JP5359490B2 - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP5359490B2 JP5359490B2 JP2009098204A JP2009098204A JP5359490B2 JP 5359490 B2 JP5359490 B2 JP 5359490B2 JP 2009098204 A JP2009098204 A JP 2009098204A JP 2009098204 A JP2009098204 A JP 2009098204A JP 5359490 B2 JP5359490 B2 JP 5359490B2
- Authority
- JP
- Japan
- Prior art keywords
- composite oxide
- lithium
- nickel composite
- lithium nickel
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 30
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 30
- 239000002131 composite material Substances 0.000 claims description 110
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 claims description 63
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 claims description 47
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- 229910002804 graphite Inorganic materials 0.000 claims description 36
- 239000010439 graphite Substances 0.000 claims description 36
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 21
- 239000007773 negative electrode material Substances 0.000 claims description 14
- 239000007774 positive electrode material Substances 0.000 claims description 14
- 239000010450 olivine Substances 0.000 claims description 9
- 229910052609 olivine Inorganic materials 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 27
- 239000000126 substance Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 17
- 230000014759 maintenance of location Effects 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- -1 cycle durability Substances 0.000 description 13
- 238000009783 overcharge test Methods 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000002482 conductive additive Substances 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910021440 lithium nickel complex oxide Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000004438 BET method Methods 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- WVDDUSFOSWWJJH-UHFFFAOYSA-N 1-methyl-3-propylimidazol-1-ium Chemical compound CCCN1C=C[N+](C)=C1 WVDDUSFOSWWJJH-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical class OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
従来、リチウムイオン二次電池の正極に用いられるリチウム化合物としては、リチウムニッケル複合酸化物やリチウムコバルト複合酸化物などが用いられている。また、近年、資源量の乏しいコバルトやニッケルに代わるリチウム化合物として、資源量が豊富で且つ安価であるリチウム鉄複合酸化物(LiFePO4など)が注目されている。このリチウム鉄複合酸化物は、コバルトやニッケルなどを含有するものに比してサイクル耐久性が劣る傾向にあることから、様々な改良が続けられている。 Conventionally, as a lithium compound used for the positive electrode of a lithium ion secondary battery, a lithium nickel composite oxide, a lithium cobalt composite oxide, or the like is used. In recent years, lithium iron composite oxides (such as LiFePO 4 ) that have abundant resources and are inexpensive have attracted attention as lithium compounds that can replace cobalt and nickel, which have scarce resources. Since this lithium iron composite oxide tends to be inferior in cycle durability to those containing cobalt, nickel and the like, various improvements have been continued.
例えば特許文献1では、正極活物質としてリチウム鉄複合酸化物とニッケル酸リチウムとを所定の割合で混合したものを用い、負極活物質としてメソフェーズ炭素を黒鉛化したものを用いたものを提案している。ニッケル酸リチウムは化学的安定性が低いといわれているが、このような電池構成とすることで、サイクル耐久性や、化学的安定性が良好となっている。 For example, Patent Document 1 proposes using a mixture of lithium iron composite oxide and lithium nickelate in a predetermined ratio as a positive electrode active material and using a graphitized mesophase carbon as a negative electrode active material. Yes. Lithium nickelate is said to have low chemical stability, but with such a battery configuration, cycle durability and chemical stability are good.
しかしながら、この特許文献1に記載されたリチウムイオン二次電池では、化学的安定性及びサイクル耐久性が優れているものの、まだ十分ではなく、より高い化学的安定性やサイクル耐久性を有するものが望まれていた。また、より高い低温特性を有するものであることも望まれていた。 However, in the lithium ion secondary battery described in Patent Document 1, although the chemical stability and the cycle durability are excellent, the lithium ion secondary battery is not yet sufficient and has a higher chemical stability and cycle durability. It was desired. It has also been desired to have higher low temperature characteristics.
本発明はこのような課題を解決するためになされたものであり、リチウム鉄複合酸化物を含む正極活物質と黒鉛を含む負極活物質とを有するものにおいて、化学的安定性やサイクル耐久性をより向上するとともに、低温特性をより向上することができるリチウムイオン二次電池を提供することを主目的とする。 The present invention has been made to solve such problems, and has a positive electrode active material including a lithium iron composite oxide and a negative electrode active material including graphite, and has chemical stability and cycle durability. The main object is to provide a lithium ion secondary battery that can be further improved and the low temperature characteristics can be further improved.
上述した目的を達成するために、本発明者らは、リチウムイオン二次電池において、オリビン構造を有するリチウム鉄複合酸化物と層状岩塩構造を有するリチウムニッケル複合酸化物とを所定の重量比で含む正極活物質を有する正極と、非晶質炭素被覆黒鉛を有する負極活物質を含む負極と、を有するものとすることで、サイクル耐久性や化学的安定性、低温特性をより良好にすることができることを見いだし、本発明を完成するに至った。 In order to achieve the above-described object, the present inventors include, in a lithium ion secondary battery, a lithium iron composite oxide having an olivine structure and a lithium nickel composite oxide having a layered rock salt structure at a predetermined weight ratio. By having a positive electrode having a positive electrode active material and a negative electrode containing a negative electrode active material having amorphous carbon-coated graphite, cycle durability, chemical stability, and low temperature characteristics can be improved. The inventors have found what can be done and have completed the present invention.
即ち、本発明のリチウムイオン二次電池は、
オリビン構造を有するリチウム鉄複合酸化物と層状岩塩構造を有するリチウムニッケル複合酸化物とを含み、該リチウム鉄複合酸化物と該リチウムニッケル複合酸化物との総重量に対する該リチウムニッケル複合酸化物の割合が5重量%以上40重量%未満である正極活物質を有する正極と、
非晶質炭素被覆黒鉛を有する負極活物質を含む負極と、
前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、
を備えたものである。
That is, the lithium ion secondary battery of the present invention is
A ratio of the lithium nickel composite oxide to the total weight of the lithium iron composite oxide and the lithium nickel composite oxide, comprising a lithium iron composite oxide having an olivine structure and a lithium nickel composite oxide having a layered rock salt structure A positive electrode having a positive electrode active material of 5 wt% or more and less than 40 wt%;
A negative electrode comprising a negative electrode active material having amorphous carbon-coated graphite;
An ion conductive medium interposed between the positive electrode and the negative electrode and conducting lithium ions;
It is equipped with.
このリチウムイオン二次電池では、化学的安定性及びサイクル耐久性、低温特性をより良好にすることができる。このような効果が得られる理由は定かではないが、サイクル耐久性の良好なリチウムニッケル複合酸化物と化学的安定性の良好なリチウム鉄複合酸化物とを適切な比率で組み合わせることにより、化学的安定性及びサイクル耐久性を良好にすることができると考えられる。また、リチウム鉄複合酸化物では、局所的なリチウムの吸蔵放出が起き、正極内でのリチウムの不均一が生じて化学的安定性やサイクル耐久性を低下させることがあるが、リチウムニッケル複合酸化物と組み合わせることで、これを緩和することができると考えられる。また、このリチウムの不均一は低温でより顕著になる傾向にあることから、リチウムニッケル複合酸化物を好適な範囲で添加することにより、低温特性もより良好となるものと考えられる。さらに非晶質炭素被覆黒鉛を含む負極活物質と組み合わせることで、正極と負極との容量バランスが良好となり、化学的安定性やサイクル耐久性、低温特性がより良好となると考えられる。 In this lithium ion secondary battery, chemical stability, cycle durability, and low temperature characteristics can be improved. The reason why such an effect can be obtained is not clear, but by combining lithium nickel composite oxide with good cycle durability and lithium iron composite oxide with good chemical stability in an appropriate ratio, It is considered that stability and cycle durability can be improved. In addition, in lithium iron composite oxide, local lithium occlusion / release occurs, which may cause non-uniformity of lithium in the positive electrode and reduce chemical stability and cycle durability. This can be mitigated by combining with things. Moreover, since this non-uniformity of lithium tends to become more prominent at low temperatures, it is considered that the low temperature characteristics are also improved by adding lithium nickel composite oxide in a suitable range. Further, by combining with a negative electrode active material containing amorphous carbon-coated graphite, it is considered that the capacity balance between the positive electrode and the negative electrode is improved, and chemical stability, cycle durability, and low-temperature characteristics are improved.
本発明のリチウムイオン二次電池は、オリビン構造を有するリチウム鉄複合酸化物と層状岩塩構造を有するリチウムニッケル複合酸化物とを含み、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との総重量に対するリチウムニッケル複合酸化物の割合が5重量%以上40重量%未満である正極活物質を有する正極と、非晶質炭素被覆黒鉛を有する負極活物質を含む負極と、正極と負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、を備えている。 The lithium ion secondary battery of the present invention includes a lithium iron composite oxide having an olivine structure and a lithium nickel composite oxide having a layered rock salt structure, and is based on the total weight of the lithium iron composite oxide and the lithium nickel composite oxide. A positive electrode having a positive electrode active material in which the proportion of the lithium nickel composite oxide is 5% by weight or more and less than 40% by weight, a negative electrode containing a negative electrode active material having amorphous carbon-coated graphite, and an intermediate between the positive electrode and the negative electrode And an ion conductive medium that conducts lithium ions.
本発明のリチウムイオン二次電池において、正極は、例えば、正極活物質と導電助材と結着材とを混合し適当な溶剤を加えてスラリー状の正極合材としたものを集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものでもよい。この正極は、オリビン構造を有するリチウム鉄複合酸化物と層状岩塩構造を有するリチウムニッケル複合酸化物とを含み、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との総重量に対するリチウムニッケル複合酸化物の割合が5重量%以上40重量%未満である正極活物質を有している。正極活物質は、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との総重量に対するリチウムニッケル複合酸化物の割合が5重量%以上40重量%未満であればよい。このうち10重量%以上35重量%未満であることが好ましく、25重量%以上35重量%未満であることがより好ましい。5重量%以上であれば、サイクル耐久性の良好なリチウムニッケル複合酸化物の効果が得られるし、リチウム鉄複合酸化物で生じることがある局所的なリチウムの吸蔵放出をより抑制することができると考えられる。また、40重量%未満であれば、リチウムニッケル複合酸化物が過剰でなく、より高い化学的安定性が得られると考えられる。また、10重量%以上35重量%以下であれば低温特性も良好となるため好ましいし、25重量%以上35重量%以下であれば、サイクル耐久性がより良好となるため好ましい。また、例えば、コスト面を重視してリチウム鉄複合酸化物を多く用いたものとしてもよいし、リチウムの拡散性が高く電子伝導性が良好なリチウムニッケル複合酸化物を多く用いて高速充電に適したものとしてもよい。このように、リチウムニッケル複合酸化物の割合は、5重量%以上40重量%未満の範囲であれば求める特性に応じて適宜選択することができる。 In the lithium ion secondary battery of the present invention, the positive electrode is, for example, a mixture of a positive electrode active material, a conductive additive, and a binder and an appropriate solvent added to form a slurry-like positive electrode mixture. It may be formed by applying and drying on the surface and compressing to increase the electrode density as necessary. The positive electrode includes a lithium iron composite oxide having an olivine structure and a lithium nickel composite oxide having a layered rock salt structure, and the lithium nickel composite oxide with respect to the total weight of the lithium iron composite oxide and the lithium nickel composite oxide. A positive electrode active material having a ratio of 5 wt% or more and less than 40 wt% is included. The ratio of the lithium nickel composite oxide to the total weight of the lithium iron composite oxide and the lithium nickel composite oxide may be 5% by weight or more and less than 40% by weight. Among these, it is preferable that it is 10 to 35 weight%, and it is more preferable that it is 25 to 35 weight%. If it is 5% by weight or more, the effect of lithium nickel composite oxide having good cycle durability can be obtained, and local lithium occlusion and release that may occur in lithium iron composite oxide can be further suppressed. it is conceivable that. Moreover, if it is less than 40 weight%, lithium nickel complex oxide is not excessive, and it is thought that higher chemical stability is obtained. Moreover, if it is 10 weight% or more and 35 weight% or less, since a low-temperature characteristic becomes favorable, it is preferable, since cycling durability becomes more favorable if it is 25 weight% or more and 35 weight% or less. In addition, for example, it is possible to use a large amount of lithium iron composite oxide with an emphasis on cost, or suitable for high-speed charging using a large amount of lithium nickel composite oxide with high lithium diffusibility and good electron conductivity. It is also good. As described above, the ratio of the lithium nickel composite oxide can be appropriately selected according to the required characteristics as long as it is in the range of 5 wt% or more and less than 40 wt%.
オリビン構造を有するリチウム鉄複合酸化物としては、例えば、一般式LiaFe1-bM1bPO4 で表されるものが挙げられる。ここで、M1は、特に限定されるものではないが、Mn,Mg,Ni,Co,Cu,Zn,Ge,Cr,V,Mo,Tiから選ばれる少なくとも1種以上であることが好ましい。このうち、Mn,Mg,Ni,Coを含んでいることがより好ましい。また、aは0.5≦a≦1.2を満たすものであることが好ましく、bは0≦b<1.0を満たすものであることが好ましく、0.01≦b≦0.3であることがより好ましい。a≧0.5であれば、初回の充電時に負極側に吸蔵させるリチウム量として十分であるし、a≦1.2であればリチウムの量が過剰とならず、金属リチウムの析出による電池の短絡を抑制できると考えられるからである。なお、オリビン構造を有するリチウム鉄複合酸化物は上述した基本式により特定されるものに限定されない。例えば、LiFePO4であってもよいし、LiやP,M1の一部が他の元素に置換されていてもよいし、化学量論組成のものだけでなく、一部の元素が欠損または過剰となる非化学量論組成のものであってもよい。 The lithium iron composite oxide having an olivine structure, for example, those represented by the general formula Li a Fe 1-b M1 b PO 4. Here, M1 is not particularly limited, but is preferably at least one selected from Mn, Mg, Ni, Co, Cu, Zn, Ge, Cr, V, Mo, and Ti. Among these, it is more preferable that Mn, Mg, Ni, and Co are included. Further, a preferably satisfies 0.5 ≦ a ≦ 1.2, b preferably satisfies 0 ≦ b <1.0, and 0.01 ≦ b ≦ 0.3. More preferably. If a ≧ 0.5, the amount of lithium to be occluded on the negative electrode side at the first charge is sufficient, and if a ≦ 1.2, the amount of lithium does not become excessive, so It is because it is thought that a short circuit can be suppressed. The lithium iron composite oxide having an olivine structure is not limited to that specified by the basic formula described above. For example, it may be LiFePO 4 , Li, P, or M1 may be partially substituted with other elements, and not only the stoichiometric composition but also some elements may be deficient or excessive. It may be of a non-stoichiometric composition.
層状岩塩構造を有するリチウムニッケル複合酸化物としては、例えば、一般式LiNixM21-xO2 で表されるものが挙げられる。ここで、M2は特に限定されるものではないが、Mg,Co,Mn,Alから選ばれる少なくとも1種以上であることが好ましい。また、xは0.4<x<0.95を満たすものであることが好ましい。なかでも、一般式LiNixM21-x-yAlyO2 で表され、xが0.5<x<0.95を満たし、yが0.001<y<0.2を満たすものであることが好ましい。このようにNiの一部がAlに置換されると、層状岩塩構造が安定化され、サイクル耐久性及び熱的安定性が向上すると考えられるからである。なお、層状岩塩構造を有するリチウムニッケル複合酸化物は上述した基本式により特定されるものに限定されない。例えば、LiNiO2であってもよいし、LiやNi,M2の一部が他の元素に置換されていてもよいし、化学量論組成のものだけでなく、一部の元素が欠損または過剰となる非化学量論組成のものであってもよい。 Examples of the lithium nickel composite oxide having a layered rock salt structure include those represented by the general formula LiNi x M2 1-x O 2 . Here, M2 is not particularly limited, but is preferably at least one selected from Mg, Co, Mn, and Al. Further, x preferably satisfies 0.4 <x <0.95. In particular, it is represented by the general formula LiNi x M2 1-xy Al y O 2 , x satisfies 0.5 <x <0.95, and y satisfies 0.001 <y <0.2. Is preferred. This is because, when a part of Ni is substituted with Al in this way, the layered rock salt structure is stabilized, and it is considered that cycle durability and thermal stability are improved. The lithium nickel composite oxide having a layered rock salt structure is not limited to that specified by the basic formula described above. For example, it may be LiNiO 2 , Li, Ni, M2 may be partially substituted with other elements, and not only the stoichiometric composition but also some elements may be deficient or excessive. It may be of a non-stoichiometric composition.
本発明のリチウムイオン二次電池において、負極は、例えば、負極活物質と導電助材と結着材とを混合し適当な溶剤を加えてスラリー状の負極合材としたものを集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものでもよい。この負極は、非晶質炭素被覆黒鉛を有する負極活物質を含んでいる。非晶質炭素被覆黒鉛とは、結晶性の高い黒鉛を核としてその表面の全部又は一部が結晶性の低い非晶質炭素材料で被覆されているものをいう。一般に、黒鉛系の材料を負極として用いる場合には、初期の充放電サイクルにおいて充電電気量に不可逆容量(リテンション)と呼ばれる放電時に取り出せない容量が含まれるものの、その後の充放電サイクルにおいては可逆性が高い優れたサイクル耐久性を有する。また、低く平坦な放電特性を有する。一方で、黒鉛は活性な結晶子端面が結晶表面に配向しやすく、電解液と反応しやすい傾向にある。そこで、黒鉛の表面を電解液と反応しにくい非晶質炭素で覆うことにより、サイクル耐久性が良好で化学的安定性がより良好なものとすることができると考えられる。さらに、黒鉛の表面を非晶質炭素で被覆することにより、電池反応に関与する黒鉛の比表面積が過大となることを抑制することができ、不可逆容量を低減でき、正極と負極との容量のバランスをより良好なものとすることができると考えられる。核となる黒鉛は、天然黒鉛であることがコストの面からも好ましい。このような天然黒鉛としては、鱗状黒鉛や鱗片状黒鉛が挙げられる。天然黒鉛は機械的な形状制御を施して用いるものであってもく、例えば、黒鉛粒子の角をとったり、球状となるように丸めたり、粉砕したりして用いるものであってもよい。このような形状制御により、プレス工程で生じる鱗片状黒鉛等の選択的配向を抑制し、リチウムイオンの挿入・脱離の阻害を抑制することができると考えられる。これにより、初期のリテンションが高くなることに起因するその後の充放電容量の低下を抑制することができると考えられる。また、粒子の比表面積を小さくする場合には嵩密度が低くなり過ぎないようにすることもできる。黒鉛を被覆する非晶質炭素はその原料や製法が特に限定されるものではないが、石炭系あるいは石油系のタールや、ピッチ、アスファルトなど(以下これらを重質油とも称する)と、核となる黒鉛とを十分に混合撹拌したのち、不要な重質油成分を除去し、乾燥して焼成することにより、黒鉛の表面に被覆物として生成したものであることが好ましい。なお、焼成は重質油が非晶質になる温度、例えば600℃〜2000℃で行うものであってもよいし、被覆した重質油層に難黒鉛化処理を行った上で2000℃以上の高温で焼成するものであってもよい。難黒鉛化処理としては、酸素、オゾン、二酸化炭素、イオン酸化物などの酸化性ガス雰囲気下で低温(例えば50℃〜400℃)で熱処理する方法などが挙げられる。この非晶質炭素は、黒鉛の表面全体を均一に覆っているものであることが好ましい。このようにすれば、よりばらつきの少ない材料とすることができ、負極の容量をより適切に制御できると考えられるからである。この非晶質炭素被覆の厚みは特に限定されないが、被覆される黒鉛の粒子径の1/2以下であることが好ましく、1/4以下であることがより好ましい。非晶質炭素被覆黒鉛は、平均粒子径(D50%)が1μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、15μm以上25μm以下であることがさらに好ましい。また、真比重は1.5〜2.3であることが好ましく、2.0〜2.3であることがより好ましい。また、BET法で測定した比表面積が0.1m2/g以上10m2/g以下であることが好ましく、0.5m2/g以上2.0m2/g以下であることがより好ましい。 In the lithium ion secondary battery of the present invention, the negative electrode is, for example, a mixture of a negative electrode active material, a conductive additive, and a binder and an appropriate solvent added to form a slurry-like negative electrode mixture. It may be formed by applying and drying on the surface and compressing to increase the electrode density as necessary. The negative electrode includes a negative electrode active material having amorphous carbon-coated graphite. Amorphous carbon-coated graphite refers to a material in which all or part of its surface is coated with an amorphous carbon material having low crystallinity, with graphite having high crystallinity as a nucleus. In general, when a graphite-based material is used as the negative electrode, the charge amount in the initial charge / discharge cycle includes a capacity that cannot be taken out during discharge, which is called irreversible capacity (retention), but it is reversible in the subsequent charge / discharge cycle. Has excellent cycle durability. In addition, it has low and flat discharge characteristics. On the other hand, graphite has an active crystallite end face that is easily oriented on the crystal surface and tends to react with the electrolyte. Therefore, it is considered that the cycle durability is good and the chemical stability is better by covering the surface of graphite with amorphous carbon that hardly reacts with the electrolytic solution. Furthermore, by covering the surface of the graphite with amorphous carbon, it is possible to suppress an excessive specific surface area of the graphite involved in the battery reaction, reduce the irreversible capacity, and increase the capacity of the positive electrode and the negative electrode. It is considered that the balance can be improved. The graphite as the core is preferably natural graphite from the viewpoint of cost. Examples of such natural graphite include scaly graphite and scaly graphite. Natural graphite may be used after being subjected to mechanical shape control. For example, the graphite may be used by taking the corners of the graphite particles, rounding them into a spherical shape, or pulverizing them. It is considered that such shape control can suppress the selective orientation of flake graphite and the like generated in the pressing process, and can suppress the inhibition of lithium ion insertion / extraction. Thereby, it is considered that the subsequent decrease in charge / discharge capacity due to the increase in initial retention can be suppressed. Further, when the specific surface area of the particles is reduced, the bulk density can be prevented from becoming too low. The raw material and production method of amorphous carbon covering graphite are not particularly limited, but coal-based or petroleum-based tar, pitch, asphalt (hereinafter also referred to as heavy oil), core, After thoroughly mixing and stirring with the graphite, the unnecessary heavy oil component is removed, dried and fired to produce a coating on the graphite surface. In addition, baking may be performed at a temperature at which the heavy oil becomes amorphous, for example, 600 ° C. to 2000 ° C., or after the hard oil layer that has been coated is subjected to non-graphitization treatment, It may be fired at a high temperature. Examples of the non-graphitizing treatment include a method in which heat treatment is performed at a low temperature (for example, 50 ° C. to 400 ° C.) in an oxidizing gas atmosphere such as oxygen, ozone, carbon dioxide, and ionic oxide. This amorphous carbon preferably covers the entire surface of the graphite uniformly. This is because it can be considered that a material with less variation can be obtained and the capacity of the negative electrode can be controlled more appropriately. The thickness of the amorphous carbon coating is not particularly limited, but is preferably 1/2 or less, more preferably 1/4 or less of the particle diameter of the graphite to be coated. The amorphous carbon-coated graphite has an average particle size (D50%) of preferably 1 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less, and further preferably 15 μm or more and 25 μm or less. The true specific gravity is preferably 1.5 to 2.3, and more preferably 2.0 to 2.3. Further, the specific surface area measured by the BET method is preferably 0.1 m 2 / g or more and 10 m 2 / g or less, and more preferably 0.5 m 2 / g or more and 2.0 m 2 / g or less.
本発明のリチウムイオン二次電池において、正極及び負極に含まれる導電助材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電助材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電助材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、あるいはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。活物質、導電助材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。また、水に分散剤、増粘剤等を加え、SBRなどのラテックスで活物質をスラリー化したものであってもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロースなどの多糖類を単独で、あるいは2種以上の混合物として用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。 In the lithium ion secondary battery of the present invention, the conductive additive contained in the positive electrode and the negative electrode is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. For example, natural graphite (scale graphite, 1 or 2 types of graphite such as (flaky graphite) and artificial graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) What mixed the above can be used. Among these, carbon black and acetylene black are preferable as the conductive aid from the viewpoints of electron conductivity and coatability. The binder plays a role of holding the active material particles and the conductive auxiliary particles, and for example, a fluorine-containing resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine rubber, or polypropylene. , Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR) and the like can be used alone or as a mixture of two or more. In addition, an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder, can also be used. Examples of the solvent for dispersing the active material, conductive additive, and binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Moreover, a dispersant, a thickener, or the like may be added to water, and the active material may be slurried with a latex such as SBR. As the thickener, for example, polysaccharides such as carboxymethyl cellulose and methyl cellulose can be used alone or as a mixture of two or more. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. Current collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, conductive glass, and aluminum, copper, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. A surface treated with carbon, nickel, titanium, silver or the like can be used. For these, the surface can be oxidized. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.
本発明のリチウムイオン二次電池において、イオン伝導媒体は、支持塩を有機溶媒に溶かした非水電解液やイオン液体、ゲル電解質、固体電解質などを用いることができる。このうち、非水電解液であることが好ましい。支持塩としては、例えば、LiPF6,LiClO4,LiAsF6,LiBF4,Li(CF3SO2)2N,Li(CF3SO3),LiN(C2F5SO2)などの公知の支持塩を用いることができる。支持塩の濃度としては、0.1〜2.0Mであることが好ましく、0.8〜1.2Mであることがより好ましい。有機溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。また、イオン液体としては、特に限定されるものではないが、1−メチル−3−プロピルイミダゾリウムビス(トリフルオロスルホニル)イミドや1−エチル−3−ブチルイミダゾリウムテトラフルオロボレートなどを用いることができる。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類またはアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the lithium ion secondary battery of the present invention, the ion conductive medium may be a nonaqueous electrolytic solution or ionic liquid in which a supporting salt is dissolved in an organic solvent, a gel electrolyte, a solid electrolyte, or the like. Of these, a non-aqueous electrolyte is preferable. Examples of the supporting salt include known LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 3 ), LiN (C 2 F 5 SO 2 ), and the like. Supporting salts can be used. The concentration of the supporting salt is preferably 0.1 to 2.0M, and more preferably 0.8 to 1.2M. Examples of the organic solvent include conventional secondary batteries such as ethylene carbonate (EC), ethyl methyl carbonate (EMC), propylene carbonate (PC), γ-butyrolactone (GBL), diethyl carbonate (DEC), and dimethyl carbonate (DMC). And organic solvents used in capacitors. These may be used alone or in combination. The ionic liquid is not particularly limited, and 1-methyl-3-propylimidazolium bis (trifluorosulfonyl) imide, 1-ethyl-3-butylimidazolium tetrafluoroborate, or the like may be used. it can. The gel electrolyte is not particularly limited. For example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include, for example, Li nitrides, halides, oxyacid salts, and the like. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. These may be used alone or in combination. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination.
本発明のリチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、二次電池の使用範囲に耐え得る組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。これらは単独で用いてもよいし、複合して用いてもよい。 The lithium ion secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a microporous film of an olefin resin such as polyethylene or polypropylene Is mentioned. These may be used alone or in combination.
本発明のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウムイオン二次電池10の一例を示す模式図である。このリチウムイオン二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水電解液20と、を備えたものである。このリチウムイオン二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。
The shape of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic view showing an example of a lithium ion
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
以下には、本発明のリチウムイオン二次電池を具体的に作製した例を実施例として説明する。 Below, the example which produced the lithium ion secondary battery of this invention concretely is demonstrated as an Example.
[実施例1]
正極は以下のように作製した。まず、正極活物質としては、オリビン構造のリチウム鉄複合酸化物(LiFePO4)と、リチウムニッケル複合酸化物(Li1.05Ni0.75Co0.15Al0.05Mg0.05O2)とを95:5の重量比で混合したものを用いた。この正極活物質と、導電助材としてのカーボンブラック(東海カーボン製TB5500)と、バインダとしてのポリフッ化ビニリデン(呉羽化学工業製KFポリマ)とを、78.5:13.8:11.7の重量比で混合して正極合材とした。このようにして作製した正極合材をN−メチル−2−ピロリドンに分散させてペースト状にし、厚さ20μmのアルミニウム箔の両面に塗工して乾燥させ、ロールプレスして54mm×450mmの正極シートを得た。負極は以下のように作製した。負極活物質としての非晶質炭素被覆黒鉛(大阪ガスケミカル製OMAC−2)と、バインダとしてのポリフッ化ビニリデンとを、95:5の重量比で混合して負極合材とした。作製した負極合材をN−メチル−2−ピロリドンに分散させてペースト状にし、厚さ10μmの銅箔の両面に塗工して乾燥させ、ロールプレスして56mm×500mmの負極シートを得た。このように作製した正極シート及び負極シートを25μm厚のポリエチレン製セパレータを挟んで捲回し、ロール状電極体を作製した。これを18650型円筒ケースに挿入し、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比で3:7の割合で混合した溶液(キシダ薬品製)に1MのLiPF6を加えて調整した非水電解液を含浸させ、密閉して円筒形の電池を作製した。このようにして実施例1の電池を得た。なお、実験に用いた非晶質炭素被覆黒鉛は、平均粒子径(D50)が21.2μm、真比重が2.16、BET法により測定した比表面積が1.03m2/gであった。
[Example 1]
The positive electrode was produced as follows. First, as a positive electrode active material, a lithium iron composite oxide (LiFePO 4 ) having an olivine structure and a lithium nickel composite oxide (Li 1.05 Ni 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 ) at a weight ratio of 95: 5. A mixture was used. The positive electrode active material, carbon black (TB5500 manufactured by Tokai Carbon Co., Ltd.) as a conductive additive, and polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industry Co., Ltd.) as a binder were used in a ratio of 78.5: 13.8: 11.7 A positive electrode mixture was prepared by mixing at a weight ratio. The positive electrode mixture thus prepared is dispersed in N-methyl-2-pyrrolidone to form a paste, coated on both sides of an aluminum foil having a thickness of 20 μm, dried, and roll pressed to form a positive electrode of 54 mm × 450 mm. A sheet was obtained. The negative electrode was produced as follows. Amorphous carbon-coated graphite (OMAC-2 manufactured by Osaka Gas Chemical) as a negative electrode active material and polyvinylidene fluoride as a binder were mixed at a weight ratio of 95: 5 to obtain a negative electrode mixture. The prepared negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a paste, coated on both sides of a 10 μm thick copper foil, dried, and roll pressed to obtain a 56 mm × 500 mm negative electrode sheet. . The positive electrode sheet and the negative electrode sheet thus produced were wound with a 25 μm thick polyethylene separator interposed therebetween, and a roll-shaped electrode body was produced. This was inserted into a 18650 type cylindrical case, and adjusted by adding 1M LiPF 6 to a solution (made by Kishida Pharmaceutical Co., Ltd.) in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7. The non-aqueous electrolyte solution was impregnated and sealed to prepare a cylindrical battery. Thus, the battery of Example 1 was obtained. The amorphous carbon-coated graphite used in the experiment had an average particle diameter (D50) of 21.2 μm, a true specific gravity of 2.16, and a specific surface area measured by the BET method of 1.03 m 2 / g.
[実施例2〜7]
リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を90:10としたこと以外は実施例1と同様に実施例2の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を85:15としたこと以外は実施例1と同様に実施例3の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を80:20としたこと以外は実施例1と同様に実施例4の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を75:25としたこと以外は実施例1と同様に実施例5の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を70:30としたこと以外は実施例1と同様に実施例6の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を65:35としたこと以外は実施例1と同様に実施例7の電池を得た。
[Examples 2 to 7]
A battery of Example 2 was obtained in the same manner as Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was 90:10. Further, the battery of Example 3 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was 85:15. Further, the battery of Example 4 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was 80:20. Further, the battery of Example 5 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was 75:25. Further, the battery of Example 6 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was set to 70:30. Further, the battery of Example 7 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide to the lithium nickel composite oxide was 65:35.
[比較例1〜7]
リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を100:0としたこと以外は実施例1と同様に比較例1の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を98:2としたこと以外は実施例1と同様に比較例2の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を60:40としたこと以外は実施例1と同様に比較例3の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を50:50としたこと以外は実施例1と同様に比較例4の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を40:60としたこと以外は実施例1と同様に比較例5の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を20:80としたこと以外は実施例1と同様に比較例6の電池を得た。また、リチウム鉄複合酸化物とリチウムニッケル複合酸化物との重量比を0:100としたこと以外は実施例1と同様に比較例7の電池を得た。
[Comparative Examples 1 to 7]
A battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 100: 0. Further, a battery of Comparative Example 2 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 98: 2. Further, a battery of Comparative Example 3 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 60:40. Further, a battery of Comparative Example 4 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 50:50. Further, a battery of Comparative Example 5 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 40:60. Further, a battery of Comparative Example 6 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 20:80. Further, a battery of Comparative Example 7 was obtained in the same manner as in Example 1 except that the weight ratio of the lithium iron composite oxide and the lithium nickel composite oxide was 0: 100.
[サイクル耐久性の評価]
実施例1〜7、比較例1〜7の電池を用いて、60℃の温度条件下で、電流密度2.0mA/cm2の定電流で4.1Vまでの満充電を行い、次いで、電流密度2.0mA/cm2の定電流で2.5Vまで放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行った。このとき、一サイクル目の放電容量及び500サイクル目の放電容量を測定し、(500サイクル目の放電容量/1サイクル目の放電容量)×100で表される容量維持率WHF(%)を求めた。作製した実施例1〜7、比較例1〜7の電池を用いて、60℃の温度条件下で、電流密度2.0mA/cm2の定電流で3.6Vまで部分充電を行い、次いで、電流密度2.0mA/cm2の定電流で2.5Vまで放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行った。このとき、1サイクル目の放電容量及び500サイクル目の放電容量を測定し、(500サイクル目の放電容量/1サイクル目の放電容量)×100で表される容量維持率WHP(%)を求めた。また、実施例1〜7、比較例1〜7の電池を用いて、0℃の温度条件下で、電流密度5.0mA/cm2の定電流で4.2Vまでの満充電を行い、次いで、電流密度5.0mA/cm2の定電流で2.5Vまで放電を行う充放電を1サイクルとし、このサイクルを合計200サイクル行った。このとき、1サイクル目の放電容量及び200サイクル目の放電容量を測定し、(200サイクル目の放電容量/1サイクル目の放電容量)×100で表される容量維持率WLF(%)を求めた。
[Evaluation of cycle durability]
Using the batteries of Examples 1 to 7 and Comparative Examples 1 to 7, the battery was fully charged up to 4.1 V at a constant current of 2.0 mA / cm 2 under a temperature condition of 60 ° C. Charging / discharging which discharges to 2.5 V with a constant current of density 2.0 mA / cm 2 is defined as one cycle, and this cycle is performed for a total of 500 cycles. At this time, the discharge capacity at the first cycle and the discharge capacity at the 500th cycle were measured, and the capacity retention ratio W HF (%) represented by (discharge capacity at the 500th cycle / discharge capacity at the first cycle) × 100 was calculated. Asked. Using the batteries of Examples 1 to 7 and Comparative Examples 1 to 7 that were produced, partial charging was performed to 3.6 V at a constant current of 2.0 mA / cm 2 under a temperature condition of 60 ° C., and then Charging / discharging for discharging to 2.5 V at a constant current of a current density of 2.0 mA / cm 2 was defined as one cycle, and this cycle was performed for a total of 500 cycles. At this time, the discharge capacity at the first cycle and the discharge capacity at the 500th cycle were measured, and the capacity maintenance ratio W HP (%) represented by (discharge capacity at the 500th cycle / discharge capacity at the first cycle) × 100 was calculated. Asked. Further, using the batteries of Examples 1 to 7 and Comparative Examples 1 to 7, the battery was fully charged up to 4.2 V at a constant current of 5.0 mA / cm 2 under a temperature condition of 0 ° C., and then The charging / discharging which discharges to 2.5V with the constant current of 5.0 mA / cm < 2 > of current density was made into 1 cycle, and this cycle was performed 200 times in total. At this time, the discharge capacity at the first cycle and the discharge capacity at the 200th cycle were measured, and the capacity maintenance ratio W LF (%) represented by (discharge capacity at the 200th cycle / discharge capacity at the first cycle) × 100 was obtained. Asked.
[低温特性の評価]
初期低温出力を以下のようにして求めた。実施例1〜7、比較例1〜7の電池を用い、電池容量の50%(SOC=50%)まで充電したあとに、−30℃の温度条件下で、0.1A、0.5A、1.0A、2.0A、3.0A、5.0Aの電流を流して10秒後の電池電圧を測定した。流した電流値と電圧値とを直線近似により外挿し、10秒後の電池電圧が2.5Vとなるであろう電流値を求めた。そして、求めた電流値と2.5Vを乗じて−30℃での出力値である初期低温出力を求めた。また、高温下での充放電サイクル試験(満充放電)に使用した電池を用いて、初期低温出力と同様に高温サイクル後の低温出力を求めた。
[Evaluation of low temperature characteristics]
The initial low temperature output was determined as follows. Using the batteries of Examples 1 to 7 and Comparative Examples 1 to 7, after charging to 50% of the battery capacity (SOC = 50%), under a temperature condition of −30 ° C., 0.1 A, 0.5 A, 1.0 A, 2.0 A, 3.0 A, and 5.0 A currents were passed to measure the battery voltage after 10 seconds. The applied current value and voltage value were extrapolated by linear approximation, and the current value at which the battery voltage after 10 seconds would be 2.5 V was obtained. Then, the initial low temperature output which is an output value at −30 ° C. was obtained by multiplying the obtained current value by 2.5V. Moreover, the low temperature output after a high temperature cycle was calculated | required similarly to the initial low temperature output using the battery used for the charge / discharge cycle test (full charge / discharge) under high temperature.
[化学的安定性の評価]
初期の過充電試験を以下のようにして行った。実施例1〜7、比較例1〜7の電池を用いて、50℃の温度条件下、電流密度2mA/cm2の定電流で充電を行った。この充電を2.5時間継続し、発火の有無を確認した。また、上述した低温下での充放電サイクル試験に使用した電池を用いて、初期の過充電試験と同様に低温耐久後の過充電試験を行った。
[Evaluation of chemical stability]
The initial overcharge test was conducted as follows. Using the batteries of Examples 1 to 7 and Comparative Examples 1 to 7, charging was performed at a constant current of 2 mA / cm 2 at a current density of 50 ° C. This charging was continued for 2.5 hours, and the presence or absence of ignition was confirmed. Moreover, the overcharge test after low-temperature endurance was done like the initial overcharge test using the battery used for the above-mentioned low-temperature charge / discharge cycle test.
[実験結果]
表1は、実施例1〜7及び比較例1〜7の実験結果をまとめたものである。この表1には初期の低温出力、高温耐久後の低温出力、高温満充放電サイクルでの容量維持率、高温部分充放電サイクルでの容量維持率、低温満充放電サイクルでの容量維持率、初期の過充電試験、低温耐久後の過充電試験の試験結果を示した。60℃で満充放電を繰り返すと、リチウムニッケル複合酸化物の割合が多いほど容量維持率が良好となった。また、60℃で部分充放電を繰り返した場合にも、リチウムニッケル複合酸化物の割合が多いほど容量維持率が良好となった。これに対して、0℃で満充放電を繰り返すと、リチウムニッケル複合酸化物の割合が50重量%以下の範囲(実施例1〜7、比較例1〜4)ではリチウムニッケル複合酸化物の割合が多いほど容量維持率が良好となったが、それを超えると(比較例5〜7)容量維持率が低下した。このうち、リチウムニッケル複合酸化物の割合が5重量%以上60重量%以下の範囲で、容量維持率が40%以上となり、良好であった。以上のことから、リチウムニッケル複合酸化物が5重量%以上60重量%以下の範囲(実施例1〜7,比較例3〜5)では低温、高温に関わらず容量維持率が良好となることがわかった分。このような範囲では、容量維持率が低下しやすい高温や低温での充放電サイクルにおいて容量維持率が良好であったことから、常温であっても同様に容量維持率が良好となることが推察された。
[Experimental result]
Table 1 summarizes the experimental results of Examples 1-7 and Comparative Examples 1-7. Table 1 shows initial low temperature output, low temperature output after high temperature durability, capacity maintenance rate in high temperature full charge / discharge cycle, capacity maintenance rate in high temperature partial charge / discharge cycle, capacity maintenance rate in low temperature full charge / discharge cycle, The test results of the initial overcharge test and the overcharge test after low temperature durability were shown. When full charge / discharge was repeated at 60 ° C., the capacity retention ratio became better as the proportion of the lithium nickel composite oxide increased. In addition, when partial charge / discharge was repeated at 60 ° C., the capacity retention ratio became better as the proportion of the lithium nickel composite oxide increased. On the other hand, when full charge / discharge is repeated at 0 ° C., the ratio of the lithium nickel composite oxide is within a range of 50 wt% or less (Examples 1 to 7 and Comparative Examples 1 to 4). The capacity retention rate improved as the amount increased, but when exceeded (Comparative Examples 5 to 7), the capacity retention rate decreased. Of these, the lithium nickel composite oxide ratio was in the range of 5 wt% to 60 wt%, and the capacity retention rate was 40% or more, which was favorable. From the above, the capacity retention rate may be good regardless of the low temperature and high temperature in the range of 5% by weight to 60% by weight of the lithium nickel composite oxide (Examples 1 to 7, Comparative Examples 3 to 5). I understand. In such a range, the capacity retention rate was good in high-temperature and low-temperature charge / discharge cycles where the capacity retention rate is likely to decrease, and it is speculated that the capacity retention rate will be good at room temperature as well. It was done.
初期の低温出力はリチウムニッケル複合酸化物が5重量%以上40重量%以下の範囲(実施例1〜7,比較例3)で5.5W以上の高い値を示した。また、高温耐久後の低温出力はリチウムニッケル複合酸化物が5重量%以上の範囲(実施例1〜7,比較例3〜7)で良好であった。以上のことから、リチウムニッケル複合酸化物が5重量%以上40重量%以下の範囲(実施例1〜7,比較例3)で低温出力が良好となることがわかった。 The initial low-temperature output showed a high value of 5.5 W or more in the range of lithium nickel composite oxide in the range of 5 wt% to 40 wt% (Examples 1 to 7, Comparative Example 3). Moreover, the low-temperature output after high temperature durability was favorable in the range whose lithium nickel complex oxide is 5 weight% or more (Examples 1-7, Comparative Examples 3-7). From the above, it was found that the low-temperature output is good when the lithium nickel composite oxide is in the range of 5 wt% to 40 wt% (Examples 1 to 7, Comparative Example 3).
初期の過充電試験ではリチウムニッケル複合酸化物が0重量%以上40重量%未満の範囲(実施例1〜7,比較例1,2)で発火・発煙がなく良好であった。リチウムニッケル複合酸化物が40重量%以上80重量%未満の範囲(比較例3〜5)では発煙し、80重量%以上の範囲(比較例6,7)では発火した。また、低温耐久後の過充電試験では、リチウムニッケル複合酸化物が5重量%以上40重量%未満の範囲(実施例1〜7)で発火・発煙がなく良好であったが、リチウムニッケル複合酸化物が40重量%以上60重量%未満の範囲(比較例3,4)では発煙が生じ、0重量%以上5重量%未満の範囲(比較例1,2)及び60重量%以上の範囲(比較例6,7)では発火が生じた。以上のことから、電池の化学的安定性を考えると、リチウムニッケル複合酸化物の割合は少なくとも初期の過充電試験で発火を生じない0重量%以上80重量%未満の範囲(実施例1〜7、比較例1〜5)であることが必要であり、低温耐久後において発煙、発火を生じない5重量%以上40重量%未満の範囲(実施例1〜7)であることがより好ましいと考えられた。 In the initial overcharge test, the lithium nickel composite oxide was good in the range of 0 wt% or more and less than 40 wt% (Examples 1 to 7, Comparative Examples 1 and 2) without ignition and smoke generation. When the lithium nickel composite oxide was in the range of 40 wt% or more and less than 80 wt% (Comparative Examples 3 to 5), smoke was emitted, and in the range of 80 wt% or more (Comparative Examples 6 and 7), ignition occurred. Further, in the overcharge test after low temperature durability, the lithium nickel composite oxide was good in the range of 5 wt% or more and less than 40 wt% (Examples 1 to 7) with no ignition / smoke, but lithium nickel composite oxidation. In the range of 40 wt% or more and less than 60 wt% (Comparative Examples 3 and 4), smoke was generated, and the range of 0 wt% or more and less than 5 wt% (Comparative Examples 1 and 2) and the range of 60 wt% or more (Comparative In Examples 6 and 7, ignition occurred. From the above, considering the chemical stability of the battery, the proportion of the lithium nickel composite oxide is in the range of 0 wt% to less than 80 wt% that does not cause ignition in at least the initial overcharge test (Examples 1 to 7). Comparative Examples 1 to 5) are necessary, and it is considered that it is more preferably in the range of 5% by weight or more and less than 40% by weight (Examples 1 to 7) that does not generate smoke or ignition after low temperature durability. It was.
このように、負極活物質として、非晶質炭素被覆黒鉛を含むものとし、正極活物質として、オリビン構造を有するリチウム鉄複合酸化物に対するリチウムニッケル複合酸化物の割合が5重量%以上40重量%未満とすると、過充電時の化学的安定性が良好であり、且つ低温出力や容量維持率も良好であることがわかった。このような結果が得られた理由は以下のように推察された。まず、高温サイクルでの容量維持率については、好適な性能を示すリチウムニッケル複合酸化物をリチウム鉄複合酸化物に添加することで、より向上したものと推察された。また、充放電時の電位窓を狭めた部分充放電での高温サイクルでの容量維持率について、リチウム鉄複合酸化物は、SOCが0%や100%の領域を除いて充放電曲線が平坦な形状を示し、部分充放電を繰り返し行うと局所的な充放電(不均一な充放電)が起き劣化が促進されることがある。これは、リチウム鉄複合酸化物の電子伝導性が低いことが一因と考えられる。これに対して、リチウムニッケル複合酸化物は、リチウム鉄複合酸化物より電子伝導性が良好であるため、リチウム鉄複合酸化物にリチウムニッケル複合酸化物を添加することにより、不均一な充放電を抑制して部分充放電における容量維持率の低下を抑制することができたと推察された。また、低温サイクルでの容量維持率について、リチウム鉄複合酸化物は、充電末期において抵抗値の変動が少ないことから、充電末期では負極側での電位降下が大きくなり、リチウム析出電位に到達した場合にはリチウムの析出が生じて容量の低下や化学的安定性の低下が生じることがある。これに対して、リチウムニッケル複合酸化物では、充電末期での抵抗増加が大きいため、これを添加することにより、充電末期での電位変動をより小さくすることができ、この結果、低温サイクルでの容量維持率をより高めることができたと推察された。但し、リチウムニッケル複合酸化物の添加量が60重量%を超えると、低温サイクルでの容量維持率が低下することから、好適な添加範囲においてリチウム鉄複合酸化物とリチウムニッケル複合酸化物との混合による何らかの相乗効果があるものと推察された。また、初期電池の過充電試験について、リチウムニッケル複合酸化物は、過充電状態ではリチウムが引き抜かれ、この引き抜かれたリチウムが負極上に堆積するなどして不具合が生じうる。また、高温下では酸素を生じて発熱することがある。これに対して、リチウム鉄複合酸化物は、過充電安定性が高く、構造が安定であり例えば高温下でも酸素の放出などが生じにくい。このため、リチウム鉄複合酸化物に対してリチウムニッケル複合酸化物を好適な添加範囲で添加することによって、化学的安定性を向上することができたと推察された。また、低温サイクル後の過充電試験について、リチウム鉄複合酸化物は、低温での充放電サイクル時に局所的な充放電が顕著となり、負極上に熱的に不安定な金属Liが析出するなどして化学的安定性が低下することが考えられる。これに対して、リチウムニッケル複合酸化物を添加すると、例えば金属Liの析出が抑制されるなどして、化学的安定性を向上することができたと推察された。但し、リチウムニッケル複合酸化物の添加量が60重量%を超えると、低温サイクル後の化学安定性が低下することから、好適な添加範囲においてリチウム鉄複合酸化物とリチウムニッケル複合酸化物との混合による何らかの相乗効果があるものと推察された。 As described above, the negative electrode active material includes amorphous carbon-coated graphite, and the positive electrode active material has a ratio of the lithium nickel composite oxide to the lithium iron composite oxide having an olivine structure of 5 wt% or more and less than 40 wt%. As a result, it was found that the chemical stability during overcharging was good, and the low-temperature output and capacity retention rate were also good. The reason why such a result was obtained was presumed as follows. First, it was speculated that the capacity retention rate in the high-temperature cycle was further improved by adding a lithium nickel composite oxide exhibiting suitable performance to the lithium iron composite oxide. Moreover, about the capacity maintenance rate in the high temperature cycle in the partial charging / discharging which narrowed the potential window at the time of charging / discharging, the lithium iron complex oxide has a flat charging / discharging curve except the region where the SOC is 0% or 100%. If the shape is shown and partial charge / discharge is repeated, local charge / discharge (non-uniform charge / discharge) may occur and deterioration may be accelerated. This is probably due to the low electronic conductivity of the lithium iron composite oxide. On the other hand, lithium nickel composite oxide has better electronic conductivity than lithium iron composite oxide, so by adding lithium nickel composite oxide to lithium iron composite oxide, non-uniform charge and discharge can be achieved. It was speculated that it was possible to suppress the decrease in capacity maintenance rate in partial charge / discharge. In addition, as for the capacity retention rate in the low temperature cycle, the lithium iron composite oxide has little fluctuation in resistance value at the end of charging, so the potential drop at the negative electrode side becomes large at the end of charging and reaches the lithium deposition potential In some cases, precipitation of lithium may occur, resulting in a decrease in capacity and chemical stability. On the other hand, in the lithium-nickel composite oxide, the resistance increase at the end of charging is large, and by adding this, the potential fluctuation at the end of charging can be further reduced. It was inferred that the capacity maintenance rate could be further increased. However, if the addition amount of the lithium nickel composite oxide exceeds 60% by weight, the capacity retention rate in the low-temperature cycle is lowered, so that mixing of the lithium iron composite oxide and the lithium nickel composite oxide in a suitable addition range It was inferred that there was some synergistic effect. Further, regarding the overcharge test of the initial battery, the lithium nickel composite oxide may have a problem such that lithium is extracted in an overcharged state, and the extracted lithium is deposited on the negative electrode. In addition, oxygen may be generated at high temperatures to generate heat. On the other hand, the lithium iron composite oxide has high overcharge stability and a stable structure, and for example, release of oxygen hardly occurs even at high temperatures. For this reason, it was speculated that chemical stability could be improved by adding lithium nickel composite oxide in a suitable addition range to lithium iron composite oxide. As for the overcharge test after the low-temperature cycle, the lithium iron composite oxide has a remarkable local charge / discharge during the low-temperature charge / discharge cycle, and thermally unstable metal Li is deposited on the negative electrode. Therefore, chemical stability may be reduced. On the other hand, when lithium nickel complex oxide was added, it was guessed that chemical stability could be improved, for example, precipitation of metal Li was suppressed. However, if the addition amount of the lithium nickel composite oxide exceeds 60% by weight, the chemical stability after the low-temperature cycle is lowered, so mixing of the lithium iron composite oxide and the lithium nickel composite oxide within a suitable addition range It was inferred that there was some synergistic effect.
なお、本発明のリチウムイオン二次電池は、負極活物質として用いる炭素が非晶質炭素被覆黒鉛である点で、特開2007−317534号公報(特許文献1)に記載された電池とは異なる。本発明における非晶質炭素被覆黒鉛は、メソフェーズ黒鉛を非晶質炭素で被覆したものであってもよいが、非晶質炭素で被覆することについては、特許文献1に記載も示唆もない。また、非晶質炭素被覆黒鉛を使用すれば、特許文献1に記載の条件と比較してより厳しい条件下でのサイクル耐久性がより良好となり、電池の化学的安定性をより高めることができる正極を選択することが可能となる。このような効果は当然に予測されるものではない。 The lithium ion secondary battery of the present invention is different from the battery described in Japanese Patent Application Laid-Open No. 2007-317534 (Patent Document 1) in that the carbon used as the negative electrode active material is amorphous carbon-coated graphite. . The amorphous carbon-coated graphite in the present invention may be mesophase graphite coated with amorphous carbon, but there is no description or suggestion of coating with amorphous carbon. In addition, if amorphous carbon-coated graphite is used, cycle durability under more severe conditions becomes better than the conditions described in Patent Document 1, and the chemical stability of the battery can be further increased. A positive electrode can be selected. Such an effect is not naturally predicted.
10 リチウムイオン二次電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。
DESCRIPTION OF
Claims (3)
非晶質炭素被覆黒鉛を有する負極活物質を含む負極と、
前記正極と前記負極との間に介在し、リチウムイオンを伝導するイオン伝導媒体と、
を備えたリチウムイオン二次電池。 A ratio of the lithium nickel composite oxide to the total weight of the lithium iron composite oxide and the lithium nickel composite oxide, comprising a lithium iron composite oxide having an olivine structure and a lithium nickel composite oxide having a layered rock salt structure A positive electrode having a positive electrode active material having a content of 15 wt% or more and less than 40 wt%
A negative electrode comprising a negative electrode active material having amorphous carbon-coated graphite;
An ion conductive medium interposed between the positive electrode and the negative electrode and conducting lithium ions;
Lithium ion secondary battery equipped with.
The positive electrode active material according to claim 1 or 2, wherein a ratio of the lithium nickel composite oxide to a total weight of the lithium iron composite oxide and the lithium nickel composite oxide is 15 wt% or more and 35 wt% or less. The lithium ion secondary battery as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098204A JP5359490B2 (en) | 2009-04-14 | 2009-04-14 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009098204A JP5359490B2 (en) | 2009-04-14 | 2009-04-14 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010251060A JP2010251060A (en) | 2010-11-04 |
JP5359490B2 true JP5359490B2 (en) | 2013-12-04 |
Family
ID=43313175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009098204A Expired - Fee Related JP5359490B2 (en) | 2009-04-14 | 2009-04-14 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5359490B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4297122A4 (en) * | 2021-04-01 | 2024-09-25 | GS Yuasa International Ltd. | Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120231341A1 (en) * | 2011-03-09 | 2012-09-13 | Jun-Sik Kim | Positive active material, and electrode and lithium battery containing the positive active material |
JPWO2013018181A1 (en) * | 2011-07-29 | 2015-03-02 | トヨタ自動車株式会社 | Lithium ion secondary battery |
CN103733397B (en) | 2011-07-29 | 2016-08-24 | 丰田自动车株式会社 | Lithium rechargeable battery and manufacture method thereof |
CN103718353B (en) * | 2011-07-29 | 2016-09-07 | 丰田自动车株式会社 | Lithium rechargeable battery |
KR101863094B1 (en) * | 2011-09-16 | 2018-07-05 | 삼성에스디아이 주식회사 | Composite cathode active material, and cathode and lithium battery containing the material |
KR101552763B1 (en) | 2012-05-31 | 2015-09-11 | 주식회사 엘지화학 | Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same |
KR20150031319A (en) * | 2012-07-04 | 2015-03-23 | 후지 주코교 카부시키카이샤 | Nonaqueous-solvent type electricity storage device |
JP6244623B2 (en) * | 2012-12-18 | 2017-12-13 | 株式会社Gsユアサ | Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery |
PL3047531T3 (en) * | 2013-09-20 | 2018-04-30 | Basf Se | Electrode materials for lithium-ion batteries |
JP6160602B2 (en) | 2014-03-24 | 2017-07-12 | 株式会社デンソー | Lithium ion secondary battery |
WO2024246719A1 (en) * | 2023-06-02 | 2024-12-05 | 株式会社半導体エネルギー研究所 | Secondary battery, electronic apparatus, and vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4183472B2 (en) * | 2002-10-10 | 2008-11-19 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP2007234565A (en) * | 2005-03-18 | 2007-09-13 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP5137312B2 (en) * | 2006-03-17 | 2013-02-06 | 三洋電機株式会社 | Non-aqueous electrolyte battery |
JP2007317534A (en) * | 2006-05-26 | 2007-12-06 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2008010316A (en) * | 2006-06-29 | 2008-01-17 | Sharp Corp | Lithium ion secondary battery |
KR101084847B1 (en) * | 2006-10-16 | 2011-11-21 | 오사까 가스 가부시키가이샤 | Composite negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof, and nonaqueous electrolyte secondary battery using same |
-
2009
- 2009-04-14 JP JP2009098204A patent/JP5359490B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4297122A4 (en) * | 2021-04-01 | 2024-09-25 | GS Yuasa International Ltd. | Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device |
Also Published As
Publication number | Publication date |
---|---|
JP2010251060A (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5359490B2 (en) | Lithium ion secondary battery | |
JP5899442B2 (en) | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
CN112272880B (en) | Method for activating a secondary battery | |
KR102460008B1 (en) | Method of pre-lithiating anode and Anode obtained therefrom | |
JP6484895B2 (en) | Secondary battery electrode with improved energy density and lithium secondary battery including the same | |
JP6728134B2 (en) | Non-aqueous electrolyte secondary battery | |
WO2014147983A1 (en) | Non-aqueous electrolyte secondary battery | |
JPWO2011162169A1 (en) | Lithium ion secondary battery | |
JP2018523279A (en) | Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including the same | |
JP2017174648A (en) | Power storage device | |
JP4834901B2 (en) | Positive electrode material for lithium secondary battery | |
JP6750196B2 (en) | Non-aqueous lithium battery and method of using the same | |
JP2017152259A (en) | Lithium ion secondary battery and recovery method thereof | |
WO2017056448A1 (en) | Non-aqueous electrolyte secondary battery | |
JP2017152337A (en) | Negative electrode for non-aqueous lithium ion secondary battery, its production method and non-aqueous lithium ion secondary battery | |
JP5749882B2 (en) | Lithium secondary battery | |
KR102227102B1 (en) | Method for coating a lithium secondary battery electrode, and lithium secondary battery comprising a electrode using the same | |
JP5304196B2 (en) | Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery | |
JP2010033830A (en) | Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP5463754B2 (en) | Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery | |
JP5271751B2 (en) | Lithium ion secondary battery | |
CN110431690B (en) | Multi-layer electrode for secondary battery comprising binder having high crystallinity | |
JP6209839B2 (en) | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP6344507B2 (en) | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2011119072A (en) | Method of using lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130819 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5359490 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |