[go: up one dir, main page]

JP5336802B2 - Seamless aluminum alloy tube manufacturing method - Google Patents

Seamless aluminum alloy tube manufacturing method Download PDF

Info

Publication number
JP5336802B2
JP5336802B2 JP2008247302A JP2008247302A JP5336802B2 JP 5336802 B2 JP5336802 B2 JP 5336802B2 JP 2008247302 A JP2008247302 A JP 2008247302A JP 2008247302 A JP2008247302 A JP 2008247302A JP 5336802 B2 JP5336802 B2 JP 5336802B2
Authority
JP
Japan
Prior art keywords
tube
aluminum alloy
cross
drawn
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247302A
Other languages
Japanese (ja)
Other versions
JP2010077497A (en
Inventor
晃 市之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008247302A priority Critical patent/JP5336802B2/en
Publication of JP2010077497A publication Critical patent/JP2010077497A/en
Application granted granted Critical
Publication of JP5336802B2 publication Critical patent/JP5336802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、アルミニウム製熱交換器及びその配管材として使用されるアルミニウム合金管材、特に、高圧条件下にて使用されるアルミニウム合金管材について、連続抽伸と溶体化処理をすることで、低コストかつ高寸法精度を有し、端末加工性にも優れた継ぎ目無しアルミニウム合金管材を製造する方法に関するものである。   The present invention provides an aluminum heat exchanger and an aluminum alloy tube material used as its piping material, in particular, an aluminum alloy tube material used under high pressure conditions, by performing continuous drawing and solution treatment, thereby reducing the cost. The present invention relates to a method for producing a seamless aluminum alloy tube material having high dimensional accuracy and excellent end workability.

近年、地球温暖化等の環境問題や急激な原油価格高騰の影響で、特に、自動車用配管材について、熱交換器の小型軽量化のために管材の薄肉化による軽量化と強度向上との両立を図ること、さらに、配管のコンパクト化と自由度の増大、及び配管作業の省力化のために難易度の高い加工が可能な高成形性が求められている。   In recent years, due to environmental problems such as global warming and the sudden rise in crude oil prices, especially for automotive piping materials, both reducing weight and improving strength by reducing the thickness of pipe materials to reduce the size and weight of heat exchangers. In addition, there is a demand for high formability that enables high-difficult processing to reduce the size and increase the degree of freedom of piping and to save labor in piping work.

このような状況のなかで、一般的に使用される、例えば3003の継ぎ目無し管(マンドレル押出管)では、偏肉精度に代表される寸法精度及び成形性がポートホール管よりも劣っている。これは、従来のマンドレル押出管の製造方法に由来する。つまり、現在のマンドレル押出管の製造方法は、大型鋳塊を押出し、連続引抜による冷間加工後に、人工時効処理して製造するというものである。しかし、マンドレル押出管の元材は肉厚であることから、素管サイズから最終製品サイズまでの断面減少率は70%以上必要なので、偏肉精度、特に径方向の偏肉精度がポートホール管よりも劣る。また、断面減少率が高いことから、複数回にわたって冷間加工する必要があるので、その後、時効処理を行っても、冷間加工時の加工硬化によって伸びが不足し、成形性もポートホール管より劣ってしまう。偏肉精度が劣る点で、特に、高圧配管に使用するのは難しい。そこで、前記高圧配管には、本来なら溶着部がなく破断の心配のないマンドレル管が好ましいところ、現状では、マンドレル管と比較して、成形性に優れ、且つ寸法精度の高いポートホール管、例えば、肉厚1mmにて最大拡管率70〜80%、全伸び14〜15%の特性を有する6063-T83相当のポートホール管が一般的に使用されている。   In such a situation, a 3003 seamless pipe (mandrel extrusion pipe) generally used, for example, is inferior to a porthole pipe in terms of dimensional accuracy and formability represented by thickness deviation accuracy. This is derived from the conventional method for manufacturing a mandrel extruded tube. That is, the current method for manufacturing a mandrel extruded tube is to extrude a large ingot and manufacture it by artificial aging treatment after cold working by continuous drawing. However, since the original material of the mandrel extrusion tube is thick, the cross-section reduction rate from the raw tube size to the final product size must be 70% or more. Inferior to. In addition, since the cross-section reduction rate is high, it is necessary to cold work multiple times. Therefore, even if aging treatment is performed afterwards, elongation due to work hardening during cold working is insufficient, and the formability is also porthole tube. It will be inferior. In particular, it is difficult to use for high-pressure piping because of the inferior thickness accuracy. Therefore, the high-pressure pipe is preferably a mandrel pipe that originally has no welded part and does not worry about breakage, but currently, a porthole pipe having excellent formability and high dimensional accuracy compared to a mandrel pipe, for example, A port hole tube equivalent to 6063-T83 having a maximum tube expansion ratio of 70 to 80% and a total elongation of 14 to 15% at a wall thickness of 1 mm is generally used.

上記の通り、ポートホール管は寸法精度の高い管材ではあるが、その製造工程において溶着部が形成されてしまう。このポートホール押出によって形成されるポートホール管の溶着部は、通常部と比較して成形性が異なる。そのため、内圧を負荷して拡管する加工を行う場合、溶着部が優先的に変形して破断に至りやすいために、拡管率の高い加工が出来ないという問題がある。加工時に溶着部が優先的に割れる一因として、溶着部と通常部での集合組織の差が挙げられる。溶着部とそれ以外の通常部では、押出工具内でのメタルフローが異なるため、熱間での加工履歴が異なり、それに起因して成形後の管材の集合組織が異なる結果となる。これは押出ダイス内で一旦分断したメタルが溶着部で溶着することによって中空材を得る方式のポートホール押出では不可避的な現象であるといえる。   As described above, the porthole pipe is a pipe material with high dimensional accuracy, but a welded portion is formed in the manufacturing process. The welded part of the porthole tube formed by this porthole extrusion has different formability than the normal part. Therefore, when performing the process of expanding the tube by applying an internal pressure, the welded part is preferentially deformed and easily breaks, so that there is a problem that a process with a high expansion rate cannot be performed. One factor that causes the welded portion to break preferentially during processing is the difference in texture between the welded portion and the normal portion. Since the metal flow in the extrusion tool is different between the welded portion and the other normal portion, the processing history between the heat is different, resulting in different textures of the tube material after forming. This can be said to be an unavoidable phenomenon in porthole extrusion in which a hollow material is obtained by welding the metal once cut in the extrusion die at the welded portion.

このポートホール管の有する問題に対して、連続抽伸よるマンドレル押出管の製法では溶着部が存在しないために、溶着部と通常部での集合組織差を考える必要がない点で、拡管成形性に有利に働く。しかし、上記の通り、従来のマンドレル押出管は、偏肉精度と成形性が従来のポートホール管より劣るという問題がある。   In order to solve this problem with porthole pipes, there is no welded part in the mandrel extrusion pipe manufacturing method by continuous drawing, so there is no need to consider the difference in texture between the welded part and the normal part. Works in an advantageous manner. However, as described above, the conventional mandrel extruded tube has a problem that the thickness deviation accuracy and formability are inferior to those of the conventional porthole tube.

一方、近年、自動車配管材の接続方法は工程カットに代表されるVA等によりコネクタとの機械的接続法が主に採用され、例えば、端末部の拡管加工や軸シールドビード加工等といった難易度の高い、厳しい加工が多くなっている。軸シールドビード加工に代表される拡管、転造及びパンチングの違った組み合わせの加工では、ポートホール管の溶着部で割れが生じることもあるので、ポートホール管には割れに耐え得るだけの肉厚が必要となる。つまり、ポートホール管には溶着部の信頼性がないので、管の厚肉を厚くする必要があり、ポートホール管を使用した、例えば自動車用熱交換器は、大型で重いものとなっている。   On the other hand, in recent years, the connection method of automobile piping materials has mainly been adopted as a mechanical connection method with a connector by VA or the like represented by process cut. For example, the degree of difficulty such as tube expansion processing of a terminal portion or shaft shield bead processing High and severe processing is increasing. When processing with different combinations of tube expansion, rolling and punching, such as shaft shield bead processing, cracks may occur at the welded portion of the porthole tube, so the porthole tube is thick enough to withstand the cracking. Is required. In other words, since there is no reliability of the welded part in the porthole pipe, it is necessary to increase the thickness of the pipe, and for example, a heat exchanger for an automobile using the porthole pipe is large and heavy. .

そこで、耐食性と成形性に優れた、例えば、自動車のラジエータやヒータを結ぶ配管などとして用いられるアルミニウム合金管材を製造するために、アルミニウム合金の鋳塊を熱間押出加工し、得られた押出管を30%以上の加工度で冷間抽伸加工した後に、焼鈍するアルミニウム合金管材の製造方法が知られている。この製造方法によれば、曲げ加工やバルジ加工の際に、割れや肌荒れが生じにくくなるとしている(特許文献1)。   Therefore, in order to produce an aluminum alloy tube material excellent in corrosion resistance and formability, for example, used as a pipe connecting a radiator or a heater of an automobile, an extruded tube obtained by hot extruding an aluminum alloy ingot A method for producing an aluminum alloy pipe material that is annealed after cold drawing at a workability of 30% or more is known. According to this manufacturing method, it is said that cracks and rough skin are less likely to occur during bending or bulging (Patent Document 1).

しかし、上記従来技術では、自動車配管用アルミニウム合金管材の成形性はある程度向上しても、配管材を小径薄肉化して熱交換器を軽量化することはできない。   However, in the above prior art, even if the formability of the aluminum alloy pipe material for automobile piping is improved to some extent, it is not possible to reduce the diameter of the piping material and reduce the weight of the heat exchanger.

一方で、自動車用熱交換器の小型軽量化は、車載スペースを低減できるとともに車体の軽量化及び燃費向上に大きく寄与するので、今後さらに重要となってくる。そこで、小型軽量化の手段として、さらには、配管のコンパクト化と配管の自由度を増大させる手段として、配管材の小径薄肉化及び高成形性が求められている。
特開2002−348624号公報
On the other hand, reducing the size and weight of a heat exchanger for automobiles will become more important in the future because it can reduce the space on the vehicle and greatly contribute to the weight reduction and fuel consumption improvement of the vehicle body. Therefore, as a means for reducing the size and weight, and further as a means for reducing the size of the pipe and increasing the degree of freedom of the pipe, the pipe material is required to have a small diameter and a thin wall and high formability.
JP 2002-348624 A

本発明はこのような従来技術の問題点を解決するためになされたものであり、溶着部がなく品質信頼性の高いマンドレル押出管を用いて、高寸法精度を有し成形性に優れたアルミニウム合金管材を低コストにて製造するととともに、肉厚1mmにて最大拡管率70〜80%、全伸び14〜15%である従来のポートホール管と同等以上の機械的性質を有する継ぎ目無しアルミニウム合金管材の製造方法を提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and uses a mandrel extruded tube having no welded portion and high quality reliability, and has high dimensional accuracy and excellent formability. Seamless aluminum alloy with mechanical properties equivalent to or better than conventional porthole pipes, which is manufactured at low cost and has a maximum tube expansion ratio of 70 to 80% and a total elongation of 14 to 15% at a thickness of 1 mm. It aims at providing the manufacturing method of a pipe material.

本発明者は、寸法精度、並びに伸び及び曲げ等の機械的性質がポートホール管並みの特性を有する継ぎ目無しアルミニウム合金管材の製造方法を開発すべく、種々実験、検討を行う過程において、上記課題を解決した。具体的には、連続抽伸した後に巻取をしたコイルについて溶体化処理を行い、その後、冷間引抜加工と人工時効処理を実施することにより、マンドレル押出管を元材としても、熱処理合金6063−T83のポートホール管並みの機械的性質を有するアルミニウム合金管材が得られることを発見した。   In the course of conducting various experiments and studies to develop a method for producing a seamless aluminum alloy pipe material in which the dimensional accuracy and mechanical properties such as elongation and bending have characteristics similar to those of a porthole pipe, Solved. Specifically, by performing solution treatment on the coil that has been wound after continuous drawing, and then performing cold drawing and artificial aging treatment, heat treatment alloy 6063- It was discovered that an aluminum alloy tube material having mechanical properties similar to those of a T83 porthole tube can be obtained.

本発明のアルミニウム合金管材の製造方法の第1の態様は、JIS6063アルミニウム合金のマンドレル押出管を、連続引抜方式により断面減少率70%以上の第1の冷間加工をし、得られた第1引抜管を溶体化処理した後、断面減少率10〜40%である引抜による第2の冷間加工をし、その後、さらに人工時効処理することを特徴とする。ここで、連続引抜とは、ブルブロックともいわれる連続抽伸加工をいい、断面減少率とは、加工前の断面積と加工後の断面積の差を、加工前の断面積で除した値の百分率、つまり、[(加工前の断面積−加工後の断面積)/加工前の断面積]×100を意味する。また、溶体化処理とは、アルミニウムの結晶に合金成分を固溶させるための熱処理と、その後の冷却処理をいい、第1の冷間加工で過剰に加工硬化した第1引抜管の組織を軟化させることができる。人工時効処理とは、アルミニウム合金管材に所定の強度と成形性を与えるための熱処理という。 The first aspect of the method for producing an aluminum alloy tube material of the present invention is the first cold-worked tube obtained by subjecting a mandrel extruded tube of JIS6063 aluminum alloy to a first cold working with a cross-section reduction rate of 70% or more by a continuous drawing method. It is characterized in that after the drawing tube is subjected to solution treatment, second cold working is performed by drawing with a cross-sectional reduction rate of 10 to 40%, and then artificial aging treatment is performed. Here, continuous drawing refers to continuous drawing processing, also called bull block, and cross-section reduction rate is the percentage of the value obtained by dividing the difference between the cross-sectional area before processing and the cross-sectional area after processing by the cross-sectional area before processing. That is, [(cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing] × 100. The solution treatment refers to a heat treatment for dissolving the alloy components in aluminum crystals and a subsequent cooling treatment, and softens the structure of the first drawn tube that has been excessively worked and hardened by the first cold working. Can be made. The artificial aging treatment is a heat treatment for giving a predetermined strength and formability to the aluminum alloy tube material.

本発明のアルミニウム合金管材の製造方法の第2の態様は、前記第1引抜管を前記溶体化処理前にコイルで連続的に巻き取ってコイル化することを特徴とする。   A second aspect of the method for producing an aluminum alloy pipe according to the present invention is characterized in that the first drawn pipe is continuously coiled by a coil before the solution treatment.

本発明のアルミニウム合金管材の製造方法の第3の態様は、前記溶体化処理の冷却温度が、1.5℃/秒以上であることを特徴とする。   A third aspect of the method for producing an aluminum alloy pipe according to the present invention is characterized in that a cooling temperature of the solution treatment is 1.5 ° C./second or more.

本発明のアルミニウム合金管材の製造方法の第4の態様は、前記第2の冷間加工が、断面減少率10〜40%であることを特徴とする。   According to a fourth aspect of the method for producing an aluminum alloy tube of the present invention, the second cold working has a cross-sectional reduction rate of 10 to 40%.

本発明のアルミニウム合金管材の製造方法の第1の態様によれば、断面減少率70%以上の連続引抜方式による第1の冷間加工後に溶体化処理をするので、第1の冷間加工により加工硬化した第1引抜管を軟化させることができ、アルミニウム合金管材の成形性、加工性が向上する。   According to the first aspect of the method for producing an aluminum alloy tube of the present invention, since the solution treatment is performed after the first cold working by the continuous drawing method with a cross-section reduction rate of 70% or more, the first cold working is performed. The work-hardened first drawn tube can be softened, and the formability and workability of the aluminum alloy tube material are improved.

本発明のアルミニウム合金管材の製造方法の第2の態様によれば、第1の冷間加工で得られた第1引抜管を、コイル巻きしてから溶体化処理するので、溶体化処理炉の容量をコンパクトにできるとともに、溶体化処理炉の消費エネルギーを低減でき、生産コストを下げることができる。また、第1引抜管をコイル巻きすることにより、第1引抜管に生じたねじれが矯正されて、第1引抜管が整直されるので、その後の第2の冷間加工の際に、第1引抜管の偏肉、特に長手方向の偏肉を大幅に低減できる。   According to the second aspect of the method for producing an aluminum alloy tube of the present invention, since the first drawn tube obtained by the first cold working is coiled and then subjected to solution treatment, The capacity can be reduced, the energy consumption of the solution treatment furnace can be reduced, and the production cost can be reduced. Further, by twisting the first drawn tube, the twist generated in the first drawn tube is corrected and the first drawn tube is straightened. Therefore, in the subsequent second cold working, Uneven thickness of the drawn tube, especially in the longitudinal direction, can be greatly reduced.

本発明のアルミニウム合金管材の製造方法の第3の態様によれば、溶体化処理の冷却温度が1.5℃/秒以上とすると、焼入れと合金成分の固溶量が十分となるので、アルミニウム合金管材の強度のばらつきを抑えることができる。   According to the third aspect of the method for producing an aluminum alloy tube of the present invention, if the cooling temperature of the solution treatment is 1.5 ° C./second or more, the amount of solid solution of quenching and alloy components becomes sufficient. Variations in the strength of the alloy tube can be suppressed.

本発明のアルミニウム合金管材の製造方法の第4の態様によれば、溶体化処理後であって人工時効処理前に、断面減少率10〜40%の第2の冷間加工をするので、第1引抜管の長手方向と径方向の偏肉を低減して寸法精度を高めることができる。   According to the fourth aspect of the method for producing an aluminum alloy tube of the present invention, the second cold working with a cross-sectional reduction rate of 10 to 40% is performed after the solution treatment and before the artificial aging treatment. It is possible to increase the dimensional accuracy by reducing the uneven thickness in the longitudinal direction and the radial direction of one drawn tube.

次に、本発明の実施形態例に係る継ぎ目無しアルミニウム合金管の製造方法を説明する。本発明の実施形態例に係る継ぎ目無しアルミニウム合金管の製造方法は、(1)中空部を有するマンドレル押出管を、連続引抜方式により断面減少率70%以上の加工度にて第1の冷間加工をする工程と、(2)レベルワインダーを用いて、第1の冷間加工をした第1引抜管のねじれを解きながらコイル化させる工程と、(3)コイル化した第1引抜管を溶体化処理する工程と、(4)溶体化処理したコイル化第1引抜管を整直させながら伸ばして、第2の冷間加工により引き抜く工程と、(5)第2の冷間加工後に、さらに人工時効処理をする工程とを含む。   Next, a method for manufacturing a seamless aluminum alloy tube according to an embodiment of the present invention will be described. The method for producing a seamless aluminum alloy tube according to an embodiment of the present invention includes: (1) a first cold-drawn mandrel extruded tube having a cross-section reduction rate of 70% or more by a continuous drawing method; A step of machining, (2) using a level winder to coil the first cold-worked first drawn tube while untwisting, and (3) a solution of the coiled first drawn tube A step of heat treatment, (4) a step of stretching the solution-treated coiled first drawn tube while straightening and drawing by the second cold working, and (5) after the second cold working, And an artificial aging treatment.

前記(1)の第1の冷間加工工程では、ブルブロックという連続抽伸機を用いて、マンドレル押出管を複数回にわたって連続引抜することで断面減少率が70%以上となるよう加工し、第1引抜管を作製する。断面減少率を70%以上とすることで、ポートホール管と比べて肉厚なマンドレル押出管でもある程度薄肉化でき、従って、前記(2)〜(5)の工程を経ることで、最終製品であるアルミニウム合金管材を薄肉化でき、寸法精度と成形性を向上させることができる。また、第1の冷間加工工程では、複数回にわたって連続引抜をするので、連続引抜の過程で偏肉を低減して寸法精度をある程度高めることができる。ただし、70%以上の断面減少率とすると、第1引抜管には過度の加工硬化が生じており、このままでは、成形性、加工性が従来のポートホール管よりも劣っている。   In the first cold working step (1), a continuous drawing machine called a bull block is used to continuously draw the mandrel extruded tube a plurality of times so that the cross-section reduction rate becomes 70% or more. 1 A drawn tube is prepared. By setting the cross-sectional reduction rate to 70% or more, even a mandrel extruded tube that is thicker than the porthole tube can be thinned to some extent. Therefore, the final product can be obtained through the steps (2) to (5). A certain aluminum alloy tube can be thinned, and dimensional accuracy and formability can be improved. Further, in the first cold working process, continuous drawing is performed a plurality of times, so that uneven thickness can be reduced and dimensional accuracy can be increased to some extent in the process of continuous drawing. However, when the cross-section reduction rate is 70% or more, excessive work hardening has occurred in the first drawn tube, and the formability and workability are inferior to those of the conventional porthole tube.

一方で、断面減少率が70%未満では、熱交換器の小型軽量化等のためのアルミニウム合金管材としては薄肉化が不十分であり、最終製品であるアルミニウム合金管材の薄肉化、高寸法精度、高い成形性の達成が困難となる。また、連続抽伸機は、連続引抜加工された管材を連続抽伸機のドラムに巻きつけると、管材の自重でドラム下に設けた容器中にそのまま落下させる構造となっているので、第1回目の連続引抜の際に、マンドレル押出管の断面減少率が小さいと、連続抽伸機のドラムに引抜後の管材を巻きつけることができず、従って、連続抽伸機を用いた連続引抜ができない。   On the other hand, if the cross-section reduction rate is less than 70%, the thickness of the aluminum alloy tube material is not sufficient for reducing the size and weight of the heat exchanger. It is difficult to achieve high moldability. In addition, the continuous drawing machine has a structure in which when the continuously drawn pipe is wound around the drum of the continuous drawing machine, it is dropped as it is into the container provided under the drum by its own weight. If the cross-sectional reduction rate of the mandrel extrusion tube is small at the time of continuous drawing, the tube material after drawing cannot be wound around the drum of the continuous drawing machine, and therefore continuous drawing using the continuous drawing machine cannot be performed.

前記(2)の第1引抜管のコイル化工程では、レベルワインダーを用いて第1引抜管をコイル化させる。上記の通り、第1引抜管は、連続抽伸機のドラムに巻き取られると、そのまま自重でドラム下の容器中に落ちるので、第1引抜管長手方向に対して略垂直方向にねじれが生じている。しかし、レベルワインダーを用いることで、このねじれを解消させつつ、第1引抜管をコイル化させることができる。第1引抜管をコイル化することにより、第1引抜管をコンパクトにできるので、スペース面でもエネルギー面でも溶体化処理の効率を向上させることができ、生産性が向上する。また、コイル化の際にねじれを解消させるので、第2の冷間加工工程にて、径方向の偏肉だけでなく長手方向の偏肉も低減され、最終製品であるアルミニウム合金管材の寸法精度を高めることができる。   In the coiling step of the first drawing tube (2), the first drawing tube is coiled using a level winder. As described above, when the first drawing tube is wound around the drum of the continuous drawing machine, the first drawing tube falls into the container under the drum as it is by its own weight, so that twist occurs in a direction substantially perpendicular to the longitudinal direction of the first drawing tube. Yes. However, by using a level winder, the first drawn tube can be coiled while eliminating this twist. By coiling the first drawn tube, the first drawn tube can be made compact, so that the efficiency of the solution treatment can be improved in terms of both space and energy, and productivity is improved. In addition, since twisting is eliminated during coiling, not only radial deviation but also longitudinal deviation is reduced in the second cold working process, and dimensional accuracy of the final product, aluminum alloy tube material is reduced. Can be increased.

前記(3)の溶体化処理工程では、第1引抜管を軟化させるので、第1の冷間加工における過度の加工硬化を低減させることができる。熱処理温度は、500℃以上、550℃以下が好ましい。500℃未満では合金成分の固溶量が不十分なために、第2の冷間加工後に人工時効処理を行っても、最終製品であるアルミニウム合金管材の強度、伸びとも不十分となり、要求品質を満たすことができない。一方、550℃を超えると結晶粒界で局部溶融が発生するので、強度が低下する可能性がある点で、好ましくない。十分な固溶量を得、かつ局部溶融を確実に回避する点で、特に、530〜540℃の熱処理温度が好ましい。   In the solution treatment step (3), since the first drawn tube is softened, excessive work hardening in the first cold working can be reduced. The heat treatment temperature is preferably 500 ° C. or higher and 550 ° C. or lower. Below 500 ° C, the amount of solid solution of the alloy components is insufficient, so even if the artificial aging treatment is performed after the second cold working, the strength and elongation of the final aluminum alloy tube are insufficient, and the required quality Can't meet. On the other hand, if it exceeds 550 ° C., local melting occurs at the grain boundaries, which is not preferable in that the strength may be lowered. In particular, a heat treatment temperature of 530 to 540 ° C. is preferable in that a sufficient amount of solid solution is obtained and local melting is surely avoided.

溶体化処理における熱処理後の冷却速度は、第1引抜管の強度のばらつきを抑える点で、1.5℃/sec以上が好ましい。第1引抜管はコイル化されているので、第1引抜管の各部位は上下に隣接した他の部位と互いに当接していることとなる。従って、コイル化された第1引抜管中央部付近の冷却速度を1.5℃/sec以上とするためには、コイルの外側表面からファンによる冷却を実施するのが好ましく、さらに、コイル内管にエアーをパージして冷却効率を向上させてもよい。第1引抜管をコイル化しない場合には、外気に接する表面積がコイル化した場合に比べて大きくなるので、放冷のみで1.5℃/sec以上の冷却速度となることがある。   The cooling rate after the heat treatment in the solution treatment is preferably 1.5 ° C./sec or more from the viewpoint of suppressing variation in strength of the first drawn tube. Since the first drawn tube is coiled, each portion of the first drawn tube is in contact with other portions that are adjacent vertically. Therefore, in order to set the cooling rate in the vicinity of the coiled first drawing tube central portion to 1.5 ° C./sec or more, it is preferable to perform cooling by a fan from the outer surface of the coil, and further, the coil inner tube The cooling efficiency may be improved by purging air. When the first drawn tube is not coiled, the surface area in contact with the outside air becomes larger than when coiled, so that the cooling rate may be 1.5 ° C./sec or more only by cooling.

前記(4)の第2の冷間加工工程では、コイル化した第1引抜管を整直しながら伸ばして引き抜く。この工程では、例えば、コンバインドマシンなどの連続抽伸機を用いて引き抜きする。このとき、第1引抜管は、ねじれが解消されて整直した状態で引き抜きされるので、第1引抜管の連続抽伸機への投入方向が一定となり、径方向の偏肉だけでなく長手方向の偏肉も低減させることができる。また、第2の冷間加工工程では、加工硬化により強度が向上する。通常、第2の冷間加工での引抜回数は1回であるが、必要に応じて複数回行ってもよい。   In the second cold working step (4), the coiled first drawing tube is stretched while being straightened and drawn. In this step, for example, the drawing is performed using a continuous drawing machine such as a combined machine. At this time, since the first drawn tube is drawn in a straightened state with the twist removed, the direction of feeding the first drawn tube into the continuous drawing machine is constant, and not only the radial thickness deviation but also the longitudinal direction The uneven thickness of can also be reduced. In the second cold working step, the strength is improved by work hardening. Usually, the number of drawing operations in the second cold working is one time, but may be performed a plurality of times as necessary.

第2の冷間加工工程の加工度は、断面減少率は10〜40%の範囲であることが好ましい。断面減少率が10%未満の場合には、溶着部での組織差がないために加工割れを誘発することはないが、再結晶後の平均結晶粒径が粗大化するので成形性が低下し、また、加工硬化が不十分なのでポートホール管の6063−T8並の強度が得られない。一方、断面減少率が40%を超えると、再結晶後の結晶粒径が粗大化することはないが、冷間加工度が高いので加工硬化が過剰となってしまい、その後、人工時効処理工程を行っても組織の軟化は不十分となり、成形性が不足してしまう。   Regarding the degree of processing in the second cold working step, the cross-sectional reduction rate is preferably in the range of 10 to 40%. When the cross-section reduction rate is less than 10%, there is no difference in structure at the welded portion, so work cracks are not induced. However, the average crystal grain size after recrystallization is coarsened, so the formability is reduced. Moreover, since the work hardening is insufficient, the strength equivalent to 6063-T8 of the porthole tube cannot be obtained. On the other hand, when the cross-section reduction rate exceeds 40%, the crystal grain size after recrystallization does not become coarse, but the work hardening becomes excessive because the cold work degree is high, and then the artificial aging treatment step Even if it performs, softening of a structure | tissue will become inadequate and moldability will run short.

前記(5)の人工時効処理とは、焼き戻しとも言われ、アルミニウム合金管材に靭性を与えるための熱処理である。靭性が上がることで、成形性が向上する。熱処理温度は、人工時効処理による析出プロセスの点で、120〜200℃が好ましく、特に、微細析出物を生成させて靭性をより向上させる点で、150〜180℃が好ましい。熱処理時間は2〜24時間であり、熱処理終了後、徐冷する。   The artificial aging treatment (5) is also called tempering, and is a heat treatment for imparting toughness to the aluminum alloy tube material. Formability is improved by increasing toughness. The heat treatment temperature is preferably 120 to 200 ° C. in terms of the precipitation process by artificial aging treatment, and particularly preferably 150 to 180 ° C. in terms of generating fine precipitates and further improving toughness. The heat treatment time is 2 to 24 hours, and after the heat treatment is completed, it is gradually cooled.

以下に、本発明の実施例を比較例と対比しながら説明する。なお、実施例は全て同一サイズの抽伸管で評価している。本発明の評価は連続抽伸管が製造できるサイズであれば限定されることは無く、適用が可能である。   Examples of the present invention will be described below in comparison with comparative examples. In all of the examples, evaluation was performed using a drawing tube of the same size. The evaluation of the present invention is not limited as long as the continuous drawing tube can be manufactured, and can be applied.

実施例及び比較例に係るアルミニウム合金管材の製造方法について説明する。まず、JIS6063合金を用いて、全長170m、外径50mm、肉厚4mmのマンドレル押出管を元材として、連続抽伸機を用いた連続引抜方式にて第1の冷間加工を行って第1引抜管(以下、BB引抜管)を製造した。最終製品の断面減少率を変えるために、このBB引抜管は、数種類のサイズにて作製した。BB引抜管をコイル化するために、レベルワインダーによる整列巻きにより巻き取りを実施した。このとき、各BB引抜管の巻き取りの長さは一定とした。その後、コイル化したBB引抜管を、所定の溶体化温度と冷却速度にて熱処理した。熱処理後、コイルを整直させながら第2の冷間加工である引抜を連続抽伸機(コンバインドマシン)にて行い、150℃、13時間にて人工時効処理し、マンドレル管の試験材1〜7を得た。実施例である試験材1〜4及び比較例である試験材5〜7のサイズは、外径8mm、肉厚1mmとした。   The manufacturing method of the aluminum alloy pipe material which concerns on an Example and a comparative example is demonstrated. First, using JIS6063 alloy, with a mandrel extruded tube with a total length of 170m, an outer diameter of 50mm, and a wall thickness of 4mm as the base material, the first cold working is performed by a continuous drawing method using a continuous drawing machine. A tube (hereinafter referred to as BB drawn tube) was produced. In order to change the cross-sectional reduction rate of the final product, the BB drawn tube was produced in several sizes. In order to coil the BB drawn tube, winding was performed by aligned winding with a level winder. At this time, the winding length of each BB drawn tube was fixed. Thereafter, the coiled BB drawn tube was heat-treated at a predetermined solution temperature and a cooling rate. After the heat treatment, the second cold working is drawn with a continuous drawing machine (combined machine) while the coil is straightened, artificially aged at 150 ° C. for 13 hours, and test materials 1 to 7 for the mandrel tube Got. The test materials 1 to 4 as examples and the test materials 5 to 7 as comparative examples were 8 mm in outer diameter and 1 mm in thickness.

次に、参考例として、従来材である6063-T83相当のポートホール管の製造方法について説明する。まず、JIS6063合金を用いて、全長4000mm、外径10及び11.05mm、肉厚1.1mmのポートホール押出管を一般引抜方式であるドローベンチで引抜処理し、150℃、13時間にて人工時効処理を行って試験材8、9を得た。参考例である試験材8、9は、前記実施例および比較例と同様に外径8mm、肉厚1mmとした。   Next, as a reference example, a method for manufacturing a conventional porthole tube corresponding to 6063-T83 will be described. First, using JIS6063 alloy, a porthole extruded tube having a total length of 4000 mm, outer diameters of 10 and 11.05 mm, and a wall thickness of 1.1 mm is drawn with a draw bench that is a general drawing method, and artificially processed at 150 ° C. for 13 hours. Aging treatment was performed to obtain test materials 8 and 9. The test materials 8 and 9 which are reference examples have an outer diameter of 8 mm and a wall thickness of 1 mm as in the above-described examples and comparative examples.

上記各種試験材について、成形限界として最大拡管率を測定し、また、Uベンド曲げ性を評価することで、機械的性質を調べた。測定、評価結果を表1に示す。なお、表1、2に記載した実施例である試験材1〜4、10〜13、及び比較例である試験材5〜7、14〜16の断面減少率は、第2の冷間加工における断面減少率を示す。   About the said various test materials, the maximum pipe expansion rate was measured as a shaping | molding limit, and the mechanical property was investigated by evaluating U bend bendability. Table 1 shows the measurement and evaluation results. In addition, the cross-sectional reduction rate of the test materials 1 to 4 and 10 to 13 which are examples described in Tables 1 and 2 and the test materials 5 to 7 and 14 to 16 which are comparative examples is the second cold working. The cross-section reduction rate is shown.

最大拡管率の測定:円すい状の型の先端部に、長さ50mmに切断した直材である試験材の開口端部の一方を載せて、試験材を円すい状の型に対し垂直に固定し、上方から最大荷重60kgfのハンドプレスにて前記開口端部に圧力を加え、前記開口端部に割れが発生するまで試験材を押し込むことで前記開口端部を拡管させ、その最大径部の径を測定した。最大の拡管加工ができた試験材3における、最大径部の径と拡管加工前の径の差を100%として、各試験材の最大拡管率を測定した。
Uベンド曲げ性:曲げ型に長さ500mmに切断した試験材を押え型で押えつけて試験材を曲げる回転引き曲げ方法を用いた。試験材の曲げ加工速度は一定で行い、曲げ角度は90°とした。Uベンド曲げ性の評価は、外R部の表面状態を観察し、加工できて表面に肌荒れなく平滑面を有するものを良、加工できて表面に肌荒れ又はシワを有するものをシワ、加工中に割れが発生したものを割れ、とした。
Measurement of the maximum tube expansion rate: Place one end of the open end of the test material, which is a straight material cut to a length of 50 mm, at the tip of the conical die, and fix the test material perpendicularly to the conical die. Then, pressure is applied to the opening end from above by a hand press with a maximum load of 60 kgf, and the opening end is expanded by pushing the test material until cracking occurs in the opening end, and the diameter of the maximum diameter portion Was measured. The maximum tube expansion rate of each test material was measured with the difference between the diameter of the maximum diameter portion and the diameter before tube expansion processing being 100% in the test material 3 where the maximum tube expansion processing was completed.
U-bend bendability: A rotating pull bending method was used in which a test material cut to a length of 500 mm on a bending die was pressed with a holding die to bend the test material. The test material was bent at a constant bending speed, and the bending angle was 90 °. U-bend bendability is evaluated by observing the surface state of the outer R section, and processing that has a smooth surface without rough surface, and that can be processed and has rough or wrinkled surface. The thing which a crack generate | occur | produced was made into the crack.

Figure 0005336802
Figure 0005336802

表1に示す通り、溶体化処理を施さない従来のポートホール管である参考例の試験材8は、最大拡管率が80%であった。一方、実施例である試験材1〜4は、全て最大拡管率が90%以上となっており、試験材8と比較して、同等以上の測定値が得られた。試験材8より断面減少率の高い参考例の試験材9のポートホール管については、Uベンド曲げによりシワが発生し、最大拡管率は70%しか得られず、試験材1〜4に比べて特性が劣っていた。このように、溶体化温度500〜530℃、かつ冷却速度1.5℃/sec以上である試験材1〜4は、いずれも、従来材である参考例のポートホール管と比較して、最大拡管率、Uベンド曲げとも同等以上である点で、従来のポートホール管と同等以上の成形性が得られた。   As shown in Table 1, the test material 8 of the reference example, which is a conventional porthole tube not subjected to solution treatment, had a maximum tube expansion rate of 80%. On the other hand, all of the test materials 1 to 4 as examples had a maximum tube expansion ratio of 90% or more, and a measured value equal to or higher than that of the test material 8 was obtained. About the porthole tube of the test material 9 of the reference example whose cross section reduction rate is higher than that of the test material 8, wrinkles are generated by the U-bend bending, and the maximum tube expansion rate is only 70%, which is higher than that of the test materials 1-4. The characteristics were inferior. Thus, all of the test materials 1 to 4 having a solution temperature of 500 to 530 ° C. and a cooling rate of 1.5 ° C./sec or more are maximum in comparison with the porthole tube of the reference example which is a conventional material. Formability equal to or better than that of a conventional porthole tube was obtained in that the expansion ratio and U-bend bending were equivalent or better.

一方、溶体化温度500℃、冷却速度1.0℃/secの試験材5は、断面減少率が実施例の試験材1〜4よりも低く、第2の冷間引抜における加工硬化があまり起きていないので、最大拡管率は参考例並みの80%を得られたが、Uベンド曲げでシワが発生した。溶体化温度500℃、冷却速度0.5℃/secの試験材6は、最大拡管率が50%と低い値となった。試験材5、6は、溶体化処理時の冷却速度が遅く、溶体化が不十分であったため、実施例の試験材1〜4と比較して成形性が低下したと考えられる。試験材7は断面減少率が実施例の試験材1〜4より高く加工度が強いので、最大拡管率が30%にとどまり、Uベンド曲げではシワが発生した。   On the other hand, the test material 5 having a solution temperature of 500 ° C. and a cooling rate of 1.0 ° C./sec has a lower cross-sectional reduction rate than the test materials 1 to 4 of the examples, and the work hardening in the second cold drawing occurs much. As a result, the maximum tube expansion ratio was 80%, which was the same as that of the reference example, but wrinkles were generated by U-bending. The test material 6 having a solution temperature of 500 ° C. and a cooling rate of 0.5 ° C./sec had a low maximum value of 50%. Since the test materials 5 and 6 had a low cooling rate during the solution treatment and the solution formation was insufficient, it is considered that the formability was lowered as compared with the test materials 1 to 4 of the examples. Since the test material 7 had a cross-sectional reduction rate higher than that of the test materials 1 to 4 of the example and had a higher workability, the maximum tube expansion rate was only 30%, and wrinkles were generated in U-bend bending.

試験材10〜18は、おのおの、実施例1に記載の試験材1〜9と同様に製造し、高圧配管用成形加工を施した。この試験材10〜18について、加工後の全伸びを測定し、転造加工後、加工部の表面状態により転造加工性を評価することで、機械的性質を調べた。測定、評価結果を表2に示す。ここで、高圧配管用成形加工とは、実際の自動車用配管材を想定して、パイプの曲げに代表される成形加工、及び端末の接続信頼性が要求される加工難易度の高い転造加工を意味する。   Test materials 10 to 18 were produced in the same manner as test materials 1 to 9 described in Example 1, respectively, and subjected to molding for high-pressure piping. About these test materials 10-18, the mechanical property was investigated by measuring the total elongation after a process, evaluating a rolling workability by the surface state of a process part after a rolling process. Table 2 shows the measurement and evaluation results. Here, the high-pressure piping molding process is a molding process typified by pipe bending and a rolling process with high processing difficulty that requires terminal connection reliability, assuming actual automotive piping materials. Means.

全伸びの測定:Z2241(金属材料引張試験方法)に規定された、継ぎ目なし管JISH4080規定された11号試験片を使って実施し、全伸びを測定した。
転造加工性:溝付き形状用の金型を備えた転造加工試験装置を用い、該装置のロール回転数、ロール寄せ量、転造圧力を一定にして試験材に転造加工を行った。転造加工性の評価は、加工部の表面状態を観察し、加工できて寸法形状を満たし、且つ表面に肌荒れなく平滑面を有するものを良、加工できて寸法形状を満たすが、表面に肌荒れ又はシワを有するものを肌荒れ、加工できたが寸法形状を満たさないものを寸法不良、加工中に割れが発生したものを割れ、とした。
Measurement of total elongation: It was carried out using a No. 11 test piece specified by seamless pipe JISH4080 specified in Z2241 (metal material tensile test method), and the total elongation was measured.
Rolling workability: Using a rolling test apparatus equipped with a die for grooved shape, the test material was rolled with the roll rotation speed, roll feed amount, and rolling pressure fixed. . Rolling workability is evaluated by observing the surface condition of the processed part, processing and satisfying the dimension and shape, and having a smooth surface without rough surface, and processing and satisfying the dimension and shape, but rough surface. Alternatively, those having wrinkles were roughened and processed, but those that did not satisfy the dimensional shape were determined to be defective in dimension, and those that cracked during processing were determined to be cracked.

Figure 0005336802
Figure 0005336802

表2に示す通り、溶体化処理を施さない従来のポートホール押出管である参考例の試験材17は、全伸びは15%、転造加工は良好な結果となった。一方、実施例の試験材10〜13は、いずれも全伸びが15%以上、転造加工は良好であり、試験材17と比較して、同等以上の結果が得られた。試験材17より断面減少率の高い参考例の試験材18のポートホール管については、全伸びは14%であり、転造加工の際に割れが発生し、実施例の試験材10〜13に比べて特性が劣っていた。このように、高圧配管用成形加工を施した試験材についても、溶体化温度500〜530℃、かつ冷却速度1.5℃/sec以上である実施例の試験材10〜13は、いずれも、従来材である参考例のポートホール管と比較して全伸びと転造加工性が同等以上である点で、ポートホール管と同等以上の成形性が得られた。   As shown in Table 2, the test material 17 of the reference example, which is a conventional porthole extruded tube not subjected to a solution treatment, had a total elongation of 15% and a good rolling process. On the other hand, all of the test materials 10 to 13 of the examples had a total elongation of 15% or more, and the rolling process was good. Compared with the test material 17, the same or better results were obtained. About the porthole pipe of the test material 18 of the reference example having a higher cross-sectional reduction rate than the test material 17, the total elongation is 14%, and cracks are generated during the rolling process. Compared with the characteristics. Thus, also about the test material which performed the shaping | molding process for high voltage | pressure piping, all the test materials 10-13 of the Example which are solution treatment temperature 500-530 degreeC and the cooling rate 1.5 degree C / sec or more, Formability equal to or better than that of the porthole pipe was obtained in that the total elongation and rolling processability were equivalent or better compared to the porthole pipe of the reference example which is a conventional material.

一方、溶体化温度500℃、冷却速度1.0℃/secの試験材14は、断面減少率が実施例の試験材10〜13より低いものの、全伸びが8%にとどまった。溶体化温度500℃、冷却速度0.5℃/secの試験材15は、全伸びが6%と低い値であった。試験材14、15は、溶体化処理時の冷却速度が遅く、溶体化が不十分であったので、実施例の試験材10〜13と比較して成形性が低下したと考えられる。試験材16は断面減少率が実施例の試験材10〜13より高く加工度が強いので、全伸びが6%と低い値となり、かつ転造加工で割れが発生した。   On the other hand, the test material 14 having a solution temperature of 500 ° C. and a cooling rate of 1.0 ° C./sec had a total area of only 8% although the cross-sectional reduction rate was lower than that of the test materials 10 to 13 of the examples. The test material 15 having a solution temperature of 500 ° C. and a cooling rate of 0.5 ° C./sec had a low total elongation of 6%. Since the test materials 14 and 15 had a slow cooling rate during solution treatment and solution formation was insufficient, it is considered that the moldability was lowered as compared with the test materials 10 to 13 of the examples. Since the test material 16 had a cross-sectional reduction rate higher than that of the test materials 10 to 13 of the example and had a strong workability, the total elongation was a low value of 6%, and cracking occurred in the rolling process.

このように、本発明によれば、6063−T83相当のポートホール管と同程度以上の寸法精度と高成形性を有し、溶着部がなく品質信頼性の高い継ぎ目無しアルミニウム合金管を低コストで提供することが可能となる。   Thus, according to the present invention, a seamless aluminum alloy tube having a dimensional accuracy and high formability equivalent to or higher than that of a porthole tube equivalent to 6063-T83, no welded portion, and high quality reliability can be obtained at low cost. Can be provided.

本発明のアルミニウム合金管材の製造方法によれば、溶着部がなく品質信頼性の高いマンドレル押出管から、薄肉化され、強度と成形性にも優れたアルミニウム合金管材を製造することができるので、複雑に加工された配管を高圧条件下で使用する自動車の分野で利用価値が高い。   According to the method for producing an aluminum alloy tube of the present invention, an aluminum alloy tube that is thin and has excellent strength and formability can be produced from a mandrel extruded tube having no welded portion and high quality reliability. It is highly useful in the field of automobiles that use complicatedly processed piping under high pressure conditions.

Claims (3)

JIS6063アルミニウム合金のマンドレル押出管を、連続引抜方式により断面減少率70%以上の第1の冷間加工をし、得られた第1引抜管を溶体化処理した後、断面減少率10〜40%である引抜による第2の冷間加工をし、その後、さらに人工時効処理することを特徴とするアルミニウム合金管材の製造方法。 A mandrel extruded tube of JIS6063 aluminum alloy is subjected to a first cold working with a cross-section reduction rate of 70% or more by a continuous drawing method, and the obtained first drawn tube is subjected to a solution treatment, and then a cross-section reduction rate of 10 to 40%. A method for producing an aluminum alloy pipe material, characterized in that the second cold working is performed by drawing, and then an artificial aging treatment is performed. 前記第1引抜管を前記溶体化処理前にコイルで連続的に巻き取ってコイル化することを特徴とする請求項1に記載のアルミニウム合金管材の製造方法。   2. The method for producing an aluminum alloy pipe according to claim 1, wherein the first drawn pipe is continuously coiled by a coil before the solution treatment. 3. 前記溶体化処理の冷却温度が、1.5℃/秒以上であることを特徴とする請求項1に記載のアルミニウム合金管材の製造方法。   The method for producing an aluminum alloy pipe according to claim 1, wherein a cooling temperature of the solution treatment is 1.5 ° C / second or more.
JP2008247302A 2008-09-26 2008-09-26 Seamless aluminum alloy tube manufacturing method Expired - Fee Related JP5336802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247302A JP5336802B2 (en) 2008-09-26 2008-09-26 Seamless aluminum alloy tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247302A JP5336802B2 (en) 2008-09-26 2008-09-26 Seamless aluminum alloy tube manufacturing method

Publications (2)

Publication Number Publication Date
JP2010077497A JP2010077497A (en) 2010-04-08
JP5336802B2 true JP5336802B2 (en) 2013-11-06

Family

ID=42208252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247302A Expired - Fee Related JP5336802B2 (en) 2008-09-26 2008-09-26 Seamless aluminum alloy tube manufacturing method

Country Status (1)

Country Link
JP (1) JP5336802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110949A (en) * 2010-11-26 2012-06-14 Sumitomo Metal Ind Ltd Method for cold drawing of steel pipe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102213A (en) * 1978-01-31 1979-08-11 Kobe Steel Ltd Manufacture of al-mg-si type corrosion resistant, free cutting aluminum alloy pipe or rod with little residual stress
JPS6379942A (en) * 1986-09-22 1988-04-09 Sumitomo Light Metal Ind Ltd Manufacture of aluminum-alloy pipe for piping excellent in strength, workability, and corrosion resistance
JPH05125502A (en) * 1991-11-08 1993-05-21 Showa Alum Corp Method for manufacturing aluminum alloy material for bending
JP2908993B2 (en) * 1994-12-14 1999-06-23 株式会社神戸製鋼所 High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material
JPH11199961A (en) * 1998-01-07 1999-07-27 Furukawa Electric Co Ltd:The Aluminum alloy piping material and its production
JP4311634B2 (en) * 2003-09-30 2009-08-12 株式会社神戸製鋼所 Aluminum alloy extrusion for electromagnetic forming
KR101501295B1 (en) * 2006-12-13 2015-03-10 스미토모 게이 긴조쿠 고교 가부시키가이샤 High strength aluminum alloy material and manufacturing method thereof
JP5111966B2 (en) * 2007-07-26 2013-01-09 古河スカイ株式会社 Method for manufacturing aluminum alloy panel

Also Published As

Publication number Publication date
JP2010077497A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
CN102836895B (en) A kind of manufacture method of special-shaped seamless steel pipe
KR101053007B1 (en) Copper Alloy Pipes for Heat Exchangers
JP2003311317A (en) Manufacturing method of seamless pipe
JP6388398B2 (en) Internal grooved tube for heat exchanger and its manufacturing method
JP5336802B2 (en) Seamless aluminum alloy tube manufacturing method
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP2009279601A (en) Aluminum hollow extruded material and its manufacturing method
JP5404139B2 (en) Copper alloy tube for heat exchanger
KR20140023476A (en) High strength copper alloy pipe with good workability and manufacturing method thereof
JP6244213B2 (en) Copper tube for heat exchanger
CN110691858B (en) Aluminum alloy tube-shaped hollow profiles and piping materials for heat exchangers
JP6378141B2 (en) Copper or copper alloy tube for flaring
JP5132845B2 (en) Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP6114939B2 (en) Seamless pipe, level wound coil, cross fin tube type heat exchanger and method for manufacturing the same
JP4182556B2 (en) Seamless steel pipe manufacturing method
JP2014109040A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
JP4277724B2 (en) Secondary processed steel pipe with excellent fatigue characteristics
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP2002059220A (en) ERW steel pipe with excellent hydroformability
JP3256162B2 (en) Manufacturing method of welded steel pipe
JP2004344908A (en) Metal pipe for mechanical pipe-expanding work
JPH11199961A (en) Aluminum alloy piping material and its production
JP2014109041A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
WO2013157461A1 (en) Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger
JP3450744B2 (en) Method for producing steel pipe with excellent hydroforming workability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5336802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees