorganism Expired - Fee Related JP5364352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296993A JP5364352B2 (en) 2008-11-20 2008-11-20 Novel fucoidan-utilizing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296993A JP5364352B2 (en) 2008-11-20 2008-11-20 Novel fucoidan-utilizing microorganism

Publications (2)

Publication Number Publication Date
JP2010119352A JP2010119352A (en) 2010-06-03
JP5364352B2 true JP5364352B2 (en) 2013-12-11

Family

ID=42321259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296993A Expired - Fee Related JP5364352B2 (en) 2008-11-20 2008-11-20 Novel fucoidan-utilizing microorganism

Country Status (1)

Country Link
JP (1) JP5364352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074387A2 (en) 2017-10-12 2019-04-18 Bojan Pavlovic F-fucoidan, desulfated f-fucoidan, and its processed derivatives in terms of desulfated oligo-fucose as inhibitors of gastrointestinal infection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025018B2 (en) * 2011-03-24 2016-11-16 国立大学法人北海道大学 Novel alginic acid-utilizing bacterium, bacterial extract containing an enzyme that degrades alginic acid produced by the bacterium, and method for producing oligosaccharide, unsaturated monosaccharide, or α-keto acid using them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662852A (en) * 1992-08-21 1994-03-08 Tousa Kogaku Kenkyusho:Kk Fucoidanase
DE69637747D1 (en) * 1995-04-28 2008-12-24 Res Inst For Glycotechnology H SUGAR COMPOUNDS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074387A2 (en) 2017-10-12 2019-04-18 Bojan Pavlovic F-fucoidan, desulfated f-fucoidan, and its processed derivatives in terms of desulfated oligo-fucose as inhibitors of gastrointestinal infection

Also Published As

Publication number Publication date
JP2010119352A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
Tang et al. Isolation and characterization of alginate‐degrading bacteria for disposal of seaweed wastes
Al-Nahas et al. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp
US10793648B2 (en) Fucose-containing bacterial biopolymer
Pandian et al. Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach
Siddiqi et al. Simplicispira hankyongi sp. nov., a novel denitrifying bacterium isolated from sludge
Mageswari et al. Optimization and immobilization of amylase obtained from halotolerant bacteria isolated from solar salterns
Govarthanan et al. Effect of blue light on growth and exopolysaccharides production in phototrophic Rhodobacter sp. BT18 isolated from brackish water
Mandal et al. Partial characterization and flocculating behavior of an exopolysaccharide produced in nutrient-poor medium by a facultative oligotroph Klebsiella sp. PB12
Oyewole et al. Production and characterization of a bioflocculant produced by microorganisms isolated from earthen pond sludge
KR101153871B1 (en) Microorganism, Bacillus sp. N7151-B, producing alginate lyase
Fang et al. Characterization and flocculability of a novel proteoglycan produced by Talaromyces trachyspermus OU5
KR101206006B1 (en) Strain of flammeovirga sp. having a agar-decomposition activity and method of producing agarooligosaccharides using the same
Srivastava et al. Isolation, purification, and characterization of a novel exopolysaccharide isolated from marine bacteria Brevibacillus borstelensis M42
CA2782989C (en) Fucose-containing bacterial biopolymer
JP5364352B2 (en) Novel fucoidan-utilizing microorganism
Wang et al. Rhodanobacter panaciterrae sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field
JP6025018B2 (en) Novel alginic acid-utilizing bacterium, bacterial extract containing an enzyme that degrades alginic acid produced by the bacterium, and method for producing oligosaccharide, unsaturated monosaccharide, or α-keto acid using them
Shankar et al. Screening of exopolysaccharide producing bacterium Frateuria aurentia from elephant dung
JP5953078B2 (en) NOVEL MICROORGANISM AND ITS VARIANTS AND METHOD FOR PRODUCING POLYsaccharideS
KR20080059850A (en) New Pseudo-Altomonas Microorganisms
CN113789280A (en) A kind of spindle-shaped lysine bacillus preparation for degrading uric acid and preparation method and application thereof
CN105087427B (en) Produce Vibrio natriegen and its application of agarase
KR20040092067A (en) Novel strain Paenibacillus kribbensis AP-2 producing flocculant polysaccharide material
JP4073787B2 (en) Sulfated fucoglucuronomannan
KR20060051440A (en) Microorganisms Producing Fucoidan and Production Method of Fucoidan Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees