JP5359006B2 - Electronic equipment monitoring device - Google Patents
Electronic equipment monitoring device Download PDFInfo
- Publication number
- JP5359006B2 JP5359006B2 JP2008103894A JP2008103894A JP5359006B2 JP 5359006 B2 JP5359006 B2 JP 5359006B2 JP 2008103894 A JP2008103894 A JP 2008103894A JP 2008103894 A JP2008103894 A JP 2008103894A JP 5359006 B2 JP5359006 B2 JP 5359006B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- electronic device
- value
- difference
- integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
本発明は、温度による電子機器の寿命へ悪影響を与える状況を判別する装置等に関する。 The present invention relates to an apparatus for determining a situation that adversely affects the life of an electronic device due to temperature.
従来より、温度ストレスが電子機器の寿命に悪影響を与える(寿命を縮める)ことが知られている。例えば、任意の電子機器に対して規格で定められた常時運転時の温度T0よりも高い温度で運転し続けると、この電子機器の寿命が短くなること等が知られている。 Conventionally, it is known that temperature stress adversely affects the life of electronic equipment (reduces the life). For example, it is known that if an electronic device continues to be operated at a temperature higher than the temperature T0 during normal operation defined by the standard, the lifetime of the electronic device is shortened.
上記電子機器の一例として計器盤を例にすると、従来は計器盤などが設置されている計器室の温度あるいは、計器盤内の温度を単純に測定し、温度の異常上昇時に警報を出していた。例えば、上記温度T0よりも高い温度(寿命に関して異常温度と考えられるような温度)を閾値として、測定温度がこの閾値を越えたら警報を出していた。つまり、瞬間的な温度上昇の監視しかできなかった。 Taking an instrument panel as an example of the above electronic equipment, conventionally, the temperature of the instrument room where the instrument panel is installed or the temperature inside the instrument panel is simply measured, and an alarm is given when the temperature rises abnormally. . For example, a temperature higher than the above temperature T0 (a temperature considered to be an abnormal temperature with respect to the lifetime) is set as a threshold, and an alarm is issued when the measured temperature exceeds this threshold. In other words, only instantaneous temperature rise could be monitored.
ここで、特許文献1,2記載の従来技術が知られている。
特許文献1の発明は、コンピュータにおいて一定間隔毎に電気機器の寿命損失を計算し、その結果を自動的に積算して表示するものである。寿命損失は、電気機器の温度に応じて計算され、温度が高いほど寿命が短くなるものである。
Here, conventional techniques described in Patent Documents 1 and 2 are known.
The invention of Patent Document 1 calculates the life loss of electrical equipment at regular intervals in a computer, and automatically accumulates and displays the results. The life loss is calculated according to the temperature of the electric equipment, and the life is shortened as the temperature is higher.
また、特許文献2の発明は、温度センサと湿度センサの測定値と時間の関数の積算値を演算することで、温度と湿度と時間による電気回路の寿命を予測するものである。
ここで、電子機器の寿命を出来るだけ長くすることが要望される。上記の通り、従来技術では、計器盤内の温度が異常上昇した場合に警報を出す等することで、電気機器の寿命を短くするような状況(異常温度)がオペレータ等により改善されることが期待でき、これによって電気機器の寿命を出来るだけ長くするようにしていた。 Here, it is desired to make the life of the electronic device as long as possible. As described above, in the conventional technology, an alarm or the like is issued when the temperature in the instrument panel abnormally rises, so that the situation (abnormal temperature) that shortens the life of the electrical equipment may be improved by an operator or the like. It was possible to expect and this was to make the life of electrical equipment as long as possible.
しかしながら、計器盤内の温度が異常温度に達しないまでも、ある程度高い温度が継続する場合にも、電子機器の寿命が短くなってしまう。
また、例えば、温度が高いときと低いときとが繰返される場合、所謂“ヒートショック”の影響によって寿命が短くなることも考えられる。
However, even if the temperature in the instrument panel does not reach the abnormal temperature and the temperature continues to be high to some extent, the life of the electronic device is shortened.
In addition, for example, when the temperature is repeatedly high and low, the life may be shortened due to the effect of so-called “heat shock”.
また、上記のように温度が高いほど電気機器の寿命が短くなることから、上記計器室内の計器盤等の場合には空調設備によって計器室内の温度を下げることによって、計器盤の温度を低くするように出来るが、あまり低くすると、空調設備による電力消費が多大なものとなり、経済的には不適切なものとなる。 In addition, since the life of the electrical equipment becomes shorter as the temperature is higher as described above, the temperature of the instrument panel is lowered by lowering the temperature of the instrument room with an air conditioner in the case of the instrument panel in the instrument room. However, if it is too low, power consumption by the air-conditioning equipment becomes great, which is not economically appropriate.
本発明の課題は、電子機器の温度の上昇・下降変化を長期にわたって監視し、温度による電子機器の寿命へ悪影響を与える状況を判別して報知等することができ、又は寿命に関しては問題なくても経済的に不適切なものとなる状況にあることを判別して報知等を行える電子機器監視装置等を提供することである。 An object of the present invention is to monitor changes in the temperature of electronic equipment over a long period of time, to determine the situation that adversely affects the life of the electronic equipment due to temperature, or to report it, or there is no problem with respect to the life It is also to provide an electronic device monitoring device or the like that can determine that the situation is economically inappropriate and perform notification or the like.
本発明の電子機器監視装置は、対象の電子機器の温度の測定値を入力する入力手段と、該温度測定値と予め設定される基準温度とに基づいて、温度上昇分と温度下降分の2種類の温度偏差の積算値を算出する温度偏差積算値算出手段と、該2種類の温度偏差の積算値と予め設定される所定の閾値とに基づいて状況判定し、必要に応じて報知する状況判定・報知手段とを有する。 The electronic device monitoring apparatus according to the present invention is based on input means for inputting a measured value of the temperature of the target electronic device, and on the basis of the measured temperature value and a preset reference temperature, two portions of the temperature rise and the temperature fall. A situation in which a situation determination is made based on a temperature deviation integrated value calculation means for calculating an integrated value of the types of temperature deviations, an integrated value of the two types of temperature deviations, and a predetermined threshold set in advance, and a notification is made if necessary. Determination / notification means.
例えば、上記状況判定・報知手段は、前記2種類の温度偏差の積算値の差を求め、前記温度上昇分が前記温度下降分より大きく、且つこの差が予め設定される所定の第2の閾値を超えた場合には、「冷却不足状態」と判定する。 For example, the status determination and notification means obtains a difference between the integrated value of the two kinds of temperature deviation, the temperature rise is greater than the temperature decrease amount, and the difference is a predetermined second set in advance When the threshold value is exceeded, it is determined that “cooling is insufficient”.
また、例えば、上記状況判定・報知手段は、前記2種類の温度偏差の積算値の差を求め、この差の絶対値が0又は0に近い場合あるいは所定の第3の閾値未満の場合であって、更に前記温度上昇分の温度偏差の積算値が所定の第4の閾値を越える場合には、「ヒートショック状態」と判定する。 Further, for example, the situation determination / notification means obtains a difference between the integrated values of the two types of temperature deviations, and the absolute value of the difference is 0 or close to 0 or less than a predetermined third threshold value. If the integrated value of the temperature deviation corresponding to the temperature rise exceeds a predetermined fourth threshold value, it is determined as “heat shock state”.
あるいは、例えば、上記状況判定・報知手段は、前記2種類の温度偏差の積算値の差を求め、前記温度下降分が前記温度上昇分より大きく、且つこの差の絶対値が予め設定される所定の第5の閾値を超えた場合には、「過冷却状態」と判定する。 Alternatively, for example, the situation determination / notification unit obtains a difference between integrated values of the two types of temperature deviations, the temperature decrease is larger than the temperature increase, and an absolute value of the difference is preset. If the fifth threshold value is exceeded, it is determined as “supercooled state”.
本発明の電子機器監視装置等によれば、電子機器の温度の上昇・下降変化を長期にわたって監視し、温度による電子機器の寿命へ悪影響を与える状況を判別して報知等することができ、又は寿命に関しては問題なくても経済的に不適切なものとなる状況にあることを判別して報知等を行える。これによって、予防保全的に部品の検査/保全を行う等の対応を行うことが可能となる。 According to the electronic device monitoring apparatus and the like of the present invention, it is possible to monitor a rise / fall change in the temperature of the electronic device over a long period of time, determine a situation that adversely affects the life of the electronic device due to the temperature, and notify, or the like. Even if there is no problem with respect to the service life, it can be determined that the situation is economically inappropriate and notification can be made. Accordingly, it is possible to take measures such as inspecting / maintaining parts in a preventive maintenance manner.
以下、図面を参照して本発明の実施の形態について説明する。
本手法は、電子機器の温度の上昇・下降変化を長期にわたって監視し、温度による電子機器の寿命へ悪影響を与える状況を判別して報知等することができるものである。すなわち、温度の影響を基準温度下で上昇、下降分の両方に分けて時間積分監視し、上記状況として「冷却不足状態」、「ヒートショック状態」、「過冷却状態」等を提示するものである。
Embodiments of the present invention will be described below with reference to the drawings.
This technique is capable of monitoring changes in the temperature of electronic devices over a long period of time and determining and informing a situation in which the temperature adversely affects the life of the electronic device. In other words, the effect of temperature is divided into both rising and falling parts under the reference temperature, and time integration monitoring is performed, and the above conditions are presented as “undercooled state”, “heat shock state”, “supercooled state”, etc. is there.
尚、電子機器とは、電子部品を使用している機器全般を意味する。
まず、電子機器の寿命に対する温度ストレスによる影響度は、アレニウス則で決まってくることが知られている。例えば、電子機器内の電子部品としての電解コンデンサは、温度が10°上昇すれば寿命が半減することが、一般的に知られている。
・アレニウス則
L=A・exp(Ea/kT)
(L:寿命、A:定数、Ea:活性化エネルギ(eV)、T:絶対温度、k:ボルツマン定数[8.6159×10(eV)] )
電子部品はアレニウス則によれば、温度の上昇で寿命が短くなり、温度の下降で長くなる。
The electronic device means all devices that use electronic components.
First, it is known that the degree of influence of temperature stress on the lifetime of electronic equipment is determined by the Arrhenius law. For example, it is generally known that the life of an electrolytic capacitor as an electronic component in an electronic device is halved if the temperature rises by 10 °.
・ Arrhenius law L = A ・ exp (Ea / kT)
(L: life, A: constant, Ea: activation energy (eV), T: absolute temperature, k: Boltzmann constant [8.6159 × 10 (eV)])
According to the Arrhenius law, an electronic component has a shorter life as temperature rises and becomes longer as temperature falls.
本手法においては、温度を放射能と同様の扱いにし、放射能であれば監視対象は被爆量になるのであるが、温度においてはその被爆量にあたるものとして、基準温度を超えた分(その温度下にさらされたとみなす)の温度偏差の積分値が考えられる。 In this method, the temperature is treated in the same way as radioactivity, and if it is radioactivity, the monitored object will be the amount of exposure. The integrated value of the temperature deviation is considered.
すなわち、単純に温度がある値を超えた場合だけでなく、温度偏差の積分を行うことにより、電子機器のダメージ度が具体的に測定可能になる。
ここでは、対象電子機器の温度(盤内温度等)をT1(℃)とし、電子機器が安定的な寿命を得ることができる経済的な基準温度をTbとする。“経済的な”と言っているのは、上記の通り、温度が低いほど寿命が長くなるからといって室内温度を下げすぎると、空調設備による電力消費量が増大し、経済的な損失が大きくなることから、この点も考慮する必要があるからである。よって、上記基準温度Tbは、オペレータ等が経済性も考慮して適宜決定するものである。但し、この例に限らず、基準温度Tbを例えば対象電子機器に対して規格で定められた常時運転時の温度としてもよい。
That is, not only when the temperature exceeds a certain value, but also by integrating the temperature deviation, the degree of damage of the electronic device can be specifically measured.
Here, the temperature (in-panel temperature or the like) of the target electronic device is T1 (° C.), and the economical reference temperature at which the electronic device can obtain a stable life is Tb. The reason for saying “economic” is that, as mentioned above, the lower the temperature, the longer the service life becomes. If the room temperature is lowered too much, the power consumption by the air-conditioning equipment will increase, resulting in an economic loss. This is because this point needs to be taken into consideration. Therefore, the reference temperature Tb is appropriately determined by an operator or the like in consideration of economy. However, the present invention is not limited to this example, and the reference temperature Tb may be, for example, a temperature during normal operation defined by the standard for the target electronic device.
図1に、本例の電子機器監視装置10の概略構成図を示す。
図示の電子機器監視装置10は、上記対象電子機器の温度を計測する不図示の温度センサAによる温度計測結果(上記温度T1(℃))を入力する入力部11と、この温度T1と上記基準温度Tbとから、温度偏差の積算値を算出する温度偏差積算値算出部12と、この温度偏差の積算値と予め設定される所定の閾値とに基づいて状況判定し、必要に応じて報知する状況判定・報知部13とを有する。尚、報知の方法としては、例えば、電子機器監視装置10が備えるディスプレイに所定のメッセージを表示する等する。
In FIG. 1, the schematic block diagram of the electronic device monitoring apparatus 10 of this example is shown.
The illustrated electronic device monitoring apparatus 10 includes an input unit 11 for inputting a temperature measurement result (the temperature T1 (° C.)) by a temperature sensor A (not illustrated) that measures the temperature of the target electronic device, the temperature T1, and the reference. Based on the temperature Tb, a temperature deviation integrated value calculation unit 12 that calculates an integrated value of the temperature deviation, and a situation determination based on the integrated value of the temperature deviation and a predetermined threshold value set in advance, and notify if necessary. A situation determination / notification unit 13; As a notification method, for example, a predetermined message is displayed on a display included in the electronic device monitoring apparatus 10.
また、上記入力部11は、上記不図示の温度センサAに接続して温度センサAによる計測データをリアルタイムで入力するようにしてもよいし、温度センサAによる計測データが不図示の他の装置や記録媒体に記録されたものを、当該他の装置や記録媒体から取得するものであってもよい。 The input unit 11 may be connected to the temperature sensor A (not shown) to input measurement data from the temperature sensor A in real time, or the measurement data from the temperature sensor A may be other devices not shown. Or what is recorded on the recording medium may be obtained from the other device or recording medium.
温度偏差積算値算出部12が算出する上記温度偏差の積算値は、温度上昇分と温度下降分の2種類ある。詳しくは後述する。
温度偏差積算値算出部12と状況判定・報知部13による処理機能は、電子機器監視装置10が有する不図示のCPU/MPU等が、不図示のメモリ等の記憶装置に記憶されている所定のアプリケーションプログラムを実行することにより実現される。
The temperature deviation integrated value calculated by the temperature deviation integrated value calculation unit 12 has two types of temperature increase and temperature decrease. Details will be described later.
The processing function of the temperature deviation integrated value calculation unit 12 and the situation determination / notification unit 13 is a predetermined function stored in a storage device such as a memory (not shown) by a CPU / MPU (not shown) included in the electronic device monitoring apparatus 10. This is realized by executing an application program.
尚、電子機器監視装置10は、DCS(Distributed Control System:分散型制御システム)によって実現してもよいし、汎用のパソコン等で実現してもよい。DCSで実現する場合、上記温度偏差の積算は、DCSが備える標準の積算モジュールを使用してもよい。 The electronic device monitoring apparatus 10 may be realized by a DCS (Distributed Control System) or a general-purpose personal computer. When the DCS is used, the temperature deviation may be integrated using a standard integration module provided in the DCS.
温度偏差積算値算出部12は、例えば図2に示すフローチャートの処理により、上記温度偏差の積算を行う。
図2に示す処理は、例えば所定のサンプリング周期で上記温度計測結果(温度T1(℃))を取得する毎に実行する。
The temperature deviation integrated value calculation unit 12 integrates the temperature deviation by, for example, the processing of the flowchart shown in FIG.
The process shown in FIG. 2 is executed each time the temperature measurement result (temperature T1 (° C.)) is acquired at a predetermined sampling period, for example.
図2に示す処理では、まず、上記取得した温度T1と上記基準温度Tbとの差(温度偏差)を求める(ステップS11)。
すなわち、
温度偏差ΔT=T1−Tb
を求める。
In the process shown in FIG. 2, first, a difference (temperature deviation) between the acquired temperature T1 and the reference temperature Tb is obtained (step S11).
That is,
Temperature deviation ΔT = T1-Tb
Ask for.
そして、求めた温度偏差ΔTが、正の値か負の値かにより処理を分岐させる(ステップS12)。
すなわち、ΔT>0(正)の場合には(ステップS12,YES)、このΔTをΔTupとし(ステップS13)、以下の(1)式により、温度上昇分の積算値Tupを求める(ステップS14)。
Then, the process branches depending on whether the obtained temperature deviation ΔT is a positive value or a negative value (step S12).
That is, when ΔT> 0 (positive) (step S12, YES), this ΔT is set as ΔTup (step S13), and the integrated value Tup for the temperature rise is obtained by the following equation (1) (step S14). .
温度上昇分の積算値Tup=∫ΔTup…(1)式
尚、(1)式におけるΔTは、今回も含めてこれまでに取得した全てのΔTupを意味する。よって、過去に図2の処理においてそれまでの積算値Tupを求めて保持しているならば、(1)式の代わりにTup=Tup+ΔTupとしてもよい。これは、以下の(2)式に関しても同様である。
Integrated value Tup for temperature rise Tup = ∫ΔTup (1) In addition, ΔT in equation (1) means all ΔTup acquired so far including this time. Therefore, if the previous integrated value Tup is obtained and held in the process of FIG. 2 in the past, Tup = Tup + ΔTup may be used instead of the equation (1). The same applies to the following equation (2).
一方、ΔT<0(負)の場合には(ステップS12,NO)、このΔTをΔTdownとし(ステップS15)、以下の(2)式により、温度下降分の積算値Tdownを求める。
温度下降分の積算値Tdown=∫ΔTdown…(2)式
但し、この場合には温度下降分の積算値Tdownが負の値となるので、図2に示す処理では、これが正の値となるようにしている。すなわち、図2の処理では、上記ΔTdownの絶対値をとり(S=|ΔTdown|とする)(ステップS16)、この絶対値Sの積算を行っている(ステップS17)。
On the other hand, if ΔT <0 (negative) (step S12, NO), this ΔT is set to ΔTdown (step S15), and the integrated value Tdown for the temperature decrease is obtained by the following equation (2).
Integrated value Tdown for temperature decrease = ∫ΔTdown (2) In this case, however, the integrated value Tdown for temperature decrease is a negative value, so that in the process shown in FIG. 2, this becomes a positive value. I have to. That is, in the process of FIG. 2, the absolute value of ΔTdown is taken (S = | ΔTdown |) (step S16), and the absolute value S is integrated (step S17).
つまり、この例では、
温度下降分の積算値Tdown=∫S…(2)’式
となる。
In other words, in this example,
The integrated value Tdown for the temperature drop is expressed by the following equation: Tdown = ∫S (2) ′.
上記(2)式、(2)’式のどちらを用いてもよいが、ここでの説明では後述するようにTupとTdownの差を求めることから、(2)’式を用いるものとする。すなわち、図2に示すステップS16,S17の処理を行うものとする。 Either of the above formulas (2) and (2) ′ may be used, but in the description here, the difference between Tup and Tdown is obtained as will be described later, and therefore the formula (2) ′ is used. That is, the processing in steps S16 and S17 shown in FIG. 2 is performed.
尚、ΔT=0であれば、当然、積算処理は行われない。
状況判定・報知部13は、上記温度偏差積算値算出部12によって随時算出・更新される上記2種類の温度偏差積算値、すなわち温度上昇分の積算値Tup、温度下降分の積算値Tdownに基づいて、以下に説明する状況判定を行い、必要に応じて報知等を行う。
Of course, if ΔT = 0, the integration process is not performed.
The situation determination / notification unit 13 is based on the two types of temperature deviation integrated values calculated and updated as needed by the temperature deviation integrated value calculating unit 12, that is, the integrated value Tup for the temperature rise and the integrated value Tdown for the temperature decrease. Then, the situation determination described below is performed, and notification or the like is performed as necessary.
尚、状況判定・報知部13による処理は、上記図2の処理が実行される毎に行ってもよいし、予め設定される所定時間経過する毎に行っても良い。
尚、以下に説明する状況判定処理のうち、以下の(i)の方法のみは、温度上昇分の積算値Tupのみを用いて状況判定を行う。よって、この方法のみを実行する場合には、上記ステップS12の判定がNOの場合には何も処理を行わないようにしてもよい。
(i)温度の影響度を厳しく監視するときは、温度T1が基準値Tb以下の状態は考慮しない(上述の(2)式=0または(2)’=0とみなす)。すなわち、温度上昇分の積算値Tupのみを用いて状況判定を行う。
The process by the situation determination / notification unit 13 may be performed every time the process of FIG. 2 is executed, or may be performed every time a predetermined time set in advance elapses.
Of the situation determination processing described below, only the following method (i) performs situation determination using only the integrated value Tup for the temperature rise. Therefore, when only this method is executed, no processing may be performed if the determination in step S12 is NO.
(I) When strictly monitoring the degree of influence of temperature, a state where the temperature T1 is equal to or lower than the reference value Tb is not considered (the above-described (2) equation = 0 or (2) ′ = 0). That is, the situation determination is performed using only the integrated value Tup for the temperature rise.
例えば、予め設定される所定の閾値Pと温度上昇分の積算値Tupとを比較し、Tupが閾値Pを越えた場合(Tup>P)には、「冷却不足状態」と判定する。例えば、図3に示すような状態では、「冷却不足状態」と判定される。そして、この判定結果をディスプレイに表示する等の報知を行う。 For example, a predetermined threshold value P set in advance is compared with the integrated value Tup for the temperature rise, and when Tup exceeds the threshold value P (Tup> P), it is determined as “insufficient cooling state”. For example, in the state shown in FIG. 3, it is determined as “undercooled state”. Then, notification such as displaying the determination result on the display is performed.
この報知によって、オペレータ等は、対象電子機器が空調設備により室温調整可能な環境下にある場合には、空調設備により冷房強化により室温を下げることで対象電子機器の温度を下げる等の対応を行うことができる。あるいは、オペレータ等は、予防保全的に部品の検査/保全を行う等の対応を行うことができる。 By this notification, when the target electronic device is in an environment in which the room temperature can be adjusted by the air conditioning facility, the operator or the like takes measures such as lowering the temperature of the target electronic device by lowering the room temperature by strengthening the cooling by the air conditioning facility. be able to. Alternatively, the operator or the like can take measures such as inspecting / maintaining parts in a preventive maintenance manner.
尚、更に、温度上昇分の積算値Tupに基づいて上記アレニウス則による寿命の算出を行うようにしてもよい。
また、尚、(i)の手法では、長期間にわたってΔTupの積算を続ければ、何れTupが閾値Pを越えることになるので、所定期間毎に(例えば一ヶ月毎に)温度上昇分の積算値Tupをリセットする(0にする)ようにしてもよい。
(ii)温度の影響度を温度下降分も考慮する時には、積算値の差分Y=Tup−Tdownを算出し、この差分Yと予め設定される所定の閾値Qとを比較し、差分Yが閾値Qを越えた場合には(Y>Q)、「冷却不足状態」と判定する。例えば、図3に示すような状態が続けば何れ「冷却不足状態」と判定されることになる。そして、この判定結果をディスプレイに表示する等の報知を行う。尚、閾値Qは正の値である。よって、少なくともTup>Tdownとならなければ、「冷却不足状態」と判定されることはないことになる。
Further, the life may be calculated according to the Arrhenius rule based on the integrated value Tup for the temperature rise.
In addition, in the method (i), if ΔTup continues to be accumulated over a long period of time, Tup will eventually exceed the threshold value P. Therefore, the accumulated value of the temperature rise every predetermined period (for example, every month). Tup may be reset (set to 0).
(Ii) When considering the degree of temperature influence, the difference Y = Tup−Tdown of the integrated value is calculated, the difference Y is compared with a predetermined threshold Q, and the difference Y is the threshold. When Q is exceeded (Y> Q), it is determined that the cooling is insufficient. For example, if the state as shown in FIG. 3 continues, it is determined that the state is “undercooled”. Then, notification such as displaying the determination result on the display is performed. The threshold value Q is a positive value. Therefore, if at least Tup> Tdown is not satisfied, it is not determined that the cooling is insufficient.
この報知によって、オペレータ等は、対象電子機器が空調設備により室温調整可能な環境下にある場合には、空調設備により冷房強化により室温を下げることで対象電子機器の温度を下げる等の対応を行うことができる。あるいは、オペレータ等は、予防保全的に部品の検査/保全を行う等の対応を行うことができる。 By this notification, when the target electronic device is in an environment in which the room temperature can be adjusted by the air conditioning facility, the operator or the like takes measures such as lowering the temperature of the target electronic device by lowering the room temperature by strengthening the cooling by the air conditioning facility. be able to. Alternatively, the operator or the like can take measures such as inspecting / maintaining parts in a preventive maintenance manner.
上記のように、電子部品は、温度の上昇で寿命が短くなり、温度の下降で長くなる。よって、Tup分によって寿命が短くなっても、Tdownによって寿命が長くなる分だけ相殺されると考えられるので、全体として、基準温度Tbの場合の寿命と比べてそれほど寿命が短くならなければ問題ないと考えられる(逆に寿命が基準温度Tbの場合の寿命よりも長くなる場合もあり得る(Y<0の場合))。これより、上記のように、積算値の差分Yを用いて判定を行うものとしている。
(iii)上記(ii)の方法は、図3に示すような状況では有効であるが、図4に示すような状況では有効ではなくなる。すなわち、図4に示す例では、温度が高い期間と温度が低い期間とが混在しているが、温度偏差が大きく且つ積算値TupとTdownがほぼ同じ程度の値となっている。この場合、上記(ii)の方法では、積算値の差分Yは低い値となるので、報知等は行われないし、また上記アレニウス則による寿命に関しては特に問題ないと考えられる。
As described above, an electronic component has a shorter life when the temperature rises and becomes longer when the temperature falls. Therefore, even if the lifetime is shortened by Tup, it is considered that the lifetime is offset by Tdown, so that there is no problem as long as the lifetime is not shortened as much as the lifetime at the reference temperature Tb as a whole. (Conversely, the lifetime may be longer than the lifetime at the reference temperature Tb (when Y <0)). Thus, as described above, the determination is performed using the difference Y of the integrated values.
(Iii) The method (ii) is effective in the situation shown in FIG. 3, but is not effective in the situation shown in FIG. That is, in the example shown in FIG. 4, a period of high temperature and a period of low temperature are mixed, but the temperature deviation is large and the integrated values Tup and Tdown are approximately the same value. In this case, in the method (ii), since the difference Y of the integrated values is a low value, notification or the like is not performed, and it is considered that there is no particular problem with respect to the lifetime according to the Arrhenius rule.
しかしながら、このような温度の変化が起きる状況では、ヒートショックの影響により電子機器の寿命が短くなってしまう可能性がある。例えば一例としては、空調設備の設定温度を一定にした場合でも、日中は外気温度が高い為に空調が十分に効かずに電子機器温度が上昇するが、夜間は外気温度が下がる為に今度は空調が効き過ぎて電子機器温度が下がる場合等が考えられる。あるいは、対象電子機器が例えば自動車車載の電子機器である場合、気温変化が激しい環境に置かれる場合もあり、この場合にも図4に示すような状況が起こり得る。 However, in a situation where such a temperature change occurs, the life of the electronic device may be shortened due to the influence of heat shock. For example, even if the set temperature of the air conditioning equipment is constant, the temperature of the electronic equipment rises due to the high outside air temperature during the day and the air conditioning is not fully effective, but this time the outside air temperature drops at night. This may be the case when the air conditioner is too effective and the temperature of the electronic device drops. Alternatively, when the target electronic device is, for example, a vehicle-mounted electronic device, it may be placed in an environment where the temperature change is severe. In this case as well, the situation shown in FIG. 4 may occur.
図4に示す例では、上記(ii)の方法によって積算値の差分Y=Tup−Tdownを算出すると、例えばY≒0程度となってしまう。勿論、図4は極端な例であり実際にはY≒0程度となる場合は少ないかもしれないが、それでも温度変動の大きさに比べてYの値は非常に小さくなってしまう。 In the example shown in FIG. 4, when the difference Y = Tup−Tdown of the integrated values is calculated by the method (ii), for example, Y≈0. Of course, FIG. 4 is an extreme example, and in reality, there may be few cases where Y≈0, but the value of Y becomes very small compared to the magnitude of the temperature fluctuation.
これより、本手法では、積算値の差分Y=Tup−Tdownを算出する点では上記(ii)の方法と同様であるが、この差分Yを所定の閾値Rと比較・判定すると共に、温度上昇分の積算値Tupを所定の閾値Uと比較・判定する。 From this, this method is the same as the method (ii) in that the difference Y = Tup−Tdown of the integrated value is calculated, but this difference Y is compared / determined with a predetermined threshold R and the temperature rises. The accumulated value Tup of the minute is compared and determined with a predetermined threshold value U.
閾値Rは、例えば上記Y≒0となるような状況であるか否かを判定する為の閾値であり、例えば‘0’に近い任意の値となる。そして、差分Yの絶対値|Y|が閾値R未満であるか否かを判定する(|Y|<R?)。 The threshold value R is a threshold value for determining whether or not the situation is such that Y≈0, for example, and is an arbitrary value close to “0”, for example. Then, it is determined whether or not the absolute value | Y | of the difference Y is less than the threshold value R (| Y | <R?).
閾値Uは、例えば上記閾値Pと同じ値としてもよいが、この例に限らない。閾値U=閾値Pとする場合には、上記(i)のようにTupのみで判断する場合に「冷却不足状態」と判定されるような状況であるか否かを判定することになる。Tupのみで判断する場合に「冷却不足状態」と判定されるような状況であるにも係らず、差分Yの絶対値|Y|が閾値R未満となるような場合には、図4に示すような温度変動が激しい状況である可能性が高いと考えられる。 The threshold U may be the same value as the threshold P, for example, but is not limited to this example. When the threshold value U = the threshold value P, it is determined whether or not the situation is determined as “insufficient cooling” when the determination is made only by Tup as in (i) above. FIG. 4 shows a case where the absolute value | Y | of the difference Y is less than the threshold value R, even though it is determined that the state is “insufficient cooling” when it is determined only by Tup. It is considered that there is a high possibility that the temperature fluctuation is intense.
これより、上記“|Y|<R?”の判定と共にTup>Uとなるか否かを判定する。
そして、Tup>U且つ|Y|<Rと判定された場合には、ヒートショックの影響により電子機器の寿命が短くなってしまう可能性があると判定し、その旨を報知する。温度上昇分の積算値Tupがある程度以上高いにも係らず、積算値の差分Yが小さい場合には、温度下降分の積算値Tdownも大きいことになり、温度変化が大きいことになりヒートショックの影響を受ける状況にある可能性があるからである。
From this, it is determined whether or not Tup> U is satisfied together with the determination of “| Y | <R?”.
When it is determined that Tup> U and | Y | <R, it is determined that the life of the electronic device may be shortened due to the influence of the heat shock, and a notification to that effect is given. If the integrated value Tup for the temperature rise is higher than a certain level, but the difference Y between the integrated values is small, the integrated value Tdown for the temperature decrease will also be large, and the temperature change will be large, resulting in heat shock. This is because they may be affected.
この報知によって、オペレータ等は、予防保全的に部品の検査/保全を行う等の対応を行うことができる。あるいは、オペレータ等は、対象電子機器が空調設備により室温調整可能な環境下にある場合には、空調設備により温度調整(例えば日中は冷房を強化し夜間は冷房を弱くする等)を行う等の対応を行うことができる。
(iv)上述したように、電子機器の温度が低いほど寿命が長くなるからといって室内温度を下げすぎると、空調設備による電力消費量が増大し、経済的な損失が大きくなり、経済的には不適切なものとなる。
By this notification, an operator or the like can take measures such as inspecting / maintaining parts in a preventive maintenance manner. Alternatively, when the target electronic device is in an environment where the room temperature can be adjusted by the air conditioning facility, the operator or the like adjusts the temperature by the air conditioning facility (for example, strengthening the cooling during the day and weakening the cooling at the night). Can be handled.
(Iv) As mentioned above, if the indoor temperature is lowered too much because the lifetime of the electronic device is lower, the power consumption by the air-conditioning equipment increases, the economic loss increases, and the economic It would be inappropriate.
上記の通り、本例における基準温度Tbは、電子機器が安定的な寿命を得ることができる経済的な基準温度としているので、例えば図5に示すように温度下降分の積算値Tdownの値が大きい状況(過冷却状態)は、経済的には不適切なものとなる。 As described above, the reference temperature Tb in this example is an economical reference temperature at which the electronic device can obtain a stable lifetime. Therefore, for example, as shown in FIG. Large situations (supercooled conditions) are economically inappropriate.
これより、当該(iv)の方法では、積算値の差分Y=Tup−Tdownを算出し、この差分Yと予め設定される所定の閾値Vとを比較して、差分Yが閾値V未満となった場合には(Y<V)、「過冷却状態」と判定し、その旨を報知する。尚、閾値Vは負の値である。よって、少なくともTup<Tdownでない限り、「過冷却状態」と判定されることはないことになる。尚、閾値Vは正の値としてもよい。この場合には差分Yの絶対値を閾値Vとを比較して、差分Yの絶対値が閾値Vを越えた場合であって且つ差分Yが負の値である場合に、「過冷却状態」と判定することになる。 Therefore, in the method (iv), the difference Y = Tup−Tdown of the integrated value is calculated, and the difference Y is compared with a predetermined threshold value V, and the difference Y becomes less than the threshold value V. If (Y <V), it is determined as “supercooled state” and a notification to that effect is given. The threshold value V is a negative value. Therefore, unless at least Tup <Tdown, the “supercooled state” is not determined. The threshold value V may be a positive value. In this case, the absolute value of the difference Y is compared with the threshold value V, and when the absolute value of the difference Y exceeds the threshold value V and the difference Y is a negative value, the “supercooled state” It will be determined.
この報知によって、オペレータ等は、空調設備の設定温度を高くすることで冷房能力を弱めることで電力消費量が小さくなるようにする等の対応を行うことができる。
尚、上記(i)〜(iv)の何れの方法においても、上記のように報知を行うだけに限らず、オペレータ等に対して更に他の有意な情報を提供(表示等)するようにしてもよい。例えば、図3、図4、図5に示すような温度偏差ΔTの変動を示すグラフ(時系列データ)を表示するようにしてもよい。このようなグラフを表示する為には、上記図2の処理を行う毎に当該処理中に求めた上記温度偏差ΔTを、そのときの時刻に対応付けて記憶しておけばよい。
By this notification, an operator or the like can take measures such as increasing the set temperature of the air conditioning equipment to reduce the power consumption by decreasing the cooling capacity.
In any of the above methods (i) to (iv), not only the notification is performed as described above but also other significant information is provided (displayed) to the operator or the like. Also good. For example, a graph (time series data) showing the variation of the temperature deviation ΔT as shown in FIGS. 3, 4, and 5 may be displayed. In order to display such a graph, the temperature deviation ΔT obtained during the process shown in FIG. 2 may be stored in association with the time at that time.
この様なグラフが表示されることで、オペレータ等は、例えば図5のグラフを見ることで、どの時間帯で「過冷却状態」となっているのかが分かるので、これを分析することで何等かの対応を行うことが可能となる。例えば分析の結果、夜間にのみ「過冷却状態」となっていることが分かれば、夜間における空調設備の設定温度を上げる等の対応を行なうことが可能となる。 By displaying such a graph, for example, the operator can see in which time zone the “supercooled state” is reached by looking at the graph of FIG. 5 for example. It is possible to perform such a response. For example, if it is found as a result of analysis that the state is “supercooled” only at night, it is possible to take measures such as increasing the set temperature of the air conditioning equipment at night.
また、尚、上記(i)〜(iv)の何れの方法においても、更に、温度上昇分の積算値Tup、温度下降分の積算値Tdownに基づいて、あるいは上記温度偏差ΔTの時系列データに基づいて、電子機器の寿命を算出するようにしてもよい。 In any of the above methods (i) to (iv), the temperature rise integrated value Tup and the temperature drop integrated value Tdown are further used, or the time deviation data of the temperature deviation ΔT is used. Based on this, the lifetime of the electronic device may be calculated.
従来は電子部品を使用した機器(電子機器)の絶対値的な温度監視しかできなかった。しかし、本手法では、時間を考慮することにより電子部品の寿命の予測が可能となり、また、温度による電子機器の寿命へ悪影響を与える状況を判別することができるので、状況改善の為の対応を行うことができ、また予防保全的に部品の検査/保全時期の把握が出来るようになる。 In the past, only absolute temperature monitoring of equipment (electronic equipment) using electronic components was possible. However, with this method, it is possible to predict the life of electronic components by taking time into account, and it is possible to determine the situation that adversely affects the life of electronic equipment due to temperature. This makes it possible to check the parts inspection / maintenance time in a preventive maintenance manner.
本手法は、電子部品を使用した機器(電子機器)の温度測定値を偏差積算できる環境下にあるもの全てに適用可能となる。例えば、計器盤内など温度の測定が容易で、DCSなどの制御装置が併設されている装置において特に有効である。 This method can be applied to all devices that are in an environment where deviations can be integrated with measured temperature values of devices using electronic components (electronic devices). For example, temperature measurement is easy, such as in an instrument panel, and it is particularly effective in an apparatus provided with a control device such as DCS.
10 電子機器監視装置
11 入力部
12 温度偏差積算値算出部
13 状況判定・報知部
DESCRIPTION OF SYMBOLS 10 Electronic device monitoring apparatus 11 Input part 12 Temperature deviation integrated value calculation part 13 Situation determination / alerting | reporting part
Claims (5)
該温度測定値と予め設定される基準温度とに基づいて、温度上昇分と温度下降分の2種類の温度偏差の積算値を算出する温度偏差積算値算出手段と、
該2種類の温度偏差の積算値と予め設定される所定の閾値とに基づいて状況判定し、必要に応じて報知する状況判定・報知手段と、
を有することを特徴とする電子機器監視装置。 An input means for inputting a measured value of the temperature of the target electronic device;
Temperature deviation integrated value calculating means for calculating an integrated value of two types of temperature deviations for the temperature rise and the temperature drop based on the temperature measurement value and a preset reference temperature;
Situation determination / notification means for determining a situation based on the integrated value of the two types of temperature deviations and a predetermined threshold set in advance, and informing if necessary,
An electronic device monitoring apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008103894A JP5359006B2 (en) | 2008-04-11 | 2008-04-11 | Electronic equipment monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008103894A JP5359006B2 (en) | 2008-04-11 | 2008-04-11 | Electronic equipment monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009257781A JP2009257781A (en) | 2009-11-05 |
JP5359006B2 true JP5359006B2 (en) | 2013-12-04 |
Family
ID=41385402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008103894A Active JP5359006B2 (en) | 2008-04-11 | 2008-04-11 | Electronic equipment monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5359006B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5884388B2 (en) * | 2011-10-07 | 2016-03-15 | 富士電機株式会社 | Vending machine control device |
JP6179333B2 (en) * | 2013-10-10 | 2017-08-16 | 富士電機株式会社 | Refrigerator and showcase |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691700B2 (en) * | 1988-05-30 | 1994-11-14 | 株式会社フジタ | Power supply equipment diagnosis method and power supply equipment diagnosis device |
JPH03203518A (en) * | 1989-12-29 | 1991-09-05 | Nemitsuku Ramuda Kk | Environmental condition monitor for power supply |
JPH0711472B2 (en) * | 1990-10-17 | 1995-02-08 | 旭化成工業株式会社 | Abnormality detection method and device |
-
2008
- 2008-04-11 JP JP2008103894A patent/JP5359006B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009257781A (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910428B2 (en) | Monitoring device, monitoring method, program, and recording medium | |
US10732079B2 (en) | Filter replacement lifetime prediction | |
KR102103146B1 (en) | Predictive maintenance method of driving device | |
US20070144354A1 (en) | Automated monitoring of the condition of an air filter in an electronics system | |
US10002514B2 (en) | Machine tool having function of monitoring sealing of control panel | |
JP7070339B2 (en) | Temperature threshold determination device, temperature abnormality determination system, temperature threshold determination method, and program | |
TWI566065B (en) | Communication anomaly detection device, communication anomaly detection method and program | |
KR102103147B1 (en) | Predictive maintenance method of driving device | |
JP4969886B2 (en) | Building diagnostic system | |
CN118347235B (en) | Intelligent partition energy-saving control method and system for refrigerator | |
JP4732977B2 (en) | Electronic device and rack type electronic device | |
JP5359006B2 (en) | Electronic equipment monitoring device | |
JP5024966B2 (en) | Fault monitoring apparatus, fault monitoring method and fault monitoring program for electronic device | |
US11269314B2 (en) | Plant evaluation device, plant evaluation method, and program | |
JP2006312528A (en) | Electric power storage device of elevator | |
JP2011076334A (en) | Diagnostic method and diagnostic device for plant | |
KR102103152B1 (en) | Predictive maintenance method of driving device | |
JP6658462B2 (en) | Plant equipment deterioration diagnosis device | |
JP4341779B2 (en) | Air conditioner abnormality detection device and abnormality detection method | |
CN108896144A (en) | Dust monitoring system and dust monitoring method | |
JP2007248200A (en) | Maintenance system and method of semiconductor testing device | |
JP2021047523A (en) | Abnormality sign detection device, method and program | |
US12241681B1 (en) | Cooling system prefailure detection system and method | |
JP2009070140A (en) | Computer with cooling performance monitoring function | |
JPH08217415A (en) | Method for diagnosing ozone-generating equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20110214 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5359006 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |