JP5360907B2 - Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same - Google Patents
Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same Download PDFInfo
- Publication number
- JP5360907B2 JP5360907B2 JP2010054751A JP2010054751A JP5360907B2 JP 5360907 B2 JP5360907 B2 JP 5360907B2 JP 2010054751 A JP2010054751 A JP 2010054751A JP 2010054751 A JP2010054751 A JP 2010054751A JP 5360907 B2 JP5360907 B2 JP 5360907B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- concentration
- organic compound
- diamond
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は、有機化合物濃度を高感度かつ高速度に分析することを可能とする有機化合物濃度検出用電極及びそれを使用した有機化合物濃度の電気化学検出装置に関する。 TECHNICAL FIELD The present invention relates to an organic compound concentration detection electrode capable of analyzing an organic compound concentration with high sensitivity and high speed, and an organic compound concentration electrochemical detection apparatus using the same.
近年、病気の診断等において様々な有機化合物の濃度を測定することが行われている。糖尿病を例にして説明すると、糖尿病の患者数は増加の一途を辿っている。この糖尿病の診断は、従来、血糖値を測定することにより行われるのが一般的であるが、採血を要し、その分析にも時間を要することから、簡便な方法とはいいがたい。現在、医療現場で実用化されている尿糖の定量方法はグルコースオキシダーゼ等の酵素試薬の呈色を判定として用いており、日本国内では、(株)三和化学研究所の製造する判定薬がほぼ市場の半分程度を占めている。 In recent years, the concentration of various organic compounds has been measured in disease diagnosis and the like. Taking diabetes as an example, the number of diabetic patients continues to increase. Diagnosis of diabetes has been conventionally performed by measuring blood glucose level, but it requires blood collection and analysis, and is difficult to say as a simple method. Currently, the urine sugar quantification method put into practical use in the medical field uses the coloration of enzyme reagents such as glucose oxidase as a judgment. In Japan, the judgment drug manufactured by Sanwa Chemical Laboratory Co., Ltd. Almost half of the market.
また、体内糖量測定用の電気化学的な分析手法としては、血液中の血糖(グルコース)に対するグルコース酸化酵素(グルコースオキシダーゼ)の反応で生成する過酸化水素を電気化学的に定量し、血糖値を算出する方法(グルコースセンサー法)、電極表面上で直接グルコースを酸化させ、その酸化電流値によりグルコース濃度を算出する、非酵素直接電解センサーによる方法が知られている。 In addition, as an electrochemical analysis method for measuring the amount of sugar in the body, the hydrogen peroxide produced by the reaction of glucose oxidase (glucose oxidase) to blood glucose (glucose) in the blood is electrochemically quantified, and the blood glucose level is determined. A method using a non-enzymatic direct electrolysis sensor is known in which glucose is directly oxidized on the electrode surface and the glucose concentration is calculated from the oxidation current value.
グルコース濃度電気化学分析方法として、特許文献1には、導電性ダイヤモンドと、その上に担持される、ニッケル、銅、金、白金、パラジウム、ルテニウム、イリジウム、コバルト、およびロジウムからなる群から選択される1種以上とを有してなる、ダイヤモンド電極と、対電極とを用意し、ダイヤモンド電極と、対電極とを被験試料に接触させ、ダイヤモンド電極と、対電極との間に、ダイヤモンド電極上で酸化反応の生じる電圧を印加し、電圧下における電流値を測定し、予め作成されたグルコースの濃度と電流値との検量線と得られた電流値とを対比することにより被験試料中のグルコースの濃度を算出する方法が開示されている。
As a glucose concentration electrochemical analysis method,
前記グルコースセンサー法では、体液中に共存するアスコルビン酸などの還元性物質の影響によりグルコース測定値に大きな誤差を生じる恐れがある。このため、医療機関における診断や、糖尿病患者自身による携帯用体内糖量測定器としての適用のために、測定方法の簡易化と分析精度の向上が求められている。さらに、この方法に用いられるセンサー部分は使い捨てが原則であるが、簡易健康管理器具へ適用の観点から、センサー部の耐久性の向上も求められている。 In the glucose sensor method, there is a possibility that a large error occurs in the glucose measurement value due to the influence of a reducing substance such as ascorbic acid coexisting in the body fluid. For this reason, simplification of the measurement method and improvement in analysis accuracy are required for diagnosis in medical institutions and application as a portable in-vivo sugar content measuring device by diabetic patients themselves. Furthermore, the sensor part used in this method is generally disposable, but from the viewpoint of application to a simple health care device, improvement of the durability of the sensor part is also required.
前記非酵素直接電解センサーによる方法では、グルコースの酸化に非常に大きな過電圧が必要であり、一般的な貴金属電極では、酸化生成物が電極表面上に吸着し(不動態膜を形成し)、さらなるグルコースの酸化や検出を阻害するという問題点がある。 In the method using the non-enzymatic direct electrolysis sensor, a very large overvoltage is required for the oxidation of glucose. In a general noble metal electrode, an oxidation product is adsorbed on the electrode surface (forms a passive film), and further, There is a problem of inhibiting the oxidation and detection of glucose.
特許文献1に記載されている、導電性ダイヤモンドは、成膜可能な基板材料がシリコンなどに限られ、しかも電極化可能な薄膜成膜に12時間を要する長時間成膜であるために高コストとなっている。
The conductive diamond described in
そこで、本発明は、高価な導電性ダイヤモンドを使用することなく導電性を有するダイヤモンドライクカーボン(DLC)の電極を利用して有機化合物濃度を高感度かつ高速度に分析することが可能な有機化合物濃度検出用電極及びそれを使用した有機化合物濃度電気化学検出装置を提供するものである。 Accordingly, the present invention provides an organic compound capable of analyzing the concentration of an organic compound with high sensitivity and high speed using a diamond-like carbon (DLC) electrode having conductivity without using expensive conductive diamond. An electrode for concentration detection and an organic compound concentration electrochemical detection device using the same are provided.
請求項1の発明は、グルコース濃度の検出に使用する電極が、導電性が0.002Scm −1 以上、電位窓が2.5V以上、アンペロメトリック応答のピーク強度が+3%以下の確度のダイヤモンドライクカーボン膜からなるダイヤモンドライクカーボン電極であって、高電位印加により前記ダイヤモンドライクカーボン電極表面でヒドロキシルラジカルが生成する導電性ダイヤモンドライクカーボン電極であることを特徴とするグルコース濃度検出用電極である。
The invention of
請求項2の発明は、検体が供給されるフローセルに作用電極及び対極が配置され、両極に電圧を印加し、測定された電流値とグルコース濃度−電流値の検量線から検体中のグルコース濃度を検出するグルコース濃度の電気化学検出装置において、作用電極が請求項1に記載のグルコース濃度検出用電極であることを特徴とするグルコース濃度の電気化学検出装置である。
According to a second aspect of the invention, is arranged the working electrode and the counter electrode in the flow cell specimen is supplied, a voltage is applied to both electrodes, the measured current value and the glucose concentration - the concentration of glucose in the sample from the calibration curve of current values in the electrochemical detection apparatus of the glucose concentration to be detected is an electrochemical detection apparatus glucose concentration, characterized in that the working electrode is a glucose concentration detection electrode according to
本発明では、DLC膜はアルミナ表面など様々な材料表面に数十分程度の短時間で且つ導電性ダイヤモンドの1/20の低コスト成膜が可能であり、さらに導電性ダイヤモンドと同等の性能が得られ、高感度で安定した測定が可能となる。 In the present invention, the DLC film can be formed on the surface of various materials such as an alumina surface in a short time of several tens of minutes and at a low cost of 1/20 of that of conductive diamond. Further, the DLC film has performance equivalent to that of conductive diamond. As a result, high sensitivity and stable measurement are possible.
本発明により、酸化電位が非常に高いため、白金や黒鉛など一般的な電極を用いては直接酸化に由来する電流を測定することが困難な有機化合物を対象物質とし、電位窓が広く、酸素発生反応に阻害されることなく高い酸化電位をもつ有機化合物を酸化可能で、かつ、表面に有機化合物の付着の少ない特性を示す導電性DCL電極を電極材料に選択することで、有機化合物を高感度且つ簡易に分析可能となる。 According to the present invention, since the oxidation potential is very high, an organic compound that is difficult to measure a current directly derived from oxidation using a general electrode such as platinum or graphite is used as a target substance. By selecting a conductive DCL electrode as an electrode material that can oxidize an organic compound having a high oxidation potential without being hindered by the generation reaction, and that has a property that the organic compound does not adhere to the surface. Sensitivity and simple analysis are possible.
本発明の導電性DCL電極表面では、高電位印加により、酸素発生反応の中間体であるヒドロキシルラジカルが生成し、このヒドロキシルラジカルを有機化合物の酸化に適用すると、その酸化生成物の電流応答により、有機化合物の定量分析が可能である。 On the surface of the conductive DCL electrode of the present invention, by applying a high potential, a hydroxyl radical that is an intermediate of the oxygen generation reaction is generated. When this hydroxyl radical is applied to the oxidation of an organic compound, the current response of the oxidation product Quantitative analysis of organic compounds is possible.
本発明により、従来は酵素法ではグルコース酸化酵素を利用しなければ定量分析できなかったグルコースを酵素なしの簡易な手法で定量分析することが可能となった。また、従来の直接酸化法で問題となる電極の不活性化を起こすことなく定量分析を行うことが可能となった。 According to the present invention, it has become possible to quantitatively analyze glucose by a simple method without an enzyme, which could not be quantitatively analyzed by the enzymatic method without using glucose oxidase. In addition, quantitative analysis can be performed without causing inactivation of the electrode, which is a problem in the conventional direct oxidation method.
本発明の実施例について図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
導電性DLC膜は、Si基板上にプラズマCVD法を用い、プラズマの照射出力で導電性を付与するため、III族及びV族の元素、好ましくは窒素、ホウ素、より好ましくは窒素であり、導入量を制御しながら成膜する。この導入量は導電性を付与できる範囲で適宜決定されるが、1,000nm〜2,000nm膜厚になるように、炭素原子数に対して窒素原子数が8%程度となるように成膜するのが好ましい。分子中に窒素原子を含む化合物の例としては、シアン化水素(HCN)、アセトニトリル(CH3CN)、エタンシアニド(CH3CH2CN)、プロパンシアニド(CH3CH2CH2CN)、ホルムアミド(HCONH2)、アセトアミド(CH3CONH2)、メチルアミン(CH3NH2)、エチルアミン(CH3CH2NH2)などが挙げられる。これらの化合物のうち、一種類を原料ガスとして用いることもできる。 The conductive DLC film is a group III and group V element, preferably nitrogen, boron, more preferably nitrogen, in order to impart conductivity with plasma irradiation output on a Si substrate using a plasma CVD method. The film is formed while controlling the amount. The amount of introduction is appropriately determined within a range where conductivity can be imparted, but the film is formed so that the number of nitrogen atoms is about 8% with respect to the number of carbon atoms so that the film thickness is 1,000 nm to 2,000 nm. It is preferable to do this. Examples of the compound containing a nitrogen atom in the molecule include hydrogen cyanide (HCN), acetonitrile (CH 3 CN), ethane cyanide (CH 3 CH 2 CN), propane cyanide (CH 3 CH 2 CH 2 CN), formamide (HCONH) 2 ), acetamide (CH 3 CONH 2 ), methylamine (CH 3 NH 2 ), ethylamine (CH 3 CH 2 NH 2 ) and the like. Among these compounds, one kind can be used as a raw material gas.
本発明の電極に用いる導電性DLCの導電性は0.002Scm−1以上であり、より好ましくは0.01Scm−1以上である。 The conductivity of the conductive DLC used for the electrode of the present invention is 0.002 Scm −1 or more, more preferably 0.01 Scm −1 or more.
本発明の電極に用いる導電性DLCの電位窓は2.5V以上であり、より好ましくは3.0V以上である。 The potential window of the conductive DLC used for the electrode of the present invention is 2.5 V or more, more preferably 3.0 V or more.
導電性DLC膜は強酸への耐腐食性に優れるため電気化学的安定性が高い。また、導電性DLC膜は、電位窓がPtやグラファイトに比べて大きく、表面のO2、H2の発生反応速度が遅く、導電性ダイヤモンドと同等の分極性電極となる。また、導電性DLC膜は、有機化合物の酸化反応に対し導電性ダイヤモンドと同等の良好な応答性を有するので、生体成分検出センサーとして応用可能となる。 Since the conductive DLC film has excellent corrosion resistance to strong acids, it has high electrochemical stability. In addition, the conductive DLC film has a larger potential window than Pt and graphite, has a slow reaction rate of O 2 and H 2 generation on the surface, and becomes a polarizable electrode equivalent to conductive diamond. In addition, since the conductive DLC film has good responsiveness equivalent to that of conductive diamond with respect to the oxidation reaction of organic compounds, it can be applied as a biological component detection sensor.
糖尿病の診断においては、一般に、尿糖値測定による糖尿病診断の基準として、尿糖値が、食後に100〜500mg/dLであると対糖能障害(境界型)であり、食前に50mg/dL以上であり、かつ食後において500mg/dL以上であると糖尿病であると設定されている。血液中のグルコース濃度は、成人で3〜8mMの範囲の濃度である。導電性DLC薄膜を用い、高電位を印加することで、上記濃度範囲内でグルコース濃度を測定することが可能であり、簡易に短時間で糖尿病診断を行うことができる。 In the diagnosis of diabetes, generally, as a standard for diagnosing diabetes by measuring urine sugar level, if the urine sugar value is 100 to 500 mg / dL after meal, it is a glucose tolerance disorder (boundary type), and 50 mg / dL before meal. If it is more than 500 mg / dL after meal, it is set as diabetes. The glucose concentration in the blood is in the range of 3-8 mM in adults. By using a conductive DLC thin film and applying a high potential, the glucose concentration can be measured within the above concentration range, and diabetes diagnosis can be easily performed in a short time.
本発明において、導電性DLC電極を用いた電気化学センサー型生体成分分析装置のセンシング部分は、検体がフロー状態で供給されるフローセルの構成を採用し、その電気化学センサーでの測定電流値を検量線と比較することにより濃度を決定する。 In the present invention, the sensing part of the electrochemical sensor type biological component analyzer using the conductive DLC electrode adopts a flow cell configuration in which the specimen is supplied in a flow state, and the measurement current value of the electrochemical sensor is calibrated. Determine the concentration by comparing to the line.
図1において、検体が流入するフローセル1に作用電極2、対極3及び参照電極4が配置され、作用電極2、対極3及び参照電極4の各電流値を測定する電流計5が接続されている。作用電極2は導電性DLC電極である。対極は白金、炭素、金等を使用する。
In FIG. 1, a working
参照電極は公知のものを利用することが出来、銀塩化銀電極、飽和カロメル電極、標準水素電極、水銀塩化水銀電極、水素パラジウム電極等であることが好ましい。 A known electrode can be used as the reference electrode, and a silver-silver chloride electrode, a saturated calomel electrode, a standard hydrogen electrode, a mercury mercury chloride electrode, a hydrogen palladium electrode, and the like are preferable.
本発明において、作用電極であるDLC電極と、対極との間に印加される電圧は、DLC電極上で検出対象試料の酸化反応あるいは還元反応が生じるものであれば特に限定されない。 In the present invention, the voltage applied between the DLC electrode as the working electrode and the counter electrode is not particularly limited as long as an oxidation reaction or a reduction reaction of the sample to be detected occurs on the DLC electrode.
電流計5で測定された電流値は、検体濃度と電流値の検量線データ6を備えた電流値比較・濃度算出部7に入力されて、検体濃度が演算され、インジケーター8に表示される。
The current value measured by the
検出対象試料は、DLC上で電解反応する物質である。具体的には、ヒドロキシ基、オキシ基又はカルボニル基に隣接する炭素に結合する第2級水素又は第3級水素を有する有機化合物を挙げることが出来る。中でも、グルコース、2−プロパノール、アセト酢酸エチル、酢酸エチル、アスコルビン酸が挙げられる。 The detection target sample is a substance that undergoes an electrolytic reaction on the DLC. Specifically, an organic compound having a secondary hydrogen or a tertiary hydrogen bonded to carbon adjacent to a hydroxy group, an oxy group, or a carbonyl group can be given. Among these, glucose, 2-propanol, ethyl acetoacetate, ethyl acetate, and ascorbic acid can be mentioned.
検出対象試料は、上記化合物が含まれていると考えられる生体由来の血液、体液等、又は食品若しくは食品の希釈溶液又は懸濁液であってよい。多種の成分を含む検出対象試料の場合、分離カラムを通した後にフローセルに供給することが望ましい。 The detection target sample may be blood, body fluid, or the like derived from a living body considered to contain the above compound, or food or a diluted solution or suspension of food. In the case of a detection target sample containing various components, it is desirable to supply the sample to the flow cell after passing through a separation column.
(導電性ダイヤモンドライクカーボンの製造)
[ダイヤモンドライクカーボンの製造及び評価]
プラズマCVD装置として、基板を載置する電極に負のバイアス電力を供給可能な構成
を有するサムコ株式会社製のBP−1特を用いた。原料ガスには50℃で加熱して気化させたアセトニトリルを用いた。そして、電極に載置したシリコンウエハ上に、ダイヤモンドライクカーボンを1500nmの膜厚になるように成膜を行った。
アセトニトリルの流量は5sccm、チャンバ内の圧力は10Pa、温度は280℃という条件において、プラズマ出力を230Wとした。
(Manufacture of conductive diamond-like carbon)
[Production and evaluation of diamond-like carbon]
As a plasma CVD apparatus, a BP-1 product manufactured by Samco Co., Ltd., having a configuration capable of supplying negative bias power to the electrode on which the substrate is placed, was used. As the source gas, acetonitrile vaporized by heating at 50 ° C. was used. Then, a diamond-like carbon film was formed on the silicon wafer placed on the electrode so as to have a thickness of 1500 nm.
The plasma output was 230 W under the conditions that the flow rate of acetonitrile was 5 sccm, the pressure in the chamber was 10 Pa, and the temperature was 280 ° C.
(電位窓の評価)
上記で得られたダイヤモンドライクカーボンを作用極とし、Ag/AgClを参照極とし、白金を対極として、0.1Mの硫酸水溶液中で100mV/sの速度で電位掃引した場合の電位に対する電流を測定した。酸化・還元電流が2mA/cm2以下の電位範囲を電位窓と定義すると、電位窓は3.94Vであった。
(Evaluation of potential window)
Using the diamond-like carbon obtained above as the working electrode, Ag / AgCl as the reference electrode, platinum as the counter electrode, and measuring the current against the potential when the potential is swept at a rate of 100 mV / s in a 0.1 M sulfuric acid aqueous solution. did. When a potential range in which the oxidation / reduction current is 2 mA / cm 2 or less is defined as a potential window, the potential window is 3.94V.
(グルコース濃度の検出)
pH1のリン酸溶液を移動相溶液に用い、10mMのグルコース溶液を、20μLインジェクションした場合の、電流応答の電極電位依存性を図2に示す。図2において、+2.0V付近からグルコースに由来した応答電流が観測され、応答電流は+3.6V付近から飽和する。
図3に示すように、電極電位を+3.6Vに固定した場合、応答電流は10mMから1mMの範囲のグルコース濃度に対してリニアな関係を示した。S/N=3の検出限界は1.37mMである。したがって、この手法によりグルコース濃度を定量分析することが可能であり、グルコースを成人男子の体内濃度値3〜8mMを十分にカバーできる。
また、グルコースの生体成分の測定には、高感度で安定した測定が要求される。図4に示すように、導電性DLC薄膜のアンペロメトリック応答においては、ピーク強度が+3%以下の確度を示し、高い信頼性を実現した。
(Detection of glucose concentration)
FIG. 2 shows the electrode potential dependence of the current response when 20 μL of a 10 mM glucose solution was injected using a
As shown in FIG. 3, when the electrode potential was fixed at +3.6 V, the response current showed a linear relationship with the glucose concentration in the range of 10 mM to 1 mM. The detection limit for S / N = 3 is 1.37 mM. Therefore, it is possible to quantitatively analyze the glucose concentration by this method, and glucose can sufficiently cover the adult male body concentration value of 3 to 8 mM.
In addition, measurement of a biological component of glucose requires a highly sensitive and stable measurement. As shown in FIG. 4, in the amperometric response of the conductive DLC thin film, the peak intensity showed an accuracy of + 3% or less, and high reliability was realized.
(2−プロパノール濃度の検出)
200mMの2−プロパノール溶液を用いたこと以外は、グルコース濃度の検出と同様の方法を用いた。電流応答の電極電位依存性を図5に示す。図5において、+1.6V付近から2−プロパノールに由来した応答電流が観測され、応答電流は+3V付近から飽和する。
図6に示すように、電極電位を+3.3Vに固定した場合、応答電流は40mMから200mMの範囲の2−プロパノール濃度に対してリニアな関係を示した。S/N=3の検出限界は5.6mMである。したがって、この手法により2−プロパノール濃度を定量分析することが可能である。
(Detection of 2-propanol concentration)
A method similar to the detection of glucose concentration was used except that a 200 mM 2-propanol solution was used. FIG. 5 shows the electrode potential dependence of the current response. In FIG. 5, a response current derived from 2-propanol is observed from around +1.6 V, and the response current is saturated from around +3 V.
As shown in FIG. 6, when the electrode potential was fixed at +3.3 V, the response current showed a linear relationship with the 2-propanol concentration in the range of 40 mM to 200 mM. The detection limit for S / N = 3 is 5.6 mM. Therefore, it is possible to quantitatively analyze the 2-propanol concentration by this method.
(アセト酢酸エチル濃度の検出)
200mMのアセト酢酸エチル溶液を用いたこと以外は、グルコース濃度の検出と同様の方法を用いた。電流応答の電極電位依存性を図5に示す。図5において、+2V付近からアセト酢酸エチルに由来した応答電流が観測され、応答電流は+3.4V付近から飽和する。
図6に示すように、電極電位を+3.6Vに固定した場合、応答電流は80mMから200mMの範囲のアセト酢酸エチル濃度に対してリニアな関係を示した。S/N=3の検出限界は11.2mMである。したがって、この手法によりアセト酢酸エチル濃度を定量分析することが可能である。
(Detection of ethyl acetoacetate concentration)
A method similar to the detection of glucose concentration was used except that a 200 mM ethyl acetoacetate solution was used. FIG. 5 shows the electrode potential dependence of the current response. In FIG. 5, a response current derived from ethyl acetoacetate is observed from around + 2V, and the response current saturates from around + 3.4V.
As shown in FIG. 6, when the electrode potential was fixed at +3.6 V, the response current showed a linear relationship with the ethyl acetoacetate concentration in the range of 80 mM to 200 mM. The detection limit for S / N = 3 is 11.2 mM. Therefore, it is possible to quantitatively analyze the ethyl acetoacetate concentration by this method.
(酢酸エチル濃度の検出)
200mMの酢酸エチル溶液を用いたこと以外は、グルコース濃度の検出と同様の方法を用いた。電流応答の電極電位依存性を図5に示す。図5において、+2.3V付近から酢酸エチルに由来した応答電流が観測され、応答電流は+3.6V付近から飽和する。
図6に示すように、電極電位を+3.6Vに固定した場合、応答電流は140mMから200mMの範囲の酢酸エチル濃度に対してリニアな関係を示した。S/N=3の検出限界は19.6mMである。したがって、この手法により酢酸エチル濃度を定量分析することが可能である。
(Ethyl acetate concentration detection)
A method similar to the detection of glucose concentration was used except that a 200 mM ethyl acetate solution was used. FIG. 5 shows the electrode potential dependence of the current response. In FIG. 5, a response current derived from ethyl acetate is observed from around + 2.3V, and the response current saturates from around + 3.6V.
As shown in FIG. 6, when the electrode potential was fixed at +3.6 V, the response current showed a linear relationship with the ethyl acetate concentration in the range of 140 mM to 200 mM. The detection limit for S / N = 3 is 19.6 mM. Therefore, it is possible to quantitatively analyze the ethyl acetate concentration by this method.
(アスコルビン酸濃度の検出)
10mMの酢酸エチル溶液を用いたこと以外は、グルコース濃度の検出と同様の方法を用いた。電流応答の電極電位依存性を図5に示す。図5において、+0.6V付近からアスコルビン酸に由来した応答電流が観測され、2V付近に電流ピークを示し、応答電流は+3.3V付近から飽和する。
図6に示すように、電極電位を+3.6Vに固定した場合、応答電流は0.1mMから10mMの範囲のアスコルビン酸濃度に対してリニアな関係を示した。S/N=3の検出限界は0.014mMである。したがって、この手法によりアスコルビン酸濃度を定量分析することが可能である。
(Detection of ascorbic acid concentration)
A method similar to the detection of glucose concentration was used except that a 10 mM ethyl acetate solution was used. FIG. 5 shows the electrode potential dependence of the current response. In FIG. 5, a response current derived from ascorbic acid is observed from around +0.6 V, a current peak is shown around 2 V, and the response current saturates from around +3.3 V.
As shown in FIG. 6, when the electrode potential was fixed at +3.6 V, the response current showed a linear relationship with the ascorbic acid concentration in the range of 0.1 mM to 10 mM. The detection limit for S / N = 3 is 0.014 mM. Therefore, it is possible to quantitatively analyze the ascorbic acid concentration by this method.
1:フローセル
2:作用電極
3:対極参照電極
4:参照電極
5:電流計
6:検量線データ
7:電流値比較・濃度算出部
8:インジケーター
1: Flow cell 2: Working electrode
3: Counter electrode reference electrode 4: Reference electrode 5: Ammeter 6: Calibration curve data 7: Current value comparison / concentration calculation unit 8: Indicator
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054751A JP5360907B2 (en) | 2010-03-11 | 2010-03-11 | Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010054751A JP5360907B2 (en) | 2010-03-11 | 2010-03-11 | Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011185910A JP2011185910A (en) | 2011-09-22 |
JP5360907B2 true JP5360907B2 (en) | 2013-12-04 |
Family
ID=44792355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010054751A Expired - Fee Related JP5360907B2 (en) | 2010-03-11 | 2010-03-11 | Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5360907B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015178989A (en) * | 2014-03-19 | 2015-10-08 | 株式会社industria | Coulometric titration method and coulometric titration device |
JP2017067736A (en) * | 2015-10-02 | 2017-04-06 | 株式会社industria | Coulometric titration method and device of the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9211402D0 (en) * | 1992-05-29 | 1992-07-15 | Univ Manchester | Sensor devices |
JP4619506B2 (en) * | 2000-09-21 | 2011-01-26 | 藤嶋 昭 | Diamond electrode for measuring glucose concentration, and measuring method and apparatus using the same |
JP4978858B2 (en) * | 2006-03-29 | 2012-07-18 | 学校法人東京理科大学 | Diamond electrode and sensor equipped with the same |
JP5301101B2 (en) * | 2007-02-28 | 2013-09-25 | Tdk株式会社 | Electrochemical sensor and electrochemical sensor system |
JP5245388B2 (en) * | 2007-12-18 | 2013-07-24 | Tdk株式会社 | Electrochemical sensor and electrochemical sensor system |
JP5088148B2 (en) * | 2008-01-16 | 2012-12-05 | Tdk株式会社 | Method for measuring metabolite concentration and electrochemical sensor used therefor |
JP4968144B2 (en) * | 2008-03-31 | 2012-07-04 | Tdk株式会社 | Electrochemical sensor and electrochemical sensor system |
-
2010
- 2010-03-11 JP JP2010054751A patent/JP5360907B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011185910A (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode | |
Goyal et al. | Voltammetric determination of uric acid at a fullerene‐C60‐modified glassy carbon electrode | |
KR101114020B1 (en) | Method and apparatus for assay of electrochemical properties | |
Sochr et al. | Electrochemical determination of adrenaline in human urine using a boron-doped diamond film electrode | |
AU2015242942B2 (en) | Fill sufficiency method and system | |
Li et al. | A novel strategy for selective determination of d-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide | |
Yang et al. | Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin | |
CN104661593B (en) | System and method for measuring the concentration of glucose insensitive to hematocrit | |
CN102667475B (en) | Method for measuring analyte concentration in a liquid sample | |
Ramírez et al. | Electrochemical oxidation of catecholamines on fluorine-doped SnO2 substrates. Square-wave voltammetric method for methyldopa determination in pharmaceutical dosage forms | |
Raoof et al. | A selective sensor based on a glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyanoferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid | |
Liu et al. | Development of an amperometric biosensor on a toothbrush for glucose | |
De Micheli et al. | An integrated platform for advanced diagnostics | |
CN104684473B (en) | System and method for determining the concentration of glucose insensitive to hematocrit | |
Zhang et al. | Electrode surface roughness greatly enhances the sensitivity of electrochemical non-enzymatic glucose sensors | |
JP5360907B2 (en) | Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same | |
US10670580B2 (en) | Quantification of inflammatory molecules in exhaled breath condensate using differential pulse voltammetry on reduced graphene oxide sensor | |
CN110487872A (en) | A kind of electrochemica biological sensor and its method for sensing based on spatula | |
TWI603083B (en) | System and method for measuring an analyte in a sample and calculating hematocrit-insensitive glucose concentrations | |
Zhang et al. | An electrochemical reductive approach for selective determination of dopamine based on its reverse voltammetric preoxidation and intramolecular cyclization | |
TW201719161A (en) | System and method for compensating sample-related measurements based on polarization effects of test strips | |
CN113433190B (en) | Biological conductive composite film and application thereof in detecting glucose | |
KR20170040918A (en) | Bio sensor and sensing method thereof | |
JP2009300342A (en) | Biosensor | |
EP4450964A2 (en) | Electrochemical biosensor strip, method for measuring blood glucose concentration, and electrochemical quantitative analysis system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5360907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |