[go: up one dir, main page]

JP5348009B2 - Angle sensor - Google Patents

Angle sensor Download PDF

Info

Publication number
JP5348009B2
JP5348009B2 JP2010032823A JP2010032823A JP5348009B2 JP 5348009 B2 JP5348009 B2 JP 5348009B2 JP 2010032823 A JP2010032823 A JP 2010032823A JP 2010032823 A JP2010032823 A JP 2010032823A JP 5348009 B2 JP5348009 B2 JP 5348009B2
Authority
JP
Japan
Prior art keywords
rolling element
angle sensor
rotation
angle
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010032823A
Other languages
Japanese (ja)
Other versions
JP2011169699A (en
Inventor
清悟 在間
正幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010032823A priority Critical patent/JP5348009B2/en
Publication of JP2011169699A publication Critical patent/JP2011169699A/en
Application granted granted Critical
Publication of JP5348009B2 publication Critical patent/JP5348009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle sensor allowing high accuracy angle detection with detection resolution enhanced. <P>SOLUTION: The angle sensor 11 includes: a rotor 30 having a rolling groove 31 that spirally coils and rotating in conjunction with the rotation of a rotary shaft 20; a rolling element 40 that rolls in the rolling groove 31; a guide 60 guiding the moving direction of the rolling element 40 so that the position of the rolling element 40 and the rotation angle of the rotary shaft 20 are one-to-one related with each other; a magnetic sensor 50 for detecting a magnetic field changing according to the position of the rolling element 40 to output a detection signal corresponding to the position of the rolling element 40; and a signal processing circuit 80 for calculating the rotation angle of the rotary shaft 20 based on the detection signal. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は回転軸の回転角を検出する角度センサに関する。   The present invention relates to an angle sensor that detects a rotation angle of a rotation shaft.

外部磁界を検出するための磁気センサとして、巨大磁気抵抗効果素子や磁気トンネル効果素子等の磁気抵抗効果素子が利用されている。磁気抵抗効果素子は、磁化方向が特定の方向に設定されていて、外部磁界の変位に対して磁化状態(例えば、磁化方向や磁化の強さ)が影響を受けないように構成された磁化固定層(ピン磁性層)と、外部磁界の変化によって磁化状態が変位する磁化自由層(フリー磁性層)とを備えている。磁気抵抗効果素子に外部磁界が作用すると、磁化自由層の磁化状態が変動し、磁化状態が固定されている磁化固定層の磁化状態と、磁化状態が変動する磁化自由層との間に磁化状態の変位差が発生する。この磁化状態の変位差は、磁気抵抗効果素子の磁気抵抗の変化として現れる。この種の磁気抵抗効果素子の応用例として、例えば、特開2006−125938号公報には、ステアリングシャフトの回転に連動してステアリングシャフトの半径方向に移動するように案内された磁性流体の変位を磁気抵抗効果素子によって検出することにより、ステアリングシャフトの回転角を求める回転角度検出装置が提案されている。   As a magnetic sensor for detecting an external magnetic field, a magnetoresistive effect element such as a giant magnetoresistive effect element or a magnetic tunnel effect element is used. Magnetoresistive elements have a magnetization direction that is set to a specific direction and is configured so that the magnetization state (for example, the magnetization direction and the strength of magnetization) is not affected by the displacement of the external magnetic field. A layer (pinned magnetic layer) and a magnetization free layer (free magnetic layer) whose magnetization state is displaced by a change in an external magnetic field. When an external magnetic field acts on the magnetoresistive effect element, the magnetization state of the magnetization free layer changes, and the magnetization state between the magnetization state of the magnetization fixed layer in which the magnetization state is fixed and the magnetization free layer in which the magnetization state changes The displacement difference is generated. This displacement difference in the magnetized state appears as a change in magnetoresistance of the magnetoresistive effect element. As an application example of this type of magnetoresistive effect element, for example, Japanese Patent Application Laid-Open No. 2006-125938 discloses a displacement of a magnetic fluid guided so as to move in the radial direction of the steering shaft in conjunction with the rotation of the steering shaft. There has been proposed a rotation angle detection device that detects a rotation angle of a steering shaft by detecting with a magnetoresistive element.

特開2006−125938号公報JP 2006-125938 A

しかし、同公報に開示の回転角度検出装置では、磁性体流体をステアリングシャフトの半径方向に引き寄せるための磁石を必要とするため、この磁石が発生する磁界が磁気抵抗効果素子に及ぼす影響により角度検出精度が低下する虞がある。   However, since the rotation angle detection device disclosed in the publication requires a magnet for attracting the magnetic fluid in the radial direction of the steering shaft, the angle detection is performed by the influence of the magnetic field generated by the magnet on the magnetoresistive effect element. There is a risk that the accuracy may decrease.

そこで、本発明はこのような問題を解決し、高精度の角度センサを提供することを課題とする。   Therefore, an object of the present invention is to solve such a problem and provide a highly accurate angle sensor.

上記の課題を解決するため、本発明に係わる角度センサは、螺旋状に巻回する転動溝を有し、回転軸の回転に連動して回転するロータと、転動溝を転動する転動体と、転動体の位置と回転軸の回転角とが一対一に対応付けられるように転動体の移動方向を案内する案内部材と、転動体の位置に応じて変化する磁界を検出し、転動体の位置に応じた検出信号を出力する磁気センサと、検出信号に基づいて回転軸の回転角を演算する信号処理回路と、を備える。従来技術のように磁性体流体をステアリングシャフトの半径方向に引き寄せるための磁石を必要としないので、高精度な角度検出が可能になる。   In order to solve the above-described problems, an angle sensor according to the present invention has a rolling groove that is wound in a spiral shape, a rotor that rotates in conjunction with the rotation of a rotating shaft, and a rolling groove that rolls on the rolling groove. A moving member, a guide member that guides the moving direction of the rolling element so that the position of the rolling element and the rotation angle of the rotating shaft are in one-to-one correspondence, and a magnetic field that changes according to the position of the rolling element are detected. A magnetic sensor that outputs a detection signal corresponding to the position of the moving body; and a signal processing circuit that calculates a rotation angle of the rotary shaft based on the detection signal. Unlike the prior art, a magnet for attracting the magnetic fluid in the radial direction of the steering shaft is not required, so that highly accurate angle detection is possible.

転動溝は一周以上巻回されてもよい。これにより、信号処理回路は、回転軸の多回転絶対角を演算できる。   The rolling groove may be wound more than once. Thereby, the signal processing circuit can calculate the multi-rotation absolute angle of the rotating shaft.

磁気センサは、磁化方向が固定されている磁化固定層と、磁界の作用を受けて磁化方向が追随変化する磁化自由層とを備える磁気抵抗効果素子を含んでもよい。磁化固定層の磁化方向は、転動体の移動方向に略平行であることが好ましい。これにより、磁界方向の振れ幅を増大できるので、角度センサの検出分解能を向上できる。   The magnetic sensor may include a magnetoresistive effect element including a magnetization fixed layer whose magnetization direction is fixed, and a magnetization free layer whose magnetization direction changes following the action of a magnetic field. The magnetization direction of the magnetization fixed layer is preferably substantially parallel to the moving direction of the rolling elements. Thereby, since the fluctuation width in the magnetic field direction can be increased, the detection resolution of the angle sensor can be improved.

転動体の移動方向は、回転軸の回転中心を通る半径方向に対して所定距離ずれた位置を通る方向であって、且つ回転中心方向とは異なる方向であることが好ましい。これにより、転動体の移動距離を増大できるので、角度センサの検出分解能を向上できる。また、案内溝が案内する転動体の移動経路は、転動溝の始点と終点を結ぶ線分(直線、曲線、又は直線と曲線との結合でもよい。)であることが好ましい。これにより、角度検出の分解能を最大限に拡大できる。なお、磁気抵抗効果素子の磁化固定層の磁化方向が転動体の移動方向に直交すると、磁気センサの感度が低下するため、磁化固定層の磁化方向は、転動体の移動方向及びその移動方向に直交する方向を含む平面内の方向(但し、転動体の移動方向に直交する方向を除く)が好ましい。磁界の向きは、転動体の移動方向に略直交する方向が好ましい。   The moving direction of the rolling element is preferably a direction passing through a position shifted by a predetermined distance with respect to a radial direction passing through the rotation center of the rotation shaft, and a direction different from the rotation center direction. Thereby, since the moving distance of a rolling element can be increased, the detection resolution of an angle sensor can be improved. Further, the moving path of the rolling element guided by the guide groove is preferably a line segment connecting the start point and the end point of the rolling groove (may be a straight line, a curve, or a combination of a straight line and a curve). As a result, the angle detection resolution can be maximized. Note that if the magnetization direction of the magnetization fixed layer of the magnetoresistive element is orthogonal to the moving direction of the rolling element, the sensitivity of the magnetic sensor decreases, so the magnetization direction of the magnetization fixed layer is the moving direction of the rolling element and its moving direction. A direction within a plane including a direction orthogonal to the plane (however, excluding a direction orthogonal to the moving direction of the rolling element) is preferable. The direction of the magnetic field is preferably a direction substantially orthogonal to the moving direction of the rolling elements.

また、転動体の移動に伴い、磁気センサと転動体の距離が一定となることが好ましい。このように配置することで磁気センサと転動体の距離が一定になるので転動体の移動に伴い磁気センサの感度がばらつく可能性を低減できる。つまり、案内溝や転動溝形状の工夫に合わせて磁気センサを配置すればよい。   Further, it is preferable that the distance between the magnetic sensor and the rolling element becomes constant as the rolling element moves. By arranging in this way, the distance between the magnetic sensor and the rolling element becomes constant, so the possibility that the sensitivity of the magnetic sensor varies with the movement of the rolling element can be reduced. That is, the magnetic sensor may be arranged in accordance with the idea of the guide groove or rolling groove shape.

転動体として、例えば、磁石を用いることで、転動体に引き寄せられる磁界の強度を増すことができるので、角度センサの検出分解能を向上できる。   For example, by using a magnet as the rolling element, the strength of the magnetic field attracted to the rolling element can be increased, so that the detection resolution of the angle sensor can be improved.

本発明の他の観点に係わる角度センサは、閉曲線状の転動溝を有し、回転軸の回転に連動して回転するロータと、転動溝を転動する第一及び第二の転動体と、第一の転動体の位置と回転軸の回転角とが一対二に対応付けられるように第一の転動体の移動方向を案内する第一の案内部材と、第二の転動体の位置と回転軸の回転角とが一対二に対応付けられるように第二の転動体の移動方向を案内する第二の案内部材と、第一の転動体の位置に応じて変化する第一の磁界を検出し、第一の転動体の位置に応じた第一の検出信号を出力する第一の磁気センサと、第二の転動体の位置に応じて変化する第二の磁界を検出し、第二の転動体の位置に応じた第二の検出信号を出力する第二の磁気センサと、第一及び第二の検出信号に基づいて回転軸の回転角を演算する信号処理回路と、を備える。従来技術のように磁性体流体をステアリングシャフトの半径方向に引き寄せるための磁石を必要としないので、高精度な角度検出が可能になる。   An angle sensor according to another aspect of the present invention has a closed-curved rolling groove, which rotates in conjunction with rotation of a rotating shaft, and first and second rolling elements that roll in the rolling groove. A first guide member that guides the moving direction of the first rolling element so that the position of the first rolling element and the rotation angle of the rotation shaft are associated with each other in a one-to-two manner, and the position of the second rolling element And a first magnetic field that changes according to the position of the first rolling element, and a second guide member that guides the moving direction of the second rolling element so that the rotation angle of the rotating shaft is associated with one to two. A first magnetic sensor that outputs a first detection signal corresponding to the position of the first rolling element, and a second magnetic field that changes according to the position of the second rolling element, A second magnetic sensor for outputting a second detection signal corresponding to the position of the second rolling element, and rotation of the rotary shaft based on the first and second detection signals And a signal processing circuit for calculating a. Unlike the prior art, a magnet for attracting the magnetic fluid in the radial direction of the steering shaft is not required, so that highly accurate angle detection is possible.

転動溝の輪郭を形作る閉曲線は、回転軸の回転中心と同軸の円を除く閉曲線が好適であり、例えば、第一及び第二の検出信号が回転軸の一回転につき一周期の信号波形又は非対称な二周期の信号波形を出力する信号となるように調整されるのが好ましい。   The closed curve forming the contour of the rolling groove is preferably a closed curve excluding a circle coaxial with the rotation center of the rotating shaft. For example, the first and second detection signals have a signal waveform of one cycle per rotation of the rotating shaft or It is preferable to adjust the signal so as to output an asymmetric two-cycle signal waveform.

第一の磁気センサは、磁化方向が固定されている第一の磁化固定層と、第一の磁界の作用を受けて磁化方向が追随変化する第一の磁化自由層とを備える第一の磁気抵抗効果素子を含んでもよい。また、第二の磁気センサは、磁化方向が固定されている第二の磁化固定層と、第二の磁界の作用を受けて磁化方向が追随変化する第二の磁化自由層とを備える第二の磁気抵抗効果素子を含んでもよい。第一の磁化固定層の磁化方向は、第一の転動体の移動方向に略平行であることが好ましく、第二の磁化固定層の磁化方向は、第二の転動体の移動方向に略平行であることが好ましい。これにより、磁界方向の振れ幅を増大できるので、角度センサの検出分解能を向上できる。   The first magnetic sensor includes a first magnetic pinned layer having a fixed magnetization direction and a first magnetic free layer having a first magnetization free layer in which the magnetization direction changes following the action of the first magnetic field. A resistance effect element may be included. In addition, the second magnetic sensor includes a second magnetization fixed layer whose magnetization direction is fixed, and a second magnetization free layer whose magnetization direction changes following the action of the second magnetic field. The magnetoresistive effect element may be included. The magnetization direction of the first magnetization fixed layer is preferably substantially parallel to the moving direction of the first rolling element, and the magnetization direction of the second magnetization fixed layer is approximately parallel to the moving direction of the second rolling element. It is preferable that Thereby, since the fluctuation width in the magnetic field direction can be increased, the detection resolution of the angle sensor can be improved.

本発明によれば、高精度の角度センサを提供できる。   According to the present invention, a highly accurate angle sensor can be provided.

実施例1に係わる角度センサの平面図である。1 is a plan view of an angle sensor according to Embodiment 1. FIG. 図1の2−2線矢視一部断面図である。FIG. 2 is a partial cross-sectional view taken along line 2-2 in FIG. 1. 実施例1,2に係わる磁気抵抗効果素子の断面積層構造を示す模式図である。It is a schematic diagram which shows the cross-sectional laminated structure of the magnetoresistive effect element concerning Example 1,2. 実施例1に係わる磁気抵抗効果素子から出力される検出信号のグラフである。3 is a graph of a detection signal output from a magnetoresistive effect element according to Example 1. 実施例1に係わる角度センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the angle sensor concerning Example 1. FIG. 実施例1に係わる角度センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the angle sensor concerning Example 1. FIG. 実施例1に係わる角度センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the angle sensor concerning Example 1. FIG. 実施例2に係わる角度センサの平面図である。7 is a plan view of an angle sensor according to Embodiment 2. FIG. 図8の9−9線矢視一部断面図である。FIG. 9 is a partial cross-sectional view taken along line 9-9 in FIG. 8. 図8の10−10線矢視一部断面図である。FIG. 10 is a partial cross-sectional view taken along line 10-10 in FIG. 実施例2に係わる磁気センサの出力電圧のグラフである。6 is a graph of the output voltage of the magnetic sensor according to Example 2. 参考例に係わる角度センサの説明図である。It is explanatory drawing of the angle sensor concerning a reference example. 参考例に係わる磁気センサの出力電圧のグラフである。It is a graph of the output voltage of the magnetic sensor concerning a reference example. 実施例2に係わる角度センサの変形例を示す説明図である。It is explanatory drawing which shows the modification of the angle sensor concerning Example 2. FIG. 実施例2に係わる磁気センサの出力電圧のグラフである。6 is a graph of the output voltage of the magnetic sensor according to Example 2. 実施例1に係わる磁気センサの構成図である。1 is a configuration diagram of a magnetic sensor according to Embodiment 1. FIG. 実施例1に係わる磁化固定層の磁化方向を示す説明図である。6 is an explanatory diagram showing a magnetization direction of a magnetization fixed layer according to Example 1. FIG. 実施例1に係わる磁気センサの構成図である。1 is a configuration diagram of a magnetic sensor according to Embodiment 1. FIG. 実施例1に係わる磁化固定層の磁化方向を示す説明図である。6 is an explanatory diagram showing a magnetization direction of a magnetization fixed layer according to Example 1. FIG.

以下、各図を参照しながら本発明に係わる実施例について説明する。同一の部材については、同一の符号を付すものとし、重複する説明を省略する。   Embodiments according to the present invention will be described below with reference to the drawings. About the same member, the same code | symbol shall be attached | subjected and the overlapping description is abbreviate | omitted.

図1乃至図6を参照しながら本実施例に係わる角度センサ11の構成について説明する。図1は角度センサ11の平面図、図2は図1の2−2線矢視一部断面図である。但し、説明の便宜上、図1では磁気センサ50を透視図とし、図2では案内部材60を透視図としている。図1及び図2に示すように、角度センサ11は、螺旋状に巻回する転動溝31を有するロータ30と、転動溝31を転動する転動体40と、転動体40の移動方向を案内する案内部材60と、転動体40の位置に応じて変化する外部磁界90を検出し、転動体40の位置に応じた検出信号を出力する磁気センサ50と、検出信号に基づいて回転軸20の回転角を演算する信号処理回路80とを備える。ロータ30は、回転軸20の回転に連動して回転する回転板であり、回転軸20の回転中心21に同軸配置されている。ロータ30の主面には、溝深さ及び溝幅が略一定の転動溝31が回転中心21を巻回中心として螺旋状に形成されている。転動溝31の巻回数は回転軸20の角度検出範囲に応じて調整される。例えば、回転軸20の回転角を時計回り方向に0〜900degの範囲で測定し、且つ反時計回り方向に0〜−900degの範囲で測定するためには、転動溝31の巻回数を5に調整すればよい。転動溝31の巻回数を1以上に調整することで、角度センサ11は、回転軸20の一回転以上の多回転絶対角を検出できる。多回転絶対角とは、回転軸20の回転数を加味した回転軸20の基準位置からの絶対角を意味し、例えば、回転軸20の回転数がN回転で回転軸20の基準位置からの相対角がαの多回転絶対角φは、φ=360×N+α[deg]である。回転軸20の例として、例えば、ステアリングシャフトがあるが、本実施例はこれに限定されるものではない。   The configuration of the angle sensor 11 according to this embodiment will be described with reference to FIGS. 1 is a plan view of the angle sensor 11, and FIG. 2 is a partial cross-sectional view taken along line 2-2 of FIG. However, for convenience of explanation, the magnetic sensor 50 is a perspective view in FIG. 1, and the guide member 60 is a perspective view in FIG. As shown in FIGS. 1 and 2, the angle sensor 11 includes a rotor 30 having a rolling groove 31 wound spirally, a rolling element 40 that rolls on the rolling groove 31, and a moving direction of the rolling element 40. , A magnetic sensor 50 that detects an external magnetic field 90 that changes according to the position of the rolling element 40, and outputs a detection signal according to the position of the rolling element 40, and a rotating shaft based on the detection signal And a signal processing circuit 80 that calculates 20 rotation angles. The rotor 30 is a rotating plate that rotates in conjunction with the rotation of the rotating shaft 20, and is disposed coaxially with the rotation center 21 of the rotating shaft 20. On the main surface of the rotor 30, a rolling groove 31 having a substantially constant groove depth and groove width is formed in a spiral shape with the rotation center 21 as a winding center. The number of turns of the rolling groove 31 is adjusted according to the angle detection range of the rotating shaft 20. For example, in order to measure the rotation angle of the rotating shaft 20 in the range of 0 to 900 deg in the clockwise direction and in the range of 0 to −900 deg in the counterclockwise direction, the number of turns of the rolling groove 31 is 5 You may adjust to. By adjusting the number of turns of the rolling groove 31 to 1 or more, the angle sensor 11 can detect a multi-rotation absolute angle of one rotation or more of the rotating shaft 20. The multi-rotation absolute angle means an absolute angle from the reference position of the rotation shaft 20 in consideration of the rotation number of the rotation shaft 20, for example, the rotation number of the rotation shaft 20 is N rotations from the reference position of the rotation shaft 20. The multi-rotation absolute angle φ having a relative angle α is φ = 360 × N + α [deg]. An example of the rotating shaft 20 is a steering shaft, but this embodiment is not limited to this.

案内部材60は、転動体40の移動を直線方向(例えば、X方向又はY方向)に案内する案内溝61を有している。回転軸20の軸芯方向をZ方向とすると、回転軸20の回転に連動してロータ30はXY平面内で回転する。ロータ30は回転軸20に固定されてもよく、或いはセレーション結合されてもよい。転動体40は、ロータ30の回転時に転動溝31を転動しながら案内溝61に沿って直線的に移動する。転動体40の材質は、外部磁界90を引き寄せる作用を有する材質であればよく、特に限定されるものではないが、例えば、強磁性材質(鉄、コバルト、ニッケル等)でもよく、或いは磁石でもよい。転動体40の形状は、転動しやすい形状であればよく、特に限定されるものではないが、例えば、球、円筒等が好適である。   The guide member 60 has a guide groove 61 that guides the movement of the rolling element 40 in a linear direction (for example, the X direction or the Y direction). When the axial direction of the rotary shaft 20 is the Z direction, the rotor 30 rotates in the XY plane in conjunction with the rotation of the rotary shaft 20. The rotor 30 may be fixed to the rotating shaft 20 or may be serrated. The rolling element 40 linearly moves along the guide groove 61 while rolling the rolling groove 31 when the rotor 30 rotates. The material of the rolling element 40 is not particularly limited as long as it is a material having an action of attracting the external magnetic field 90. For example, a ferromagnetic material (iron, cobalt, nickel, etc.) or a magnet may be used. . The shape of the rolling element 40 is not particularly limited as long as it is easy to roll. For example, a sphere, a cylinder, or the like is suitable.

磁気センサ50は、外部磁界90を発生させるための磁石53と、転動体40の移動に追随して磁界方向が変化する外部磁界90の変化を電圧変化として検出する磁気抵抗効果素子51と、磁気抵抗効果素子51にセンス電流を供給するプリント配線基板52とを備える。なお、図16乃至図19に示すように、磁気抵抗効果素子51とプリント配線基板52との配置関係については、磁化固定層の磁化方向73Aに応じて様々な配置をとり得る。例えば、図16に示すように、磁気抵抗効果素子51、プリント配線基板52、及び磁石53がZ方向に積層されている場合、図17に示すように、磁気抵抗効果素子51の磁化固定層の磁化方向73Aは、XY平面内の任意の方向を向く。転動体40の移動方向をX方向とし、その移動方向に直交する方向をY方向とすると、磁化固定層の磁化方向73AがY方向を向くときに磁気センサ50の感度が低下する。このため、磁化固定層の磁化方向73Aは、Y方向を除くXY平面内の任意の方向であることが好ましい。また例えば、図18に示すように、磁気抵抗効果素子51及びプリント配線基板52がY方向に積層されている場合(プリント配線基板52は磁気抵抗効果素子51の裏面に配置されているため図示されていない点に留意されたい)、図19に示すように、磁気抵抗効果素子51の磁化固定層の磁化方向73Aは、XZ平面内の任意の方向を向く。転動体40の移動方向をX方向とし、その移動方向に直交する方向をZ方向とすると、磁化固定層の磁化方向73AがZ方向を向くときに磁気センサ50の感度が低下する。このため、磁化固定層の磁化方向73Aは、Z方向を除くXZ平面内の任意の方向であることが好ましい。磁界90の向きは、転動体40の移動方向に略直交する方向が好ましい。磁気抵抗効果素子51として、巨大磁気抵抗(GMR)型、トンネル磁気抵抗(TMR)型、弾道磁気抵抗(BMR)型、異方性磁気抵抗(AMR)型等の公知の磁気抵抗効果素子を用いることができる。   The magnetic sensor 50 includes a magnet 53 for generating an external magnetic field 90, a magnetoresistive effect element 51 that detects a change in the external magnetic field 90 whose magnetic field direction changes following the movement of the rolling element 40, and a magnetic And a printed wiring board 52 for supplying a sense current to the resistance effect element 51. As shown in FIGS. 16 to 19, the arrangement relationship between the magnetoresistive effect element 51 and the printed wiring board 52 can be variously arranged according to the magnetization direction 73A of the magnetization fixed layer. For example, as shown in FIG. 16, when the magnetoresistive effect element 51, the printed wiring board 52, and the magnet 53 are stacked in the Z direction, as shown in FIG. The magnetization direction 73A faces an arbitrary direction in the XY plane. Assuming that the moving direction of the rolling element 40 is the X direction and the direction orthogonal to the moving direction is the Y direction, the sensitivity of the magnetic sensor 50 decreases when the magnetization direction 73A of the magnetization fixed layer faces the Y direction. For this reason, it is preferable that the magnetization direction 73A of the magnetization fixed layer is an arbitrary direction in the XY plane excluding the Y direction. Further, for example, as shown in FIG. 18, when the magnetoresistive effect element 51 and the printed wiring board 52 are stacked in the Y direction (the printed wiring board 52 is illustrated because it is disposed on the back surface of the magnetoresistive effect element 51. Note that, as shown in FIG. 19, the magnetization direction 73A of the magnetization fixed layer of the magnetoresistive effect element 51 faces an arbitrary direction in the XZ plane. If the moving direction of the rolling element 40 is the X direction and the direction orthogonal to the moving direction is the Z direction, the sensitivity of the magnetic sensor 50 is lowered when the magnetization direction 73A of the magnetization fixed layer faces the Z direction. For this reason, it is preferable that the magnetization direction 73A of the magnetization fixed layer is an arbitrary direction in the XZ plane excluding the Z direction. The direction of the magnetic field 90 is preferably a direction substantially orthogonal to the moving direction of the rolling element 40. As the magnetoresistive effect element 51, a known magnetoresistive effect element such as a giant magnetoresistive (GMR) type, a tunnel magnetoresistive (TMR) type, a ballistic magnetoresistive (BMR) type, an anisotropic magnetoresistive (AMR) type or the like is used. be able to.

図3は磁気抵抗効果素子51の断面積層構造を示す。磁気抵抗効果素子51は、下地層71、反強磁性層72、磁化固定層73、非磁性導電層74、磁化自由層75、及び保護層76を積層してなる構造を有している。磁化固定層73の磁化方向73Aは、反強磁性層72の磁化方向72Aと強固に磁気カップリングしているため、外部磁界90の影響を殆ど受けない。一方、磁化自由層75の磁化方向75Aは、外部磁界90の磁界方向に追随するように変化する。磁気抵抗効果素子51の磁気抵抗は、磁気抵抗効果素子51が検出する外部磁界90の磁界強度とその磁界方向に依存して変化することが知られている。仮に外部磁界90の磁界強度が一定である場合には、磁気抵抗効果素子51の磁気抵抗は、磁化固定層73の磁化方向73Aと磁化自由層75の磁化方向75Aとの角度差ψに依存して変化する。より詳細には、磁気抵抗効果素子51の磁気抵抗は、(1−cosψ)に比例して変化する特性を有しており、磁化固定層73の磁化方向73Aと磁化自由層75の磁化方向75Aとが同一方向かつ平行であるときに磁気抵抗は最小となり、磁化固定層73の磁化方向73Aと磁化自由層75の磁化方向75Aとが逆方向かつ平行であるときに磁気抵抗は最大になる。磁気抵抗効果素子51には、プリント配線基板52からセンス電流が供給されており、磁気抵抗効果素子51の磁気抵抗の変化は、出力電圧の変化として検出される。磁石53から転動体40に引き寄せられる外部磁界90の磁界方向は、案内溝61に沿って直線的に移動する転動体40の位置に応じて変化する。転動体40は、回転軸20の回転時に螺旋状の転動溝31を転動しながら案内溝61に沿って直線方向に移動するため、転動体40の位置と回転軸20の回転角とは、一対一に対応付けられる。磁気抵抗効果素子51の出力電圧は、回転軸20の回転角の情報を含む検出信号として信号処理される。   FIG. 3 shows a cross-sectional laminated structure of the magnetoresistive effect element 51. The magnetoresistive element 51 has a structure in which a base layer 71, an antiferromagnetic layer 72, a magnetization fixed layer 73, a nonmagnetic conductive layer 74, a magnetization free layer 75, and a protective layer 76 are laminated. The magnetization direction 73A of the magnetization fixed layer 73 is hardly affected by the external magnetic field 90 because it is strongly magnetically coupled with the magnetization direction 72A of the antiferromagnetic layer 72. On the other hand, the magnetization direction 75 </ b> A of the magnetization free layer 75 changes so as to follow the magnetic field direction of the external magnetic field 90. It is known that the magnetoresistance of the magnetoresistive effect element 51 changes depending on the magnetic field strength of the external magnetic field 90 detected by the magnetoresistive effect element 51 and the direction of the magnetic field. If the magnetic field strength of the external magnetic field 90 is constant, the magnetoresistance of the magnetoresistive element 51 depends on the angle difference ψ between the magnetization direction 73A of the magnetization fixed layer 73 and the magnetization direction 75A of the magnetization free layer 75. Change. More specifically, the magnetoresistance of the magnetoresistive element 51 has a characteristic that changes in proportion to (1-cos ψ), and the magnetization direction 73 A of the magnetization fixed layer 73 and the magnetization direction 75 A of the magnetization free layer 75. Are the same and parallel to each other, and the magnetoresistance is minimized. When the magnetization direction 73A of the magnetization fixed layer 73 and the magnetization direction 75A of the magnetization free layer 75 are opposite and parallel, the magnetoresistance is maximized. A sense current is supplied to the magnetoresistive element 51 from the printed wiring board 52, and a change in the magnetoresistance of the magnetoresistive element 51 is detected as a change in the output voltage. The magnetic field direction of the external magnetic field 90 attracted from the magnet 53 to the rolling element 40 changes according to the position of the rolling element 40 that moves linearly along the guide groove 61. Since the rolling element 40 moves in a linear direction along the guide groove 61 while rolling the spiral rolling groove 31 when the rotating shaft 20 rotates, the position of the rolling element 40 and the rotation angle of the rotating shaft 20 are different from each other. , One-to-one correspondence. The output voltage of the magnetoresistive effect element 51 is signal-processed as a detection signal including information on the rotation angle of the rotating shaft 20.

図4は、磁気抵抗効果素子51から出力される検出信号101のグラフを示す。同図において、横軸は回転軸20の回転角を示し、縦軸は磁気抵抗効果素子51の出力電圧を示している。また、−θmaxは角度検出範囲の下限を示し、θmaxは角度検出範囲の上限を示す。磁気抵抗効果素子51の出力電圧は、回転軸20の回転角に応じて線形的に増減する。信号処理回路80は、回転軸20の回転角と磁気抵抗効果素子51の出力電圧との対応関係を示すデータテーブル(又は関数)をメモリ(図示せず)に保持しており、磁気抵抗効果素子51の出力電圧とデータテーブル(又は関数)とを比較して、回転軸20の回転角を演算する。   FIG. 4 shows a graph of the detection signal 101 output from the magnetoresistive effect element 51. In the figure, the horizontal axis indicates the rotation angle of the rotary shaft 20, and the vertical axis indicates the output voltage of the magnetoresistive element 51. Further, -θmax indicates the lower limit of the angle detection range, and θmax indicates the upper limit of the angle detection range. The output voltage of the magnetoresistive element 51 increases and decreases linearly according to the rotation angle of the rotating shaft 20. The signal processing circuit 80 holds a data table (or function) indicating the correspondence between the rotation angle of the rotating shaft 20 and the output voltage of the magnetoresistive element 51 in a memory (not shown), and the magnetoresistive element The rotation angle of the rotating shaft 20 is calculated by comparing the output voltage 51 and the data table (or function).

上述のセンサ構成において、磁化固定層73の磁化方向73Aは、転動体40の移動方向62(図1参照)に略平行であるのが好ましい。これにより、転動体40の移動に伴う外部磁界90の磁界方向の振れ幅(回転軸20の最小角度に対応する外部磁界90の角度と回転軸20の最大角度に対応する外部磁界90の角度との差分)を増大できるので、角度センサ11の検出分解能を向上できる。また、図1に示すように、転動体40の移動方向62は、回転軸20の回転中心21を通る半径方向32に対して所定距離ΔXずれた位置を通る方向であって、且つ回転中心21に向かう方向(回転中心方向)とは異なる方向に調整するのが好ましい。言い換えれば、転動体40の移動方向62は、回転軸20の回転時における転動体40の移動距離L(回転軸20の最小角度に対応する転動体40の位置と回転軸20の最大角度に対応する転動体40の位置との差分)がロータ30の半径よりも長くなるようにロータ30上の二点を通る方向に調整するのが好ましい。これにより、転動体40の移動距離Lを増大できるので、角度センサ11の検出分解能を向上できる。   In the sensor configuration described above, the magnetization direction 73A of the magnetization fixed layer 73 is preferably substantially parallel to the moving direction 62 (see FIG. 1) of the rolling element 40. Thereby, the fluctuation width in the magnetic field direction of the external magnetic field 90 accompanying the movement of the rolling element 40 (the angle of the external magnetic field 90 corresponding to the minimum angle of the rotating shaft 20 and the angle of the external magnetic field 90 corresponding to the maximum angle of the rotating shaft 20) The detection resolution of the angle sensor 11 can be improved. Further, as shown in FIG. 1, the moving direction 62 of the rolling element 40 is a direction passing through a position shifted by a predetermined distance ΔX with respect to the radial direction 32 passing through the rotation center 21 of the rotation shaft 20, and the rotation center 21. It is preferable to adjust in a direction different from the direction toward the center (rotation center direction). In other words, the moving direction 62 of the rolling element 40 corresponds to the moving distance L of the rolling element 40 when the rotating shaft 20 rotates (the position of the rolling element 40 corresponding to the minimum angle of the rotating shaft 20 and the maximum angle of the rotating shaft 20). It is preferable to adjust in a direction passing through two points on the rotor 30 so that the difference between the rolling element 40 and the position of the rolling element 40 is longer than the radius of the rotor 30. Thereby, since the moving distance L of the rolling element 40 can be increased, the detection resolution of the angle sensor 11 can be improved.

また、上述の説明では、案内溝61が案内する転動体40の移動経路は直線である場合を例示したが、例えば、図7に示すように、案内溝61が案内する転動体40の移動経路63が転動溝31の始点31Aと終点31Bとを結ぶ線分(直線、曲線、又は直線と曲線との結合の何れでもよい。)となるように案内溝61を形成してもよい。これにより、角度検出の分解能を最大限に拡大できる。また、磁気抵抗効果素子51の磁化固定層73の磁化方向73Aが転動体40の移動方向41に直交すると、磁気センサ50の感度が低下するため、磁化固定層73の磁化方向73Aは、転動体40の移動方向41及び移動方向41に直交する方向を含む平面内の方向(但し、移動方向41に直交する方向を除く)が好ましい。磁界90の磁界方向91は、転動体40の移動方向に略直交する方向が好ましい。なお、説明の便宜上、図7は転動溝31の溝幅の図示を省略し、螺旋曲線として図示している点に留意されたい。   In the above description, the moving path of the rolling element 40 guided by the guide groove 61 is exemplified as a straight line. However, for example, as illustrated in FIG. 7, the moving path of the rolling element 40 guided by the guide groove 61. The guide groove 61 may be formed so that 63 is a line segment connecting the start point 31A and the end point 31B of the rolling groove 31 (which may be a straight line, a curve, or a combination of a straight line and a curve). As a result, the angle detection resolution can be maximized. Further, when the magnetization direction 73A of the magnetization fixed layer 73 of the magnetoresistive effect element 51 is orthogonal to the moving direction 41 of the rolling element 40, the sensitivity of the magnetic sensor 50 is reduced, so that the magnetization direction 73A of the magnetization fixed layer 73 is the rolling element. A direction in a plane including 40 moving directions 41 and a direction orthogonal to the moving direction 41 (except for a direction orthogonal to the moving direction 41) is preferable. The magnetic field direction 91 of the magnetic field 90 is preferably a direction substantially orthogonal to the moving direction of the rolling element 40. Note that, for convenience of explanation, FIG. 7 omits the illustration of the groove width of the rolling groove 31 and is illustrated as a spiral curve.

また、図5及び図6に示すように、案内部材60の案内溝61に沿って複数の転動体40が移動するように構成してもよい。例えば、図5は、隣接する二つの溝31にそれぞれ一つの転動体40が転動し、合計二つの転動体40が案内溝61に沿って移動する場合を示す。図6は、隣接する二つの溝31にそれぞれ二つの動体40が転動し、合計四つの転動体40が案内溝61に沿って移動する場合を示す。このような構成により、複数の転動体40によって引き付けられる外部磁界90の強さが増すので、角度センサ11の検出分解能が向上する。   Further, as shown in FIGS. 5 and 6, a plurality of rolling elements 40 may be moved along the guide groove 61 of the guide member 60. For example, FIG. 5 shows a case where one rolling element 40 rolls in each of two adjacent grooves 31 and a total of two rolling elements 40 move along the guide groove 61. FIG. 6 shows a case where two moving bodies 40 roll in two adjacent grooves 31 respectively, and a total of four rolling bodies 40 move along the guide grooves 61. With such a configuration, the strength of the external magnetic field 90 attracted by the plurality of rolling elements 40 increases, so that the detection resolution of the angle sensor 11 is improved.

本実施例に係わる角度センサ11によれば、一つの磁気センサ50で回転軸20の多回転絶対角を検出できるため、回転軸20の回転角を検出するためのセンサとは別に回転軸20の回転数を検出するためのセンサを設ける必要がなく、利便性に優れている。また、従来技術のように磁性体流体をステアリングシャフトの半径方向に引き寄せるための磁石を必要としないので、高精度な角度検出が可能になる。   According to the angle sensor 11 according to the present embodiment, since the multi-rotation absolute angle of the rotation shaft 20 can be detected by one magnetic sensor 50, the rotation shaft 20 of the rotation shaft 20 is separated from the sensor for detecting the rotation angle of the rotation shaft 20. There is no need to provide a sensor for detecting the number of rotations, which is excellent in convenience. Further, unlike the prior art, a magnet for attracting the magnetic fluid in the radial direction of the steering shaft is not required, so that highly accurate angle detection is possible.

なお、角度センサ11をトーションバーの入力軸と出力軸のそれぞれに取り付けることによって、入力軸の回転角と出力軸の回転角との位相差からトーションバーの軸トルクを求めることもできる。   In addition, by attaching the angle sensor 11 to each of the input shaft and the output shaft of the torsion bar, the shaft torque of the torsion bar can be obtained from the phase difference between the rotation angle of the input shaft and the rotation angle of the output shaft.

次に、図8乃至図15を参照しながら本実施例に係わる角度センサ12の構成について説明する。図8は角度センサ12の平面図、図9は図8の9−9線矢視一部断面図、図10は図8の10−10線矢視一部断面図である。但し、説明の便宜上、図8では磁気センサ50A,50Bを透視図とし、図9では案内部材60Aを透視図とし、図10では案内部材60Bを透視図としている。図8乃至図10に示すように、角度センサ12は、閉曲線状の転動溝33を有するロータ30と、転動溝33を転動する転動体40A,40Bと、転動体40Aの直線的な移動方向を案内する案内溝61Aを有する案内部材60Aと、転動体40Bの直線的な移動方向を案内する案内溝61Bを有する案内部材60Bと、転動体40Aの位置に応じて変化する磁界90Aを検出し、転動体40Aの位置に応じた検出信号を出力する磁気センサ50Aと、転動体40Bの位置に応じて変化する磁界90Bを検出し、転動体40Bの位置に応じた検出信号を出力する磁気センサ50Bと、磁気センサ50A,50Bからそれぞれ出力される検出信号に基づいて回転軸20の回転角を演算する信号処理回路80とを備える。ロータ30は、回転軸20の回転に連動して回転する回転板であり、その主面には、溝深さ及び溝幅が略一定の転動溝33が閉曲線状に形成されている。案内溝61A、61Bは必ずしも直線である必要はなく、曲線であってもよい。案内溝61A、61Bを曲線にすることで移動距離を稼ぐことが可能となり回転角度検出の精度を上げられることが可能となる。転動溝33の輪郭を形作る閉曲線として、本実施例では、転動溝33の形が、点34から偏心した点21を中心とした円形を例示するが、これに限定されるものではない。閉曲線の条件については後述する。また、ロータ30の平面形状が円または点34を中心とした点対称形状である場合、ロータ30の中心は回転中心21と同軸に配置されることが好ましい。   Next, the configuration of the angle sensor 12 according to the present embodiment will be described with reference to FIGS. 8 is a plan view of the angle sensor 12, FIG. 9 is a partial cross-sectional view taken along line 9-9 in FIG. 8, and FIG. 10 is a partial cross-sectional view taken along line 10-10 in FIG. However, for convenience of explanation, in FIG. 8, the magnetic sensors 50A and 50B are perspective views, the guide member 60A is perspective view in FIG. 9, and the guide member 60B is perspective view in FIG. As shown in FIGS. 8 to 10, the angle sensor 12 includes a rotor 30 having a closed curved rolling groove 33, rolling elements 40 </ b> A and 40 </ b> B that roll in the rolling groove 33, and a linear relationship between the rolling elements 40 </ b> A. A guide member 60A having a guide groove 61A for guiding the moving direction, a guide member 60B having a guide groove 61B for guiding the linear moving direction of the rolling element 40B, and a magnetic field 90A that changes according to the position of the rolling element 40A. A magnetic sensor 50A that detects and outputs a detection signal corresponding to the position of the rolling element 40A and a magnetic field 90B that changes according to the position of the rolling element 40B are detected, and a detection signal that corresponds to the position of the rolling element 40B is output. A magnetic sensor 50B and a signal processing circuit 80 that calculates the rotation angle of the rotary shaft 20 based on detection signals output from the magnetic sensors 50A and 50B, respectively. The rotor 30 is a rotating plate that rotates in conjunction with the rotation of the rotary shaft 20, and a rolling groove 33 having a substantially constant groove depth and groove width is formed in a closed curve on its main surface. The guide grooves 61A and 61B do not necessarily have to be straight lines but may be curved lines. By making the guide grooves 61A and 61B curved, it is possible to earn a moving distance and improve the accuracy of rotation angle detection. In the present embodiment, the closed groove forming the contour of the rolling groove 33 is exemplified by a circle centered on the point 21 eccentric from the point 34, but is not limited thereto. The closed curve condition will be described later. In addition, when the planar shape of the rotor 30 is a circle or a point-symmetric shape with the point 34 as the center, the center of the rotor 30 is preferably arranged coaxially with the rotation center 21.

なお、磁気センサ50A,50Bの構成は、実施例1の磁気センサ50の構成と同じであるため、詳細な説明を省略する。また、転動体40A,40Bの材質は、外部磁界90A,90Bを引き寄せる作用を有する材質であればよく、特に限定されるものではないが、例えば、強磁性材質(鉄、コバルト、ニッケル等)でもよく、或いは磁石でもよい。転動体40A,90Bの形状は、転動しやすい形状であればよく、特に限定されるものではないが、例えば、球、円筒等が好適である。   The configuration of the magnetic sensors 50A and 50B is the same as the configuration of the magnetic sensor 50 of the first embodiment, and detailed description thereof is omitted. The material of the rolling elements 40A and 40B is not particularly limited as long as it is a material having an action of attracting the external magnetic fields 90A and 90B. For example, a ferromagnetic material (iron, cobalt, nickel, etc.) may be used. Or it may be a magnet. The shape of the rolling elements 40A and 90B is not particularly limited as long as it is easy to roll, and for example, a sphere, a cylinder, or the like is suitable.

ロータ30は、回転軸20の回転に連動して回転する回転板であり、回転軸20の回転中心21に同軸配置されている。案内部材60A,60Bは、回転軸20の回転中心21に関して角度差ψで配置されており、案内溝61A,61Bは、それぞれ回転軸20の半径方向を向いている。なお、案内溝61A,61Bは半径方向を必ずしも向いてなくてもよい。転動溝33の輪郭を形作る閉曲線が偏心円である場合、転動体40A,40Bは、それぞれロータ30の回転時に案内溝61A,61Bに沿って単振動に近い反復直線運動を周期的に繰り返す。これにより、磁気センサ50A,50Bに作用する磁界90A,90Bの磁界方向が転動体40A,40Bの反復直線運動に連動してそれぞれ周期的に変化する。磁気センサ50A,50Bは、図3に示す磁気抵抗効果素子51を有しており、磁界90A,90Bの磁界方向の変化は、それぞれ磁気センサ50A,50Bが有する磁気抵抗効果素子51の磁気抵抗の変化として現れる。磁気センサ50A,50Bが有する磁気抵抗効果素子51にはプリント配線基板52からセンス電流が供給されており、磁気抵抗効果素子51の磁気抵抗の変化は、出力電圧の変化として検出される。転動体40A,40Bの位置と磁気センサ50A,50Bに作用する磁界90A,90Bの磁界方向とは一対一に対応付けられ、且つ、転動体40A,40Bの位置と回転軸20の回転角度は一対二に対応付けられるので、磁気センサ50A,50Bが有する磁気抵抗効果素子51の出力電圧は、回転軸20の回転角の情報を含む検出信号として信号処理される。図11の符号102A,102Bは、それぞれ、磁気センサ50A,50Bの出力電圧を示す。同図に示すように、出力電圧102A,102Bは、正弦波信号となるため、同一の電圧値に対応する回転軸20の回転角が最大二つ存在する。これは、転動体40Aの位置と回転軸20の回転角とが一対二に対応付けれ、且つ、転動体40Bの位置と回転軸20の回転角とが一対二に対応付けられることに起因している。図11に示すように、回転軸20の一回転につき一周期の出力電圧102A,102Bが出力される場合には、図8に示す角度差ψを90degに調整することで、出力電圧102A,102Bの位相差を90degに調整できる。信号処理回路80は、磁気センサ50A,50Bが有する磁気抵抗効果素子51の出力電圧102A,102Bと回転軸20の回転角との対応関係を示すデータテーブル(又は関数)をメモリ(図示せず)に保持しており、出力電圧102A,102Bとデータテーブル(又は関数)とを比較して、回転軸20の回転角を演算する。   The rotor 30 is a rotating plate that rotates in conjunction with the rotation of the rotating shaft 20, and is disposed coaxially with the rotation center 21 of the rotating shaft 20. The guide members 60 </ b> A and 60 </ b> B are arranged with an angle difference ψ with respect to the rotation center 21 of the rotation shaft 20, and the guide grooves 61 </ b> A and 61 </ b> B face the radial direction of the rotation shaft 20. The guide grooves 61A and 61B do not necessarily have to face the radial direction. When the closed curve forming the contour of the rolling groove 33 is an eccentric circle, the rolling elements 40A and 40B periodically repeat repetitive linear motion close to simple vibration along the guide grooves 61A and 61B, respectively, when the rotor 30 rotates. Thereby, the magnetic field directions of the magnetic fields 90A and 90B acting on the magnetic sensors 50A and 50B change periodically in conjunction with the repetitive linear motion of the rolling elements 40A and 40B. The magnetic sensors 50A and 50B have the magnetoresistive effect element 51 shown in FIG. 3, and the change in the magnetic field direction of the magnetic fields 90A and 90B is the magnetoresistive effect element 51 of the magnetic sensors 50A and 50B, respectively. Appears as a change. A sense current is supplied from the printed wiring board 52 to the magnetoresistive effect element 51 of the magnetic sensors 50A and 50B, and the change in the magnetoresistance of the magnetoresistive effect element 51 is detected as a change in the output voltage. The positions of the rolling elements 40A and 40B and the magnetic field directions of the magnetic fields 90A and 90B acting on the magnetic sensors 50A and 50B are associated one-to-one, and the positions of the rolling elements 40A and 40B and the rotation angle of the rotating shaft 20 are a pair. Therefore, the output voltage of the magnetoresistive effect element 51 included in the magnetic sensors 50A and 50B is signal-processed as a detection signal including information on the rotation angle of the rotating shaft 20. Reference numerals 102A and 102B in FIG. 11 indicate output voltages of the magnetic sensors 50A and 50B, respectively. As shown in the figure, since the output voltages 102A and 102B are sinusoidal signals, there are a maximum of two rotation angles of the rotary shaft 20 corresponding to the same voltage value. This is because the position of the rolling element 40A and the rotation angle of the rotating shaft 20 are associated with each other in a one-to-two manner, and the position of the rolling element 40B and the rotation angle of the rotating shaft 20 are associated with each other in a one-to-two manner. Yes. As shown in FIG. 11, when the output voltages 102A and 102B of one cycle are output per rotation of the rotary shaft 20, the output voltages 102A and 102B are adjusted by adjusting the angle difference ψ shown in FIG. 8 to 90 degrees. Can be adjusted to 90 deg. The signal processing circuit 80 stores a data table (or function) indicating the correspondence between the output voltages 102A and 102B of the magnetoresistive effect element 51 of the magnetic sensors 50A and 50B and the rotation angle of the rotary shaft 20 (not shown). And the output voltage 102A, 102B and the data table (or function) are compared, and the rotation angle of the rotating shaft 20 is calculated.

転動溝33の輪郭を形作る閉曲線は、回転軸20の回転中心21と同軸の円を除く閉曲線を含めることができるが、以下の条件を満たす必要がある。まず、第1の条件として、閉曲線の中心点が回転軸20の回転中心21に対して偏心している場合には、出力電圧102A,102Bは、回転軸20の一回転につき極大及び極小がそれぞれ二つ以下で且つ曲率の符号が変化しない信号波形にならなければならない。例えば、転動溝33の輪郭を形作る閉曲線が図12に示すような形状である場合、磁気センサ50Aから出力される出力電圧は、図13に示すような信号波形を有する。図13に示すような信号波形は、上述の第1の条件を満たさず、同一の回転角度に対して最大二つの電圧値が対応するので、回転軸20の回転角度を求めることができない。また、図示していないが、磁気センサ50A,50Bのそれぞれから出力される出力電圧102A,102Bが所定の角度範囲(例えば、角度差ψに対応する出力電圧102A,102Bの位相差)にわたり一定値を保持する場合には、正確な角度検出ができないので好ましくない。次に、第2の条件として、閉曲線の中心点が回転軸20の回転中心21に対して偏心している場合であって、出力電圧102A,102Bが回転軸20の一回転につき二周期の信号波形となる場合には、転動溝33の輪郭を形作る閉曲線は、出力電圧102A,102Bが回転軸20の一回転につき非対称な二周期の信号波形を出力する信号にならなければならない。出力電圧102A,102Bが回転軸20の一回転につき対称な二周期の信号波形を出力してしまうと、同一の電圧値に対応する回転軸20の回転角が最大四つ存在することになり、二つの磁気センサ50A,50Bで回転軸20の回転角を求めることができないためである。但し、出力電圧102A,102Bが回転軸20の一回転につき一周期の信号波形を出力する信号となる場合は、出力電圧102A,102Bの信号波形は非対称である必要はない。   The closed curve that forms the contour of the rolling groove 33 can include a closed curve excluding a circle that is coaxial with the rotation center 21 of the rotating shaft 20, but the following conditions must be satisfied. First, as a first condition, when the center point of the closed curve is eccentric with respect to the rotation center 21 of the rotating shaft 20, the output voltages 102A and 102B have two maximum and minimum values for each rotation of the rotating shaft 20, respectively. The signal waveform must be less than one and the sign of curvature does not change. For example, when the closed curve forming the contour of the rolling groove 33 has a shape as shown in FIG. 12, the output voltage output from the magnetic sensor 50A has a signal waveform as shown in FIG. The signal waveform as shown in FIG. 13 does not satisfy the first condition described above, and the maximum two voltage values correspond to the same rotation angle, so the rotation angle of the rotating shaft 20 cannot be obtained. Although not shown, the output voltages 102A and 102B output from the magnetic sensors 50A and 50B are constant values over a predetermined angle range (for example, the phase difference between the output voltages 102A and 102B corresponding to the angle difference ψ). Is not preferable because accurate angle detection cannot be performed. Next, as a second condition, the center point of the closed curve is eccentric with respect to the rotation center 21 of the rotating shaft 20, and the output voltages 102 </ b> A and 102 </ b> B are two-cycle signal waveforms per one rotation of the rotating shaft 20. In this case, the closed curve that forms the contour of the rolling groove 33 must be a signal in which the output voltages 102A and 102B output a two-period signal waveform that is asymmetric per rotation of the rotary shaft 20. If the output voltages 102A and 102B output a two-cycle signal waveform that is symmetric with respect to one rotation of the rotating shaft 20, there will be a maximum of four rotation angles of the rotating shaft 20 corresponding to the same voltage value. This is because the rotation angle of the rotary shaft 20 cannot be obtained by the two magnetic sensors 50A and 50B. However, when the output voltages 102A and 102B are signals that output a signal waveform of one cycle per rotation of the rotating shaft 20, the signal waveforms of the output voltages 102A and 102B do not need to be asymmetric.

なお、図14に示すように、転動溝33の輪郭を形作る閉曲線が回転軸20の回転中心21に関して点対称になる場合には、図15に示すように、磁気センサ50Aから出力される出力電圧は、回転軸20の一回転につき複数周期の同一信号波形が出力されるので、回転軸20の回転角度が基準角度θ0になるときの電圧を閾値電圧とし、出力電圧が閾値電圧を超えるとき又は下回るときに回転角をθ1,θ2,θ3,…,θNとカウントアップすることにより回転軸20の回転角を求めることができる。点対称な閉曲線の例として、図14では、六角形を示しているが、この例に限られるものではなく、例えば、楕円、菱形等でもよい。   As shown in FIG. 14, when the closed curve forming the contour of the rolling groove 33 is point-symmetric with respect to the rotation center 21 of the rotating shaft 20, the output output from the magnetic sensor 50A is shown in FIG. Since the same signal waveform of a plurality of cycles is output for one rotation of the rotating shaft 20, the voltage when the rotation angle of the rotating shaft 20 becomes the reference angle θ0 is set as a threshold voltage, and the output voltage exceeds the threshold voltage Alternatively, the rotation angle of the rotating shaft 20 can be obtained by counting up the rotation angle as θ1, θ2, θ3,. As an example of a point-symmetric closed curve, FIG. 14 shows a hexagon, but it is not limited to this example, and may be an ellipse, a rhombus, or the like.

磁気センサ50Aの磁気抵抗効果素子51が有する磁化固定層73の磁化方向73Aは、転動体40Aの移動方向に略平行であるのが好ましい。これにより、転動体40Aの移動に伴う外部磁界90Aの磁界方向の振れ幅を増大できるので、角度センサ12の検出分解能を向上できる。同様の理由により、磁気センサ50Bの磁気抵抗効果素子51が有する磁化固定層73の磁化方向73Aは、転動体40Bの移動方向に略平行であるのが好ましい。   The magnetization direction 73A of the magnetization fixed layer 73 included in the magnetoresistive effect element 51 of the magnetic sensor 50A is preferably substantially parallel to the moving direction of the rolling element 40A. Thereby, the fluctuation width in the magnetic field direction of the external magnetic field 90A accompanying the movement of the rolling element 40A can be increased, so that the detection resolution of the angle sensor 12 can be improved. For the same reason, the magnetization direction 73A of the magnetization fixed layer 73 included in the magnetoresistive element 51 of the magnetic sensor 50B is preferably substantially parallel to the moving direction of the rolling element 40B.

なお、本実施例1,2では、転動体の移動に伴い、磁気センサと転動体の距離が一定となることが好ましい。このように配置することで磁気センサと転動体の距離が一定になるので転動体の移動に伴い磁気センサの感度がばらつく可能性を低減できる。つまり、案内溝や転動溝形状の工夫に合わせて磁気センサを配置する。   In the first and second embodiments, it is preferable that the distance between the magnetic sensor and the rolling element becomes constant as the rolling element moves. By arranging in this way, the distance between the magnetic sensor and the rolling element becomes constant, so the possibility that the sensitivity of the magnetic sensor varies with the movement of the rolling element can be reduced. That is, the magnetic sensor is arranged according to the device of the guide groove or rolling groove shape.

なお、本実施例1、2において、磁気抵抗効果素子51の磁化自由層75の長手方向と転動体40,40A,40Bの移動方向は、直交することが好ましい。これにより、磁化自由層75は長手方向での反転がなくヒステリシスが存在しないので、角度検出精度の向上が望める。   In the first and second embodiments, it is preferable that the longitudinal direction of the magnetization free layer 75 of the magnetoresistive effect element 51 and the moving direction of the rolling elements 40, 40A, 40B are orthogonal to each other. Thereby, since the magnetization free layer 75 does not invert in the longitudinal direction and there is no hysteresis, an improvement in angle detection accuracy can be expected.

なお、角度センサ12をトーションバーの入力軸と出力軸のそれぞれに取り付けることによって、入力軸の回転角と出力軸の回転角との位相差からトーションバーの軸トルクを求めることもできる。   In addition, by attaching the angle sensor 12 to each of the input shaft and the output shaft of the torsion bar, the shaft torque of the torsion bar can be obtained from the phase difference between the rotation angle of the input shaft and the rotation angle of the output shaft.

本発明に係わる角度センサは、回転軸の回転角度検出や回転角度差に基づくトルク検出等に利用できる。   The angle sensor according to the present invention can be used for detecting the rotation angle of the rotation shaft, detecting the torque based on the rotation angle difference, and the like.

11,12…角度センサ
20…回転軸
30…ロータ
31,33…転動溝
40,40A,40B…転動体
50,50A,50B…磁気センサ
51…磁気抵抗効果素子
52…プリント配線基板
53…磁石
60,60A,60B…案内部材
71…下地層
72…反強磁性層
73…磁化固定層
74…非磁性導電層
75…磁化自由層
76…保護層
80…信号処理回路
90,90A,90B…外部磁界
DESCRIPTION OF SYMBOLS 11, 12 ... Angle sensor 20 ... Rotary shaft 30 ... Rotor 31, 33 ... Rolling groove 40, 40A, 40B ... Rolling body 50, 50A, 50B ... Magnetic sensor 51 ... Magnetoresistive effect element 52 ... Printed wiring board 53 ... Magnet 60, 60A, 60B ... guide member 71 ... underlayer 72 ... antiferromagnetic layer 73 ... magnetization fixed layer 74 ... nonmagnetic conductive layer 75 ... magnetization free layer 76 ... protective layer 80 ... signal processing circuits 90, 90A, 90B ... external magnetic field

Claims (13)

螺旋状に巻回する転動溝を有し、回転軸の回転に連動して回転するロータと、
前記転動溝を転動する転動体と、
前記転動体の位置と前記回転軸の回転角とが一対一に対応付けられるように前記転動体の移動方向を案内する案内部材と、
前記転動体の位置に応じて変化する磁界を検出し、前記転動体の位置に応じた検出信号を出力する磁気センサと、
前記検出信号に基づいて前記回転軸の回転角を演算する信号処理回路と、
を備える角度センサ。
A rotor having a rolling groove wound spirally and rotating in conjunction with rotation of the rotation shaft;
A rolling element that rolls in the rolling groove;
A guide member for guiding the moving direction of the rolling element so that the position of the rolling element and the rotation angle of the rotating shaft are associated one-to-one;
A magnetic sensor that detects a magnetic field that changes according to a position of the rolling element, and outputs a detection signal according to the position of the rolling element;
A signal processing circuit for calculating a rotation angle of the rotation shaft based on the detection signal;
An angle sensor comprising:
請求項1に記載の角度センサであって、
前記転動溝は一周以上巻回されており、
前記信号処理回路は、前記回転軸の多回転絶対角を演算する、角度センサ。
The angle sensor according to claim 1,
The rolling groove is wound more than one turn,
The signal processing circuit is an angle sensor that calculates a multi-rotation absolute angle of the rotation shaft.
請求項1又は請求項2に記載の角度センサであって、
前記磁気センサは、磁化方向が固定されている磁化固定層と、前記磁界の作用を受けて磁化方向が追随変化する磁化自由層とを備える磁気抵抗効果素子を含み、
前記磁化固定層の磁化方向は、前記転動体の移動方向に略平行である、角度センサ。
The angle sensor according to claim 1 or 2,
The magnetic sensor includes a magnetoresistive element including a magnetization fixed layer whose magnetization direction is fixed, and a magnetization free layer whose magnetization direction changes following the action of the magnetic field,
The angle sensor, wherein a magnetization direction of the magnetization fixed layer is substantially parallel to a moving direction of the rolling elements.
請求項1乃至請求項3のうち何れか1項に記載の角度センサであって、
前記転動体の移動方向は、前記回転軸の回転中心を通る半径方向に対して所定距離ずれた位置を通る方向であって、且つ回転中心方向とは異なる方向である、角度センサ。
The angle sensor according to any one of claims 1 to 3,
An angle sensor in which the moving direction of the rolling element is a direction passing through a position shifted by a predetermined distance with respect to a radial direction passing through the rotation center of the rotation shaft and is different from the rotation center direction.
請求項1乃至請求項4のうち何れか1項に記載の角度センサであって、
前記転動体と前記磁気センサとの距離が一定である、角度センサ。
The angle sensor according to any one of claims 1 to 4,
An angle sensor in which a distance between the rolling element and the magnetic sensor is constant.
請求項1乃至請求項5のうち何れか1項に記載の角度センサであって、
前記転動体は磁石である、角度センサ。
The angle sensor according to any one of claims 1 to 5,
The angle sensor, wherein the rolling element is a magnet.
閉曲線状の転動溝を有し、回転軸の回転に連動して回転するロータと、
前記転動溝を転動する第一及び第二の転動体と、
前記第一の転動体の位置と前記回転軸の回転角とが一対二に対応付けられるように前記第一の転動体の移動方向を案内する第一の案内部材と、
前記第二の転動体の位置と前記回転軸の回転角とが一対二に対応付けられるように前記第二の転動体の移動方向を案内する第二の案内部材と、
前記第一の転動体の位置に応じて変化する第一の磁界を検出し、前記第一の転動体の位置に応じた第一の検出信号を出力する第一の磁気センサと、
前記第二の転動体の位置に応じて変化する第二の磁界を検出し、前記第二の転動体の位置に応じた第二の検出信号を出力する第二の磁気センサと、
前記第一及び第二の検出信号に基づいて前記回転軸の回転角を演算する信号処理回路と、
を備える角度センサ。
A rotor having a closed-curved rolling groove and rotating in conjunction with the rotation of the rotating shaft;
First and second rolling elements that roll in the rolling groove;
A first guide member for guiding the moving direction of the first rolling element so that the position of the first rolling element and the rotation angle of the rotating shaft are associated with each other in a one-to-two manner;
A second guide member for guiding the moving direction of the second rolling element such that the position of the second rolling element and the rotation angle of the rotating shaft are associated with each other in a one-to-two manner;
A first magnetic sensor that detects a first magnetic field that changes according to a position of the first rolling element and outputs a first detection signal according to the position of the first rolling element;
A second magnetic sensor that detects a second magnetic field that changes according to the position of the second rolling element and outputs a second detection signal according to the position of the second rolling element;
A signal processing circuit for calculating a rotation angle of the rotating shaft based on the first and second detection signals;
An angle sensor comprising:
請求項7に記載の角度センサであって、
前記閉曲線は、前記回転軸の回転中心と同軸の円を除く閉曲線である、角度センサ。
The angle sensor according to claim 7,
The angle sensor, wherein the closed curve is a closed curve excluding a circle coaxial with the rotation center of the rotation axis.
請求項7又は請求項8に記載の角度センサであって、
前記転動体の移動方向は、前記回転軸の回転中心を通る半径方向に対して所定距離ずれた位置を通る方向であって、且つ回転中心方向とは異なる方向である、角度センサ。
The angle sensor according to claim 7 or 8,
An angle sensor in which the moving direction of the rolling element is a direction passing through a position shifted by a predetermined distance with respect to a radial direction passing through the rotation center of the rotation shaft and is different from the rotation center direction.
請求項7乃至請求項9のうち何れか1項に記載の角度センサであって、
前記転動体と前記磁気センサとの距離が一定である、角度センサ。
An angle sensor according to any one of claims 7 to 9,
An angle sensor in which a distance between the rolling element and the magnetic sensor is constant.
請求項7に記載の角度センサであって、
前記閉曲線は、前記第一及び第二の検出信号が前記回転軸の一回転につき一周期の信号波形又は非対称な二周期の信号波形を出力する信号となるように調整されている、角度センサ。
The angle sensor according to claim 7,
The angle sensor, wherein the closed curve is adjusted so that the first and second detection signals are signals that output a signal waveform of one cycle or an asymmetric two-cycle signal waveform for one rotation of the rotating shaft.
請求項7乃至請求項11のうち何れか1項に記載の角度センサであって、
前記第一の磁気センサは、磁化方向が固定されている第一の磁化固定層と、前記第一の磁界の作用を受けて磁化方向が追随変化する第一の磁化自由層とを備える第一の磁気抵抗効果素子を含み、
前記第一の磁化固定層の磁化方向は、前記第一の転動体の移動方向に略平行であり、
前記第二の磁気センサは、磁化方向が固定されている第二の磁化固定層と、前記第二の磁界の作用を受けて磁化方向が追随変化する第二の磁化自由層とを備える第二の磁気抵抗効果素子を含み、
前記第二の磁化固定層の磁化方向は、前記第二の転動体の移動方向に略平行である、角度センサ。
The angle sensor according to any one of claims 7 to 11,
The first magnetic sensor includes a first magnetization fixed layer whose magnetization direction is fixed, and a first magnetization free layer whose magnetization direction changes following the action of the first magnetic field. Including a magnetoresistive effect element,
The magnetization direction of the first magnetization fixed layer is substantially parallel to the moving direction of the first rolling element,
The second magnetic sensor includes a second magnetization fixed layer in which a magnetization direction is fixed, and a second magnetization free layer in which the magnetization direction changes following the action of the second magnetic field. Including a magnetoresistive effect element,
The angle sensor, wherein a magnetization direction of the second magnetization fixed layer is substantially parallel to a moving direction of the second rolling element.
請求項7乃至請求項12のうち何れか1項に記載の角度センサであって、
前記第一及び第二の転動体は磁石である、角度センサ。
An angle sensor according to any one of claims 7 to 12,
The angle sensor, wherein the first and second rolling elements are magnets.
JP2010032823A 2010-02-17 2010-02-17 Angle sensor Expired - Fee Related JP5348009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032823A JP5348009B2 (en) 2010-02-17 2010-02-17 Angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032823A JP5348009B2 (en) 2010-02-17 2010-02-17 Angle sensor

Publications (2)

Publication Number Publication Date
JP2011169699A JP2011169699A (en) 2011-09-01
JP5348009B2 true JP5348009B2 (en) 2013-11-20

Family

ID=44683988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032823A Expired - Fee Related JP5348009B2 (en) 2010-02-17 2010-02-17 Angle sensor

Country Status (1)

Country Link
JP (1) JP5348009B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421410B2 (en) * 2013-11-28 2018-11-14 株式会社ニコン Encoder scale, encoder, drive device, and stage device
GB2540599B (en) 2015-07-22 2021-04-14 Cmr Surgical Ltd Rotary encoder.
JP7028664B2 (en) * 2018-01-31 2022-03-02 東海旅客鉄道株式会社 Railroad wheels and shape measuring devices for railroad wheels
US20220081026A1 (en) * 2020-09-17 2022-03-17 Steering Solutions Ip Holding Corporation Rotation limiting device for steering system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211456A (en) * 1998-01-22 1999-08-06 Alps Electric Co Ltd Rotating angle detecting device
JP4189721B2 (en) * 2002-07-30 2008-12-03 株式会社ジェイテクト Rotation angle detector
JP2006090982A (en) * 2004-09-27 2006-04-06 Hitachi Cable Ltd Rotation angle detector
JP4464249B2 (en) * 2004-10-27 2010-05-19 株式会社東海理化電機製作所 Rotation angle detector

Also Published As

Publication number Publication date
JP2011169699A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5500785B2 (en) Magnetic sensor
CN101416020B (en) Position sensor with variable magnetization direction and manufacturing method thereof
US10228267B2 (en) Magnetic sensor for absolute counting of revolutions or linear distances
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
US8797024B2 (en) Sensor
US20050280411A1 (en) GMR sensor with flux concentrators
US6154025A (en) Contactless potentiometer and device for contactlessly sensing a position of an object
JP6202282B2 (en) Magnetic sensor
CN105675026B (en) The magnetized soft handover in magnetoresistive sensor
US7772835B2 (en) AMR array magnetic design for improved sensor flexibility and improved air gap performance
US20230384125A1 (en) Position detection system
JP5348009B2 (en) Angle sensor
CN208591547U (en) Resettable magnetoresistive rotary transducer
JP4973869B2 (en) Moving body detection device
US12007236B2 (en) Angle sensor system
JP2010527454A (en) Device for non-contact detection of linear or rotational movement
JP2008008699A (en) Rotation detecting apparatus
JP2011133477A (en) Length measurement apparatus
KR100532795B1 (en) Device for detecting the position of the object in a contactless manner
JP7577157B2 (en) Manufacturing method of magnetic sensor
JP4506960B2 (en) Moving body position detection device
JP2003257738A (en) Permanent magnet, method of manufacturing permanent magnet, and position sensor
JP5454204B2 (en) Angle sensor
US11796301B2 (en) Sensor element for storing rotation or position information
JP6848943B2 (en) Rotation detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5348009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees