JP5358460B2 - Small low-loss inductor element - Google Patents
Small low-loss inductor element Download PDFInfo
- Publication number
- JP5358460B2 JP5358460B2 JP2009554218A JP2009554218A JP5358460B2 JP 5358460 B2 JP5358460 B2 JP 5358460B2 JP 2009554218 A JP2009554218 A JP 2009554218A JP 2009554218 A JP2009554218 A JP 2009554218A JP 5358460 B2 JP5358460 B2 JP 5358460B2
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- layer
- inductor element
- peripheral
- wiring layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002093 peripheral effect Effects 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims 3
- 239000010410 layer Substances 0.000 description 186
- 239000002184 metal Substances 0.000 description 58
- 239000011295 pitch Substances 0.000 description 47
- 230000003071 parasitic effect Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5227—Inductive arrangements or effects of, or between, wiring layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Coils Or Transformers For Communication (AREA)
Description
本発明は、半導体基盤上に形成される小型低損失インダクタ素子に関する。 The present invention relates to a small and low loss inductor element formed on a semiconductor substrate.
近年、無線LAN(Local Area Network)、Bluetooth、地上波デジタルTV等種々の高速なデジタル無線方式が実用化されている。また、デジタルの半導体集積回路では、特にGHz以上の高速な動作をするものでは、無線回路と同様のアナログ技術が使用される。このような回路では、受動素子として半導体基板上に形成されたオンチップインダクタを使用する。このインダクタは、半導体上のメタル配線を渦巻き状に巻いた形状をしており、大きくても数nH程度のインダクタンスしかないが、GHz程度の周波数で動作する回路では、実用的なインダクタンス値である。 In recent years, various high-speed digital wireless systems such as a wireless local area network (LAN), Bluetooth, and terrestrial digital TV have been put into practical use. In the case of digital semiconductor integrated circuits, especially those that operate at a high speed of GHz or higher, analog techniques similar to those for wireless circuits are used. In such a circuit, an on-chip inductor formed on a semiconductor substrate is used as a passive element. This inductor has a shape in which a metal wiring on a semiconductor is spirally wound and has an inductance of about several nH at most, but is a practical inductance value for a circuit operating at a frequency of about GHz. .
このような高周波・無線回路では、通常複数のインダクタ素子を集積する。しかし、インダクタ素子は、1つの大きさが数10μm〜数100μm角と大きく、チップ面積の増大を招いていた。 In such a high-frequency / wireless circuit, a plurality of inductor elements are usually integrated. However, the size of one inductor element is as large as several tens of μm to several hundreds of μm square, leading to an increase in chip area.
インダクタの面積を縮小する方式としては、図13のような構造(特許文献1参照、以下、多層直列方式と称する。)が提案されている。この構造は、多層配線構造を利用して、スパイラル形状のインダクタを多数の配線層に形成し、それらのインダクタを直列接続することによって、全体でのインダクタンス値を大きくすることができる。これにより、配線層数をnとすると、チップ面積は1層のみのインダクタの約1/nにすることができる。
As a method for reducing the area of the inductor, a structure as shown in FIG. 13 (refer to
しかし、この形状では、上下の配線間の容量によりインダクタ全体の寄生容量が大きくなるという問題があった。 However, this shape has a problem that the parasitic capacitance of the entire inductor increases due to the capacitance between the upper and lower wirings.
図13では、全てのインダクタ配線は、平面上では同じ位置にあったが、配線容量を低減するために、図14のように、層ごとにインダクタ配線の平面上の位置をずらせる方式が提案されている(特許文献2、及び特許文献3参照)。図では、上層の配線は、下層の配線の配線と配線の隙間の上を通るように配置されている。
In FIG. 13, all the inductor wirings were at the same position on the plane, but in order to reduce the wiring capacity, a method of shifting the position of the inductor wiring on the plane for each layer as shown in FIG. 14 was proposed. (See
しかし、一般に、インダクタ配線は、配線幅が配線間隔よりも大きいために、上下のインダクタ配線は、図15のように重なり部分ができる。このために、配線容量をあまり減らすことはできなかった。 However, in general, since the inductor wiring has a wiring width larger than the wiring interval, the upper and lower inductor wirings have overlapping portions as shown in FIG. For this reason, the wiring capacity could not be reduced so much.
そこで、配線容量の低減策として、図16に示す構造が提案されている(特許文献4、及び特許文献5参照、以下、3Dソレノイドと称する。)。
Therefore, as a measure for reducing the wiring capacity, a structure shown in FIG. 16 has been proposed (see
この構造では、1周回ごと配線に切れ目があり、ビアで上又は下の配線に移動する形となっている。 In this structure, there is a break in the wiring every round, and the via moves to the upper or lower wiring via.
ここで、積層スパイラルと3Dソレノイドの寄生容量について説明する。 Here, the parasitic capacitance of the laminated spiral and the 3D solenoid will be described.
図17は、配線の断面の模式図である。 FIG. 17 is a schematic diagram of a cross section of the wiring.
インダクタ配線では、配線の直列抵抗を低減するために、一般的に幅広の配線が使用されるので、配線幅wは、配線厚さtよりも大きい。このために、配線層の絶縁体の誘電率が配線層全体で同じならば、配線の上下間の容量Cvは、左右間の容量Chよりも大きい。つまり、一般的な多層構造のインダクタでインダクタ配線の寄生容量の支配的な成分は、配線の上下間の容量Cvである。更に、配線の層間膜厚hよりも横に並んでいる配線間の間隔sを大きくすることで、Cv以外の容量を更に小さくすることができる。 In inductor wiring, a wide wiring is generally used in order to reduce the series resistance of the wiring. Therefore, the wiring width w is larger than the wiring thickness t. For this reason, if the dielectric constant of the insulator of the wiring layer is the same throughout the wiring layer, the capacitance Cv between the upper and lower sides of the wiring is larger than the capacitance Ch between the left and right. In other words, the dominant component of the parasitic capacitance of the inductor wiring in a general multilayer inductor is the capacitance Cv between the upper and lower sides of the wiring. Furthermore, the capacitance other than Cv can be further reduced by increasing the interval s between the wirings arranged side by side rather than the interlayer film thickness h of the wiring.
このCvを含むインダクタの等価回路が図18及び19であり、図18は図13の等価回路であり、図19は図16の等価回路である。 18 and 19 are equivalent circuits of the inductor including Cv, FIG. 18 is the equivalent circuit of FIG. 13, and FIG. 19 is the equivalent circuit of FIG.
図18では、Cvは、INとOUTに直接つながる形となるので、インダクタ外部からはCvが直接観測される。これに対して、図19では、Cvは、インダクタ配線の途中につながるために、インダクタ外部からはCvが直接は観測されず、この影響は小さくなる。つまり、インダクタ両端からみた実効的な寄生容量は、図19つまり図16の3Dソレノイド構造の方が小さくなる。 In FIG. 18, since Cv is directly connected to IN and OUT, Cv is directly observed from the outside of the inductor. On the other hand, in FIG. 19, since Cv is connected to the middle of the inductor wiring, Cv is not directly observed from the outside of the inductor, and this influence becomes small. That is, the effective parasitic capacitance viewed from both ends of the inductor is smaller in the 3D solenoid structure of FIG. 19, that is, FIG.
3Dソレノイド構造は、このように寄生容量を低減できる反面、インダクタ配線を1周回毎に上下に接続する必要があるために、上下のインダクタ配線が水平面内の同じ位置にある必要があった。シリコン基板上の多層構造の配線では、通常はシリコン基板に近い側(下層)の配線ほど膜厚が薄く、基板から遠ざかる、つまり上層の配線ほど厚くなる。これに合わせて製造可能な最小の配線ピッチ、つまり配線幅と配線間隔は下層が狭く、上層の配線ほどピッチが広い。このように、多層構造の配線では異なるピッチの配線層が混在している。 Although the 3D solenoid structure can reduce the parasitic capacitance in this way, it is necessary to connect the inductor wiring up and down every round, so that the upper and lower inductor wiring must be at the same position in the horizontal plane. In the wiring of the multilayer structure on the silicon substrate, the thickness of the wiring closer to the silicon substrate (lower layer) is usually thinner and the distance from the substrate, that is, the wiring of the upper layer is thicker. The minimum wiring pitch that can be manufactured in accordance with this, that is, the wiring width and the wiring interval are narrower in the lower layer, and the upper layer wiring has a wider pitch. As described above, wiring layers having different pitches are mixed in the wiring having a multilayer structure.
しかし、3Dソレノイド構造では、上述の制約のために配線ピッチの異なる配線層にまたがる構造は作成できなかった。このため、多層の配線構造であっても、実質的に使用できる配線層が少なくなり、配線の使用効率が低下してチップ面積の増大を招いていた。 However, in the 3D solenoid structure, a structure that spans wiring layers having different wiring pitches cannot be created due to the above-described restrictions. For this reason, even in a multilayer wiring structure, the number of wiring layers that can be substantially used is reduced, and the wiring use efficiency is reduced, leading to an increase in chip area.
また、オンチップインダクタでは、インダクタンス値以外にQ値が重要な性能である。このQ値は、インダクタの直列抵抗が低いほど向上する。オンチップインダクタに使用される配線は、薄膜のために抵抗が高く、一般的にQ値は低い。 In the on-chip inductor, the Q value is an important performance in addition to the inductance value. This Q value increases as the series resistance of the inductor is lower. The wiring used for the on-chip inductor has a high resistance because of a thin film, and generally has a low Q value.
これを解決する方法として、図20のような構造(特許文献6参照)が提案されている。図20は、インダクタ配線の断面であるが、図20のように複数の配線層の配線をビアでつないで並列に接続することにより、実質的な配線抵抗を下げることができる。図20では、上層・中層・下層の3層の間に配線全長にわたってビアを配置して各配線層を並列に接続する。これにより、1層のみ使用する場合の1/3に直列抵抗を下げることができる。 As a method for solving this, a structure as shown in FIG. 20 (see Patent Document 6) has been proposed. FIG. 20 is a cross section of the inductor wiring. However, by connecting the wirings of a plurality of wiring layers by vias and connecting them in parallel as shown in FIG. 20, the substantial wiring resistance can be lowered. In FIG. 20, vias are arranged over the entire length of the wiring between the upper, middle, and lower layers, and the wiring layers are connected in parallel. As a result, the series resistance can be lowered to 1/3 when only one layer is used.
しかし、この構造では、多層の配線層を用いても総配線長を長くできないので、チップ面積が大きくなるという問題があった。
しかしながら、上記従来の技術では、積層スパイラル構造は、寄生容量が大きいという問題があった。また、3Dソレノイド構造は、寄生容量は小さいものの、異なる配線層にまたがる構造が作成できないために、配線の利用効率が低いという問題点があった。 However, the conventional technique has a problem that the laminated spiral structure has a large parasitic capacitance. In addition, although the 3D solenoid structure has a small parasitic capacitance, there is a problem in that the use efficiency of the wiring is low because a structure that spans different wiring layers cannot be created.
そこで、本発明は、上記各問題点に鑑みて為されたもので、その目的の一例は、3Dソレノイド構造と同様に、インダクタ配線の寄生容量を低減することができるとともに、ピッチの異なる配線層の配線を混在させることができるために、配線の使用効率が高まり、チップ面積を縮小することができる小型低損失インダクタ素子を提供することである。 Therefore, the present invention has been made in view of the above-mentioned problems, and an example of the object thereof is to reduce the parasitic capacitance of the inductor wiring as well as the wiring layers having different pitches, similarly to the 3D solenoid structure. Therefore, it is possible to provide a small-sized and low-loss inductor element capable of increasing the use efficiency of the wiring and reducing the chip area.
上記の課題を解決するために、本発明のインダクタ素子は、半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、前記インダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの前記配線層の断面で、それぞれ異なる配線ピッチで形成され、2つの前記配線層の一方で、周回状に周囲を略1周乃至略2周する当該周回配線内に端部を有し、当該端部でビアにより直上又は直下の他方の前記配線層の前記周回配線の端部に接続され、前記ビアにより接続された前記周回配線同士はそれぞれの前記配線層内の電流方向が同一であることを特徴とする。 In order to solve the above-described problems, an inductor element of the present invention is an inductor element in a wiring layer in an insulating film on a semiconductor substrate, and the inductor wiring that is a peripheral wiring of the inductor element includes at least two Cross sections of the wiring layer are formed at different wiring pitches, and one end of the two wiring layers has an end portion in the circumferential wiring that circulates around the circumference approximately one or two times. Connected to the end of the peripheral wiring of the other wiring layer directly above or directly below by the via, and the peripheral wiring connected by the via has the same current direction in the wiring layer Features.
本発明によれば、少なくとも二つの配線層で、断面でのそれぞれ異なる配線ピッチで形成されるので、配線ピッチの異なる配線層にまたがるインダクタを形成できる。 According to the present invention, at least two wiring layers are formed at different wiring pitches in the cross section, and therefore an inductor that extends over wiring layers having different wiring pitches can be formed.
本発明によれば、3Dソレノイド構造と同様に、インダクタ配線の寄生容量を低減することができるとともに、ピッチの異なる配線層の配線を混在させることができるために、配線の使用効率が高まり、チップ面積を縮小することができる。 According to the present invention, similar to the 3D solenoid structure, the parasitic capacitance of the inductor wiring can be reduced, and wirings of wiring layers having different pitches can be mixed. The area can be reduced.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様な符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar constituent elements are denoted by the same reference numerals, and description thereof is omitted as appropriate.
本発明に好適な実施の形態1について、図面に基づいて説明する。図1において、本実施の形態によるインダクタ素子は、半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、そのインダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの配線層(下層及び上層)の断面で、それぞれ異なる配線ピッチで形成され、2つのその配線層(下層及び上層)の一方(下層又は上層)で、周回状に周囲を略1周(乃至略2周)するその周回配線内に端部(A又はB)を有し、その端部でビアにより直上又は直下の他方のその配線層(上層又は下層)のその周回配線の端部に接続され、そのビアにより接続されたその周回配線(下層及び上層)同士はそれぞれのその配線層内の電流方向(右回り)が同一であることを特徴とするインダクタ素子。
図1を参照してさらに詳細に説明する。なお、図1は本発明のインダクタ構造の上面図と図のα‐βの部分の断面図である。 This will be described in more detail with reference to FIG. FIG. 1 is a top view of the inductor structure of the present invention and a cross-sectional view of the α-β portion in the figure.
図1では上層と下層の配線層にまたがる3巻きのインダクタを示している。ここで、配線ピッチとは同層の配線間で、2つの配線の中央間の距離を言う。 FIG. 1 shows a three-turn inductor that straddles the upper and lower wiring layers. Here, the wiring pitch refers to the distance between the centers of two wirings between wirings in the same layer.
図1の断面図に示すように、上層の配線は、下層の配線よりも幅が広い。また、図1では、上層の配線の膜厚が厚く、上層配線の配線ピッチが広い。すなわち上層周回配線は下層周回配線より周回配線数が少ない。2つの配線層の上方の配線層の周回配線数と下方の配線層の周回配線数が異なり、下方の配線層の周回配線数のほうが多い。これは、下層配線に比べて上層配線は凹凸のある平面に形成されるため、厚く形成する必要があるからである。限られた領域に周回配線を縦方向に積み上げる場合、上層配線数は下層配線数より少なくする必要がある。 As shown in the cross-sectional view of FIG. 1, the upper layer wiring is wider than the lower layer wiring. Further, in FIG. 1, the upper layer wiring is thick and the upper layer wiring has a wide wiring pitch. That is, the upper layer wiring has a smaller number of circuit wiring than the lower layer wiring. The number of the surrounding wirings in the upper wiring layer and the number of the surrounding wirings in the lower wiring layer are different from each other, and the number of the surrounding wirings in the lower wiring layer is larger. This is because the upper layer wiring is formed on an uneven surface as compared with the lower layer wiring, and thus needs to be formed thicker. When the circumferential wirings are stacked vertically in a limited area, the number of upper layer wirings needs to be smaller than the number of lower layer wirings.
このように、上層の周回配線数が下層の周回配線数より少なくても、上層周回配線の配線幅が下層周回配線の配線幅より大きいので、配線の一部は、上下同じ位置にはないものの、重なり部分が生じるのでビアを介して下層の周回配と上層の周回配線接続できる。また、重ならない部分は寄生容量を減らすことができる。 In this way, even if the number of upper-layer circuit wirings is smaller than the number of lower-layer circuit wirings, the upper-layer circuit wiring width is larger than the lower-layer circuit wiring width. Since an overlapping portion is generated, the lower layer and the upper layer can be connected via vias. Further, the parasitic capacitance can be reduced in the non-overlapping portion.
このインダクタにおいてINから入った信号は、下層の外側配線を略1周してからA点でビアを介して上層配線に移動する。このビアは、前述の上下配線の重なり部分に形成する。この信号は、次に上層配線を略1周してからB点でビアを介して下層配線に移動し、下層の内側配線を略1周してからOUTから出力される。ここで、B点も同様に上下配線の重なり部分に形成する。また、略1周とは、コイルを形成することを目的とし、完全に一周させるものではないことを意味する。 In this inductor, a signal input from IN moves around the lower outer wiring substantially once and then moves to the upper wiring through a via at point A. This via is formed in the above-described overlapping portion of the upper and lower wirings. This signal then goes around the upper layer wiring approximately once, then moves to the lower layer wiring via a via at point B, and then outputs from the OUT after making approximately one round of the lower layer inner wiring. Here, the point B is also formed in the overlapping portion of the upper and lower wirings. Further, “substantially one round” means that the purpose is to form a coil and it is not a complete round.
このように上下の配線の重なり部分を利用することで、配線ピッチの異なる配線層にまたがるインダクタを形成できる。 In this way, by using the overlapping portion of the upper and lower wirings, it is possible to form an inductor that spans wiring layers having different wiring pitches.
図1の断面図における矢印は、インダクタ周回間の信号の移動を示したものである。 The arrows in the cross-sectional view of FIG. 1 indicate the movement of signals between inductor turns.
図1の断面図において、信号はインダクタ配線を略1周する度に、図1の断面の順番で上下の配線間を移動する。 In the cross-sectional view of FIG. 1, the signal moves between the upper and lower wirings in the order of the cross section of FIG.
以下においても、インダクタ配線を略1周する度の信号の移動を断面図の矢印で示すものとする。 In the following, the movement of the signal every time the inductor wiring is turned around once is indicated by an arrow in the sectional view.
次に、本発明の第2の実施形態について、図2を参照して説明する。なお、図2は、下層の配線層が複数層の場合のインダクタ配線の断面図である。また、図2において各周回間の信号の経路を矢印で示している。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view of the inductor wiring when the lower wiring layer has a plurality of layers. In FIG. 2, the signal path between the laps is indicated by an arrow.
図2において、金属配線M1〜M4の下層配線と金属配線M5の上層配線があり、金属配線M5の配線ピッチは、金属配線M1〜M4より大きく、金属配線M5の配線膜厚は、他の層よりも厚いものとする。 In FIG. 2, there are a lower layer wiring of the metal wirings M1 to M4 and an upper layer wiring of the metal wiring M5, and the wiring pitch of the metal wiring M5 is larger than that of the metal wirings M1 to M4. Be thicker.
この場合においても、図2における矢印のように、INから入った信号は、金属配線M1〜M4を周回しながらA点で金属配線M5に入り、金属配線M5を略1周してから下層配線に戻り、B点で金属配線M1を略2周して1つ内側の配線のC点に移動する。次に、金属配線M1〜M4を周回しながらD点で金属配線M5に入り、金属配線M5を略2周して1つ内側の配線のE点に移動する。更に、下層配線に戻り、OUTで出力される。ここで、略2周とは、1周から2周に近づけたコイルを形成する目的で、完全に2周させるものではない。 Also in this case, as indicated by the arrow in FIG. 2, the signal entered from IN enters the metal wiring M5 at the point A while circling the metal wirings M1 to M4, and goes around the metal wiring M5 substantially once before the lower layer wiring. Returning to the point B, the metal wire M1 is turned around the metal wire M1 approximately twice at the point B and moved to the point C of the inner wiring. Next, the metal wire M5 enters the metal wire M5 at the point D while circling the metal wires M1 to M4, and moves around the metal wire M5 approximately two times to the point E of the inner wiring. Furthermore, it returns to the lower layer wiring and is output at OUT. Here, “substantially two rounds” is not intended to form two complete turns for the purpose of forming a coil close to two rounds.
このように、上層と下層の配線のピッチの差に合わせて同一配線層内での周回数を調整することで、配線ピッチの異なる配線層にまたがるインダクタを形成することができる。 In this way, by adjusting the number of turns in the same wiring layer in accordance with the difference in pitch between the upper layer and lower layer wirings, inductors that extend over wiring layers having different wiring pitches can be formed.
次に、本発明の第3の実施形態を図3に示す。なお、図3は、各配線層の膜厚は同じで配線のピッチのみが異なる場合である。また、信号の流れは、図2と同じである。 Next, a third embodiment of the present invention is shown in FIG. FIG. 3 shows the case where the thickness of each wiring layer is the same and only the wiring pitch is different. The signal flow is the same as in FIG.
次に、本発明の第4の実施形態について、図4を参照して説明する。なお、図4は上層の配線層が複数層の場合のインダクタ配線の断面図である。また、図4において、各周回間の信号の経路を矢印で示している。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view of the inductor wiring when the upper wiring layer has a plurality of layers. In FIG. 4, the signal path between the laps is indicated by an arrow.
図4に示すように、金属配線M1の下層配線と金属配線M2〜M5の上層配線があり、金属配線M1の配線ピッチは、金属配線M1〜M4より小さいものとする。 As shown in FIG. 4, there are a lower layer wiring of the metal wiring M1 and an upper layer wiring of the metal wirings M2 to M5, and the wiring pitch of the metal wiring M1 is smaller than the metal wirings M1 to M4.
この場合においても、図4における矢印のように、INから入った信号は、金属配線M1を略2周回してA点で金属配線M2に入り、金属配線M2〜M5を周回しながら伝わり、B点で金属配線M5を略2周回して1つ内側の配線のC点に移動する。更に、金属配線M5〜M1を周回しながら伝わり、OUTで出力される。 Also in this case, as indicated by an arrow in FIG. 4, a signal input from IN is transmitted around the metal wiring M1 by going around the metal wiring M1 and entering the metal wiring M2 at the point A, and circulating around the metal wirings M2 to M5. At point, the metal wiring M5 is rotated approximately two times and moved to the point C of the inner wiring. Further, it travels around the metal wirings M5 to M1 and is output at OUT.
次に、本発明の第5の実施形態について、図5を参照して説明する。なお、図5は上下層の配線層が共に複数層の場合のインダクタ配線の断面図である。また、図5において、各周回間の信号の経路を矢印で示している。 Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of the inductor wiring when the upper and lower wiring layers are both a plurality of layers. Further, in FIG. 5, the signal path between each round is indicated by an arrow.
図5に示すように、金属配線M1〜M4の下層配線と金属配線M5〜M6の上層配線があり、金属配線M1〜M4の配線ピッチは、金属配線M5〜M6より小さいものとする。 As shown in FIG. 5, there are a lower layer wiring of the metal wirings M1 to M4 and an upper layer wiring of the metal wirings M5 to M6, and the wiring pitch of the metal wirings M1 to M4 is smaller than the metal wirings M5 to M6.
図5において、金属配線M1〜M4は、1層あたり略4周回し、金属配線M5〜M6は、1層あたり略3周回する。図5の矢印のように、INから入った信号は、F点までは各層を略1周ずつ周回しながら配線層を移動するが、F点から上層に移る途中で金属配線M5には移動せず、OUTから出力される。 In FIG. 5, the metal wirings M1 to M4 make approximately four turns per layer, and the metal wirings M5 to M6 make approximately three turns per layer. As indicated by the arrows in FIG. 5, the signal entered from IN moves through the wiring layer while going around each layer approximately one turn up to point F, but does not move to the metal wiring M5 on the way from point F to the upper layer. Instead, it is output from OUT.
本発明の第6の実施形態について、図6を参照して説明する。なお、図6は上下層の配線層が共に複数層の場合のインダクタ配線の断面図である。また、各周回間の信号の経路を矢印で示している。 A sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of the inductor wiring when the upper and lower wiring layers are both a plurality of layers. Further, the signal path between the laps is indicated by an arrow.
図6においては、金属配線M1〜M4の下層配線と金属配線M5〜M6の上層配線があり、金属配線M1〜M4の配線ピッチは、金属配線M5〜M6より小さいものとする。 In FIG. 6, there are a lower layer wiring of the metal wirings M1 to M4 and an upper layer wiring of the metal wirings M5 to M6, and the wiring pitch of the metal wirings M1 to M4 is smaller than the metal wirings M5 to M6.
図6において金属配線M1〜M4は、1層あたり略8周回し、金属配線M5〜M6は、1層あたり略6周回する。図6における矢印のように、INから入った信号は、G点までは各層を略1周ずつ周回しながら配線層を移動するが、G点で上層の金属配線M5に移動せず、1つ内側の配線のH点に移動する。 In FIG. 6, the metal wirings M1 to M4 are turned about 8 turns per layer, and the metal wirings M5 to M6 are turned about 6 turns per layer. As indicated by the arrows in FIG. 6, the signal input from IN moves through the wiring layer while going around each layer up to point G, but does not move to the upper metal wiring M5 at point G. Move to H point on the inner wiring.
これによって、上層と下層の配線のピッチ差を埋め、以降は各層を略1周ずつ周回しながら配線層を移動してOUTから出力される。 As a result, the pitch difference between the upper layer and lower layer wirings is filled, and thereafter, the wiring layer is moved while going around each layer substantially once, and output from OUT.
なお、図2乃至5においては、同一の配線層内では配線ピッチが一定であるが、図6においては、D点とK点の間隔が他の部分よりも広くなっており、このように同一の配線層内に異なるピッチの配線を配置することも可能である。 2 to 5, the wiring pitch is constant in the same wiring layer, but in FIG. 6, the distance between the point D and the point K is wider than the other parts, and thus the same. It is also possible to arrange wirings with different pitches in the wiring layer.
次に、本発明の第7の実施形態について、図7を参照して説明する。 Next, a seventh embodiment of the present invention will be described with reference to FIG.
図7に示すように、多層配線構造では、一般に上層配線は、下層配線よりもピッチが広いと同時に膜厚も厚い。このため、上層配線の配線抵抗は、下層配線よりも低い。 As shown in FIG. 7, in the multilayer wiring structure, the upper layer wiring is generally wider in pitch and thicker than the lower layer wiring. For this reason, the wiring resistance of the upper layer wiring is lower than that of the lower layer wiring.
しかし、3Dソレノイド構造では、上層配線と下層配線を直列に接続するので、インダクタの全体での直列抵抗は、下層配線の抵抗に律速されて十分に低くすることができない。そこで、3Dソレノイド構造においても部分的に複数の配線層のインダクタ配線を並列に接続する(裏打ち配線)ことで、配線抵抗を下げることが可能である。 However, in the 3D solenoid structure, since the upper layer wiring and the lower layer wiring are connected in series, the series resistance of the whole inductor is limited by the resistance of the lower layer wiring and cannot be sufficiently reduced. Therefore, even in the 3D solenoid structure, it is possible to lower the wiring resistance by partially connecting the inductor wirings of a plurality of wiring layers in parallel (backing wiring).
図7では、金属配線M1〜M4が下層配線、金属配線M5が上層配線であるが、金属配線M1と金属配線M2、金属配線M3と金属配線M4を夫々1組として、組の配線層では、各層の配線を図7のように上下にビアで接続することで並列接続とする。 In FIG. 7, the metal wirings M1 to M4 are the lower layer wirings and the metal wiring M5 is the upper layer wiring. However, the metal wiring M1 and the metal wiring M2, and the metal wiring M3 and the metal wiring M4 are set as one set, respectively. The wiring of each layer is connected in parallel by connecting vias up and down as shown in FIG.
これによって、下層配線の配線抵抗は、実質的に1/2となるので、インダクタ全体の配線抵抗を下げることができる。 As a result, the wiring resistance of the lower layer wiring is substantially halved, so that the wiring resistance of the entire inductor can be reduced.
次に、本発明の第8の実施形態について、図8を参照して説明する。 Next, an eighth embodiment of the present invention will be described with reference to FIG.
図8において、金属配線M1〜M3が下層配線、金属配線M4〜M5が上層配線である。 In FIG. 8, metal wirings M1 to M3 are lower layer wirings, and metal wirings M4 to M5 are upper layer wirings.
図8において、上層配線は、下層配線よりも配線膜厚が大きく低抵抗であるとする。そこで、下層配線は3層を一組、上層配線は2層を1組と、低抵抗の上層配線ほど組にする配線の層数を減らすことで、各インダクタの周回での配線抵抗を均一とすることができる。 In FIG. 8, it is assumed that the upper layer wiring has a larger wiring film thickness and lower resistance than the lower layer wiring. Therefore, the lower layer wiring is a set of 3 layers, the upper layer wiring is a set of 2 layers, and the lower resistance upper layer wiring reduces the number of wiring layers so that the wiring resistance around each inductor is made uniform. can do.
次に、本発明の効果を電磁界シミュレーションにより示す。 Next, the effect of the present invention is shown by electromagnetic field simulation.
なお、プロセスは、90nmノードの6層Cu配線を仮定し、金属配線M2〜M5が同一ピッチの配線層、金属配線M6はこれらよりもピッチの広い配線層とする。 The process assumes a 90-nm node 6-layer Cu wiring, the metal wirings M2 to M5 are wiring layers having the same pitch, and the metal wiring M6 is a wiring layer having a wider pitch than these.
図9及び10は、シミュレーションに使用したインダクタの平面図とα‐βでの断面図である。 9 and 10 are a plan view and a cross-sectional view taken along α-β of the inductor used in the simulation.
図9の従来構造では、インダクタ配線は、金属配線M2〜M5のみで構成されており、金属配線M2と金属配線M3、金属配線M4と金属配線M5を夫々1組として、組の配線層では、各層の配線を図9のように上下にビアで接続することで裏打ち配線としている。 In the conventional structure of FIG. 9, the inductor wiring is composed only of the metal wirings M2 to M5. The metal wiring M2 and the metal wiring M3, and the metal wiring M4 and the metal wiring M5 are set as one set. The wiring of each layer is connected to the upper and lower vias as shown in FIG.
これに対して、図10の本発明では、インダクタ配線は、金属配線M2〜M6で構成されており、金属配線M2と金属配線M3、金属配線M4と金属配線M5を夫々裏打ち配線として、金属配線M6のみは裏打ちなしとなっている。 On the other hand, in the present invention of FIG. 10, the inductor wiring is composed of metal wirings M2 to M6, and the metal wiring M2 and the metal wiring M3, and the metal wiring M4 and the metal wiring M5 are used as the backing wiring, respectively. Only M6 has no backing.
図11は、シミュレーションより求めた従来方式と本発明のインダクタの直列インダクタンス値である。 FIG. 11 shows the series inductance values of the conventional method and the inductor of the present invention obtained by simulation.
図11に示すように、低周波領域においては、従来方式のインダクタンス値と本発明のインダクタンス値とは、ほぼ同じである。しかし、面積で比較すると、従来方式が342μm2に対して、本発明が240μm2であるので、約30%の面積縮小が可能である。
As shown in FIG. 11, in the low frequency region, the inductance value of the conventional method and the inductance value of the present invention are substantially the same. However, when compared in terms of area, the conventional method is 342 μm 2 and the present invention is 240
図12は、シミュレーションより求めた従来方式と本発明のQ値である。 FIG. 12 shows the Q value of the conventional method and the present invention obtained by simulation.
図12に示すように、従来方式と本発明のQ値は、ほぼ同じ値が実現できる。 As shown in FIG. 12, the Q value of the conventional method and the present invention can be substantially the same value.
以上説明したように、本発明によれば、従来の3Dソレノイドインダクタに対して、特性を劣化させることなく面積の縮小が可能である。 As described above, according to the present invention, the area can be reduced without degrading the characteristics of the conventional 3D solenoid inductor.
尚、これらは本発明に例示であり、上記以外の様々な構成を採用することもできる。
(1)本発明の小型低損失インダクタ素子は、半導体基板上の絶縁膜中の配線層の内の小型低損失インダクタ素子であって、
前記インダクタ素子の配線であるインダクタ配線は、複数の前記配線層層中で、少なくとも2種類の異なる配線ピッチで形成され、前記各配線層のインダクタ配線は、周囲を1周又は2周する度に当該配線内に切断部を有し、当該切断部でビアにより直上又は直下の周回配線と接続され、前記ビアにより接続された前記配線同士は、当該配線内の電流方向が同一であることを特徴とする。Note that these are examples of the present invention, and various configurations other than those described above can be employed.
(1) A small low-loss inductor element of the present invention is a small low-loss inductor element in a wiring layer in an insulating film on a semiconductor substrate,
Inductor wiring, which is the wiring of the inductor element, is formed in at least two different wiring pitches in the plurality of wiring layer layers, and each time the inductor wiring of each wiring layer makes one or two turns around the circumference. The wiring has a cutting portion, and is connected to a surrounding wiring directly above or below by a via at the cutting portion, and the wirings connected by the via have the same current direction in the wiring. And
(2)本発明の小型低損失インダクタ素子は、半導体基板上の絶縁膜中の配線層の内の小型低損失インダクタ素子であって、前記インダクタ素子の配線であるインダクタ配線は、少なくとも2種類の異なる最小配線ピッチの配線層中で少なくとも2種類の異なる配線ピッチで形成され、前記各配線層のインダクタ配線は、周囲を1周又は2周する度に当該配線内に切断部を有し、当該切断部でビアにより直上又は直下の周回配線と接続され、前記ビアにより接続された前記配線同士は、当該配線内の電流方向が同一であることを特徴とする。 (2) The small low-loss inductor element of the present invention is a small low-loss inductor element in a wiring layer in an insulating film on a semiconductor substrate. The inductor wiring that is the wiring of the inductor element includes at least two types of inductor wiring. Formed with at least two different wiring pitches in wiring layers with different minimum wiring pitches, the inductor wiring of each wiring layer has a cut portion in the wiring every time it makes one or two rounds, The cut portion is connected to a surrounding wiring immediately above or below by a via, and the wirings connected by the via have the same current direction in the wiring.
(3)上記に記載の小型低損失インダクタ素子において、
前記複数の配線ピッチの配線層は、前記配線ピッチの異なる配線層毎に前記配線層の膜厚が異なることを特徴とする小型低損失インダクタ素子。(3) In the small low-loss inductor element described above,
The small and low loss inductor element, wherein the wiring layers of the plurality of wiring pitches have different thicknesses for the wiring layers having different wiring pitches.
(4)上記記載の小型低損失インダクタ素子において、
上下の配線層の配線ピッチが異なる部分の接続部は、前記切断部で上下の配線の重なる部分にビアが形成されていることを特徴とする小型低損失インダクタ素子。(4) In the small low-loss inductor element described above,
A small, low-loss inductor element characterized in that vias are formed at portions where the upper and lower wirings overlap each other at the connection portions where the upper and lower wiring layers have different wiring pitches.
(5)上記記載の小型低損失インダクタ素子において、
前記インダクタ配線は、狭ピッチの配線層の同一層内での周回数が広ピッチの配線層の同一層内での周回数より多いことを特徴とする小型低損失インダクタ素子。(5) In the small low-loss inductor element described above,
The inductor wiring is characterized in that the number of turns in the same layer of the narrow pitch wiring layer is larger than the number of turns in the same layer of the wide pitch wiring layer.
(6)上記記載の小型低損失インダクタ素子において、
前記インダクタ配線は、前記狭ピッチの配線層中で、前記広ピッチの配線層と上下に隣接する配線層におけるインダクタ配線では広ピッチの配線層との間にビアを有さず、同一配線層中の隣接するインダクタ配線に接続されている部分を有することを特徴とする小型低損失インダクタ素子。(6) In the small low-loss inductor element described above,
The inductor wiring does not have a via between the wide pitch wiring layer and the wide pitch wiring layer in the same pitch wiring layer in the narrow pitch wiring layer. A small low-loss inductor element characterized by having a portion connected to the adjacent inductor wiring.
(7)上記記載の小型低損失インダクタ素子において、
前記インダクタ配線の中には、上下に隣接する複数の配線層を前記ビアで接続することにより、当該複数の配線層が並列接続されて一体の配線となっている部分を有することを特徴とする小型低損失インダクタ素子。(7) In the small low-loss inductor element described above,
The inductor wiring includes a portion in which a plurality of wiring layers adjacent in the vertical direction are connected by the vias so that the plurality of wiring layers are connected in parallel to form an integral wiring. Compact low-loss inductor element.
(8)上記記載の小型低損失インダクタ素子において、
前記複数の配線層のうち、配線膜厚の薄い層は、配線膜厚の厚い層よりも前記並列接続されて一体となっている部分を構成する配線層の数が多いことを特徴とする小型低損失インダクタ素子。(8) In the small low-loss inductor element described above,
Among the plurality of wiring layers, the thin layer of the wiring film has a smaller number of wiring layers constituting the part connected in parallel and integrated than the thick layer of wiring. Low loss inductor element.
この出願は、2008年2月20日に出願された日本出願2008-038410号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
以下、参考形態の例を付記する。
1. 半導体基板上の絶縁膜中の配線層の内のインダクタ素子であって、
前記インダクタ素子の周回配線であるインダクタ配線は、少なくとも2つの前記配線層の断面で、それぞれ異なる配線ピッチで形成され、2つの前記配線層の一方で、周回状に周囲を略1周乃至略2周する当該周回配線内に端部を有し、当該端部でビアにより直上又は直下の他方の前記配線層の前記周回配線の端部に接続され、
前記ビアにより接続された前記周回配線同士はそれぞれの前記配線層内の電流方向が同一であることを特徴とするインダクタ素子。
2. 1に記載のインダクタ素子において、
前記2つの配線層の一方の配線層の周回配線である上層周回配線と、
他方の配線層の周回配線である下層周回配線とで、
前記下層配周回線の数の方が前記上層周回配線の数より多いことを特徴とするインダクタ素子。
3. 2に記載のインダクタ素子において、
前記上層周回配線の配線幅の方が前記下層周回配線の配線幅より大きいことを特徴とするインダクタ素子。
4. 1乃至3何れかに記載のインダクタ素子において、
前記配線ピッチの配線層は、前記配線ピッチの異なる配線層毎に前記配線層の膜厚が異なることを特徴とするインダクタ素子。
5. 1乃至4何れかに記載のインダクタ素子において、
上下の配線層の配線ピッチが異なる部分の接続部は、前記切断部で上下の配線の重なる部分に前記ビアが形成されていることを特徴とするインダクタ素子。
6. 1乃至5の何れかに記載のインダクタ素子において、
前記インダクタ配線は、前記配線ピッチが狭ピッチの配線層内での周回数が、前記配線ピッチが広ピッチの配線層内での周回数より多いことを特徴とするインダクタ素子。
7. 6に記載のインダクタ素子において、
前記インダクタ配線は、前記狭ピッチの配線層中で、前記広ピッチの配線層と上下に隣接する配線層におけるインダクタ配線では、前記広ピッチの配線層との間に前記ビアを有さず、同一配線層中の隣接する前記インダクタ配線に接続されている部分を有することを特徴とするインダクタ素子。
8. 1乃至5の何れかに記載のインダクタ素子において、
前記インダクタ配線の中には、上下に隣接する複数の前記配線層を前記ビアで接続することにより、当該複数の配線層が並列接続されて一体の配線となっている部分を有することを特徴とするインダクタ素子。
9. 8に記載のインダクタ素子において、
前記複数の配線層のうち、配線膜厚の薄い層は、配線膜厚の厚い層よりも並列接続されて一体となっている部分を構成する前記配線層の数が多いことを特徴とするインダクタ素子。
This application claims the priority on the basis of Japanese application 2008-038410 for which it applied on February 20, 2008, and takes in those the indications of all here.
Hereinafter, examples of the reference form will be added.
1. An inductor element in a wiring layer in an insulating film on a semiconductor substrate,
Inductor wiring, which is a circular wiring of the inductor element, is formed at different wiring pitches in cross sections of at least two of the wiring layers, and the circumference of one of the two wiring layers is approximately 1 to 2 around the periphery. There is an end portion in the surrounding wiring that circulates, and the end portion is connected to the end portion of the surrounding wiring of the other wiring layer directly above or directly below by a via,
The inductor element, wherein the circumferential wirings connected by the vias have the same current direction in the wiring layers.
2. In the inductor element according to 1,
An upper layer wiring that is a circuit wiring of one of the two wiring layers;
With the lower layer wiring that is the circuit wiring of the other wiring layer,
The inductor element, wherein the number of the lower layer circuit lines is larger than the number of the upper layer circuit lines.
3. In the inductor element according to 2,
The inductor element, wherein a wiring width of the upper layer wiring is larger than a wiring width of the lower layer wiring.
4). In the inductor element according to any one of 1 to 3,
The inductor element, wherein the wiring layer having the wiring pitch has a different film thickness for each wiring layer having the different wiring pitch.
5. In the inductor element according to any one of 1 to 4,
The inductor element, wherein the connection portion of the portion where the wiring pitches of the upper and lower wiring layers are different has the via formed in a portion where the upper and lower wires overlap at the cut portion.
6). In the inductor element according to any one of 1 to 5,
The inductor element, wherein the number of turns in the wiring layer with the narrow wiring pitch is greater than the number of turns in the wiring layer with the wide wiring pitch.
7). In the inductor element according to 6,
The inductor wiring is the same as the inductor wiring in the wiring layer adjacent to the upper and lower sides of the wide pitch wiring layer in the narrow pitch wiring layer without the via between the wide pitch wiring layer. An inductor element comprising a portion connected to the adjacent inductor wiring in a wiring layer.
8). In the inductor element according to any one of 1 to 5,
The inductor wiring has a portion in which a plurality of wiring layers adjacent in the vertical direction are connected by the vias so that the plurality of wiring layers are connected in parallel to form an integral wiring. Inductor element.
9. In the inductor element according to 8,
Among the plurality of wiring layers, an inductor having a thin wiring film thickness has a larger number of the wiring layers constituting a unit connected and connected in parallel than a thick wiring film layer element.
Claims (12)
前記インダクタ素子は、
第1の前記配線層に形成された各々一周回の第1及び第2の周回配線と、
前記第1の配線層の上方に位置する第2の前記配線層に形成された一周回の第3の周回配線と、を有し、
前記第2の周回配線は、前記第1の周回配線の内側で周回するように配設され、
前記第1の周回配線の一端と前記第3の周回配線の一方の端とは相互に第1のビアで接続され、かつ、前記第2の周回配線の一端と前記第3の周回配線の他方の端とは相互に第2のビアで接続されることで、前記第1の周回配線、前記第2の周回配線、及び、前記第3の周回配線が一続きの3巻きの周回配線を形成しており、
前記一続きの3巻きの周回配線は、同一の巻き方向を維持したまま周回しており、
前記第1の配線層における配線ピッチと前記第2の配線層における配線ピッチは異なることを特徴とするインダクタ素子。 An inductor element having at least three turns disposed in a plurality of wiring layers on a semiconductor substrate,
The inductor element is
Each of the first and second round wirings formed in the first wiring layer;
A third round wiring of one round formed in the second wiring layer located above the first wiring layer;
The second circuit wiring is disposed so as to circulate inside the first circuit wiring,
One end of the first peripheral wiring and one end of the third peripheral wiring are connected to each other by a first via, and one end of the second peripheral wiring and the other of the third peripheral wiring The first peripheral wiring, the second peripheral wiring, and the third peripheral wiring form a continuous three-turn peripheral wiring by being connected to each other by a second via. And
The continuous winding of three windings circulates while maintaining the same winding direction,
The inductor element , wherein a wiring pitch in the first wiring layer and a wiring pitch in the second wiring layer are different .
前記第1の配線層の下方に、前記第1及び第2の周回配線が前記第1の配線層と同じ配線ピッチで形成された第3の前記配線層を少なくとも1つ有するインダクタ素子。 An inductor element having at least one third wiring layer in which the first and second peripheral wirings are formed at the same wiring pitch as the first wiring layer below the first wiring layer.
前記第2の配線層の上方に、前記第3の周回配線が前記第2の配線層と同じ配線ピッチで形成された第4の前記配線層を少なくとも1つ有するインダクタ素子。 An inductor element having at least one fourth wiring layer in which the third circuit wiring is formed at the same wiring pitch as the second wiring layer above the second wiring layer.
前記第1の配線層及び前記第3の配線層の層数の方が、前記第2の配線層及び前記第4の配線層の層数よりも多いことを特徴とするインダクタ素子。 In the inductor element according to claim 3,
The inductor element, wherein the number of layers of the first wiring layer and the third wiring layer is larger than the number of layers of the second wiring layer and the fourth wiring layer .
前記第3の周回配線の配線幅の方が前記第1及び第2の周回配線の配線幅より大きいことを特徴とするインダクタ素子。 The inductor element according to claim 1 , wherein
The inductor element, wherein a wiring width of the third peripheral wiring is larger than a wiring width of the first and second peripheral wirings.
前記第1及び第2の周回配線が形成された前記配線層の膜厚は、前記第3の周回配線が形成された前記配線層の膜厚と異なることを特徴とするインダクタ素子。 The inductor element according to any one of claims 1 to 5,
The inductor element , wherein a thickness of the wiring layer in which the first and second peripheral wirings are formed is different from a thickness of the wiring layer in which the third peripheral wiring is formed .
平面視で、前記第1の配線層に形成された前記第1の周回配線及び前記第2の周回配線は、少なくとも一部が前記第2の配線層に形成された前記第3の周回配線と重なっており、
当該重なり合う部分において、前記第1の周回配線と前記第3の周回配線、及び、前記第2の周回配線と前記第3の周回配線は、ビアで互いに接続していることを特徴とするインダクタ素子。 The inductor element according to any one of claims 1 to 6,
In a plan view, at least a part of the first peripheral wiring and the second peripheral wiring formed in the first wiring layer is the third peripheral wiring formed in the second wiring layer. Overlap,
Inductor element characterized in that, in the overlapping portion, the first and third circumferential wirings, and the second and third circumferential wirings are connected to each other by vias. .
平面視で、前記第1の配線層に形成された前記第1の周回配線及び前記第2の周回配線は、各々、前記第3の配線層に形成された前記第1の周回配線及び前記第2の周回配線と重なっており、
当該重なり合う部分において、前記第1の周回配線同士、及び、前記第2の周回配線同士は、ビアで互いに接続していることを特徴とするインダクタ素子。 In the inductor element according to claim 2,
In plan view, the first peripheral wiring and the second peripheral wiring formed in the first wiring layer are respectively the first peripheral wiring and the second peripheral wiring formed in the third wiring layer. It overlaps with the circuit wiring of 2,
In the overlapping portion, the first circumferential wiring and the second circumferential wiring are connected to each other by vias .
平面視で、前記第2の配線層に形成された前記第3の周回配線は、前記第4の配線層に形成された前記第3の周回配線と重なっており、 In plan view, the third circuit wiring formed in the second wiring layer overlaps the third circuit wiring formed in the fourth wiring layer,
当該重なり合う部分において、前記第3の周回配線同士は、ビアで互いに接続していることを特徴とするインダクタ素子。 In the overlapping portion, the third circumferential wirings are connected to each other by vias.
前記第1の配線層には、さらにその他の周回配線が形成されており、 In the first wiring layer, another circuit wiring is further formed,
前記第2の配線層には、平面視で、前記第1の配線層に形成された前記その他の周回配線と少なくとも一部が重なるその他の周回配線が形成されており、 In the second wiring layer, in a plan view, other peripheral wirings that are at least partially overlapped with the other peripheral wirings formed in the first wiring layer are formed,
前記第1の配線層に形成されている前記周回配線の数は、前記第2の配線層に形成されている前記周回配線の数より多いことを特徴とするインダクタ素子。 The inductor element, wherein the number of the surrounding wirings formed in the first wiring layer is larger than the number of the surrounding wirings formed in the second wiring layer.
前記第2の配線層に形成された複数の前記周回配線の中には、前記第2の配線層内において前記第2の配線層に形成された他の周回配線と接続しているものが含まれることを特徴とするインダクタ素子。 Among the plurality of surrounding wirings formed in the second wiring layer, those connected to other surrounding wirings formed in the second wiring layer in the second wiring layer are included. Inductor element characterized by that.
前記第1の周回配線は、前記第2の周回配線との間の配線ピッチを一定に維持したまま前記第2の周回配線の外側を周回しており、 The first circuit wiring circulates outside the second circuit wiring while maintaining a constant wiring pitch between the second circuit wiring and the second circuit wiring,
前記第3の周回配線の幅は、前記第1の周回配線と前記第2の周回配線との間に存在する隙間の幅よりも大きく、 The width of the third circuit wiring is larger than the width of the gap existing between the first circuit wiring and the second circuit wiring,
前記第3の周回配線は、平面視で、前記第1の周回配線の少なくとも一部、及び、前記2の周回配線の少なくとも一部と重なり合った状態を維持しながら、前記第1の周回配線及び前記第2の周回配線に沿って周回しているインダクタ素子。 While the third circuit wiring is maintained in a state of overlapping with at least a part of the first circuit wiring and at least a part of the second circuit wiring in plan view, the first circuit wiring and An inductor element that circulates along the second circumferential wiring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009554218A JP5358460B2 (en) | 2008-02-20 | 2009-02-18 | Small low-loss inductor element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008038410 | 2008-02-20 | ||
JP2008038410 | 2008-02-20 | ||
JP2009554218A JP5358460B2 (en) | 2008-02-20 | 2009-02-18 | Small low-loss inductor element |
PCT/JP2009/000672 WO2009104391A1 (en) | 2008-02-20 | 2009-02-18 | Low-loss small inductor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2009104391A1 JPWO2009104391A1 (en) | 2011-06-16 |
JP5358460B2 true JP5358460B2 (en) | 2013-12-04 |
Family
ID=40985279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009554218A Expired - Fee Related JP5358460B2 (en) | 2008-02-20 | 2009-02-18 | Small low-loss inductor element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5358460B2 (en) |
WO (1) | WO2009104391A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3101685B1 (en) * | 2014-01-29 | 2020-01-01 | Renesas Electronics Corporation | Semiconductor device |
JP6631255B2 (en) * | 2016-01-08 | 2020-01-15 | セイコーエプソン株式会社 | Oscillation module, electronic device, and moving object |
JPWO2019171980A1 (en) * | 2018-03-09 | 2020-12-17 | 株式会社村田製作所 | Laminated triplexer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897377A (en) * | 1994-09-16 | 1996-04-12 | Internatl Business Mach Corp <Ibm> | High Q inductor structure without expensive metallization in silicon technology |
JPH09162354A (en) * | 1995-07-07 | 1997-06-20 | Northern Telecom Ltd | Integrated inductor structure and its manufacture |
JP2000507051A (en) * | 1996-12-30 | 2000-06-06 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Device with integrated coil |
JP2002110676A (en) * | 2000-09-26 | 2002-04-12 | Toshiba Corp | Semiconductor device having multilayer interconnection |
WO2004112138A1 (en) * | 2003-06-16 | 2004-12-23 | Nec Corporation | Semiconductor device and method for manufacturing same |
JP2007059915A (en) * | 2005-08-24 | 2007-03-08 | Avago Technologies General Ip (Singapore) Private Ltd | Cross-coupled inductors formed in ic |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0613590A (en) * | 1992-06-26 | 1994-01-21 | Nec Corp | Semiconductor integrated circuit device |
JP2005183467A (en) * | 2003-12-16 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Inductor device |
-
2009
- 2009-02-18 WO PCT/JP2009/000672 patent/WO2009104391A1/en active Application Filing
- 2009-02-18 JP JP2009554218A patent/JP5358460B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897377A (en) * | 1994-09-16 | 1996-04-12 | Internatl Business Mach Corp <Ibm> | High Q inductor structure without expensive metallization in silicon technology |
JPH09162354A (en) * | 1995-07-07 | 1997-06-20 | Northern Telecom Ltd | Integrated inductor structure and its manufacture |
JP2000507051A (en) * | 1996-12-30 | 2000-06-06 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Device with integrated coil |
JP2002110676A (en) * | 2000-09-26 | 2002-04-12 | Toshiba Corp | Semiconductor device having multilayer interconnection |
WO2004112138A1 (en) * | 2003-06-16 | 2004-12-23 | Nec Corporation | Semiconductor device and method for manufacturing same |
JP2007059915A (en) * | 2005-08-24 | 2007-03-08 | Avago Technologies General Ip (Singapore) Private Ltd | Cross-coupled inductors formed in ic |
Also Published As
Publication number | Publication date |
---|---|
WO2009104391A1 (en) | 2009-08-27 |
JPWO2009104391A1 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10643790B2 (en) | Manufacturing method for 3D multipath inductor | |
TWI648754B (en) | Interleaved transformer and method of making the same | |
US20190392980A1 (en) | Transformer device | |
JPWO2008090995A1 (en) | Inductor | |
US20090066457A1 (en) | Electronic device having transformer | |
US20040075521A1 (en) | Multi-level symmetrical inductor | |
US9105381B2 (en) | High frequency inductor structure having increased inductance density and quality factor | |
JP4895039B2 (en) | Inductor, wiring board, and semiconductor device | |
US8751992B2 (en) | Power supply wiring structure | |
JP6235099B2 (en) | Common mode filter and manufacturing method thereof | |
US20050073025A1 (en) | Spiral inductor and transformer | |
KR101216946B1 (en) | On-Chip Stacked Spiral Inductors | |
US20180168043A1 (en) | Microelectronic device having an air core inductor | |
CN110651372A (en) | Inductor with through-substrate via core | |
EP1498913B1 (en) | High-Q inductor for high frequency | |
JP5358460B2 (en) | Small low-loss inductor element | |
US20080180204A1 (en) | Multiple-level inductance | |
JP5177387B2 (en) | Inductor shield and shielded inductor | |
JP2006066769A (en) | Inductor and manufacturing method thereof | |
JP2010278400A (en) | Low loss multilayer on-chip inductor | |
JP2000232202A (en) | High q inductor for high frequency | |
JP2012182285A (en) | Coil component | |
KR19980020010A (en) | Structure of Spiral Inductor | |
JP7430376B2 (en) | Spiral inductors and passive integrated circuits | |
US12266463B2 (en) | Transformer device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20130704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130902 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |