[go: up one dir, main page]

JP5360380B2 - Method for detecting state of metal particles in glass - Google Patents

Method for detecting state of metal particles in glass Download PDF

Info

Publication number
JP5360380B2
JP5360380B2 JP2009049269A JP2009049269A JP5360380B2 JP 5360380 B2 JP5360380 B2 JP 5360380B2 JP 2009049269 A JP2009049269 A JP 2009049269A JP 2009049269 A JP2009049269 A JP 2009049269A JP 5360380 B2 JP5360380 B2 JP 5360380B2
Authority
JP
Japan
Prior art keywords
glass
metal particles
container
state
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009049269A
Other languages
Japanese (ja)
Other versions
JP2010203897A (en
Inventor
能孝 岩佐
良行 磯
伸介 松野
博幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009049269A priority Critical patent/JP5360380B2/en
Publication of JP2010203897A publication Critical patent/JP2010203897A/en
Application granted granted Critical
Publication of JP5360380B2 publication Critical patent/JP5360380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply detecting a distribution of metal particles in glass by a small device. <P>SOLUTION: The state detection method of metal particles in glass includes processes for: arranging metal powder on the upper surface of glass dissolved and solidified beforehand in a container; melting solidified glass and glass crushed material inside by heating the container, and maintaining the molten state for a set time; solidifying molten glass containing the metal powder by cooling the container after the process for maintaining the molten state; and moving an ultrasonic probe along the outer surface of the container after the solidifying process, and detecting the distribution of the metal particles in the glass. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ガラス中の金属粒子の状態検出方法に関する。   The present invention relates to a method for detecting the state of metal particles in glass.

原子力施設において排出される高レベル放射性廃液は、前処理された後、ガラス溶融炉内で溶融ガラスに混入され、そしてその廃液が混入された溶融ガラスを別の容器に注入し、同容器と共に固化した状態で放射性廃棄物保管施設に保管することが行われている。
溶融ガラスに混入される廃液には金属粒子が含まれており、特にクラスタ化した金属粒子が溶融炉内の底部の一部に集中して堆積し、その堆積した金属粒子により、溶融炉の排出孔が閉塞されたり、あるいは溶融炉を加熱する電極間が短絡状態となって、溶融ガラスを十分に加熱できない不具合が発生する可能性がある。これら不具合の発生を防止するため、溶融ガラス内の金属粒子の状態、特にはその沈降速度を把握することが有用である。
High-level radioactive liquid waste discharged at nuclear facilities is pretreated and then mixed into molten glass in a glass melting furnace. The molten glass mixed with the liquid waste is poured into another container and solidified together with the container. Stored in a radioactive waste storage facility.
The waste liquid mixed in the molten glass contains metal particles. In particular, clustered metal particles concentrate and accumulate on a part of the bottom of the melting furnace, and the accumulated metal particles discharge the melting furnace. There is a possibility that the holes may be blocked or the electrodes for heating the melting furnace may be short-circuited to cause a problem that the molten glass cannot be heated sufficiently. In order to prevent the occurrence of these problems, it is useful to know the state of the metal particles in the molten glass, particularly the sedimentation speed.

本出願人は、溶融ガラス内の金属粒子の状態を検出するために、容器内に予め固化されたガラス上に金属粒子を配置し、同容器と共に加熱して溶融させ、設定時間後に固化させたサンプルを得て分析する方法を採用していた。サンプルの分析は、同サンプルを容器と共に切断し、その切断面から金属粒子の状態を直接調べるものである。また溶融ガラス内における金属粒子の沈降速度を知るために、溶融していた時間を異ならせた複数のサンプルを用意し、これらサンプルから得た金属粒子の状態を互いに比較し、分析していた。   In order to detect the state of the metal particles in the molten glass, the present applicant placed the metal particles on the glass solidified in advance in the container, melted by heating with the container, and solidified after a set time. A method of obtaining and analyzing samples was adopted. In the analysis of a sample, the sample is cut together with a container, and the state of metal particles is directly examined from the cut surface. In order to know the sedimentation rate of the metal particles in the molten glass, a plurality of samples having different melting times were prepared, and the states of the metal particles obtained from these samples were compared with each other and analyzed.

特許文献1には、X線CT装置が開示されている。このX線CT装置は、測定物の周囲に複数のX線発生源及び検出器を配し、X線発生源を機械的に回転させるものである。   Patent Document 1 discloses an X-ray CT apparatus. In this X-ray CT apparatus, a plurality of X-ray generation sources and detectors are arranged around a measurement object, and the X-ray generation source is mechanically rotated.

特開2005−265559号公報JP 2005-265559 A

上述のサンプルを切断し、その切断面から金属粒子の状態を直接調べるものにおいては、その分析精度には限界があるし、また金属粒子の沈降速度を知るために複数のサンプルを用意しなくてはならないので、コストが嵩むという問題があった。またX線CT装置そのものは、装置全体が大型かつ複雑で、やはりコストが嵩むという問題があった。
本発明はこのような事情を考慮してなされたもので、その目的は、小型の装置で簡便にガラス固化体中の金属粒子の状態を検出する方法を提供することにある。
In the case where the above sample is cut and the state of the metal particles is directly examined from the cut surface, there is a limit to the analysis accuracy, and a plurality of samples must be prepared to know the settling speed of the metal particles. There is a problem that the cost increases. Further, the X-ray CT apparatus itself has a problem that the whole apparatus is large and complicated, and the cost is increased.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for easily detecting the state of metal particles in a vitrified body with a small apparatus.

本発明の請求項1に記載したガラス中の金属粒子の状態検出方法は、容器内において予め溶融固化されたガラスの上面に金属粒子とガラス破砕物との混合物を配置すると共に該混合物の周り及び上部にガラス破砕物を充填する工程と、前記容器を加熱して内部の前記固化されたガラスと、前記混合物のガラス破砕物と、前記混合物の周り及び上部に充填した前記ガラス破砕物を溶融し、設定時間その溶融状態を維持する工程と、前記溶融状態を維持する工程の後、前記容器を冷却して前記金属粒子を含む溶融されたガラス及び前記ガラス破砕物を固化する工程と、前記固化する工程の後、超音波探触子を前記容器の外面に沿って移動させ、ガラス中の金属粒子の分布を検出する工程を備えている。 In the method for detecting the state of metal particles in glass according to claim 1 of the present invention, a mixture of metal particles and crushed glass is disposed on the upper surface of glass previously melted and solidified in a container, and around and melting and filling a glass crushed at the top, and the solidified glass inside by heating the container, a glass crushed the mixture, and the glass crushed material filled around and above the mixture And maintaining the molten state for a set time, and after the step of maintaining the molten state, cooling the vessel and solidifying the molten glass containing the metal particles and the glass crushed material , After the solidifying step, the ultrasonic probe is moved along the outer surface of the container to detect the distribution of metal particles in the glass.

請求項2に記載したガラス中の金属粒子の状態検出方法は、請求項1において、さらに、前記検出する工程の後、前記容器を再加熱して前記金属粒子を含む固化されたガラスを再溶融し、設定時間その再溶融状態を維持する工程と、前記再溶融状態を維持する工程の後、前記容器を再冷却して前記金属ガラスを含む溶融されたガラスを再固化する工程と、前記再固化する工程の後、超音波探触子を前記耐熱容器の外面に沿って移動させ、ガラス中の金属粒子の分布を再検出する工程と、前記再検出する工程の後、前記検出する工程で得たガラス中の金属粒子の分布と比較して、該金属粒子の沈降速度を算出する工程とを備えている。   The method for detecting the state of the metal particles in the glass according to claim 2 is the method according to claim 1, wherein after the detecting step, the container is reheated to remelt the solidified glass containing the metal particles. And maintaining the remelted state for a set time, maintaining the remelted state, recooling the container to resolidify the molten glass containing the metal glass, After the solidifying step, the ultrasonic probe is moved along the outer surface of the heat-resistant container, the step of re-detecting the distribution of metal particles in the glass, the step of detecting after the step of re-detecting A step of calculating a sedimentation rate of the metal particles as compared with the distribution of the metal particles in the obtained glass.

本発明の請求項1に記載したガラス中の金属粒子の状態検出方法は、容器内において予め溶融固化されたガラスの上面に金属粉とガラス破砕物との混合物を配置すると共に該混合物の周り及び上部にもガラス破砕物を配置したうえ容器を加熱してガラスと、混合物のガラス破砕物と、混合物の周り及び上部に充填したガラス破砕物とを溶融するので、実際の廃液処理における溶融されたガラス中の金属粒子の沈降と同じような状況を作り出すことができる。そして、設定時間ガラスの溶融状態を維持した後、ガラスを固化させ、次いで超音波探触子によってガラス中の金属粒子の分布を検出するので、固化されたガラスではあるが、実際の溶融ガラス中における金属粒子の分布に近い分布を検出することができる。したがって、前記ガラスを切断する必要がなく、小型でかつ低コストで溶融ガラス中の金属粒子の分布に近い状態を検出することができる。 In the method for detecting the state of metal particles in glass according to claim 1 of the present invention, a mixture of metal powder and crushed glass is disposed on the upper surface of glass previously melted and solidified in a container, and around and in terms of placing the glass crushed to top, and the glass by heating the container, a glass crushed mixture, since melting and glass crushed material filled around and on top of the mixture, melt in the actual wastewater treatment A situation similar to the settling of metal particles in the finished glass can be created. And after maintaining the molten state of the glass for a set time, the glass is solidified, and then the distribution of metal particles in the glass is detected by an ultrasonic probe, so it is a solidified glass, but in the actual molten glass A distribution close to the distribution of metal particles in can be detected. Therefore, it is not necessary to cut the glass, and it is possible to detect a state close to the distribution of metal particles in the molten glass at a small size and at a low cost.

請求項2に記載したガラスの金属粒子の状態検出方法は、前記検出を終えた金属粒子を含むガラス固化体(サンプル)を加熱して溶融させ、その溶融状態を設定時間維持した後、再び冷却してガラスを固化させ、次いで超音波探触子によってガラス中の金属粒子の分布を再び検出する。そして、最初に検出したガラス中の金属粒子の分布と今回検出したガラス中の金属粒子の分布とを比較して、該金属粒子の沈降速度を算出するので、同じサンプルを用いてガラス中の金属粒子の移動状態を観察することができ、コストを大幅に低減することができる。   The glass metal particle state detection method according to claim 2 is a method of heating and melting the glass solid body (sample) containing the metal particles after the detection, maintaining the molten state for a set time, and then cooling again. Then, the glass is solidified, and then the distribution of metal particles in the glass is detected again by an ultrasonic probe. Then, the distribution of the metal particles in the glass detected first and the distribution of the metal particles in the glass detected this time are compared to calculate the sedimentation rate of the metal particles. The moving state of the particles can be observed, and the cost can be greatly reduced.

本発明の一実施例における容器内に金属粉を投入する工程を示す断面図である。It is sectional drawing which shows the process of throwing metal powder in the container in one Example of this invention. 容器を加熱する工程を示す断面図である。It is sectional drawing which shows the process of heating a container. 超音波探触子による検出状態を示す説明図である。It is explanatory drawing which shows the detection state by an ultrasonic probe.

以下、図面を参照して本発明を実施するための形態について説明する。
図1は本発明の実施例における容器内において予め溶融固化されたガラスの上面に金属粒子を投入する工程を示す断面図、図2は容器を加熱する工程を示す断面図、図3は超音波探触子による検出状態を示す断面図である。
本実施例におけるガラス中の金属粒子検出方法は、まず図1に示されるように、耐熱容器である円筒状のタンマン管2において予め溶融固化されたガラス4の上面に、金属粒子とガラス破砕物との混合物6を配置する第1工程を備えている。なお、混合物6の周り及び上部にはさらにガラス破砕物が充填される。次いで、図2に示されるように、タンマン管2を電気炉8により加熱し、タンマン管2内のガラス4及びガラス破砕物を溶融させると共にその溶融状態を設定温度で設定時間維持する第2工程を備えている。次いで、タンマン管2を冷却して内部、金属粒子を含む溶融されたガラスを固化させる第3工程を備えている。そして、第3工程の後、図3に示されるように、超音波探触子10をタンマン管2の外面に沿って移動させ、ガラス中の金属粒子Mの分布を検出する第4工程を備えている。超音波探触子10は、同探触子10とコンピュータ12との間に設けられた制御装置14によって、その移動及び発振・受信を制御されている。そして、第4工程における金属粒子Mの検出は、通常知られている音波探傷法と基本的に同じである。すなわち、超音波探触子10からタンマン管2に発振した超音波に対する反射波をコンピュータ12により監視し、金属粒子Mの存在する位置が検出されるものである。なお、金属粒子Mは、通常複数の金属粒子が結合してクラスタ化しているものが多く存在する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a process of putting metal particles on the upper surface of glass previously melted and solidified in a container in an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a process of heating the container, and FIG. It is sectional drawing which shows the detection state by a probe.
First, as shown in FIG. 1, the method for detecting metal particles in glass in the present embodiment has metal particles and glass fragments on the upper surface of glass 4 previously melted and solidified in a cylindrical Tamman tube 2 that is a heat-resistant container. And a first step of disposing the mixture 6. In addition, the crushed glass is further filled around and at the top of the mixture 6. Next, as shown in FIG. 2, the second step of heating the Tamman tube 2 by the electric furnace 8 to melt the glass 4 and the crushed glass in the Tamman tube 2 and maintaining the molten state at a set temperature for a set time. It has. Next, the third step of cooling the Tamman tube 2 to solidify the molten glass containing metal particles inside is provided. And after a 3rd process, as FIG. 3 shows, the ultrasonic probe 10 is moved along the outer surface of the Tamman tube 2, and the 4th process of detecting the distribution of the metal particle M in glass is provided. ing. The movement, oscillation and reception of the ultrasonic probe 10 are controlled by a control device 14 provided between the probe 10 and the computer 12. The detection of the metal particles M in the fourth step is basically the same as the generally known acoustic flaw detection method. That is, the reflected wave with respect to the ultrasonic wave oscillated from the ultrasonic probe 10 to the Tamman tube 2 is monitored by the computer 12, and the position where the metal particle M exists is detected. Many metal particles M are usually clustered by bonding a plurality of metal particles.

上述の構成によれば、第1工程及び第2工程において、容器2内に予め溶融固化されたガラス4の上面に金属粒子とガラス破砕物との混合物6を収容した状態で容器2を加熱するので、実際の廃液処理における溶融ガラス中の金属粒子の沈降と同じような状況を作り出すことができる。そして、第2工程において、容器2内の溶融ガラスの溶融状態が設定温度で設定時間維持された後、第3工程において、溶融ガラスを固化させ、次いで第4工程において、超音波探触子10によって同ガラス固化体中の金属粒子Mの分布が検出される。このため、ガラスは固化されたものであるが、実際の溶融ガラス中における金属粒子の分布に近い分布を検出することができる。したがって、ガラスを切断することなく、小型の装置でかつ低コストで溶融ガラス中の金属粒子の分布に近い状態を検出することができる。   According to the above-described configuration, in the first step and the second step, the container 2 is heated in a state in which the mixture 6 of the metal particles and the crushed glass is accommodated on the upper surface of the glass 4 previously melted and solidified in the container 2. Therefore, it is possible to create a situation similar to the sedimentation of metal particles in molten glass in actual waste liquid treatment. In the second step, after the molten state of the molten glass in the container 2 is maintained at the set temperature for a set time, the molten glass is solidified in the third step, and then in the fourth step, the ultrasonic probe 10 is solidified. Thus, the distribution of the metal particles M in the vitrified body is detected. For this reason, although the glass is solidified, a distribution close to the distribution of metal particles in the actual molten glass can be detected. Therefore, a state close to the distribution of the metal particles in the molten glass can be detected with a small apparatus and at a low cost without cutting the glass.

さらに、この実施例における検出方法は、第4工程の後、固化されたガラスを容器2と共に再加熱して溶融させ、容器2内の溶融されたガラスを設定温度で設定時間維持する第5工程を備えている。次いで、第5工程の後、前記容器を再冷却し、前記金属粒子を含む溶融されたガラスを再固化する第6工程を備えている。そして、第6工程の後、上述の第4工程とまったく同様に、超音波探触子10をタンマン管2の外面に沿って移動させ、ガラス中の金属粒子Mの分布を再検出する第7工程を備えている。さらに、第7工程の後、第4工程で検出したガラス中の金属粒子の分布と第6工程で検出したガラス中の金属粒子の分布を比較して、該金属粒子の沈降速度を算出する第8工程を備えている。第8工程において、さらに詳細には、第4工程で検出したガラス中の金属粒子の分布と第7工程で検出したガラス中の金属粒子の分布との比較において、金属粒子の沈降距離と溶融時間に基づき沈降速度が算出される。   Furthermore, in the detection method in this embodiment, after the fourth step, the solidified glass is reheated and melted together with the container 2, and the molten glass in the container 2 is maintained at a set temperature for a set time. It has. Next, after the fifth step, a sixth step of re-cooling the container and re-solidifying the molten glass containing the metal particles is provided. Then, after the sixth step, the ultrasonic probe 10 is moved along the outer surface of the Tamman tube 2 in exactly the same manner as in the fourth step described above, and the distribution of the metal particles M in the glass is detected again. It has a process. Further, after the seventh step, the distribution of the metal particles in the glass detected in the fourth step and the distribution of the metal particles in the glass detected in the sixth step are compared to calculate the settling velocity of the metal particles. Eight steps are provided. In the eighth step, more specifically, in comparison between the distribution of the metal particles in the glass detected in the fourth step and the distribution of the metal particles in the glass detected in the seventh step, the settling distance and melting time of the metal particles. Based on this, the sedimentation velocity is calculated.

したがって、この検出方法によれば、第5工程において、第4工程で検出を終えた金属粒子を含むガラス固化体(サンプル)を、再加熱して溶融させると共にその溶融状態が設定温度で設定時間維持された後、第6工程において溶融状態にあるサンプルを再び冷却して固化させ、次いで第7工程で超音波探触子10によってガラス中の金属粒子Mの分布を再び検出する。そして、第4工程で検出したガラス中の金属粒子Mの分布と第7工程で検出したガラス中の金属粒子Mの分布とを比較して、該金属粒子の沈降速度を算出するので、同じサンプルを用いてガラス中の金属粒子の移動を観察することができ、コストを大幅に低減することができる。   Therefore, according to this detection method, in the fifth step, the vitrified body (sample) containing the metal particles that has been detected in the fourth step is reheated and melted, and the molten state is set at a set temperature for a set time. After being maintained, the sample in the molten state is again cooled and solidified in the sixth step, and then the distribution of the metal particles M in the glass is detected again by the ultrasonic probe 10 in the seventh step. Then, the distribution of the metal particles M in the glass detected in the fourth step and the distribution of the metal particles M in the glass detected in the seventh step are compared to calculate the settling velocity of the metal particles, so that the same sample Can be used to observe the movement of the metal particles in the glass, and the cost can be greatly reduced.

以上で本実施例の説明を終えるが、本発明はこの実施例に限らず、種々の変形が可能である。例えば、上記実施例において、第7工程で検出を終えた後に、再び第5工程から第7工程を繰り返し、計3回の検出結果に基づいて第8工程でガラス中の金属粒子の沈降速度を算出するように構成することも可能である。さらに、第5工程から第7工程は必要に応じてその繰り返し回数を増やすことが可能である。   This is the end of the description of the present embodiment, but the present invention is not limited to this embodiment, and various modifications are possible. For example, in the above embodiment, after finishing the detection in the seventh step, the fifth step to the seventh step are repeated again, and the settling rate of the metal particles in the glass is determined in the eighth step based on the detection result of three times in total. It can also be configured to calculate. Furthermore, the number of repetitions of the fifth to seventh steps can be increased as necessary.

2 タンマン管
4 ガラス固化体
2 Tamman tube 4 Vitrified body

Claims (2)

容器内において予め溶融固化されたガラスの上面に金属粒子とガラス破砕物との混合物を配置すると共に該混合物の周り及び上部にガラス破砕物を充填する工程と、
前記容器を加熱して内部の前記固化されたガラスと、前記混合物のガラス破砕物と、前記混合物の周り及び上部に充填した前記ガラス破砕物を溶融し、設定時間その溶融状態を維持する工程と、
前記溶融状態を維持する工程の後、前記容器を冷却して前記金属粒子を含む溶融されたガラス及び前記ガラス破砕物を固化する工程と、
前記固化する工程の後、超音波探触子を前記容器の外面に沿って移動させ、ガラス中の金属粒子の分布を検出する工程を備えたガラス中の金属粒子の状態検出方法。
Placing a mixture of metal particles and crushed glass on the upper surface of glass previously melted and solidified in a container, and filling the crushed glass around and above the mixture ;
Step of maintaining said solidified glass inside by heating the container, a glass crushed the mixture was melted and the glass crushed material filled around and above the mixture, the molten state setting time When,
After the step of maintaining the molten state, the step of cooling the container to solidify the molten glass containing the metal particles and the crushed glass, and
A method for detecting the state of metal particles in glass, comprising a step of detecting the distribution of metal particles in the glass by moving an ultrasonic probe along the outer surface of the container after the solidifying step.
さらに、前記検出する工程の後、前記容器を再加熱して前記金属粒子を含む固化されたガラスを再溶融し、設定時間その再溶融状態を維持する工程と、
前記再溶融状態を維持する工程の後、前記容器を再冷却して前記金属ガラスを含む溶融されたガラスを再固化する工程と、
前記再固化する工程の後、超音波探触子を前記耐熱容器の外面に沿って移動させ、ガラス中の金属粒子の分布を再検出する工程と、
前記再検出する工程の後、前記検出する工程で得たガラス中の金属粒子の分布と比較して、該金属粒子の沈降速度を算出する工程とを備えた請求項1記載のガラス中の金属粒子の状態検出方法。
Furthermore, after the detecting step, reheating the container to remelt the solidified glass containing the metal particles, and maintaining the remelted state for a set time;
After the step of maintaining the remelted state, recooling the container to resolidify the molten glass containing the metallic glass;
After the re-solidifying step, moving the ultrasonic probe along the outer surface of the heat-resistant container, re-detecting the distribution of metal particles in the glass,
The metal in the glass according to claim 1, further comprising a step of calculating a settling rate of the metal particles in comparison with a distribution of the metal particles in the glass obtained in the detecting step after the redetecting step. Particle state detection method.
JP2009049269A 2009-03-03 2009-03-03 Method for detecting state of metal particles in glass Active JP5360380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049269A JP5360380B2 (en) 2009-03-03 2009-03-03 Method for detecting state of metal particles in glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049269A JP5360380B2 (en) 2009-03-03 2009-03-03 Method for detecting state of metal particles in glass

Publications (2)

Publication Number Publication Date
JP2010203897A JP2010203897A (en) 2010-09-16
JP5360380B2 true JP5360380B2 (en) 2013-12-04

Family

ID=42965526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049269A Active JP5360380B2 (en) 2009-03-03 2009-03-03 Method for detecting state of metal particles in glass

Country Status (1)

Country Link
JP (1) JP5360380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460426B2 (en) * 2016-06-30 2022-10-04 Bormioli Pharma S.p.A. Method and apparatus for detecting metal particles present in a wall of a glass container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847718B1 (en) * 2016-07-13 2018-04-10 주식회사 한화 Method for charging and cooling of a gunpowder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633047B1 (en) * 1988-06-21 1990-08-24 Univ Rene Descartes DEVICE AND APPARATUS FOR ECHOGRAPHY DETECTION AND MEASUREMENT OF PARTICLES SUSPENDED IN A LIQUID
JPH05323093A (en) * 1992-05-21 1993-12-07 Hitachi Ltd Evaluation method for strength of solidified non-homogeneous radioactive waste
JP3245606B2 (en) * 1994-10-04 2002-01-15 独立行政法人産業技術総合研究所 Measurement method of particle dispersion amount and particle size of solid material
JPH08189923A (en) * 1995-01-10 1996-07-23 Agency Of Ind Science & Technol Method for measuring physical properties of solid material
JP3964594B2 (en) * 2000-02-29 2007-08-22 英昭 水渡 Analytical method for non-metallic inclusion composition and / or particle size in metal samples
JP4218187B2 (en) * 2000-05-24 2009-02-04 株式会社Ihi Metal sludge measuring instrument for glass melting furnace
JP4124691B2 (en) * 2003-04-24 2008-07-23 Tdk株式会社 Flux, glass bead sample preparation method and analysis method
JP4157945B2 (en) * 2004-03-17 2008-10-01 独立行政法人産業技術総合研究所 X-ray CT system
JP2007285807A (en) * 2006-04-14 2007-11-01 Central Res Inst Of Electric Power Ind Highly dispersed fine particle-containing material molded body manufacturing method and apparatus
JP4363413B2 (en) * 2006-05-12 2009-11-11 株式会社Ihi Glass melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11460426B2 (en) * 2016-06-30 2022-10-04 Bormioli Pharma S.p.A. Method and apparatus for detecting metal particles present in a wall of a glass container

Also Published As

Publication number Publication date
JP2010203897A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
Noll et al. LIBS analyses for industrial applications–an overview of developments from 2014 to 2018
Pedarnig et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (LIBS)
CN106461560B (en) Equipment for the analysis of oxidizable molten metals using LIBS techniques
Liu et al. In situ observation of the dissolution of spherical alumina particles in CaO–Al2O3–SiO2 melts
JP4948347B2 (en) Immersion lance for analysis of melts and liquids
Hudson et al. Inclusion detection in molten aluminum: current art and new avenues for in situ analysis
JP5360380B2 (en) Method for detecting state of metal particles in glass
Shevchenko et al. Experimental study of liquidus of the “FeO”-SiO2-PbO slags in equilibrium with air and with metallic lead
Preuss et al. Degassing of hydrous trachytic Campi Flegrei and phonolitic Vesuvius melts: Experimental limitations and chances to study homogeneous bubble nucleation
US20200003639A1 (en) Method for in-situ markers for thermal mechanical structural health monitoring
Ma et al. An investigation into picosecond laser micro-trepanning of alumina ceramics employing a semi-water-immersed scheme
Gardner et al. The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts
EP3977106B1 (en) Non-immersive method and apparatus for quantitative analysis of liquid metals and alloys
Arackal Narayanan et al. Laser directed energy deposition-based additive manufacturing of Fe20Cr5. 5AlY from single tracks to bulk structures: statistical analysis, process optimization, and characterization
RU2579151C1 (en) Method of recycling radionuclide-contaminated metal wastes
Villanueva et al. Experimental investigation of melt infiltration and solidification in a pre-heated particle bed
Bourne et al. On the one-dimensional recovery and microstructural evaluation of shocked alumina
JP2010175277A (en) State detection method of metal particles in glass
Poolperm et al. Experimental investigation of additive manufacturing using a hot-wire plasma welding process on titanium parts
Wilke et al. Experimental investigation of the effect of Ca, Fe and Ti on cotectic compositions of the rhyolitic system
Lönartz et al. Characterization of black and brown Chernobyl “lava” matrices: the formation process reviewed
Campbell et al. A novel vertical Bridgman-Stockbarger crystal growth system with visualization capability
AU2016378266B2 (en) Method and system for analyzing a sample material
Unnikrishnan et al. Homogeneity testing and quantitative analysis of manganese (Mn) in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS)
JP6217025B2 (en) Element concentration analysis method for glass solids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R151 Written notification of patent or utility model registration

Ref document number: 5360380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250