[go: up one dir, main page]

JP5359845B2 - Single crystal growth equipment - Google Patents

Single crystal growth equipment Download PDF

Info

Publication number
JP5359845B2
JP5359845B2 JP2009283531A JP2009283531A JP5359845B2 JP 5359845 B2 JP5359845 B2 JP 5359845B2 JP 2009283531 A JP2009283531 A JP 2009283531A JP 2009283531 A JP2009283531 A JP 2009283531A JP 5359845 B2 JP5359845 B2 JP 5359845B2
Authority
JP
Japan
Prior art keywords
crucible
platinum
single crystal
crystal
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009283531A
Other languages
Japanese (ja)
Other versions
JP2011126719A (en
Inventor
健二 国原
隆之 広瀬
正敬 大登
喜幸 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009283531A priority Critical patent/JP5359845B2/en
Publication of JP2011126719A publication Critical patent/JP2011126719A/en
Application granted granted Critical
Publication of JP5359845B2 publication Critical patent/JP5359845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing a single crystal, which prevents cracks from being caused in a crystal in the process of producing a single crystal to be used as a substrate for an optical device or the like. <P>SOLUTION: A single crystal free of cracks can be obtained with high reproducibility regardless of a large difference in thermal expansion between a platinum crucible and an LN (lithium niobate) single crystal in the process of growing an LN single crystal by VB (vertical Bridgeman) method, by employing a crucible structure of the present invention having a foil type platinum plate inserted inside the platinum crucible for growing a crystal. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光デバイスなどの基板として用いられる単結晶の製造装置に関する。   The present invention relates to an apparatus for producing a single crystal used as a substrate for an optical device or the like.

強誘電体非線形光学結晶は、誘電分極方向を周期的に180度反転(分極反転)させることにより擬似的に位相整合をさせる擬似位相整合(Quasi-Phase-Matching)を利用したレーザー光の波長変換デバイスとして注目されている。なかでもLiNbO3(以降LNと称す)は非線形光学定数が大きく変換効率が高いため擬似位相整合(以降、QPMと称す)デバイスの主要な基板材料として用いられている。   Ferroelectric nonlinear optical crystals convert wavelength of laser light by using quasi-phase-matching (quasi-phase-matching) that quasi-phase-matches by periodically reversing the dielectric polarization direction by 180 degrees (polarization inversion). It is attracting attention as a device. Among them, LiNbO3 (hereinafter referred to as LN) is used as a main substrate material for quasi-phase matching (hereinafter referred to as QPM) devices because of its large nonlinear optical constant and high conversion efficiency.

基板材料のLN単結晶は、一般にはチョコラスキー(Czochralski)法 (以降CZ法 と称す)と呼ばれる溶融固化法により製造されている。
QPMデバイスではLN単結晶ウェハー内に光密度の高いレーザー光が入射されるため、レーザー光を吸収するLN単結晶ウェハー中に存在する欠陥準位は出来る限り少ないことが望まれる。すなわちQPMデバイス用LN単結晶においては、欠陥準位の原因となる結晶欠陥を出来るだけ減少させることが重要とされている。
The LN single crystal of the substrate material is generally manufactured by a melt solidification method called the Czochralski method (hereinafter referred to as the CZ method).
In the QPM device, since laser light having a high optical density is incident on the LN single crystal wafer, it is desired that the number of defect levels existing in the LN single crystal wafer that absorbs the laser light is as small as possible. In other words, in the LN single crystal for QPM devices, it is important to reduce crystal defects that cause defect levels as much as possible.

LN単結晶の製造には、垂直フ゛リッシ゛マン(Vertical Bridgman)法(以降VB法と称す)という溶融固化法もある。VB法は、CZ法に比べ大口径化が難しく、結晶成長速度が遅いなどの短所があるが、より熱平衡に近い条件下での結晶成長が可能なため、CZ法より結晶欠陥の少ない高品質なLN単結晶が得られると言われている。   For the production of LN single crystals, there is also a melting and solidification method called the Vertical Bridgman method (hereinafter referred to as VB method). The VB method has the disadvantages that it is difficult to increase the diameter and the crystal growth rate is slow compared to the CZ method, but it is possible to grow crystals under conditions closer to thermal equilibrium, so it has higher quality with fewer crystal defects than the CZ method. It is said that a simple LN single crystal can be obtained.

しかし、VB法によるLN単結晶の製造は研究開発段階であり製品化には至っていない。
VB法では、CZ法と異なりLN単結晶をPt、Rh、Irなどの高融点金属からなるルツボ内でルツボ材料に接触させたまま固化し、そのままの状態で室温まで冷却する。
However, the production of LN single crystals by the VB method is at the research and development stage and has not yet been commercialized.
In the VB method, unlike the CZ method, an LN single crystal is solidified while being in contact with the crucible material in a crucible made of a refractory metal such as Pt, Rh, Ir, and cooled to room temperature as it is.

また、LN単結晶は、酸化物であり酸素含有雰囲気で結晶成長させることが一般的である。しかし、酸素分圧が低い場合、結晶欠陥である酸素欠損(酸素空孔)を生ずるので、高い酸素分圧中で結晶成長させることが好ましいとされている。   LN single crystals are oxides and are generally grown in an oxygen-containing atmosphere. However, when the oxygen partial pressure is low, oxygen vacancies (oxygen vacancies), which are crystal defects, are generated. Therefore, it is preferable to grow the crystal at a high oxygen partial pressure.

LN単結晶の成長では、1250℃程度の高温で溶融し、温度を下げることで固化させて結晶成長をするが、結晶がPt、Rh、Irなどのルツボ材料と化学的に結合し接合する場合がある。   In the growth of LN single crystal, it melts at a high temperature of about 1250 ° C and solidifies by lowering the temperature to grow the crystal. However, when the crystal is chemically bonded to a crucible material such as Pt, Rh, Ir, etc. There is.

Pt、Rh、Irなどの金属とLNのような酸化物の接合は、Pt、Rh、Irなどの金属の表面に酸化相を生ずることと関係している。すなわち、酸化相の酸素と酸化物であるLNとの相性が良くその酸素を介して化学結合すると考えられている。白金 は、Pt(白金)、Rh、Irの中で、酸化物の生成自由エネルギーの最も高いので、酸化物を最も生成しにくく、融点が1600℃以上であるため、LNのVB法用ルツボには最も適した材料とされている。
このため、研究開発では、白金ルツボを使用する例が多いが、実際に白金ルツボを用いてVB法で結晶成長させると、LN単結晶が白金ルツボと接着しているため、白金ルツボからLN単結晶を取り出す際には、LN単結晶に溶融接着している白金ルツボを、強引に剥ぎ取っているのが現状である。
The joining of a metal such as Pt, Rh, or Ir and an oxide such as LN is related to the formation of an oxidation phase on the surface of the metal such as Pt, Rh, or Ir. In other words, it is considered that oxygen in the oxidized phase and LN which is an oxide have good compatibility and are chemically bonded through the oxygen. Platinum has the highest free energy of oxide formation among Pt (platinum), Rh, and Ir, so it is most difficult to produce oxide and has a melting point of 1600 ° C or higher. Is considered the most suitable material.
Therefore, in research and development, there are many examples of using a platinum crucible. However, when a crystal crucible is actually grown by the VB method using a platinum crucible, the LN single crystal is bonded to the platinum crucible. At the time of taking out the crystal, the platinum crucible melt-bonded to the LN single crystal is forcibly stripped off.

更に、LN単結晶と白金ルツボが溶融接着しているため、1250℃程度の高温から温度を下げて固化させながら結晶成長を行い、室温まで冷却する際に、LNと白金の熱膨張係数の差異により、その接合部に大きな応力が発生する。   In addition, since the LN single crystal and the platinum crucible are fused and bonded, the crystal growth is carried out while lowering the temperature from about 1250 ° C to solidify, and when cooling to room temperature, the difference in thermal expansion coefficient between LN and platinum As a result, a large stress is generated at the joint.

図7に、LN単結晶と白金の熱膨張係数を基に、1250℃から室温に冷却した場合に生ずるLN単結晶と白金の収縮量を示した。LN単結晶の熱膨脹係数には、大きな異方性があり、単結晶のa軸方向の熱膨脹係数は、非常に大きい。従って結晶のC軸(Z面)方向では、図8示すように、1250℃以上の溶融状態では応力は無いが、固化後に室温まで冷却した場合、LN単結晶と白金ルツボ間には、熱膨脹係数の差異に相当する大きな応力が発生する。   FIG. 7 shows the amount of shrinkage between the LN single crystal and platinum that occurs when cooled from 1250 ° C. to room temperature, based on the thermal expansion coefficients of the LN single crystal and platinum. The thermal expansion coefficient of the LN single crystal has a large anisotropy, and the thermal expansion coefficient in the a-axis direction of the single crystal is very large. Therefore, in the C-axis (Z-plane) direction of the crystal, as shown in FIG. 8, there is no stress in the molten state of 1250 ° C. or higher, but when cooled to room temperature after solidification, there is a thermal expansion coefficient between the LN single crystal and the platinum crucible. A large stress corresponding to the difference occurs.

したがって、LN単結晶表面には、大きな引っ張り応力が発生するので、LN単結晶にクラックが生ずるという問題があった。
白金ルツボは、1250℃のLN融液を保持する機能が必要であり、固化した部分の白金ルツボが変形し破断すると、その上部のLN融液がルツボから漏洩するため、白金ルツボ自身が応力の発生に応じて変形するように、白金ルツボの肉厚そのものを薄くはできない。
Therefore, since a large tensile stress is generated on the surface of the LN single crystal, there is a problem that a crack occurs in the LN single crystal.
The platinum crucible needs to have the function of holding the LN melt at 1250 ° C. If the solidified platinum crucible deforms and breaks, the upper LN melt leaks from the crucible, so the platinum crucible itself is stressed. The thickness of the platinum crucible itself cannot be reduced so that it deforms as it occurs.

VB法におけるこのような課題に対しては、特許文献1のように、例えば、四ほう酸リチウム単結晶を育成する場合に、アルミナ、石英ガラス、黒鉛などの耐熱性外側容器(ルツボ)の内部に、薄肉の白金製ルツボを設け、その中で結晶を育成することにより、結晶に加わる歪みを小さくし、クラックの発生を抑制する製造装置が開示されている。   For such a problem in the VB method, as in Patent Document 1, for example, when a lithium tetraborate single crystal is grown, it is placed inside a heat-resistant outer container (crucible) such as alumina, quartz glass, or graphite. A manufacturing apparatus is disclosed in which a thin platinum crucible is provided and crystals are grown therein to reduce strain applied to the crystals and suppress the occurrence of cracks.

また、特許文献2には、アルミナ等の高融点セラミックス材料から成る単結晶育成用ルツボに、白金の内筒や内部に白金をコーティングして形成することで、高融点金属材料からなる内筒の肉厚を薄くして、白金等の高価な貴金属の使用量を低減することができる構成が記載されている。   Patent Document 2 discloses that a single crystal growing crucible made of a high melting point ceramic material such as alumina is formed by coating platinum on the inner cylinder of platinum or the inner part of the inner cylinder made of a refractory metal material. A configuration is described in which the thickness can be reduced and the amount of expensive noble metals such as platinum used can be reduced.

特許文献3には、グラファイト製のルツボの上端から、原料融液上面の1〜5cm下までの範囲のルツボ内面を白金などの貴金属箔で被覆することで、結晶育成が完了したら、金属箔を持上げて、金属箔ごとルツボから抜き出し、金属箔を除去して単結晶を得ることが記載されている。この金属箔で被覆する深さの範囲は、5cmを超えても、固着防止効果が得られることと、育成結晶をルツボから抜き出すときに、白金箔と結晶とは相互に固着していたが、ルツボと白金箔とは固着していないので、ルツボを壊すことなく結晶を容易に抜き出せたことと、得られた結晶は、クラックのない良質な四硼酸リチウム単結晶が得られたと記載されている。   Patent Document 3 describes that the inner surface of the crucible ranging from the upper end of the graphite crucible to 1 to 5 cm below the upper surface of the raw material melt is covered with a noble metal foil such as platinum. It is described that a single crystal is obtained by lifting and removing the metal foil together from the crucible and removing the metal foil. Even if the depth range covered with this metal foil exceeds 5 cm, the anti-adhesion effect can be obtained, and when the grown crystal is extracted from the crucible, the platinum foil and the crystal were fixed to each other, Since the crucible and the platinum foil are not fixed, it is described that the crystal could be easily extracted without breaking the crucible, and that the obtained crystal was a high-quality lithium tetraborate single crystal without cracks. .

特開平9−20596号公報Japanese Patent Laid-Open No. 9-20596 実開昭58−160273号公報Japanese Utility Model Publication No. 58-160273 特開平10−287492号公報JP-A-10-287492

単結晶に生ずるクラックは、単結晶が白金などのルツボと溶融接着生することで、育成中やルツボからの抜き出し時に生ずるという問題があった。
このため、特許文献1や特許文献2のように、薄肉の白金製ルツボを設ける二重ルツボ方式や、ルツボの内面を白金コーティングする方法が検討されているが、LN結晶を育成した場合、LNは高融点であるため、結晶にクラックが生じた。
また、特許文献3の方法では、結晶成長したルツボの下部(結晶育成が進む方向が下部から上部の場合)では、白金箔の形成がないので、結晶と白金ルツボの溶融接着が発生するという問題があった。
Cracks generated in the single crystal have a problem that the single crystal is melt-bonded with a crucible such as platinum and is generated during growth or when the single crystal is extracted from the crucible.
For this reason, as in Patent Document 1 and Patent Document 2, a double crucible method in which a thin platinum crucible is provided and a method of coating the inner surface of the crucible with platinum have been studied. Because of the high melting point, cracks occurred in the crystal.
Further, in the method of Patent Document 3, since there is no formation of a platinum foil at the lower part of the crucible where the crystal has grown (when the direction of crystal growth proceeds from the lower part to the upper part), there is a problem that fusion bonding between the crystal and the platinum crucible occurs. was there.

本発明は、上記の問題を解決するためになされたもので、単結晶育成において、結晶冷却時のクラックの発生を無くして、安定的に良質の単結晶を得ることを目的とする。
The present invention has been made to solve the above-described problem, and an object of the present invention is to stably obtain a high-quality single crystal by eliminating the generation of cracks during crystal cooling in single crystal growth.

上記課題を解決するため、本発明に係る単結晶成長装置は、
結晶性物質の原料融液を保持する耐熱材料からなるルツボ本体と、前記ルツボ本体の周囲に配置された側面ヒーターとを有し、前記ルツボ本体の温度分布を上下に変化させながら単結晶を成長させる結晶の成長装置において、
前記原料融液が接する前記ルツボ本体の内面に、白金箔からなるルツボ内面被覆部材を有し
前記ルツボ内面被覆部材に用いる白金箔は、0.03mmから0.1mmの厚さであり、
前記ルツボ本体の内面と前記白金箔とは、5mm以上30mm以下の間隔でスポット溶接されていることを特徴とする。
In order to solve the above problems, a single crystal growth apparatus according to the present invention comprises:
A crucible body made of a heat-resistant material holding a raw material melt of a crystalline substance and a side heater arranged around the crucible body, and growing a single crystal while changing the temperature distribution of the crucible body up and down In the crystal growth apparatus to be made,
On the inner surface of the crucible body in contact with the raw material melt, it has a crucible inner surface covering member made of platinum foil ,
The platinum foil used for the crucible inner surface covering member has a thickness of 0.03 mm to 0.1 mm,
The inner surface of the crucible body and the platinum foil are spot-welded at intervals of 5 mm to 30 mm .

ルツボ内面被覆部材は、その内部に供給されている前記原料融液が、前記ルツボ本体の内面に漏れ出さないように、前記原料融液が接する前記ルツボ本体の内面全体を覆うように構成されている。   The crucible inner surface covering member is configured to cover the entire inner surface of the crucible main body with which the raw material melt contacts so that the raw material melt supplied to the crucible inner surface does not leak into the inner surface of the crucible main body. Yes.

このような構成により、LN単結晶は、白金に溶融接着するが、育成する結晶は、ルツボ内面を覆う白金箔にのみに溶融接着することになる。したがって、発生した応力は、白金箔からなるルツボ内面被覆部材が塑性変形するようになるので、結晶にクラックを生ずることがなくなる。   With such a configuration, the LN single crystal is melt-bonded to platinum, but the crystal to be grown is melt-bonded only to the platinum foil covering the inner surface of the crucible. Therefore, the generated stress causes the crucible inner surface covering member made of platinum foil to be plastically deformed, so that no crack is generated in the crystal.

そして、ルツボ内面被覆部材は、前記ルツボ本体の内面を上部と下部に横分割するように形成されている

The crucible inner surface covering member is formed so as to horizontally divide the inner surface of the crucible body into an upper part and a lower part .

また、ルツボ内面被覆部材は、ルツボ本体内面に白金箔を型で押し込んでも良いし、周囲の円筒部と底部とを形成し、接合部を溶着しても良いし、かしめてもよい。
また、前記ルツボ本体は、白金であることが好ましい。
The crucible inner surface covering member may be formed by pressing a platinum foil into the inner surface of the crucible main body with a mold, forming a peripheral cylindrical portion and a bottom portion, and welding or caulking the joint portion.
The crucible body is preferably platinum.

さらに、ツボ本体は白金からなり、前記ルツボ内面被覆部材が、前記ルツボ本体に少なくとも一部が溶着固定によりされていると良い。
Furthermore, the crucible body is preferably made of platinum, and at least a part of the crucible inner surface covering member is preferably welded and fixed to the crucible body.

箔状白金板を結晶育成用の白金ルツボの内側に挿入した本発明ルツボ構造により、VB法でのLN単結晶成長において白金ルツボとLN単結晶の大きな熱膨脹差があるにもかかわらず、再現性良くクラックの無い単結晶を得ることが出来るようになった。
Due to the crucible structure of the present invention in which a foil-like platinum plate is inserted inside a platinum crucible for crystal growth, reproducibility is observed despite the large thermal expansion difference between the platinum crucible and the LN single crystal in the LN single crystal growth by the VB method. A single crystal with no cracks can be obtained.

VB法による単結晶成長装置の基本構成図である。It is a basic lineblock diagram of the single crystal growth device by VB method. 本発明のルツボの概略構成図である。It is a schematic block diagram of the crucible of this invention. 箔状白金板で構成するルツボ内面被覆部材断面図Cross-sectional view of crucible inner surface covering member composed of foil-shaped platinum plate 本発明の構成で結晶性物質の原料融液投入初期状態を示す略構成図である。It is a schematic block diagram which shows the raw material melt input initial state of a crystalline substance with the structure of this invention. 本発明の構成で単結晶育成途中状態を示す略構成図である。It is a schematic block diagram which shows the single crystal growth middle state by the structure of this invention. 本発明の構成で単結晶成長終了後の冷却状態を示す略構成図である。It is a schematic block diagram which shows the cooling state after completion | finish of a single crystal growth by the structure of this invention. LN単結晶と白金の熱膨張係数と温度の関係図である。FIG. 4 is a relationship diagram between a thermal expansion coefficient and temperature of an LN single crystal and platinum. LN単結晶成長に伴うルツボへの発生応力説明図である。It is explanatory drawing of the generated stress to the crucible accompanying LN single crystal growth.

本発明の実施例を示す単結晶育成装置について、図を用いて説明する。
図1には、垂直フリッジマン(VB)法による単結晶の成長装置の基本構成図を示す。また、本発明の要部である結晶育成用白金ルツボ構成図を図2に示す。
A single crystal growth apparatus showing an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic configuration diagram of an apparatus for growing a single crystal by a vertical fridge man (VB) method. FIG. 2 shows a configuration diagram of a crystal crucible platinum crucible which is a main part of the present invention.

図1および図2に示すコップ型ルツボ本体1は、白金製で、例えば肉厚0.5mmで、内径53mm、高さ150mmであるが、肉厚としては、0.3〜0.5mmを用いることが多い。また、ルツボ本体1は、白金製でなく、本発明の結晶成長装置での使用環境である温度に耐える耐熱性を有するものであれば良く、アルミナ、コーデュエライト、ムライト、石英ガラス、窒化ホウ素、黒鉛の中の少なくとも1つを主成分とするものを用いることができる。   The cup-type crucible body 1 shown in FIGS. 1 and 2 is made of platinum, and has a thickness of 0.5 mm, an inner diameter of 53 mm, and a height of 150 mm, for example, a thickness of 0.3 to 0.5 mm is often used. The crucible body 1 is not made of platinum, but may have any heat resistance that can withstand the temperature used in the crystal growth apparatus of the present invention. Alumina, cordierite, mullite, quartz glass, boron nitride In addition, one having at least one of graphite as a main component can be used.

そして、ルツボ本体1の内面は、例えば厚み0.03〜0.1mmの円筒状に加工された箔状白金板2で覆うルツボ内面被覆部材を形成する。
箔状白金板2で覆う範囲は、ルツボ本体1の内面全体でも良いし、ルツボ本体1上部の、原料融液が満たされる液面以上であれば良い。
And the inner surface of the crucible main body 1 forms the crucible inner surface covering member covered with the foil-like platinum plate 2 processed into a cylindrical shape having a thickness of 0.03 to 0.1 mm, for example.
The range covered with the foil-like platinum plate 2 may be the entire inner surface of the crucible body 1 or the liquid surface at the upper part of the crucible body 1 and filled with the raw material melt.

箔状白金板4により、白金ルツボ1の内面を覆う方法や形状は、特に限定するものではないが、ルツボ本体1の原料融液が接する内面を覆うルツボ内面被覆部材は、例えば、箔状白金板4を土管状にして、白金ルツボの内周部に嵌るような形状でも良いし、箔状白金板4で、白金ルツボ1と相似形のものを、押し型などで作っても良い。例えば、箔状白金板4からなるルツボ内面被覆部材は、図3に示すように、白金ルツボ1の内周と底面とを分割するように、図3aの箔状白金部材a 21aと箔状白金部材b 21bとして作っても良いし、金型により、ルツボ内面被覆部材を、図3bや図3cのように、箔状白金部材c 21cと箔状白金部材d 21dによる縦分割あるいは、箔状白金部材e 21eと箔状白金部材f 21fによる横分割に形成しても良い。そして、分割箇所については、原料融液が漏れ出さないように、接合部25を溶接、溶着、融着、かしめなどの方法により、液密に構成すればよい。   Although the method and shape of covering the inner surface of the platinum crucible 1 with the foil-shaped platinum plate 4 are not particularly limited, the crucible inner surface covering member that covers the inner surface with which the raw material melt of the crucible body 1 is in contact is, for example, foil-shaped platinum. The plate 4 may be an earth-like shape and fit into the inner periphery of the platinum crucible, or the foil-like platinum plate 4 having a shape similar to that of the platinum crucible 1 may be made by a pressing die. For example, as shown in FIG. 3, the crucible inner surface covering member made of the foil-like platinum plate 4 divides the inner periphery and the bottom surface of the platinum crucible 1 and the foil-like platinum member a 21a and the foil-like platinum shown in FIG. The member b 21b may be made, or the crucible inner surface covering member may be divided vertically by the foil-like platinum member c 21c and the foil-like platinum member d 21d as shown in FIG. 3b or FIG. You may form in the horizontal division | segmentation by the member e21e and the foil-shaped platinum member f21f. And about a division | segmentation location, what is necessary is just to comprise the junction part 25 liquid-tightly by methods, such as welding, welding, melt | fusion, and caulking, so that a raw material melt may not leak.

今回の実施例では、箔状白金板2を、白金ルツボ本体1の内面部へ固定するため、10mm間隔で上下左右に図示しないスポット溶接(スポット溶接径φ1mm以下)を行った。スポット溶接は、必ずしも必要ではないが、スポット溶接を行うことで、ルツボと白金箔の固定がなされ、種結晶の設置や結晶原料の投入の作業性が向上し、また結晶冷却時にスポット溶接がはがれるため、結晶にクラックが生じない。   In this example, in order to fix the foil-like platinum plate 2 to the inner surface of the platinum crucible body 1, spot welding (spot welding diameter φ1 mm or less) (not shown) was performed vertically and horizontally at intervals of 10 mm. Spot welding is not always necessary, but by performing spot welding, the crucible and the platinum foil are fixed, so that the workability of placing seed crystals and introducing crystal raw materials is improved, and spot welding is peeled off during crystal cooling. Therefore, no cracks occur in the crystal.

VB法からなる結晶成長装置では、ルツボ1の底部に種結晶3を位置させておき、その上に原料融液4を投入して、ルツボ1内で単結晶5を成長させ、結晶の成長では、結晶の固液界面41が存在する。   In the crystal growth apparatus comprising the VB method, the seed crystal 3 is placed at the bottom of the crucible 1 and the raw material melt 4 is introduced thereon to grow the single crystal 5 in the crucible 1. The crystal solid-liquid interface 41 exists.

そして、ルツボ1は、上下に可動可能なステージ10に載置して固定し、ルツボ1の周囲を覆うように炉心管11を設け、その周囲に上下方向の温度を任意に設定できる側面ヒーター12を配置する。これらは、内面に断熱材を有する図示しない筐体の内部に配置され、熱が外部に逃げることを防いでいる。   The crucible 1 is placed and fixed on a stage 10 movable up and down, and a furnace core tube 11 is provided so as to cover the periphery of the crucible 1, and a side heater 12 capable of arbitrarily setting the temperature in the vertical direction around the periphery. Place. These are disposed inside a housing (not shown) having a heat insulating material on the inner surface, and prevent heat from escaping to the outside.

本実施例では、白金ルツボ1の底部に、φ2インチで高さ30mmの不定比組成LN (Li2O/Nb2O5=48.5/51.5)を種結晶3として配置した。種結晶3表面は、Z面である。
その後、あらかじめ合成しておいた不定比組成LNの原料融液4(焼結体原料)を、φ2インチで高さ100mmの容積分を流し込みながら充填して、LN融点以上の温度(1250℃以上)で加熱する。
In this example, a non-stoichiometric composition LN (Li 2 O / Nb 2 O 5 = 48.5 / 51.5) having a diameter of 2 inches and a height of 30 mm was arranged as a seed crystal 3 at the bottom of the platinum crucible 1. The surface of the seed crystal 3 is a Z plane.
After that, the raw material melt 4 (sintered body raw material) of non-stoichiometric composition LN synthesized in advance was filled while flowing a volume of 100 mm in height of φ2 inches, and a temperature above the LN melting point (above 1250 ° C.) ).

種結晶3側の温度は、LNの融点以下(1250℃以下)になるように制御するので、炉内の温度分布を図1に示す温度勾配とする。このため、固液界面41である種結晶3の焼結体原料側の表面が、わずかにメルトバック(溶け戻り)することになるが、種結晶の大部分は融解しない。   Since the temperature on the seed crystal 3 side is controlled to be equal to or lower than the melting point of LN (1250 ° C. or lower), the temperature distribution in the furnace is a temperature gradient shown in FIG. For this reason, the surface on the sintered compact raw material side of the seed crystal 3 that is the solid-liquid interface 41 slightly melts back (melts back), but most of the seed crystal does not melt.

そして、育成炉の温度を変えることなく、徐々にステージ10により白金ルツボ1を0.3mm/hr以下の速度で下降させ、LN融液を固化する。
育成炉の温度分布はほとんど変化しないため、ステージ10による白金ルツボ1の下降に伴い、白金ルツボ1内の固液界面41は徐々に上昇する。
Then, the platinum crucible 1 is gradually lowered at a speed of 0.3 mm / hr or less by the stage 10 without changing the temperature of the growth furnace to solidify the LN melt.
Since the temperature distribution of the growth furnace hardly changes, the solid-liquid interface 41 in the platinum crucible 1 gradually rises as the platinum crucible 1 is lowered by the stage 10.

不定比組成LN (Li2O/Nb2O5=48.5/51.5)は、一致溶融組成(コングルエント組成)であり、融点はLi2O-Nb2O5の2元平衡状態として、1250℃以下で化学量論組成(定比組成)にシフトしたLN単結晶が種結晶上に析出する。   The non-stoichiometric composition LN (Li2O / Nb2O5 = 48.5 / 51.5) is a congruent melting composition (congruent composition), and the melting point is the stoichiometric composition (stoichiometric composition) at 1250 ° C or less as the binary equilibrium state of Li2O-Nb2O5. The LN single crystal shifted to is deposited on the seed crystal.

上記操作で融液4全体を固化後、約20hrかけて室温まで冷却し、LN単結晶5を取り出す。
上記においては、育成炉の温度を変えることなく、徐々にステージ10により白金ルツボ1を下降させ、LN融液を固化する方法を用いた装置について説明をしたが、ルツボ本体の温度分布を変化させながら単結晶を成長させる方法として、白金ルツボ1は、位置を固定とし、温度分布を有したヒーター12を上昇移動させても良いし、ヒーター12の位置も固定として、ヒーター12の温度分布を、結晶成長に合わせて制御して、制御しても良い。
After solidifying the whole melt 4 by the above operation, it is cooled to room temperature over about 20 hours, and the LN single crystal 5 is taken out.
In the above description, the apparatus using the method of gradually lowering the platinum crucible 1 by the stage 10 and solidifying the LN melt without changing the temperature of the growth furnace has been described. However, the temperature distribution of the crucible body is changed. However, as a method of growing a single crystal, the platinum crucible 1 may be fixed at a position and the heater 12 having a temperature distribution may be moved up and the position of the heater 12 is fixed, and the temperature distribution of the heater 12 is Control may be performed in accordance with crystal growth.

図4に示す原料融液4(焼結体原料)の充填と融解状態では、本発明の白金ルツボ1は、内面が箔状白金板2で覆われているので、原料融液4(LN融液)は、箔状白金板2のみに接しており、白金ルツボ1には直接接触しないようになっている。   In the filling and melting state of the raw material melt 4 (sintered body raw material) shown in FIG. 4, the inner surface of the platinum crucible 1 of the present invention is covered with the foil-like platinum plate 2. The liquid is in contact with only the foil-like platinum plate 2 and is not in direct contact with the platinum crucible 1.

結晶成長が進み、図5に示すように原料融液4(LN融液)が全て固化してLN固相45となった単結晶育成終了直後(1200〜1230℃)の状態では、高温のため結晶はまだ収縮しないので、LN固相45は箔状白金板2にぴったり接しており、箔状白金板2も白金ルツボ1にぴったり接した状態で、箔状白金板2がLN固相45と白金ルツボ1とが直接接触していない。   As crystal growth proceeds, as shown in FIG. 5, the raw material melt 4 (LN melt) is all solidified to become an LN solid phase 45 immediately after the end of single crystal growth (1200 to 1230 ° C.) because of high temperature. Since the crystals have not yet contracted, the LN solid phase 45 is in close contact with the foil-like platinum plate 2, and the foil-like platinum plate 2 is in close contact with the platinum crucible 1, and the foil-like platinum plate 2 is in contact with the LN solid-state 45. The platinum crucible 1 is not in direct contact.

図5の状態では、箔状白金板2は、LN固相45表面に溶融接着していると推定されるが、LN固相45の温度が固化温度に近く、熱膨張係数の差異はほとんど影響しないため、図5の状態は、固化する前の原料融液4状態を示す図4と、白金ルツボ1と箔状白金板2の位置関係の状態には大きな差異はない。   In the state of FIG. 5, the foil-like platinum plate 2 is estimated to be melt-bonded to the surface of the LN solid phase 45, but the temperature of the LN solid phase 45 is close to the solidification temperature, and the difference in thermal expansion coefficient has little effect Therefore, the state of FIG. 5 is not significantly different from FIG. 4 showing the state of the raw material melt 4 before solidification, and the positional relationship between the platinum crucible 1 and the foil-like platinum plate 2.

図5に示すLN固相45が得られた後、室温まで冷却した状態を図6に示す。熱膨張係数の差異により、LN単結晶5は径方向での収縮が大きく、LN単結晶5の収縮に伴い、表面に接着している箔状白金板2を引っ張る。   FIG. 6 shows a state where the LN solid phase 45 shown in FIG. 5 is obtained and then cooled to room temperature. Due to the difference in thermal expansion coefficient, the LN single crystal 5 is greatly contracted in the radial direction, and the foil-like platinum plate 2 adhered to the surface is pulled along with the contraction of the LN single crystal 5.

すなわち、LN単結晶5は白金より収縮するため、白金ルツボ1との間に空隙が生じている。箔状白金板2は、LN単結晶5と接している部分が、白金ルツボ1より剥離してLN単結晶5の側面に移動する。このように、本発明で箔状白金板2を用いた場合は、箔状白金板2が剥離/破断することで、LN単結晶5の側面に生じた大きな引張りを応力が緩和され、そのような状態で冷却できるためLN単結晶にクラックが発生しないで済む。   That is, since the LN single crystal 5 contracts from platinum, a gap is generated between the LN single crystal 5 and the platinum crucible 1. The portion of the foil-like platinum plate 2 that is in contact with the LN single crystal 5 is peeled off from the platinum crucible 1 and moved to the side surface of the LN single crystal 5. Thus, when the foil-like platinum plate 2 is used in the present invention, the stress is relieved by the large tension generated on the side surface of the LN single crystal 5 by peeling / breaking the foil-like platinum plate 2. Since it can be cooled in such a state, cracks do not occur in the LN single crystal.

しかし、従来のように、箔状白金板2を白金ルツボ1内面に配置しない場合は、LN単結晶5が白金ルツボ1と直接接触することになるので、LN単結晶5の側面に大きな引張り応力を生じ、側面部からLN単結晶5にクラックが入ることになる。   However, when the foil-like platinum plate 2 is not disposed on the inner surface of the platinum crucible 1 as in the prior art, the LN single crystal 5 is in direct contact with the platinum crucible 1, so that a large tensile stress is applied to the side surface of the LN single crystal 5. This causes cracks in the LN single crystal 5 from the side surface.

本実施例においては、箔状白金板2は、白金ルツボ1に部分的に小さなスポットで溶着しているのみであり、この箇所は薄く強度が小さいため、LN単結晶5の収縮に伴い破断して白金ルツボ1から剥離する。そのため冷却過程で、大きく収縮するLN単結晶5には、クラックが生ずるような引っ張り応力が働くことなく、室温まで冷却される。   In this embodiment, the foil-like platinum plate 2 is only partially welded to the platinum crucible 1 with a small spot. Since this portion is thin and low in strength, it breaks with the shrinkage of the LN single crystal 5. And peel from the platinum crucible 1. Therefore, in the cooling process, the LN single crystal 5 that contracts greatly is cooled to room temperature without any tensile stress that causes cracks.

本発明の白金ルツボ1を使用して育成したLN単結晶5には、クラックが全く認められなかった。
一方、比較例として、白金ルツボ1内面に箔状白金板2で被覆をしていない従来の白金ルツボを使用した場合は、ほとんどケースで、大きなクラックがLN単結晶に認められた。
No cracks were observed in the LN single crystal 5 grown using the platinum crucible 1 of the present invention.
On the other hand, when a conventional platinum crucible in which the inner surface of the platinum crucible 1 was not coated with the foil-like platinum plate 2 was used as a comparative example, large cracks were observed in the LN single crystal in almost all cases.

本実施例における箔状白金板2として、厚みが0.1mm以上のものを使用すると、LN単結晶にクラックを生ずることがあった。また、箔状白金板2の厚みが、0.03mmより薄いものを用いた場合、箔状白金板2の強度が低いために、原料融液4の挿入や加熱過程で、破断してしまい、部分的な破断箇所から漏れ出したLN融液4が、白金ルツボ1と直接接触するので、LN単結晶5にクラックを生ずることがあった。   When the foil-like platinum plate 2 in the present example has a thickness of 0.1 mm or more, cracks may occur in the LN single crystal. Moreover, when the thickness of the foil-like platinum plate 2 is less than 0.03 mm, the strength of the foil-like platinum plate 2 is so low that it breaks during the insertion of the raw material melt 4 and the heating process. Since the LN melt 4 leaking from a typical breakage point is in direct contact with the platinum crucible 1, cracks may occur in the LN single crystal 5.

したがって、本発明で使用する箔状白金板2は、厚みが0.03〜0.1mmのものを使用することが好ましい。
箔状白金板2を円筒状に形成し、白金ルツボ1内側にスポット溶接で点付を施す場合、
スポット溶接の間隔が5mmよりも近いと、LN単結晶5にクラックを生ずることがあった。
Therefore, the foil-like platinum plate 2 used in the present invention preferably has a thickness of 0.03 to 0.1 mm.
When the foil-like platinum plate 2 is formed in a cylindrical shape and spot welding is performed on the inner side of the platinum crucible 1,
When the interval of spot welding was closer than 5 mm, the LN single crystal 5 sometimes cracked.

したがって、スポット溶接の間隔は5mm以上であることがよく、30mm以下の間隔で行えば、クラックが生ずることがない。このように、5〜30mmの間隔でスポット溶接をすれば、ルツボと白金箔の固定がなされ、種結晶の設置や結晶原料の投入の作業性が向上する。また、結晶冷却時には、スポット溶接がはがれるため、結晶にクラックが生じない。
しかし、これより密な間隔でスポット溶接を行うと、溶接がはがれづらく、結晶に応力がかかり、結晶にクラックが生じる場合がある。
Therefore, the interval of spot welding is preferably 5 mm or more, and if it is performed at an interval of 30 mm or less, cracks do not occur. In this way, if spot welding is performed at intervals of 5 to 30 mm, the crucible and the platinum foil are fixed, and the workability of setting the seed crystal and introducing the crystal raw material is improved. In addition, when the crystal is cooled, spot welding is peeled off, so that no crack occurs in the crystal.
However, if spot welding is performed at a denser interval than this, welding is difficult to peel off, stress is applied to the crystal, and cracks may occur in the crystal.

また、箔状白金板2を白金ルツボ1にスポット溶接する箇所は、白金ルツボ1の上端部のみでも良い。
Further, the spot-welded portion of the foil-like platinum plate 2 to the platinum crucible 1 may be only the upper end portion of the platinum crucible 1.

1 ルツボ本体
2 箔状白金板
21a 箔状白金部材a
22a ルツボ内面被覆部材a
3 種結晶
4 LN原料融液
45 LN固相
5 LN単結晶



1 Crucible body 2 Foil-shaped platinum plate 21a Foil-shaped platinum member a
22a Crucible inner surface covering member a
3 Seed crystal 4 LN raw material melt 45 LN solid phase 5 LN single crystal



Claims (2)

結晶性物質の原料融液を保持する耐熱材料からなるルツボ本体と、前記ルツボ本体の周囲に配置された側面ヒーターとを有し、前記ルツボ本体の温度分布を上下に変化させながら単結晶を成長させる結晶の成長装置において、
前記原料融液が接する前記ルツボ本体の内面に、白金箔からなるルツボ内面被覆部材を有し
前記ルツボ内面被覆部材に用いる白金箔は、0.03mmから0.1mmの厚さであり、
前記ルツボ本体の内面と前記白金箔とは、5mm以上30mm以下の間隔でスポット溶接されていることを特徴とする結晶成長装置。
A crucible body made of a heat-resistant material holding a raw material melt of a crystalline substance and a side heater arranged around the crucible body, and growing a single crystal while changing the temperature distribution of the crucible body up and down In the crystal growth apparatus to be made,
On the inner surface of the crucible body in contact with the raw material melt, it has a crucible inner surface covering member made of platinum foil ,
The platinum foil used for the crucible inner surface covering member has a thickness of 0.03 mm to 0.1 mm,
The crystal growth apparatus, wherein the inner surface of the crucible body and the platinum foil are spot-welded at intervals of 5 mm to 30 mm.
前記ルツボ内面被覆部材は、前記ルツボ本体の内面を上部と下部に横分割するように形成されていることを特徴とする請求項1に記載の結晶成長装置。
The crystal growth apparatus according to claim 1, wherein the crucible inner surface covering member is formed so as to horizontally divide the inner surface of the crucible main body into an upper part and a lower part .
JP2009283531A 2009-12-15 2009-12-15 Single crystal growth equipment Expired - Fee Related JP5359845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283531A JP5359845B2 (en) 2009-12-15 2009-12-15 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283531A JP5359845B2 (en) 2009-12-15 2009-12-15 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2011126719A JP2011126719A (en) 2011-06-30
JP5359845B2 true JP5359845B2 (en) 2013-12-04

Family

ID=44289745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283531A Expired - Fee Related JP5359845B2 (en) 2009-12-15 2009-12-15 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP5359845B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12783U1 (en) * 2011-08-05 2012-11-15 Plansee Se LABEL FOR CRYSTAL GROWING
JP2018135228A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 LiTaO3 single crystal growth method and LiTaO3 single crystal processing method
JP7023458B2 (en) * 2017-08-14 2022-02-22 住友金属鉱山株式会社 Single crystal growth method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2868204B2 (en) * 1995-07-05 1999-03-10 株式会社秩父富士 Equipment for producing lithium tetraborate single crystal
JP3213806B2 (en) * 1997-04-07 2001-10-02 日陽エンジニアリング株式会社 Method for growing lithium borate single crystal
JP2000016900A (en) * 1998-06-30 2000-01-18 Toshiba Corp Production of piezoelectric single crystal
JP4319993B2 (en) * 2005-01-27 2009-08-26 田中貴金属工業株式会社 Method for producing iridium or iridium alloy crucible

Also Published As

Publication number Publication date
JP2011126719A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JP5526666B2 (en) Sapphire single crystal manufacturing equipment
JP2011524332A (en) System and method for growing single crystal silicon ingots by directional solidification
JP5564995B2 (en) Sapphire single crystal manufacturing equipment
JP2009007203A (en) Oxide single crystal growth device and method for manufacturing oxide single crystal using the same
TWI743609B (en) Crucible for single crystal growth, single crystal manufacturing method and single crystal
JP5359845B2 (en) Single crystal growth equipment
JP2006124223A (en) Method for manufacturing oxide single crystal
JP4456071B2 (en) Fluoride crystal production equipment
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP2013010656A (en) Method for producing single-polarized lithium niobate single crystal
JP2006273664A (en) Casting mold for silicon casting, silicon casting device and method for casting polycrystalline silicon ingot
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
JP2016124713A (en) Method of producing polycrystalline silicon ingot
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
JP5446975B2 (en) Single crystal growth equipment
JP5968198B2 (en) Single crystal manufacturing method
JP4168790B2 (en) Single crystal manufacturing method, single crystal manufacturing apparatus, and langasite single crystal
JP2005239442A (en) Manufacturing method of oxide single crystal
JPH10338593A (en) Noble metal crucible for signal crystal growth by pulling up method
JP2023132269A (en) Apparatus and method for growing oxide single crystal
JP2023132268A (en) Apparatus and method for growing oxide single crystal
JP2005239535A (en) Single crystal and its producing method
JP2017178741A (en) Mold for manufacturing silicon ingot
JP2004035281A (en) Method for producing lithium tetraborate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees